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Abstract

In this paper, we discuss the one-dimensional cutting stock problem coupled with the

lot sizing problem in the context of paper industries. The production process in paper mill

industries consists in producing raw materials characterised by rolls of paper, and cutting

them in smaller rolls according to the demand of customers. Typically, both problems are

tackled in sequence, but if the decisions of the cutting patterns and the production of rolls

are made together, it can result in better resource management. We investigate Dantzig-

Wolfe decompositions and develop column generation techniques to obtain upper and lower

bounds for the integrated problem. First, we analyse the classical column generation method

for the cutting stock problem built-in the coupled problem. Second, we propose the ma-

chine decomposition that is compared with the classical period decomposition for the lot

sizing problem. The machine decomposition and the period decomposition provide the same

lower bound, that is well-known to be better than the classical lot sizing model. However,

the column generation heuristic for the problem without decomposing the lot sizing prob-

lem presented better feasible solutions with low computational effort for instances of the

literature.

Keywords: Cutting problem; Lot sizing problem; Dantzig-Wolfe decomposition; Column

generation method.

1 Introduction

The one-dimensional cutting stock problem (1CSP) and the lot sizing problem (LSP) have been

extensively studied in the past few decades. In the 1CSP, we are given a set of objects to be cut

into required items, where only one dimension of items and of objects is relevant. On the other

hand, the LSP determines how much to produce of a set of items in order to satisfy the required
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demand in each period of a planning horizon without exceeding the capacity constraints. Both

problems are encountered in paper, steel, glass and furniture industries. Despite they are related

to the same practical applications, there are only few papers in the literature addressing the

interaction between these problems.

In this paper, we discuss the 1CSP integrated with the LSP in paper industries (1CSP-LSP).

The production process consists in producing raw materials, i.e., rolls of paper, and cutting them

into final items in order to meet the demand of customers. Moreover, the required items have

different grades and different lengths. The production of raw materials can vary from industry to

industry, where the pulp mill can be bought or produced by the industry. The pulp and different

types of recycled papers are processed in the paper machine, where the industry can have one or

more machines. After the production of the paper rolls of different grades, two types of decisions

must be considered: cut the rolls into the demanded items and store items and rolls to the next

period in the planning horizon.

The LSP is related to the production of raw materials. It is necessary to determine which

grades will be produced in each paper machine with limited capacity during each period of the

planning horizon. The grade of the rolls must meet the grade of the demanded items. In addition,

there are setup times and setup costs to change the production of rolls with different grades.

Then, the LSP involved in the coupled problem tackled in this paper is the capacitated lot sizing

problem in parallel machines with setup times and setup costs (CLSPP). In each period of the

planning horizon, the 1CSP determines the number of required items to be cut from the rolls of

paper. The objective in the CLSPP is to minimise the production costs, the setup costs, and

the rolls held at the end of each period. In the 1CSP, the objective is to minimise the waste of

paper incurred during the cutting phase and the storage of items. The integration 1CSP-CLSPP

occurs by the fact that it is necessary to produce an enough number of rolls to be cut that can

attend the demanded items in each period of the planning horizon.

The aim of this paper is to analyse some mixed integer programming models for the 1CSP-

CLSPP. The first mathematical model (item-oriented model) integrates the classical CLSPP

formulation and the mathematical formulation of Kantorovich (1960) for the 1CSP. In the second

model (pattern-oriented model), the 1CPS is modelled according to Gilmore and Gomory (1961),

while it keeps the initial CLSPP formulation of the first model. In the third model (machine

decomposition model), we consider the 1CSP model written according to Gilmore and Gomory’s

approach and propose the machine Dantzig-Wolfe decomposition for the CLSPP. The period

Dantzig-Wolfe decomposition is also considered, but briefly described.

To solve the proposed models, we implemented column generation methods. First, lower

bounds are determined by solving the linear relaxation of the models using the column generation

methods. Then, we obtain feasible solutions (upper bounds) by solving the resultant restricted

and integer master problem. We evaluate the performance of the methods using instances from

the literature and instances based on a real application. Computational results show that solving

pattern-oriented model by CPLEX 12.6 provides high-quality solutions in a low computational
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time.

The main contributions of this paper are: (i) proposals of mathematical formulations for the

1CSP-CLSPP; and (ii) comparison of lower and upper bounds obtained by solving the mod-

els. The main reason for the proposal of those decompositions for the 1CSP-CLSPP it is the

development of tighter lower bounds for the coupled problem. In a previous paper in the litera-

ture, no lower bounds were determined for the problem, where a mathematical formulation and

Lagrangean heuristics were developed.

The remainder of this paper is the following. In Section 2, we review some papers in the

literature focused on the integration of two or more problems in paper mill manufacturings. In

Section 3, we present the mathematical models for the 1CSP-CLSPP. Computational results are

reported in Section 4. In Section 5, we draw some conclusions.

2 Literature review

The production process in paper industries is complex and can involve many problems, such

as production planning, scheduling problem, transportation problem, one- and two-dimensional

cutting stock problems. There are only few papers in the literature that solve the integration of

two or more of those problems. The planning and scheduling problems involve decisions about

how much paper will be produced in one or more machines during a planning horizon and the

sequence of the paper types in each machine. Usually there are setup cost and setup times

for changing one type of paper to another one, where a paper type can be characterised by its

grade and its colour. After the production of paper rolls, the rolls are cut into smaller ones in

the way that the waste of material is minimised, which characterise the one-dimensional cutting

stock problem. The smaller rolls can be demanded items or intermediate products. When the

demanded items are sheets, a two-dimensional cutting stock problem is defined. Finally, the final

items are delivered to customers.

