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M-deformations of A-simple X" P*_germs
from R" to R, n > p

J. H. Rieger* M.A.S. Ruas'

Abstract.

All A-simple singularities of map-germs from R"™ to R?, where n > p, of
minimal corank (i.e. of corank n — p + 1) have an M-deformation, that is a
deformation in which the maximal numbers of isolated stable singular points
are simultaneously present in the discriminant.

Resumo

Toda singularidade A-simples de um germe de aplicagao f : R* — RP, de
coposto n — p + 1, possui uma M-deformagao, isto é, uma deformacao cujo
discriminante contém o nimero méaximo de singularidades isoladas estaveis.

- Mathematics Subject Classification (2000): 58K60, 58 K65, 32530

Introduction

In the present paper we study real deformations of map-germs from R" into
RP, where n > p, for which the maximal numbers of isolated stable sin-
gular points are simultaneously present in the discriminant, which we call
M-deformations for short (M as in maximal), furthermore we call the max-
imal numbers of isolated stable singularities 0-stable invariants. (For map-
germs of target dimension greater than the source dimension we replace in
the definition of a M-deformation discriminant by image.) This terminology
is analogous to the concept of a M-morsification of a function-germ, which,
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for example, exists for singularities of type Ay and Dy [2, 5]). For map-
germs very little is known about the existence of M-deformations beyond the
classical result by A’Campo [1] and Gusein-Zade [7] that plane curve-germs
always have M-deformations, i.e. deformations with ¢ real double-points
(notice that the d-number is the only O-stable invariant in this case). For
map-germs R"™ — RP, where n < p, there is also the notion of a good real
perturbation due to Mond for which the homology of the image of a stabiliza-
tion of a given germ coincides with that of its complexification (again there
is an analogous definition for n > p with discriminant in place of image).
For plane curve-germs this concept coincides with that of an M-deformation,
but for map-germs of higher source dimension such good perturbations exist
only for a small class of map-germs — e.g. for germs from R? to R? there is
only one series of A-simple corank-1 germs having good perturbations [10].
On the other hand, good perturbations are known to exist for all singular
map-germs from R" to RP of A.-codimension 1 and minimal corank (i.e. of
corank max(1l,n —p+ 1)), see [4] and [9].

The main result of the present paper is that all A-simple singularities of
map-germs from R™ to R?, where n > p, of minimal corank (i.e. of corank
n —p+ 1) have an M-deformation. The proof of this result is based on the
following property: all A-simple singularities f of minimal corank can be
deformed into a germ whose 0-stable invariants differ from those of f by at
most one — one can then inductively split-off real stable singular points from
0 one by one. As a corollary we also get lower bounds for the A.-codimension
of f in terms of its 0O-stable invariants. The above property does not hold
for germs of non-minimal corank nor for germs of positive A-modality. The
hypothesis of minimal corank is necessary for the existence of M-deformations
(below we give an example of an A-simple corank-2 germ from the plane to
the plane that does not have an M-deformation, and that violates the above
property). At present we have no example of a germ of minimal corank and
positive A-modality without an M-deformation, but we conjecture that the
A-simplicity is also a necessary condition.

Finally, looking at the existing classifications of .A-simple corank-1 germs
from R™ to R?, where n < p, one checks that these have M-deformations.
Hence it is reasonable to conjecture that the existence of M-deformations
holds for A-simple singularities of minimal corank for any pair of source and
target dimensions.

The plan of this paper is as follows. In Section 1 we introduce some no-
tation and state the main result, and in Section 2 we briefly recall from [16]
the definition of certain map-germs Gy(spn) @ K**~! — K"**~! associated
with f : K® — K" (here k(s,n) denotes a partition of n with s summands,
and K = R or C) whose local multiplicity gives the O-stable invariants up
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to an overcount factor. Section 3 contains the proof of the main result,
and Section 4 gives lower bounds on the A.-codimension in terms of the 0-
stable invariants and discusses some empirical evidence for the existence of
M-deformations for A-simple corank-1 germs f : R®™ — RP, for n < p.
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the hospitality and financial support of this institution is gratefully acknowl-
edged. The second named author acknowledges financial support from CNPq
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1 Statement of main result and some nota-
tion

Any A-simple smooth map-germ f : R™,0 — R",0, where m > n, of rank
n — 1 is given by the pre-normal form

(z,y,2) = (z,9(2,y) + Q(2)),

where (z,y,2) € R"™! x R x R™™", Q(z) = ), €22 (&, = +1) and where
(z,y) — (z,9(z,y)) is an A-simple equidimensional corank-1 germ (see
Lemma 3.1). Let f = (f1,...,fs) : R™,S = R* f(S) =: q, filz,y:) =
(z,Gi(z,v;) + Qi(2)), e = 1,...,s := |S|, be an s-germ appearing in a de-
formation of f (here S is a finite set of source points being mapped to the
point ¢ in the target). The rank n — 1 K-classes of germs R™, 0 — R",0
are those of Ay, with representatives (z,y**! + Q(z)), and the K-classes of
s-germs A, . k,) have an A .-singularity at the ith source point. The stable
rank 7 — 1 multi-germs are those being transverse to their K-class Ay, ... x,),
and the isolated stable (or O-stable) singularities amongst these are those
with 7 ki = n. Let k(s,n) := (ky,..., k) be such a partition of n with s
summands.

