

ANAIS

DO 18° SIMPÓSIO DE GEOLOGIA DO SUDESTE

Campinas, São Paulo 2025

Editores:

Iata Anderson de Souza Adilson Viana Soares Júnior Daniela Kuranaka Marina Thimotheo Wagner da Silva Amaral Francisco Manoel Wohnrath Tognoli Danielle Simeão Silvério Rocha Saul Hartmann Riffel

18º SIMPÓSIO DE GEOLOGIA DO SUDESTE 26 a 30 de maio de 2025 | Campinas - SP

O EFEITO DAS COMPOSIÇÕES RICAS EM K_2O E ALTO X_{Fe} NO MODELAMENTO DE EQUILÍBRIO DE FASES EM MIGMATITOS

Celis E.¹, Moraes R.¹

¹Instituto de Geociências, Universidade de São Paulo, edinson@usp.br

Os diagramas de equilíbrio de fases são uma ferramenta essencial no estudo de migmatitos, permitindo a reconstrução das condições de P-T em que a rocha sofreu fusão parcial e a subsequente cristalização do fundido. No entanto, algumas limitações devem ser consideradas, como a composição da rocha antes da fusão, a consistência dos modelos de atividades e os efeitos da H₂O e do Fe³⁺ na estabilidade das fases. O migmatito de São Pedro da União, no Orógeno Brasília Sul, é caracterizado por metatexitos a diatexitos estromáticos, cuja fusão incongruente por influxo de água levou à cristalização de hornblenda (with X_{Fe}>0.95) como fase mineral peritética. O leucosoma e o resíduo apresentam composição de A/CNK≈0,92-1, A/NK≈1,09-1,14 e X_{Fe}≈0,95-0,98, além de evidências de elevada atividade do flúor, marcada pela presença de fluorita. Utilizando os modelos de atividade do THERMOCALC para protólitos de rochas ígneas, a composição do resíduo foi modelada no sistema NCKFMASHTO. Os resultados indicam que a hornblenda com alto $X_{\rm Fe}$ não é estável em nenhuma condição de P, T, H₂O e Fe³⁺. Para solucionar essa inconsistência, foram realizadas correções na energia libre de Gibbs dos modelos de atividade do anfibólio e da biotita, permitindo determinar que a associação mineral quartzo, plagioclásio, feldspato potássico, hornblenda, biotita e clinopiroxênio seja estável entre 680–720 °C e 7,8–9,8 kbar. Comparando a composição do fundido e resíduo modelado com o leucosoma e resíduo obtidos por geoquímica de rocha total por meio de fluorescência de raios X, os dados mostram uma boa similaridade. No entanto, o resíduo modelado apresenta teor de K₂O mais baixo do que o resíduo obtido pela geoquímica de rocha total. Além disso, o volume de anfibólio modelado é subestimado, ocorre com 3%, em comparação aos ~8% em volume observados na rocha, além da presença de ~4% em volume de clinopiroxênio modelado, que está ausente na rocha. A titanita no modelo é estável apenas abaixo de ~550 °C, muito abaixo da linha do solidus e ainda longe do campo do pico metamórfico. O enriquecimento de K₂O observado na composição do resíduo, em comparação com o modelo, deve-se ao fato de que a segregação do fundido no resíduo não foi completa, mas permitiu a preservação de hornblenda peritética dentro do resíduo, além de grãos grossos de microclino e filmes de plagioclásio e quartzo, que indicam aprisionamento do mesmo, aqui interpretados como texturas que o mimetizam. Essa característica da composição da rocha faz com que, à medida que o teor de K₂O aumente, a proporção de anfibólio modelado diminua, enquanto a de clinopiroxênio modelado aumente. Além disso, com o aumento de $X_{\rm Fe}$, a proporção de anfibólio modelado também foi reduzida. Para modelamentos futuros, recomenda-se a incorporação do flúor no sistema, pois esse elemento pode aumentar a estabilidade de fases como titanita, biotita e plagioclásio, além de diminuir a temperatura de solidus do sistema haplogranítico.