Krichagina et al. (1998) combined the production scheduling and the cutting stock problem

in a paper industry that produces sheets of different sizes. The production scheduling problem

involves inventory decisions such as the production and the inventory levels of items in order to

determine a shutdown planning for the paper machine. The objective is to minimise backorder,

holding costs, shutdowns and paper waste. The shutdowns in a paper machine are allowed since

the machine capacity is slighty higher than the demand. To solve the problem, they proposed

a linear programming model to decide a set of cutting configurations to be used in a Brownian

analysis that finds a dynamic scheduling.

Keskinocak et al. (2002) developed a support system for paper mill industries of different

locations. Their support system considers the distribution of the demand to paper mills, the

scheduling of paper machines in each paper mill, the cutting of rolls into smaller ones (1CSP),

and the transportation of the demand to customers. To solve the integration of these problems

they use a series of algorithms in an asynchronous team framework.
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Menon and Schrage (2002) integrated the 1CSP with the assignment problem of rolls to iden-

tical cutting machines. They explored the dual-angular structure of the problem to decompose it

and to obtain tight bounds for the subproblems that are used to solve a relaxation of the master

problem.

Respicio et al. (2002) also presented a support system for a paper mill company that allows

the interaction with the decision makers. They integrated the capacity planning and scheduling

of the paper machine with the 1CSP. The problem is decomposed into two subproblems. The

first one defines the rolls to be produced over a discrete planning horizon, and the second one

defines the machine batching and scheduling. To define the cutting patterns, they used an integer

programming model based on Gilmore and Gomory (1961). The linear relaxation of the model

is solved by the column generation method and a feasible solution is obtained by rounding the

optimal linear relaxation solution. When the paper machine capacity is not completely used,

the system compute the forecast demand based on the records over 10 years. In addition, they

accept lost of demand if the machine capacity is not enough to produce all requested items.

Correia et al. (2004) integrated the production planning and the cutting stock problem, where

they focus mainly on the generation of cutting patterns. The planning production involves

the decisions of how much paper must be produced to attend the demand. Due to technical

characteristics, the rolls are cut into two stages: the first stage of cuts generates intermediate

rolls, and the second one generates the final rolls. As the demanded items can be rolls or sheets,

some rolls need to be cut according to a two-dimensional cutting pattern. To solve the problem,

some cutting patterns are enumerated and used as columns in a production planning model.

Poltroniere et al. (2008) jointed the 1CSP and the CLSPP to paper industry. The problem

consists in determining cutting patterns, deciding their usage during a planning horizon and

defining a production scheduling for parallel paper machines. The objective is to minimise

holding costs of rolls and final items, production and setup costs, and paper waste occurred

during the cutting process. They presented an integer programming formulation and proposed

two decomposition heuristics based on Lagrangian relaxation to solve the problem.

Correia et al. (2012) extended the problem described in Correia et al. (2004) by considering

multiple machines for the paper production. To solve the problem they used the model proposed

in Menon and Schrage (2002) to combine the assignment and cutting problems. The grade

sequencing in each paper machine was defined according to the travelling salesman formulation.

However, the capacity constraint of the machines was ignored. In an attempt to ensure a feasible

solution, they used a re-assignment heuristic.

In Santos and Almada-Lobo (2012), it is proposed a mathematical formulation that integrates

the pulp and paper mill production, and the production of electricity using the black liquor

obtained during the pulp production. The planning and scheduling problem is modelled as

a multi-stage lot sizing and scheduling problem with sequence dependent setup in the paper

machine.

Kim et al. (2014) presented a mathematical formulation for one-dimensional two-staged cut-

4



ting stock problem, where rolls of paper are cut into auxiliary rolls. To determine the auxiliary

rolls they define the subpatterns concept, which means that a subpattern is composed by one

or more auxiliary rolls of the same order. After the one-dimensional cut, the subpatterns can

be cut into sheets. In the mathematical formulation, all subpatterns and patterns are known a

priori. In order to solve the problem, they proposed a heuristic to generate the subpatterns and

the patterns, and a heuristic to select the patterns.

The integration of cutting stock problem and production planning in other industrial practises

has also been studied in the literature such as in furniture (Gramani and França, 2006; Gramani

et al., 2009, 2011; Silva et al., 2014), clothing (Farley, 1988), copper (Hendry et al., 1996) and

wood processing industries (Reinders, 1992), steel trucks manufacturing (Non̊as and Thorstenson,

2000, 2008) and gear belts production (Arbib and Marinelli, 2005).

3 Problem definition and mathematical formulations for

the 1CSP-CLSPP

In the 1CSP-CLSPP, we have to attend the demand in a planning horizon with T periods. The

items are rolls of papers with different lengths and classified into K different grades. M machines

are available to produce bigger rolls of papers (objects) with length given by bkm, k = 1, ...,K,

m = 1, ...,M . Hence, the objects must be cut into the demanded items of length given by li

(li ≤ bkm). There is a time consuming to produce the objects and a setup time for changing

the production of objects with different grades, where each machine has a capacity time. The

problem consists in determining the production planning of the objects without exceeding the

machine capacity. In addition, items and objects can be hold from one period to another. The

objective is to minimise production and setup costs, inventory costs of items and of objects, and

waste cost incurred during the cutting process.