For equidimensional germs f : C*,0 — C",0 the number of isolated
stable A n)-points in a generic deformation of f, denoted by risn)(f),
can be calculated by dividing the local multiplicity of a certain map-germ
Gi(s,n) : C*+*71,0 — C™**~! by some overcount factor (see [16] and Section
2). For rank n — 1 germs f : C™,0 — C",0, where m > n, of the form
(z,9(z,y) + Q(z)) the invariants ri(s»)(f) can simply be calculated from the
associated equidimensional germ (z, g(z,v)).

For real germs f the invariants r¢(s ) (f) are defined by complexifying, but
clearly the above geometric interpretation does no longer hold: the number



r,ﬂf(s,n)(ft) of real Ag(sn)-points in a deformation f; of f now depends on the
choice of deformation. One only has the obvious inequality r,“f(s’n)( fi) <
7"k'(S,n)(f)-

We call a real deformation f; of f an M-deformation, if the maximal
numbers 7 »)(f) of O-stable singularities (for all partitions k(s,n) of n) are
simultaneously present in the discriminant of f;.

The main result on the existence of M-deformations in the present paper
is the following

THEOREM 1.1. All A-simple rank n — 1 germs f : R™ 0 — R™, 0, where
m > n, have an M-deformation.

REMARK 1.2. The condition on the rank is necessary: A-simple germs
of higher corank do in general not have an M-deformation, as the following
example shows. For the corank-2 germ f = (z* — y? + 23, zy) the invariants
) (f) =3 and r1,1)(f) = 2 are the (complex) cusp and double-fold numbers,
respectively. But any real stabilization of f has 3 cusps and no double-fold
(see [17]). We conjecture that the A-simplicity of f is also necessary, but at
present have no example of a rank n — 1 germ of A-modality 1 without an
M-deformation.

We now fix some notation. Let C; denote the local ring of smooth (or
complex-analytic) function germs f : K*, 0 — K, 0 and M,, its maximal ideal.
For the groups A and K (of left-right and of contact equivalence, respectively)
acting on the space of smooth map-germs and for the tangent spaces to the A-
and K-orbits we use the usual notation, such as T A- f =t f(M-0,)+w f(M,-
0,) and TK- f = tf(Mpy-0,)+ f*M,-0; (a basic reference for these concepts is
the survey on determinacy [19] by Wall). For equidimensional map-germs f :
K™, 0 — K", 0 of corank 1 we use source coordinates (z,y) = (z1,...,Tn-1,Y)
such that f(z,y) = (z,g(z,vy)), and target coordinates (Xi,...,X,). In
describing elements of T'A - f we sometimes use the shorter notation e; for
the target and source vector fields 9/0X; and 9/0z; (where z,, = y).

2 Defining equations of the 0-stable invari-
ants

In view of Lemma 3.1 we consider in this section equidimensional corank-1
germs f : K*,0 — K", 0 of the form f(z,y) = (z,9(z,y)). For such map-
germs one can replace the space (K")* of s-fold points in the source (whose



f-images are a common point in the target) by K"*~! with coordinates
(Z, 91,2 ¥s) = (T1y++ - Tno1,¥1,- .-, Ys). Recall that Agiemy 1= Ap,,..k0)
where m := Y 7_, k;, denotes the K-class of s-germs having an Ay, -singularity
at the ith source point. In [15, 16] the closures of the sets A, . x,) in multi-
jet space J%, £ := Y oii (ki + 1), were explicitly defined by iteration for any
s and m < n, and it was shown that these sets are smooth submanifolds
of codimension ) °_,(k;) + s — 1. (Roughly speaking, the conditions for an
Ay, singularity at the jth source point, with f-image some given point in
the target, are reduced modulo the corresponding conditions at the source
points 1 to j — 1 and then divided by a suitable power of y; — y;_;.) Pulling
back the ideal defining the closures of these sets by the multi-jet extension of
f we get an ideal (5¢f)*(Z(Ak(s,n))) in Crys—1, and for m = n the generators
of this ideal define an equidimensional map-germ

Gisn) = (G1,- .-, Gnys—1) el g3 KL

whose local multiplicity mg,, ,(0) := dimg Cn+s_1/G,*;(5,n)Mn+s_1 is equal
to the number 7 (s n)(f) of complex A, n)-points appearing in a stabilization
of f times an overcount factor ¢ (c is equal to the number of permutations
mapping source points of type Ay, to source points of the same type).

