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ABSTRACT: An approach to the finite element method applied to the solution of
stationary electromagnetic problems with axial symmetry is presented. This method is
suitable for teaching electrical engineering students at the undergraduate level. The
problem formulation is based solely on the direct integration of Maxwell’'s equations, and
the approach is valid only for first-order elements, thereby avoiding the use of an exces-
sively complex mathematical treatment. Numerical examples illustrate the application of
the proposed methodology to academic problems. Its validation is verified both by
classical expressions of electromagnetic theory and by an educational finite-element com-
puter package. © 1999 John Wiley & Sons, Inc. Comput Appl Eng Educ 7: 133145, 1999

Keywords: finite elements learning; stationary electromagnetic problems; electromag-
netic problems with axial symmetry; undergraduate-level FEM teaching

INTRODUCTION

In previous work [1-3], the authors described an
approach to the finite element method (FEM), which

Correspondence to J. R. Cardoso (cardoso@pea.usp.br).
© 1999 John Wiley & Sons, Inc. CCC 1061-3773/99/030133-13

is especially suited for introducing this subject to
electrical engineering students at the undergraduate
level. This approach is being used at Escola Politéc-
nica da Universidade de Sao Paulo, Sdo Paulo, Brazil.
In that work, only bidimensional problems where the
cross section regularly repeats itself in planes parallel
and perpendicular to the coordinate axes were treated.
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134 CARDOSO ET AL.

Magnetostatic, electrostatic, and electrokinetic prob-
lems were considered.

In this work, stationary electromagnetic problems
with cylindrical (axisymmetric) symmetry are dealt
with. In this case, the geometry of the device under
consideration repeats itself in planes that contain the
device’s axis. Since this work is mainly devoted to
undergraduate students, the problem formulation is
based solely on the direct integration of Maxwell’s
equations, as in the previous works. This approach is
valid only for first-order finite elements and avoids the
use of an excessively complex mathematical treat-
ment, such as the variational approach. In the authors’
opinion, this complexity has prevented the wide-
spread use of the FEM in Brazilian engineering
schools. At the end of this article, some examples are
presented to illustrate the application of all steps re-
quired in the use of the FEM. The results are com-
pared to classical expressions of electromagnetic the-
ory, as well as solutions obtained from a finite
element—based computer package, LMAG-2D [2].

STEPS REQUIRED IN APPLICATION OF
THE FEM

Application of the FEM requires the execution of
well-defined steps to guarantee the precision of re-
sults. These steps are described next.

Open or Closed Domain?

The first step is related to the definition of the domain
to be studied. In a closed-domain problem, the field
(electric or magnetic) is totally contained within the
device under consideration. This is the case in some
types of cylindrical inductors, as can be seen in Figure
L.

On the other hand, in an open-domain problem, the
field distribution includes the space surrounding the
device. Some types of actuators fall in this category

Figure 1 Example of a closed-domain problem.

Figure 2 Example of a open-domain problem.

(Fig. 2). In this case, the original domain has to be
transformed into a closed domain by imposing a vir-
tual boundary beyond which the field can be safely
neglected.

Domain Subdivision

In the second step, the domain resulting from the
previous step is divided into a number of subdomains,
the finite elements, which in their simplest form are
triangles. Special care is required in this task since an
inadequate subdivision can adversely affect the ob-
tained solution. As a general rule, the following con-
ditions should be satisfied:

1. The region inside any given element should
possess constant physical properties.

2. The element size is not relevant, but a higher
element density should be used in regions
where significant field variations are expected
to occur.

Figure 3 shows a triangular mesh for a closed
domain originated from the domain of Figure 2.

Attribution of Physical Properties

In this step, physical properties have to be assigned to
each element within the domain. Depending on the
type of study, a value of either magnetic permeability,
electric permitivity, or electric conductivity is as-
signed to each element.

Specification of Field Sources

In magnetostatics, the field sources are given by cur-
rent density values, whereas in electrostatics they are
given by values of electric charge density. In this step,
these values have to be assigned to those elements that
belong to field sources.
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FINITE ELEMENT METHOD FOR ELECTROMAGNETICS 135

Figure 3 Triangular mesh of domain in Figure 2.

Specification of Boundary Conditions

Boundary conditions are to be imposed on the domain
boundaries. They can be of one of the following

types:

1. Fixed potential (or Dirichlet condition): In this
case, the electric or magnetic potential is par-
tially or totally known alongside the boundary.
The known potential values are then assigned
to the element vertices that belong to this
boundary line.

2. Normal field known (or homogeneous Neu-
mann condition): In electrostatics and electro-
kinetics, the field perpendicular to the bound-
ary line is often null. In these cases, a null field
value has to be assigned to all vertices belong-
ing to the boundary.

3. Tangential field known (or homogeneous Neu-
mann condition): In magnetostatics, the field
tangential to the boundary line is often null. In
this case, a null field value also has to be
assigned to all vertices belonging to the
boundary.

Having obtained all the above information, a linear
system of equations is assembled and solved. The
order of the system equals the number of vertices of
the subdivided domain; the unknowns are either elec-
tric scalar potential values (in electrostatics and elec-
trokinetics) or magnetic vector potential values (in
magnetostatics). The assembly of the system of equa-
tions has already been treated in greater detail in [1]
and [3].

Exploitation of Results

In this step, the solution of the system of equations is
presented in graphic form. Equipotential lines and
color shades are common tools for presenting the
solution. Some global quantities can also be obtained
from the system solution, such as circuit parameters,
forces, and torque, stored energy.