In this section, we present three mathematical formulations for the 1CSP-CLSPP: item-

oriented model; pattern-oriented model; and machine decomposition model. For the mathemat-

ical formulations, we introduce the following sets, parameters and variables that are common for

all models.

Sets:

• T = {1, ..., T}: set of periods in the planning horizon;

• M = {1, ....,M}: set of machines;

• K = {1, ...,K}: set of object grade types;

• N = {n0 + 1, ...n1, n1 + 1, ..., n2, ..., nk−1 + 1, nK}: set of items n0 = 0 and nK = n. The

set of items that must be cut from object of type k is given by Nk = {nk−1 + 1, ..., nk},
∀k ∈ K.

• N̄ t
km = {1, ..., N t

km}: set of cutting patterns for object of type k produced in machine m in

period t, ∀k ∈ K, ∀m ∈M, ∀t ∈ T ;
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Parameters:

• ckm: production cost of object type k in machine m, ∀k ∈ K, ∀m ∈M;

• h̄km: holding cost of object of type k produced in machine m at the end of each period,

∀k ∈ K, ∀m ∈M;

• hi: holding cost of item of type i at the end of each period, ∀i ∈ N ;

• li: length of item of type i, ∀i ∈ N ;

• dti: demand of items of type i in period t, ∀i ∈ N , ∀t ∈ T ;

• bkm: length of object of type k produced in machine m, ∀k ∈ K, ∀m ∈M;

• Captm: capacity of machine m in period t, ∀m ∈M, ∀t ∈ T ;

• stkm: setup time of machine m to produce object of type k, ∀k ∈ K, ∀m ∈M;

• stckm: setup cost of machine m to produce object of type k, ∀k ∈ K, ∀m ∈M;

• vtkm: production time of object k in machine m, ∀k ∈ K, ∀m ∈M;

• clkm: paper waste cost of object type k produced in machine m, ∀k ∈ K, ∀m ∈M;

• M t
km: a big number defined as M t

km = Cmt

vtkm
, ∀k ∈ K, ∀m ∈M, ∀t ∈ T .

Decision variables:

• etkm: number of objects of type k produced in machine m hold at the end of period t,

∀k ∈ K, ∀m ∈M, ∀t ∈ T ;

• sti: holding quantity of item of type i at the end of period t, ∀i ∈ N , ∀t ∈ T ;

• rtkm: number of objects of type k produced in machine m in period t, k ∈ K, m ∈ M,

t ∈ T ;

• ztkm: 1 if object of type k is produced in machine m in period t, 0 otherwise, k ∈ K,

m ∈M, t ∈ T .

3.1 Item-oriented model

In the item-oriented model (IOM), the 1CSP is modelled according to Kantorovich (1960) that is

joined with the classical CLSPP formulation. It is well-known that the use of a commercial solvers

to solve Kantorovich’s model is impractical for large problems and it can be even impossible to

store the mathematical model on a computer. Then, the IOM is described just to illustrate

a sequence of Dantzig-Wolfe decompositions that can be applied for the 1CLSP-CLPP. The

Dantizg-Wolfe decomposition of the Kantorovich’s model is equivalent to the model proposed by

Gilmore and Gomory (1961), that is introduced in the next section.

For the 1CSP it is necessary to define an upper bound on the number of cutting patterns

used to attend the demand represented by N t
km for each k, m, t. Each cutting pattern j (j =

1, ..., N t
km) is associated with an integer variable and a knapsack constraint to ensure that if a

pattern is used, then it is feasible. Thus, a good estimation of N t
km reduces the computational

effort to solve and to store the mathematical model.
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Let us consider the following additional variables.

• utjkm: 1 if object j of type k is produced in machine m and is cut in period t, and 0

otherwise, j ∈ N̄ t
km, k ∈ K, m ∈M, t ∈ T ;

• xtijm: number of items of type i cut from object j of type k produced in machine m in

period t, i ∈ Nk, k ∈ K, m ∈M, t ∈ T .

Then, the item-oriented model is given as follows.

zIOM = minimise
∑
t∈T

∑
i∈N

his
t
i +

∑
t∈T

∑
m∈M

∑
k∈K

h̄kme
t
km +

∑
t∈T

∑
m∈M

∑
k∈K

stckmz
t
km +∑

t∈T

∑
m∈M

∑
k∈K

ckmr
t
km +

∑
t∈T

∑
m∈M

∑
k∈K

∑
j∈N̄ t

km

clkm(bkmu
t
jkm −

∑
i∈Nk

lix
t
ijm) (1)

s. t.
∑

m∈M

∑
j∈N̄ t

km

xtijm + st−1
i = dti + sti ∀i ∈ N ,∀k ∈ K,∀t ∈ T (2)

∑
i∈Nk

lix
t
ijm ≤ bkmutjkm, j ∈ N̄ t

km∀k ∈ K,∀m ∈M,∀t ∈ T (3)

rtkm + et−1
km − e

t
km =

∑
j∈N̄ t

km

utjkm ∀k ∈ K,∀m ∈M,∀t ∈ T (4)

∑
k∈K

(stkmz
t
km + vtkmr

t
km) ≤ Captm ∀m ∈M,∀t ∈ T (5)

rtkm ≤M t
kmz

t
km ∀k ∈ K,∀m ∈M, t ∈ T (6)

s0
i = 0, e0

km = 0, ∀i ∈ N ,∀k ∈ K,∀m ∈M (7)

xtijm, r
t
km, e

t
km, s

t
i ∈ Z+, u

t
jkm ∈ {0, 1}, ∀i ∈ N , j ∈ N̄ t

km,∀k ∈ K,∀m ∈M,∀t ∈ T . (8)