It will turn out (see below) that we need the defining equations of the
sets Ay(s,n) only for s = 1 and 2, hence we specialize t_he definitions in [15, 16]
to these particular cases. Set ¢@ := 9'g/9y’, then A, = {gV) = ... g™ =
0}. For s = 2 we first apply a linear origin-preserving coordinate change
L(=,y1,42) = (2,%1,92 = 41) = (z,9,€), and let gi” := g, Setting

o)=Y gV M al, gy =08y 0, 121,
a2k1+1
we define

A 1 k 0 —k

Ay jn—ky) = {9§)=~-- =9§ Y =g§)=...:g§” 1) = 0}.
Notice that for even n the overcount factor ¢ in r(,/2,n/2)(f) = ¢! MG a2y (0)
is 2. For the other O-stable invariants in the cases s = 1,2 it is one.

The following facts will be useful.

REMARKS 2.1. (i) Given a pair of A.-equivalent, equidimensional corank-
1 germs f and f’, the corresponding pairs of germs Gi(s,n) and G, ) are
K-equivalent (see Lemma 2.3 of [16]).

(ii) Tk(sm)(f) = 0 for n +s > mg(0), where mg(0) denotes the local
multiplicity of f at the origin (this follows from the “additivity of the local

s,n)
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multiplicities on the diagonal” in the recognition conditions for flk(s,n), see
[15, 16]). This fact, together with the observation that the A-modality of
germs with m;(0) > n + 3 is positive (Lemma 3.4 below), implies that we
only have to consider 0-stable invariants with s =1, 2.

3 M-deformations and A-simplicity

We begin with an outline of the proof of Theorem 1.1. Recall from the intro-
duction that the key property of A-simple singularities of minimal corank,
from which an M-deformation can then be obtained inductively, is that such
germs f can be deformed into a germ whose 0-stable invariants differ from f
by at most one. The proof of this property () consists of the following main
steps:

(i) Reduction to the equidimensional case R* — R™.
(ii) For n > 3 there are no A-simple orbits of local multiplicity > n + 3.

(iii) Germs f of local multiplicity n+1 have 7 n)(f) = 7(n)(f) as the only
non-zero O-stable invariant, and positive K-modality of G(,) implies
positive A-modality of f. Property () then follows from the analogous
property for the local multiplicities of K-simple equidimensional map-
germs.

(iv) Germs f of local multiplicity n + 2 have ry(s,)(f), where s = 1,2, as
the only non-zero 0-stable invariants. In this case property (x) follows
from a partial classification of A-simple germs listed in Lemma 3.2.2
(we do not know whether all the germs in this list are A-simple, but
any A-simple germ of multiplicity n + 2 is equivalent to some germ in
this list). This partial classification is the most unpleasant part of the
proof. (Notice that the proofs of the Lemmas 3.2.1 and 3.2.2 merely
describe the high-level structure and the cases to be considered, but
omit all the routine details, which just require some care due to the
fact that the dimension n is not fixed.)

We begin with the reduction to the equidimensional case.

LEMMA 3.1. Any A-simple smooth map-germ f : R™,0 — R",0, where
m > n, of rank n — 1 is given by the pre-normal form

(z,y,2) = (z,9(z,y) + Q(2)),



where (z,y,2) € R*™! x R x R™™", Q(z) = Y, &:22 (e, = +1) and where
(z,y) = (z,9(x,y)) is an A-simple equidimensional corank-1 germ.

Proor. The argument is similar to the one for n = 2 (see Lemmas 1.1
and 1.2 in [17]). After a coordinate change we can assume that f is given by

h = (xh'"):L‘n—hg(‘rl:"';xn—hyla"‘lyr) +Zéizi2);
i

where ¢t = 1,...,m —n—r+1and g(0,...,0,91,...,9,) € M2. Two such
germs h = (z,9(z,y) + Q(z)) and &' = (z,¢'(z,y) + Q(2)) are A-equivalent
if and only if the corresponding germs (z, g(z,y)) and (z,¢'(z,y)) are A-
equivalent. We claim that for » > 2 there are no simple .A-orbits over the
2-jet of (z, g(x,y)), which for r = 2 is A%-equivalent to

(SE, a1T1Y1 +...+ Up-1Tpn-11 + bll'lyg +...+ bn_lil,'n_lyg).

The least degenerate .A%-orbit, corresponding to a; # 0 and a;b; # a;b; (for
some 4 and j # ), has the representative (taking : =1, j = 2)

o= (x,z1Y1 + T2Yys).

A complete 3-transversal for ¢ is given by
t:=(0,ay? + bylys + cyr1vs + dys + exsy + ... + fTo_1y3).

Now we can argue as in Lemma 1.2 of [17] to show that the subspace
K{viy) e, :i+j =3} of TA3- (0 +1) is foliated by (at least) a 1-parameter
family of orbits. Notice that the more degenerate .A%-orbits and the orbits
corresponding to r > 2 are all adjacent to T'.A%-o, which implies the claim. O

REMARK 3.2. Notice that the discriminants of the germs (z,g(z,y) +
Q(z)) and (z, g(z,y)) coincide.

THEOREM 3.3. All A-simple corank-1 germs f : R®,0 — R",0 have an
M-deformation.

For n = 2 all real types of stabilizations of all simple corank-1 germs are
known (see [14]) and amongst these there is always an M-deformation (the
result also holds for functions of one variable, n = 1), hence we can concen-
trate on n > 3. The theorem will follow from Lemmas 3.4, 3.1.1, 3.1.2, 3.2.1,
3.2.2 and 3.2.3 below.



LEMMA 3.4. Forn > 3, all A-orbits inside (1, ..., Tn 1, y="*®) are at
least unimodal..

The proof of the above claim will follow directly from the following

LEMMA 3.5. Let f : K", 0 — K" 0 be a corank 1 A-finitely deter-
mined germ. Suppose that the A-orbit of f is open in its KC-orbit. Then
TTLf(O) <n+ 2

We shall need the following condition for the openess of the A-orbit within
the K-orbit.

THEOREM 3.6 ([18), THEOREM 5.1 ). Let f : K", 0 — KP?,0 be an A-
i
TAe- [+ f*M,.0;
The A-orbit of f us open in its KC-orbit if and only if fv; € TA- f, i =
Lo, d=1...,vr (Mod f*Mf,.Hf).

finitely determined germ and {vy,va,...,v,} a basis for

PrROOF OF LEMMA 3.5. When m;(0) < n + 1, the only map-germs
f K" 0— K" 0 with the property that the A-orbit is open in its K-orbit
are the infinitesimally stable ones. Then, we can assume that m(0) = n+1,
L>02,

Let f(z,y) = (z,9(z,y)), where £ = (z1,...,Zn_1), and g(z,y) = y"+ +
d1(z)y+ ...+ Pyt + Z;:i—z bi(x)y'.

The hypothesis that the A-orbit of f is open in the K-orbit implies that
rank d¢(0) = n — 1, where ¢ : K*1,0 — K"*=2 0 is defined by ¢(z) =
(h1(x), ..., Pnti—2(z)). It also follows that after changing coordinates, we
can write f in the form:

n+l—2
(‘Ta g(IE, y)) = (:E: yn+l ¥+ 1y S LT h mn—lyn—l P Z ¢1(l‘)y1)

It follows from the theorem above that we may assume that ¢;(x) are
linear, modulo terms in f*M?2.0;.

Moreover, the n(n+{—2) elements (0, g(z,y)y’), (0,z:iy?), i=1,...,n—1
and j=1,...,n+1—2, must be in TA - f, the tangent space to the A-orbit
of f. The equations relating these elements are:

wf(Xn-en) + ffM2.0; =0,(ModTA- f)
tf(yen) + fPM20;,=0,5=1,...,5""2(Mod T A- f)
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tf(zie)+ f*M20;=0,i=1,...,n—1,j=1,...,n—1, (ModTA- f)
tf(g.e;) + f*M20;,=0, j=1,...,n—1, (ModTA- f)

This system has n(n + [ — 2) variables and n? + [ — 1 equations.
Then we must have n? +{—1 > n(n + [ — 2), which holds if and only if
| < -2 + 1. Then, when n > 3, it follows that | < 2. O

For m(0) < n all invariants rx(s ) (f) are zero, hence we have to consider
the cases m;(0) =n + 1 and n + 2.

3.1 The case ms(0) =n+1

It is sufficient to consider germs (see Prop. 4.8 in [13])
f=(z,y"" + P2y +... + Pua(z)y™ ),
and m = n implies s = 1, hence G (), which is K-equivalent to
P 2= (Pyl®); - - s s Paal2))s

is the only relevant germ here.
LEMMA 3.1.1. If G is not K-simple then f is not A-simple.