The objective function (1) minimises the sum of holding cost of items (hi), the holding cost

of the objects (h̄km), the setup costs (stckm), the production cost of the objects (ckm), and the

waste cost occurred in the cutting phase (clkm). Constraints (2) are the operational demand

constraints, where the inventory demand of items is considered. Constraints (3) determine

feasible cutting patterns for the objects. The tactical demand constraints are represented in

(4), they couple the cutting stock problem with the lot sizing problem by taking into account

the total demand of objects for the cutting phase and their production and holding stock. The

production capacity constraint of the machines is given in (5). If an object is produced in period

t in machine m, constraints (6) force its respective setup variable (ztkm) to one. Without loss

of generality, we assume in constraints (7) that there is no initial inventories. Constraints (8)

define the domain of the variables.

The model of Kantorovich (1960) is well known by its weak linear relaxation, which is not

different for the item-oriented model. Stronger relaxations can be obtained by the relaxation of
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the models described in the following sections.

3.2 Pattern-oriented model

The pattern-oriented model (POM) considers the 1CSP model proposed by Gilmore and Gomory

(1961). This model can be seen as a Dantzig-Wolfe decomposition of the model of Kantorovich

(1960). For further details, see Vance (1998) and Ben Amor and Valério de Carvalho (2005). In

this model, the cutting patterns are considered known, i.e., all the possible solutions of constraints

(9) - (10) are known:

∑nk

i=nk−1+1 liai ≤ bkm, (9)

ai ∈ Z+, i = nk−1 + 1, ..., nk. (10)

Let aijm be the number of items of type i cut from pattern j, i ∈ Nk, j ∈ N̄ t
km, m ∈ M,

k ∈ K, t ∈ T . The variable ytjkm is the number objects of type k produced in machine m, in

period t, and cut according to pattern j, j ∈ N̄ t
km, k ∈ K, m ∈M, t ∈ T .

Therefore, the master problem can be rewritten as follows.

zPOM = minimise
∑
t∈T

∑
i∈N

his
t
i +

∑
t∈T

∑
m∈M

∑
k∈K

h̄kme
t
km +

∑
t∈T

∑
m∈M

∑
k∈K

stckmz
t
km +∑

t∈T

∑
m∈M

∑
k∈K

ctkmr
t
km +

∑
t∈T

∑
m∈M

∑
k∈K

∑
j∈N̄ t

km

clkm(bkm −
∑
i∈Nk

liaij)y
t
jkm (11)

s. t.
∑

m∈M

∑
j∈N̄ t

km

aijmy
t
jkm + st−1

i = dti + sti ∀i ∈ Nk,∀k ∈ K,∀t ∈ T (12)

rtkm + et−1
km − e

t
km =

∑
j∈N̄ t

km

ytjkm ∀k ∈ K,∀m ∈M,∀t ∈ T (13)

∑
k∈K

(stkmz
t
km + vtkmr

t
km) ≤ Captm ∀m ∈M,∀t ∈ T (14)

rtkm ≤M t
kmz

t
km ∀k ∈ K,∀m ∈M,∀t ∈ T (15)

s0
i = 0, e0

km = 0 ∀i ∈ N ,∀k ∈ K,∀m ∈M (16)

ytjkm, r
t
km, e

t
k, s

t
i ∈ Z+, z

t
km ∈ {0, 1} ∀i ∈ N , j ∈ N̄ t

km,∀k ∈ K,∀m ∈M,∀t ∈ T . (17)

Constraints (12), (13), (14), (15) are the operational demand, the tactical demand, the ca-

pacity, and the setup constraints, respectively. These constraints are equivalent to constraints

(2), (4), (5), and (6), respectively. The objective function (11) minimises the inventory cost for

the objects, the cost for holding final items, the setup cost, the production cost and the waste
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cost. Constraints (16) set the initial inventories to zero. Constraints (17) define the domain of

the variables.

This model is a variation of that one proposed by Poltroniere et al. (2008). The authors

considered additional inventory balancing constraints for the objects, where the weight of the

objects must meet the weight of the demanded items. In addition, the demand in these con-

straints is increased by a waste estimative. It is important to highlight that this estimative is

necessary in their model since the problem was solved by heuristics that alternate between the

solutions of the 1CSP and the CLSPP.

As it is impossible to generate all cutting patterns, they are considered implicitly. To generate

cutting patterns for the master problem, the linear relaxation of the master problem with a subset

of columns is solved by a column generation method. In order to determine the pricing problem,

let us define πt
i the dual variables associated with constraints (12), ∀i ∈ N , and ∀t ∈ T , and γtkm

the dual variables associated with constraints (13), ∀k ∈ K, ∀m ∈ M, ∀t ∈ T The reduced cost

is given by:

rc1tkm = clkmbkm −
∑
i∈Nk

(πt
i + clkmli)ai + σt

km, (18)

that must be minimised. Then, the subproblem to be solved for the object of type k produced

in machine m and in period t is formulated as follows.

maximise
∑
i∈Nk

(πt
i + clkmli)ai (19)

s. t.

nk∑
i=nk−1+1

liai ≤ bkm (20)

ai ∈ Z+, i ∈ Nk. (21)

In the column generation method, we have K ×M × T subproblems. If rc1tkm ≥ 0, for all k,

m and t, then an optimal solution of the linear relaxation of the master problem (11) - (17) is

found.