PROOF. The hypothesis implies that there is a 1-parameter deformation
Pt := (Pi(z),...,Pt_i(z)) of P = P® meeting an infinite number of distinct
C-orbits. Hence f; := (z,y™"' + 3.0 PH(x)y') is a deformation of f = f,
meeting an infinite number of A-orbits (by the fact quoted at the end of
Section 2). O

Note: if G(n) and G'(n) correspond to f and f’, respectively, then the
above argument shows that [G(n)] — [G{,)] implies [f] — [f] (i.e. adja-
cency of K-orbits implies that of A-orbits). The following claim now implies
(by induction) that all A-simple germs of local multiplicity n + 1 have M-
deformations, because 7(n)(f) = mp(0).

LEMMA 3.1.2. Let P : R* 1,0 — R* 1,0 be K-simple germ then there
exists a germ P', to which P is K-adjacent to, such that mp(0) —mp:(0) < 1.

PROOF. Use classification of K-simple equidimensional real germs. (Note:

the lower indices in complex classification [6] denote the Milnor numbers, and
for weighted homogeneous P we have p(P) = mp(0) — 1. In the real case

9



there is no complete published reference for the classification of the K-simple
equidimensional germs and their adjacencies, but at least the classification is
well-known. The preprint version of [17] contains a table comparing notation
for real and complex orbits which, together with the determination of some
partial adjacencies of real orbits, gives the desired result). O

3.2 The case m(0) =n+2
Here we consider the prenormal form
f=(z,y"?+ Pi(z)y+... + Palz)y"),

and m = n implies s = 1 or 2. Hence G,y and Gy ([ = 1,...,[n/2]) are
the only germs corresponding to non-zero 0-stable invariants of f.

LEMMA 3.2.1. Any A-simple germ of local multiplicity n + 2 has one of
the following prenormal forms:

o=@y P +ay+.. 2y ),
or
fn—l = (l‘, yn+2 = Yy +...+ :En—2yn—2 =+ Pn—l(xn—l)yn_1 =+ mn—-lyn)>

where P,_, belongs to the square of the mazimal ideal.
ProOF. We divide the proof in several steps.

Step 1. Any A-simple germ of local multiplicity n+ 2 has the prenormal
form

f]- = (.’L‘, y"+2 +z1y+ ...+ xj_lyj”l + P]-yj + xjyj+1 4+ ...+ $n—1yn)1

where Pj(zj,...,Zn-1), 1 < j < n,is in the square of the maximal ideal.

Consider the prenormal form f = (z,y"** + Pi(z)y + ... + Py(z)y"):
suppose the differential of (P, ..., P,) has rank r < n — 2 at the origin, by a
coordinate change in the z; we have that r of the P; are equal to (different)
z;. Let f': R*™ 1,0 — R™*1 0 be the restriction of f to z; = 0, for some z;
not appearing linearly in some P;, then f'is non-simple by Lemma 3.4. Split
(C,)? into a direct sum of two parts, @« Mo, -Cp-09/0X; and B, then there
are no more generators for the subspace BNT'A- f than there are generators

10



for TA- f'. From the proof of Lemma 3.4 it now follows that f is at least
A-unimodal.

Hence, for simple germs f, the differential of (P, ..., P,) has rank n — 1
at the origin. Let P; be the first P such that the rank of the differential of
(P, ..., P,), for increasing £ > 1, is less than ¢. By direct coordinate changes
we can assume that P; = z;, for i < j, P, € My, .. ,, and P,y = z;, for
i> .

Tfiyeses

Step 2. Any germ of type f; is non-simple if all germs of type f;i; are
non-simple.

We will show that any A-orbit in K(z,y™"?) of type f; is adjacent to
some orbit of type f;y1. Take a deformation of

fi= (=, y"“ + @Y+t x,yl + P(z141, “,g;n_l)ylﬂ 1 xl+2y‘+2 o

+Tn 1y + T y"),

with [ = j — 1 and P in the square of the maximal ideal, by ¢.(0, z;oy'*1).
For non-zero ¢t we apply successive coordinate changes

Ti—g =t (T — Q@141 ooy Tnm1)), Q € M?

4
Zi—2 —> Ti—3 — 1 Ti42y, ete.

and obtain
(2, "2 + 2y + .. + 1yt + 0¥ + Q' (Tig1, - T )Y + Ty R 4

+Tno1y" "+ Ty,
where Q' € M?, which is of type fiio = fj+1-
Step 3. All A-orbits in K(z,y"*?) of type f,_» have modality at least one.
Set s := (z,Z1y + .... + Tp—3y™ %) and consider a general n-jet
n—l)

f=s54+(0,(az’_y + bTpn_2Tn_1 + cx2_ )y 2 + (dTp_g + €Tn1)y

over s. We have the following three cases:

Case 1. d = e = 0: not all z; appear linearly in some P;, where
(z,y"*? + 3" Pj(z)y?). This leads to non-simple orbits (see Step 1).
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Case 2. e and d are not both 0, hence we can take (after a suitable co-
ordinate change) e = 1, d = 0 in the n-jet f above. The least degenerate
A"-orbit is then given by a # 0 (for a = 0 see Case 3. below) with represen-
tative f = s+ (0,22_,y" "2 + z,_19"!). A complete (n + 1)-transversal for
this f is given by (0, a'z,_oy™ + b'y™*1).

There are three cases to be considered (at the (n + 1)-jet level):

2.1 b # 0: leads to A-orbits in K(z,y™*!), see earlier Section 3.1.
220 =0,a"#0: 8 ~ s+ (0,22_oy" 2 + Tp19™ + Tp_oy™).
23 d' =V =0: (n+ 1)-jet f.

We have to consider the last two cases further.

Case 2.2: an (n + 2)-transversal in this case is (0,ay"*?). For f := s' +
(0, ay™*?) we have 3 generators for the a-subspace of T A" - f (suppressing
terms that are obviously in TA™*! - f):

wf(Xn-en) = (Oa z;zl—2yn_2 + Zp-oy" + ayn+2)’

tf(y-en) = (0, (n — 2)z2_oy" % + nzp_sy™ + (n + 2)ay™*™?),
tf(Tn_o-€n2) = (0,222 _, + T,_2y").

The resulting 3 by 3 matrix has rank < 3, hence a is a modulus:
f=(@a™? + 2y + o+ Taosy P+ 22"+ Ty T+ Ty,
The least degenerate orbit in Case 2.2 is therefore non-simple.
Case 2.3: the germs with (n + 1)-jet
f=a4 (0,25 %48, 09™ )
are adjacent to those in Case 2.2, hence non-simple.

This concludes 2.1 to 2.3 in Case 2. We now come to the last case con-
cerning the general n-jet f at the beginning of Step 3.

Case 8. e=1,a=d=0: for b # 0 the n-jet

f =s+ (07 (bxn—2 = an——l)3';71—13/‘"_2 op mn—lyn_l)
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is equivalent to s’ := s + (0, Zn—2Zp_1y""* + To—1y™"!). A complete (n + 1)-
transversal for s’ is given by

t = (O’a/xi_zyn—2 +b'xn_2y" 4+ Clyn+1)'

Setting f := s’ +t, the subspace of T.A™*! . f spanned by

n+1

n-2 _3 n—2 n—1 2 n—1 n
Tpn-2TnaY 5 Tp oY Tn1Y Y  ,Th 0y ,Tp-2Vy

in the e,-component has the following generators

tf(Zn-1-€n-1),tf (Tn-2-€n-2), Wf(Xn-€n), tf (y-n), tf (Tn-1.€n), tf(T2_,.€n_2).

The resulting 6 by 6 matrix has rank < 5 (here we work modulo monomials
that are outside the subspace in question and are obviously in T.A™*! . f).
Hence all orbits over the (n + 1)-jet f, and all orbits corresponding to b = 0
above (being adjacent to these), are non-simple.

We can now conclude that all orbits in K(z,y™*?) of type f,_» are non-
simple: they either lie in the closure of the non-simple orbits in K(z, y"*?)
considered in 2.2 or in the closure of the non-simple orbits in K(z,y"*!) con-
sidered in 3.

Steps 1 to 3 imply that the simple A-orbits in K(z, y™*%) must be of type
fn or fa_1, and it is clear that we can take P, =0 in f,. O

LEMMA 3.2.2. Any A-simple germ of local multiplicity n+2 is equivalent
to one of the following germs:

I (.73,y"+2 +T1y+...+ a:n_ly"_l)

or
fe= e eyt T Bpal™ " Pa ™+ 2aay”)s

where 2 < k < (n+ 3)/2 (for odd n) or 2 < k (for even n), or for odd n
fo=(@ Yy +my+. ...+ Tnot" 2 + znay").

(Notice that we do not claim that all these germs are A-simple, just that any
A-simple germ of multiplicity n+2 must be equivalent to one of these germs.)

PRrooOF. From Lemma 3.2.1,
f=(z,y" 2 +zy+...+ Loy 2 + p(Tn_1)y" ™ + ¢(Tnoa)y™),
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where p and ¢ do not both belong to the square of the maximal ideal.

When the linear part of p is non-zero, we can use the weighted version of
the Complete Transversal Method, as presented in [3] to prove that f is A
equivalent to

F=(@ vy +omy+...+ Tn1y" 1)

The calculations in the second case, when p belongs to the square of the
maximal ideal are harder. Under this assumption, and given the weights
w(z;)) =n+2-—1d,fori=1,...,n -2, w(z,—;) = 2 and w(y) = 1, the
weighted homogeneous part of degree n + 2 of such a germ is

f== y"Jr2 + Ty +...+ xn_Qy"_2 + Tp_1y").