3.3 Machine decomposition model

In this section, we propose the machine Dantzig-Wolfe decomposition for the lot sizing con-

straints. The development of period decomposition is very similar to the machine decomposition,

then it is omitted here for brevity. Model (11) - (17) is decomposed in M subproblems and the

master problem is rewritten, where each subproblem determines the production plan for one

machine. For this, let us represent

CMm = conv{zm ∈ {0, 1}K×T , rm ∈ ZK×T+ :
∑
k∈K

(stkmz
t
km + vtkmr

t
km) ≤ Captm, t ∈ T ; rtkm ≤

M t
kmz

t
km, k ∈ K, t ∈ T }
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as the convex hull of the feasible solutions of constraints (14) and (15) for machine m. In this

case, the master problem chooses the production plan for each machine and the cutting patterns

according to the pattern-oriented model. Then, we have K ×M × T subproblems related to

the pattern generation and M subproblems related to the production plan. For the machine

decomposition model (MDM), we define the following parameters and variables.

Parameters:

• Pm: set of convex hull’s vertices, i.e., a set of production plans related to machine m,

m ∈M;

• rtpm

km : number of objects of type k produced in machine m in period t according to produc-

tion plan pm, k ∈ K, t ∈ T , pm ∈ Pm, m ∈M;

• ztpm

km : 1 if object of type k is produced in machine m, in period t according to production

plan pm, 0 otherwise, k ∈ K, t ∈ T , pm ∈ Pm, m ∈M.

Variables:

• r̄pm
m : 1 if the plan pm of machine m is used, and 0 otherwise, pm ∈ Pm, m ∈M.

Then, the variables rtkm e ztkm can be rewritten as the convex combination of the vertices of

CMm, ∀m ∈M:

rtkm =
∑

pm∈Pm

rtpm

km r̄pm
m ∀k ∈ K,∀t ∈ T , (22)

ztkm =
∑

pm∈Pm

ztpm

km r̄pm
m ∀k ∈ K,∀t ∈ T (23)

∑
pm∈Pm

r̄pm
m ≤ 1 (24)

r̄pm
m ∈ Z+ ∀pm ∈ Pm. (25)

We denote the cost of a extreme point pm by:

cpm
m =

∑
t∈T

∑
k∈K

stckmz
t
km +

∑
t∈T

∑
k∈K

ctkmr
t
km. (26)

Therefore, the master problem can be formulated as follows.

zMDM = minimise
∑
t∈T

∑
i∈N

his
t
i +

∑
t∈T

∑
m∈M

∑
k∈K

h̄kme
t
km +

∑
m∈M

∑
pm∈Pm

cpm
m r̄pm

m +

∑
t∈T

∑
m∈M

∑
k∈K

∑
j∈N̄ t

km

clkm(bkm −
∑
i∈Nk

liaij)y
t
jkm (27)
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s. t.
∑

m∈M

∑
j∈N̄ t

km

aijmy
t
jkm + st−1

i − sti = dti ∀i ∈ Nk,∀k ∈ K,∀t ∈ T (28)

∑
pm∈Pm

rtpm

km r̄pm
m + et−1

km − e
t
km =

∑
j∈N̄ t

km

ytjkm ∀k ∈ K,∀m ∈M,∀t ∈ T (29)

∑
pm∈Pm

r̄pm
m ≤ 1 ∀m ∈M (30)

s0
i = 0, e0

km ∀i ∈ N ,∀k ∈ K,∀m ∈M (31)

ytjkm, r
t
km, e

t
k, s

t
i ∈ Z+, r̄

pm
m ∈ {0, 1} ∀i ∈ N ,∀j ∈ N̄ t

km,∀pm ∈ Pm,

∀k ∈ K,∀m ∈M,∀t ∈ T . (32)

The objective function (27) minimises the inventory cost of objects and items, the cost of

the production planning chosen in each period, and the waste cost. Constraints (28) and (29)

are the operational demand and the tactical demand constraints. The convexity constraints are

given in (30). Constraints (31) set the initial inventories to zero and constraints (32) define the

domain of the variables.

To define the reduced cost of the subproblems associated to the production plans, consider the

dual variables σt
km associated to constraints (29), and γm associated to (30), ∀k ∈ K, ∀m ∈ M

and ∀t ∈ T . The objective function of the subproblem consists in reducing the production cost

and the setup cost over the extreme points. Then, the subproblem related to machine m is given

as follows.

rc2m = minimise
∑
t∈T

∑
k∈K

stckmz
t
km +

∑
t∈T

∑
k∈K

(ctkm − σt
km)rtkm − γt (33)

s. t.
∑
k∈K

(stkmz
t
km + vtkmr

t
km) ≤ Captm t ∈ T (34)

rtkm ≤M t
kmz

t
km k ∈ K, t ∈ T (35)

rtkm ∈ Z+, z
t
km ∈ {0, 1} k ∈ K, t ∈ T . (36)

The subproblem associated with the cutting stock problem is given by (19) - (21). In each

iteration of the simplex method the subproblems (19) - (21) and (33) - (36) are solved. If

rc2m ≥ 0 and rc1tkm ≤ 0 for all k, m and t, then we have an optimal solution for the linear

relaxation of the master problem (27) - (32).

The period decomposition model (PDM) can be equivalently described, where we have T

subproblems and each one defines production plans for all machines in a period t. Thereby, in

this case there are K ×M × T + T subproblems to be solved in each iteration of the simplex

method.