In what follows we denote by M2 the ideal in C,, generated by all mono-
mials of filtration j.

We divide the calculations in steps, using again the weighted Complete
Transversal Method to prove that:

Step 1. All terms of filtration n 4+ 2k, k > 1, belong to T'A; - f + MF2k+1g,

Step 2. If fil v(z,y) = n + 2k + 1, then (0,v(z,y)) = (0, z5T1y"~1), Mod T A4,
f + M$+2k+29f, k =1

Step 3. For n odd and k > ™2, the term (0,2"]y""!) belongs to T A; - f +
Mn+2k+29f_

Notice that the following elements are in T4, - f :
a) wf(Xpen) = (0,4" + 2y + ...+ T oy" 2+ 3 1y"),
b) tf(a(z).en) = (0,c(z)((n+2)y""" + 21 + 229y + ... + nTpu1y™ ),
VYa € M, and
c) tf(ae)=(0,ay’),1<j<n—-2; tf(a.en)=(0,ay"),
Ya € M, or a = X,,. Notice also that
d) Ifn(z,y) € TA; - f,then a(z)n(z,y) € TA, - f, Yo € M,.

Step 1. We use induction. For & = 2 it follows easily that all terms
of filtration n + 4 are in TA; - f + M7™0;. By the induction hypothesis,
(0,y™+?) and all terms (0, c(z)y?), with fil a(z)y’ equal ton+2(, 1 < I <k,
are in T A, - f + ML+

Let v(z,y) = a(z)y’, fil(v) =n+2k+2.1f0<j<n—-2o0rj=mn,it
follows from (c) and (d) that (0,v) € TA; - f + M2+ Otherwise, there
are three possibilities:

14



(i) v(z,y) = a(z)y™**, 1 <1<k,
(ii) v(z,y) = a(z)y™t?**!, a € M. 12i<k
(i) vy = Taspgay™ 1, 1<E< K

Case (i) now follows easily from the induction hypothesis and equation

(d).

In case (ii), we can assume «(x) is a monomial of filtration 2k — 21 + 1.
Since n + 2l + 1 and n + 2k + 2 have different parities, there is an index j
such that a(z) = z;6(z) and fil (z;y""2*!) = n + 2k’ + 2, for some k' < k.
Then the result follows again from the induction hypothesis and (d).

In case (iii), we first use equation (b) to write:
(0,0) = 0,Mod T'A; - f + M+,
where
v(z,y) = (n+2)y" T + 2y P+ 4y TR L gyt

and fil (z;p7 2% =n+20 - 1.

If the parity of 7 + 2l — 3 is equal to the parity of n + 2l — 1 then
fil (Tn-ak-1-1¥7727%) = n + 20’ + 2 for some I’ < k, and we can apply the
induction hypothesis. The other possibility is fil (y7*%73) = n + 2l + 2 for
some ' < k, and we again get the result.

Step 2. One can easily check the statement for ¥ = 1. Let v(z,y) =
a(z)y filv=n+20+1,1<I<k.
By the induction hypothesis, (0, v(z,y)) = (0,25, y™"1), Mod M™+2+2(

From Step 1 it follows that, when j is odd, the element (0, z,_ox4;y"™})
belongs to T'A; - f + M2*20,. Then, using equation (b), we can write:

(0,v) =0,ModTA, - f + M$+2k+29f)

where
v(z,y) = (n+2)y" T+ 4 (n = 2k)y" 1+ .+

n+2k-3 n+2k—1

(n — 2k + ZZ)xn_ng[y"”l—l +...4+(n—2)z,_2y + NTp_1y ,

for0<I<k-1
Moreover,

n+2l—1)

(0, Tn—2k+2y = (0, Zn_oksuTh_1y" ") =

15



(0>$n 1(xn—2k+21yn_l)) = (0’ $2+iyn 1)

And this proves that T'A; - f + M™+2+29, contains all terms of filtration
n+2k+1, k> 1, Mod (0, zF+1ym-1).

Let n be odd, k¥ = 2. Then n + 2k + 1 = 2n + 4, and from equations
(b) and (a), we can write the following two linearly independent equations :

tf(y".e.) = (0, (n + 2)y*" M + 2" B + .. + 0z, 197 2) =0,
modulo T'A, - f + M?56, and
wf(X2e,) = (0, > + 224" + ... + 2z, 192 4 222 + L),

modulo T'A; - f + M250,.

Step 3. It follows from Step 2 that the above system reduces to:

_+_
2

(0, (n + 2)y* ™ + Az =0, ModTA4, - f+ M3,

n+3

k+1
2

(0,9*"** + Bz, 2,y" 1) =0, k= , ModTA, - f+ MZ+%0,.

and it is now easy to make an inductive procedure to conclude the proof of
Step 3.

It is a simple calculation to verify that, in any case, for all j > 1, the
n + 2k + 1 + j-transversal over the weighted n + 2k +1 jet of f is empty and
this completes the proof of Lemma 3.2.2. a

LEMMA 3.2.3. For the germs in the previous lemma we have:

rl = teaplf) =2 1Ll <n]?

T(n/2,n/2) y(f) =1 for even n
and
T(n)(fk) R T(n—t,z)(fk) =3, 1<i<n/2
T(n/?.,n/Z)(fk) =k for even n
and

r(n)(foo) = T(n—t,t)(foo) =8; LZi<u/l.

16



PROOF. For f one calculates up to K-equivalence:
G(n) ot (mh sy Tp—1, (n aE 2)'y2/2)

and
G(n—l,l) e (Ilv sy Tp-1, 692, 6))
where ¢ = (n+2)(In+1—-1)/(l+1) > 0 and y := 1, € := ¥, — y; in the
defining equations of Az_ ).
For £
Gy ™ (815 00wy Bz =R+ 2)'y%/3, Tp_1)
and
G(n-—l,l) G (xla sy Tp—2, Cy3; Tn—-1, 6))
where ¢ = 2(2l — n)(1 + n — ), which is zero for [ = n/2 and non-zero for
[ <n/2

For fr we get, except for [ = n/2, the same G,y and Gy as for foo
and for even n in addition:

2k
G(n/2,n/2) ~ (xla ey Tn-2,CY, Tn—1, 6)1

where ¢ = (I = 2)![(n +2)(l —n —1)/(2(l + 1))]F # 0. O

PROOF OF THEOREM 3.3 (CONCLUSION). Now one easily constructs
an M-deformation of f. Using the adjacencies [fo] — [f], ¢ (fe)
and (fo,] — [f(n+3)/2] and the fact that the corresponding 0-stable invariants
differ by at most one, we see by induction that all f; and also f. have M-
deformations, because we can split off the real Ay(s,)-points (in the target)
from the origin one by one. (For k(s,n) = (n/2,n/2) an origin-preserving
deformation of fkﬂ to fk induces a deformation

an/g’nm ~ (Z1,. .., Tn 2, 0y (¥ + bt), Tp_1,€),

where t is the deformation parameter and a, b are non-zero constants. Thus,
for appropriate t, we have a pair of real A, 2,/2) source points that are
mapped to the same target point. For the other k(s,n) we have a single real
Agk(s,ny in the source, defined by a linear equation, that splits off the origin
for t #0.) |
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4 Concluding remarks

Looking at the proof of our main theorem on M-deformations we observe the
following: given any A-simple germ f : R™ 0 — R",0 of rank n—1 and m >
n, there exists a germ f' such that [f] — [f'] and ri(sn)(f) — Th(s,n) (f)) < 1,
for all partitions k(s,n) of n. From this property we have the following lower
bound on the A.-codimension.

COROLLARY 4.1. Let f : R™,0 — R",0 be an A-simple germ of rank
n—1, then
COd(Ae) f) > Tk(s,n)(f) —~ L

If one could show that the above property also holds for .A-simple corank-
1 germs f : R",0 — RP 0, where n < p, then one could show that these also
have M-deformations as in the conclusion of the proof of Theorem 3.3. For
particular pairs of dimensions (n, p) such germs indeed have M-deformations.
For n < p, Ag(s,m) is an isolated and stable s-germ if k(s,m) = (kq,...,ks),
where m = ) . k; and k; > 0, satisfies the equality (m+s—1)(p—n+1) =
n+ s —1, and 7k(s,m)(f) again denotes the number of these concentrated at
the origin in the source of f¢ (see [16]).

For (n,p) = (1,2) it is known by classical results of A’Campo and Gusein-
Zade that any germ f has an M-deformation with r(g0)(f) = §(f) real double
points. For corank-1 germs in dimension (2,3) Mond [12] states that there
are real deformations with r)(f) = C(f) cross-caps and (without proof)
that there are real deformations with r(g,0)(f) = T'(f) triple-points. We do
not know whether there is always an M-deformation in which C(f) cross-caps
and T'(f) triple-points appear simultaneously. For corank-1 germs in dimen-
sion (3,4) there are two 0-stable invariants, namely 7(1,0)(f) and 7(0,0,0,0)(f)-
The latter invariant is 0 for all A-simple germs in the classification of Hous-
ton and Kirk [8], and one can easily show that there are deformations with
7a,0)(f) real A )-points for all simple corank-1 germs listed in [8]. And
these deformations are M-deformations.
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