11



Both decompositions provide the same lower bound, that is equal or better than the lower

bound provided by the linear relaxation of the pattern-oriented model. To show this fact, let

zPOM , zPDM and zMDM be the optimal solution of the linear relaxation of pattern-oriented

model, period decomposition model and machine decomposition model, respectively.

Proposition: zPOM ≤ zPDM = zMDM .

Proof: The inequality follows from the fact that applying the Dantzig-Wolfe decomposition, the

lower bound of the decomposed problem can never be smaller than that one provided by the

pattern-oriented model.

First of all, let us focus only on the columns obtained by the subproblems (34) - (36). The

term that represents the value of these columns in the objective function (27) is given by:

∑
m∈M

∑
pm∈Pm

cpm
m r̄pm

m . (37)

This is the only term that is different from the objective function of the master problem of

the period decomposition, which is written as follows:

∑
t∈T

∑
pt∈Pt

cpt

t r̄
pt

t , (38)

where cpt

t =
∑

m∈M

∑
k∈K

stckmz
t
km +

∑
m∈M

∑
k∈K

ctkmr
t
km.

To prove the equality, consider the optimal solution zMDM obtained by the machine decom-

position model. For each subproblem m in (34) - (36), m = 1, ...,M , we represent the solution

of a production plan pm in the following matrix.


r1
1m . . . r1

Km z1
1m . . . z1

Km

r2
1m . . . r2

Km z2
1m . . . z2

Km

...
. . .

...
...

. . .
...

rT1m . . . rTKm zT1m . . . zTKm

 (39)

where each line t (t = 1, ..., T ) of the matrix represents a feasible constraint in (34), i.e.,∑
k∈K(stkmz

t
km + vtkmr

t
km) ≤ Captm for each t = 1, ..., T . The value of this solution in the

master problem is given by:

∑
t∈T

∑
k∈K

(stckmz
t
km + ctkmr

t
km)r̄pm

m . (40)

By choosing the line t of a production plan pm, m = 1, ...,M , we can compose a new matrix,

that is given by:

12




rt11 . . . rtK1 zt11 . . . ztK1

rt12 . . . rtK2 zt12 . . . ztK2

...
. . .

...
...

. . .
...

rt1M . . . rtKM zt1M . . . ztKM

 (41)

Note that:

• Matrix (41) represents a feasible solution of the t-th subproblem in the period decompo-

sition, i.e.,
∑

k∈K(stkmz
t
km + vtkmr

t
km) ≤ Captm for m = 1, ...,M . Then, it represents a

production plan pt.

• By choosing the line t of a subset of subproblems and completing some lines of (41) with

zero, it is possible to obtain more than one matrix of type (41). These matrices represents

a subset of production plans P̃t ⊂ Pt.

• The arrange of these production plans pt must be done for all t ∈ T such way that the sum

of their values must be equal to (40), i.e.:

∑
t∈T

∑
pt∈P̃t

(stckmz
t
km + ctkmr

t
km)r̄pt

t =
∑
t∈T

∑
k∈K

(stckmz
t
km + ctkmr

t
km)r̄pm

m . (42)

We have shown that a feasible solution of the machine decomposition model is also feasible

for the period decomposition model. Then, zPDM ≤ zMDM . Equivalently, we can show that

zMDM ≤ zPDM , that follows the equality. �

4 Computational results

In this section, we report our computational experience of the column generation methods.

The tests were performed on an Intel Core i7 at 3.20 GHz and 16GB RAM. The methods

were implemented in language C/C++. To solve the knapsack problems that determine cutting

patterns we implemented a branch-and-bound method. The master problem and the subproblems

in the lot sizing problem were solved by CPLEX 12.6. We have carried out computational

experiments using instances of Poltroniere et al. (2008).

The linear relaxation of the master problems were solved by the column generation method.

When an optimal solution has been found for the linear relaxation of the master problem, the

integer restricted master problem with all columns is solved by CPLEX. To solve the integer

restricted master problem, the computational time was limited to 600 seconds. In addition, we

set the optimality gap tolerance to 0.2%.

The relaxation of the item-oriented model has not been investigated in this paper since it is

well-known in the literature that relaxation of Kantorovich’s model provides poor lower bounds.

13



Moreover, for big instances which we are dealing with, it is impossible to solve the item-oriented

model.

4.1 Instances from literature

The instances of Poltroniere et al. (2008) are classified into 27 classes by varying the number

of periods (T ), of object grade types (K) and of item types for each grade type (nk). There

are two machines to produce the items (M = 2), where one machine produces objects of length

bk1 = 540 cm, and the other one produces objects of bk2 = 460 cm. For each item, the length

was generated randomly such that li ∈ [0.1, 0.3].
∑

m∈M bkm/M for all k ∈ K, and the demand is

given by dti ∈ [0, 300] for all t ∈ T . If dti < 50 then dti = 0. For each class, there are 10 instances.

Further details on the instances can be found in Poltroniere et al. (2008).

4.2 Lower bounds

In this section, we compare the lower bound obtained by the column generation methods to

solve the linear relaxation of pattern-oriented, period decomposition and machine decomposition

models. The measure used to compare the methods were the average time to solve the linear

relaxation, the number of iterations necessary to obtain an optimal solution, and the average

gap. The gap is given by 100 ∗ (zDW − zPOM )/zDW , where zPOM is the lower bound of the

pattern-oriented model and zDW is the lower bound of the period or machine decomposition

models.

As described in the previous section, the period and machine decomposition models provide

the same lower bound. Then, the gap measures the deviation value of the period/machine

decomposition and the pattern-oriented model. In this case, higher the gap, better is the lower

bound provided by the decomposition models. For the instances from the literature, the lower

bound of the decomposition models is slightly better than that one provided by the pattern-

oriented model.

Three instances were proved by the column generation methods to be infeasible, each one

in class 4, 7 and 16, respectively. The computational results are shown in Table 1, where for

each formulation we report the average computational time in seconds (column Time(s)) and

the average number of iterations for each class (column N. of iterations). Table 1 also shows the

number of periods, classes, and number of items in each class (column 2). The last column shows

the average gap between the pattern-oriented model and the period/machine decomposition

models.

The computational time to solve the pattern-oriented model is always smaller than the com-

putational time of the column generation method to solve the decomposition models. In addition,

the computational time in the machine decomposition model is smaller for most classes compared

to the period decomposition model. Only classes 10, 13, 16, 22 and 25 the computational time

needed to solve the period decomposition model was smaller than the machine decomposition
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model. However, the number of iterations of the column generation method to solve the ma-

chine decomposition model is always higher. As expected when the instance size grows, the

computational time and the number of iterations also grow.

Usually, the computational time to solve the linear relaxation of the machine decomposition

model is smaller because there are only two subproblems associated with the lot sizing problem,

while in the period decomposition model there are T subproblems, where T ≥ 8. Solving the

subproblems by CPLEX is reasonable fast, however, the time is increased by writing and sending

the subproblem to CPLEX, and saving the optimal solution.

We can conclude that in terms of lower bound and computational time the column generation

method performed on the machine decomposition model has a better performance over the

remaining models. Despite its computational time being higher than the column generation

method to solve pattern-oriented model, its lower bound has been shown slightly better than

lower bound provided by the pattern-oriented model. This fact can be useful when the integer

master problem is solved to optimality, as computational experiments have shown that CPLEX

has some difficult to solve the integer restricted master problem to optimality.

Table 1: Computational performance of the algorithms to obtain the lower bounds.
Compact Formulation Period Decomposition Machine Decomposition

Class T/K/n k Time(s) N. of iteration Time(s) N. of iteration Time(s) N. of iteration Gap(%)
1 8/2/5 0.34 7.50 11.72 8.70 2.79 29.10 0.011
2 8/2/10 1.12 19.50 28.45 20.90 4.75 44.80 0.003
3 8/2/20 2.98 37.70 61.66 38.40 8.16 43.50 0.003
4 10/2/5 0.43 8.00 12.57 8.56 4.23 41.89 0.008
5 10/2/10 1.29 18.10 25.16 20.60 5.64 48.30 0.011
6 10/2/20 3.94 38.50 59.06 38.00 15.27 53.80 0.004
7 12/2/5 0.46 7.89 17.03 8.67 11.29 61.00 0.020
8 12/2/10 1.74 21.40 39.28 21.10 11.93 66.40 0.005
9 12/2/20 5.04 37.30 79.47 36.90 14.95 64.80 0.004
10 8/4/5 0.58 8.60 67.04 13.20 70.87 79.10 0.003
11 8/4/10 2.09 19.60 103.75 21.40 70.99 82.00 0.001
12 8/4/20 7.74 40.00 148.60 41.50 41.56 42.00 0.000
13 10/4/5 0.75 9.10 89.10 12.40 188.74 125.10 0.006
14 10/4/10 2.93 20.40 117.49 20.80 94.20 117.00 0.002
15 10/4/20 11.71 40.00 169.70 42.10 95.02 47.70 0.002
16 12/4/5 0.90 8.89 84.27 12.44 217.20 160.67 0.003
17 12/4/10 4.02 20.50 124.79 22.10 101.20 160.50 0.000
18 12/4/20 14.69 40.40 208.82 41.90 109.12 52.30 0.003
19 8/6/5 0.79 9.20 117.63 17.90 121.98 139.80 0.001
20 8/6/10 3.80 21.80 172.98 22.50 132.75 119.50 0.000
21 8/6/20 14.40 41.00 224.12 41.10 120.05 54.70 0.002
22 10/6/5 1.13 8.90 141.54 18.50 224.83 209.00 0.004
23 10/6/10 6.11 21.70 149.45 22.50 64.54 60.50 0.001
24 10/6/20 20.47 41.00 216.89 42.20 112.73 59.50 0.001
25 12/6/5 1.38 8.40 146.97 18.10 325.99 346.90 0.002
26 12/6/10 8.18 21.90 175.58 22.60 77.47 71.90 0.000
27 12/6/20 27.97 42.40 258.14 42.10 145.08 75.30 0.000

4.3 Feasible Solutions

At the end of the column generation method, the variables of the restricted master problem are

defined as integer and solved by CPLEX, where the computational time is limited to 600 seconds

and the optimality gap of CPLEX is set to 0.2%. To evaluate the performance of the methods
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we consider the number of solved instances, the computational time, the percentage of lost of

material and the gap. The gap is given by 100 ∗ (zIP − z)/zIP , where zIP is the value of the

optimal or incumbent solution of the restricted integer master problem, and z is the value of its

linear relaxation obtained by the column generation method.

Table 2 shows the computational results obtained by CPLEX on the pattern-oriented model.

Column Solved shows the number of solved instances, the average solution value is represented

in column denoted by OBJ. Column %Lost shows the average lost of material, and column Gap

is the average gap. Considering the cutting pattern generated in the column generation method,

CPLEX was able to solve all instances that were proved to be feasible, except one instance in

class 15 and one in class 26. For one instance in classes 4, 7 and 16, the linear relaxation of

the master problem is infeasible. CPLEX can reach a solution in the given optimality gap in

600 seconds for most instances, as it shows the column Time(s) for the pattern-oriented model.

Only 39 instances out of 265, that is proved to be feasible, CPLEX did not find a solution in the

optimality gap of 0.2%. However, proving the optimality for these instances on the restricted

integer master problem is a time-consuming process. The average of the optimality gap is very

small (column Gap). If we consider the relative gap for each instance, the largest optimality

gap is 0,49%. We have also run more difficult instances using CPLEX 12.4, that it did not find

feasible solution, while CPLEX 12.6 found a feasible solution with gap smaller than 2,5%. In

addition, the material lost due to cutting pattens performed is smaller than 1,1%. In a industry

that we investigated, this lost is about 3%.

Table 2: Computational results of the pattern-oriented model to obtain upper bounds.
Class Solved OBJ Time(s) %Lost Gap

1 10 49868.55 1.40 1.061 0.147
2 10 84127.49 4.01 0.121 0.162
3 10 174174.16 91.05 0.079 0.189
4 9* 57044.19 2.04 0.483 0.135
5 10 105901.79 12.56 0.152 0.166
6 10 220762.86 96.46 0.072 0.186
7 9* 64480.81 2.89 0.441 0.186
8 10 125735.67 46.76 0.122 0.161
9 10 264103.04 131.22 0.064 0.179
10 10 89622.28 3.89 0.785 0.168
11 10 183410.47 46.25 0.154 0.173
12 10 326957.17 301.56 0.083 0.210
13 10 112082.49 10.59 1.074 0.179
14 10 225668.09 82.65 0.131 0.195
15 9 417560.40 494.65 0.084 0.253
16 9* 135832.04 6.19 0.744 0.163
17 10 272148.53 47.31 0.251 0.176
18 10 499493.69 460.39 0.079 0.263
19 10 134475.56 10.51 1.019 0.198
20 10 267079.42 29.17 0.151 0.190
21 10 503950.26 462.00 0.111 0.317
22 10 169965.70 22.50 1.074 0.202
23 10 319623.65 165.66 0.131 0.191
24 10 635365.10 432.88 0.096 0.248
25 10 206779.63 30.17 0.658 0.210
26 9 383873.38 59.97 0.125 0.157
27 10 760539.74 438.67 0.096 0.280

* One instance out of 10 is proved to be infeasible.

We do not compare the objective values obtained by our methods with Poltroniere et al.
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(2008), because the feasible regions can be different. Poltroniere et al. (2008) considered a set

of additional constraints that use an estimative of the weight of waste occurred in the cutting

process. This value is calculated in each iteration of their heuristics. However, the authors

reported that the computational running time of the heuristics is not higher than 10 minutes.

In addition, the pattern-oriented model solved 17 more instances than their best Lagrangian

heuristic.

Table 3 shows the computational results of the period and machine decomposition. As in

the pattern-oriented model, at the end of the column generation the variables of the integer

restricted master problem were redefined as integer and solved by CPLEX. Then, to evaluate

the methods we use the number of instances solved (column Solved), the average computational

time (column Time(s)) and the average percentage of lost material in the cutting patterns usage

(column %Lost). Considering the cutting patterns and the production plans generated in the

column generation, CPLEX did not find feasible solution for classes 10 to 27. In addition, CPLEX

found 77 feasible solutions on the period decomposition, and 80 on the machine decomposition

model, out of 90 instances. The computational running time, the gap and the lost of material is

higher than those obtained in the pattern-oriented model, mainly for the machine decomposition.

Therefore, the strategy of solving the integer restricted master problem in the Dantzig-Wolfe

decomposition has shown that the solution quality is considerable worse than solving the integer

restricted master problem of the pattern-oriented model.

Table 3: Computational results of Dantzig-Wolfe decompositions to obtain upper bounds.
Period Decomposition Machine decomposition

Class Solved Time(s) %Lost GAP Solved Time(s) %Lost GAP
1 8 12.72 3.592 6.737 8 77.99 26.636 18.003
2 8 39.39 2.748 7.533 10 6.51 4.959 22.581
3 10 85.74 0.977 10.268 9 18.98 2.187 18.937
4 6 115.43 2.321 6.862 9 6.02 13.376 22.850
5 10 39.35 2.085 6.601 9 8.77 7.064 20.019
6 10 254.34 0.929 5.943 10 33.48 1.715 16.916
7 6 26.87 2.896 5.653 6 15.91 10.516 21.649
8 9 98.39 1.545 3.690 9 14.00 4.427 14.313
9 10 485.94 0.554 5.540 10 97.99 1.263 15.234

We can conclude that performing the column generation on the cutting stock problem and

solving the integer restricted master problem (pattern-oriented model) by CPLEX provides high

quality solutions in a low computational time for the instances of the literature. In addition,

the number of periods and items per class in these instances is adequate to meet the reality in

industrial applications.

5 Conclusions

In this paper, we investigated column generation methods for the one-dimensional cutting stock

problem integrated with lot sizing problem. The column generation was applied for linear relax-

ation of three mathematical models: pattern-oriented model, period decomposition model and
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machine decomposition model. The lower bound provided by the period and machine decompo-

sition models is slightly better than the lower bound of the pattern-oriented model. After solving

the relaxed master problem, we found an integer solution by defining the variables as integers.

Computational results show that the pattern-oriented model gives almost optimal solution for

all instances in the literature within low running time when it is solved by CPLEX 12.6.
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