MAXWELL'S EQUATIONS IN
MAGNETOSTATICS

The differential form of Maxwell’s equations, which
are used to the study of magnetostatic phenomena are
as follows:

V X H = J (Ampere’s law) (1)

=
Il
=)

v 2
If we recall that V -+ V X P = 0 for any vector P,

a magnetic vector potential, A, can be defined as
follows:

B=VXxA 3)

To guarantee the uniqueness of this vector, we will
choose A such that [4]

V-A=0 4)

It is possible to demonstrate that a vector field
having these properties is continuous throughout its
domain [4]. In problems presenting axial symmetry,
the current density vector and the magnetic potential
vectors can be reduced to only one component, ¢,
normal to the plane of study, as follows:

J=J,r, 2,

and
A= A (r, ),
Thus,
> N 94, | 1a(rd,) |
B—VXA——WU,'F; ar u, %)
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136 CARDOSO ET AL.

node numbering

r

Figure 4 Domain with axial symmetry subdivided in tri-
angles.

If we define the modified magnetic vector potential
as ¢ = rA (with its only component ¢ = rd,),
Equation (5) can be rewritten as

10 10
—d)ﬁ,+——¢ﬁz (6)

B=VXA=- - ar

r ooz
Now, by applying the constitutive equation
H =B (7)

with v = 1/ being the magnetic reluctivity (supposed
constant), we finally obtain

vop . vid

H:_;az " ?ar“Z

(®)

Figure 4 illustrates a generic axisymmetric domain
that has been subdivided in triangular finite elements.
In this figure, node and element numbers have been
indicated.

The integral form of Maxwell’s second equation
(i.e., Ampere’s law) states that the line integral of the
magnetic field H alongside a closed contour equals
the current enclosed by this contour.

Let us apply Equation (8) to polygonal contours
involving each node in the finite element mesh, in
such a way that each segment of the polygonal con-
tour consists of a segment of one median going from
one side of the triangle to its centroid (Fig. 5).

Figure 6 shows a generic element where point O
represents its centroid and segments PO and OS are
part of the closed contour involving node 7. Similarly,
segments PO and OG, and SO and OG, are part of

Internal contour surrounding node 7

Contour surrounding the boundary node 3

Figure 5 Typical contours (dotted lines) involving nodes
from the mesh.

the closed contours involving nodes j and &, respec-
tively.

Referring to Figure 6, the term EY represents the
line integral of the magnetic field H along segments
OS and OP, yielding

> >

Ef:§ H-dl )
sop

Terms E; and E} are defined in a similar way. Then
we have for the contour surrounding node 7 in Figure
5:

—

E§+E$+Eé2+E§‘+E‘7‘:§ H-dl (10)

C7

Figure 6 Triangular element showing partial contours:
POG, SOP, and GOS involving nodes i, j, and k, respec-
tively.
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FINITE ELEMENT METHOD FOR ELECTROMAGNETICS 137

and for the contour involving node 3:

—

E;+E§+E;‘+E;"+E;’=f£ H-dl (11)

3

ANALYSIS FOR A GENERIC TRIANGULAR
ELEMENT

Distribution of Modified Potential ¢ Inside
the Element

Let us call 7, j, and k the clockwise ordered vertices
of a generic triangular element as shown in Figure 6.
Also, let us define ¢;, ¢;, and ¢, the potentials at
nodes i, j, and k, respectively.

Now we will assume that the potential ¢ inside the
element can be given by the following linear interpo-
lation:

d(r,z) = a; + ay + ayz (12)

This is true because, similarly to A (or4,), ¢ is
continuous throughout its domain. Constants «;, s,
and a4 can be determined by substituting both poten-
tial and node coordinates in Equation (12), as follows:

b= a; + o + sz,
¢ = ot ooyt oz (13)
b. = a; + o+ asz,

Solving this system of equations, we obtain

1 \
o) = ﬂ (aid)i + ajd?/ + akd)k)

1
o = ﬁ (bi¢i + b,‘d?,‘ + bkd)k) (14)

1
a; = 2A (cip; + de)j + cidy) )

with the constants a, b, and ¢ given by

A =TrZy— Iz, aGG=rZ T rZy Q= rz; T rg;
bi=z—z b=z —z b=z gz
Ci=re—uy C;=ri T Iy k=1

(15)

The quantity A, given by

ri Zj

o=

(b bic;)

]/‘ . L —_
J J J

'y Zj

N =

—_ e —

equals the element area.

By substituting Equations (13) and (14) into Equa-
tion (12), we obtain the distribution of the potential ¢
inside the element:

(15(’”7 z) =N, + ]\G¢j+Nk¢k (16)

with functions N;, N;, and N, being called the shape
functions of the first-order triangular element. In this
case, they are given by

\
1

N, = A (a;+ br + cz)
1

Nj=ﬁ(aj+ br+cz) 17)
1

Ny = 2A (ag+ by + CkZ)J

By analyzing the shape functions above, we can
conclude that the modified magnetic vector potential
changes linearly inside the element. Also, this vector
is continuous along the element sides. Figure 7(a,b)
shows the geometrical meaning of this approximation.

Flux Density Inside the Element

The flux density inside the element is the most im-
portant piece of information that can be obtained from
a computational tool based on the FEM, since it is the
main quantity involved in the energy conversion pro-
cess and in the evaluation of the stress imposed on the
magnetic material.

From Equation (6) we obtain

1 ad

r 0z

.
and

1o

Ty oor

z

By substituting the value of ¢ obtained in Equation
(16), it follows

1
B, = — A [cibi + ¢ + 1] (18)
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138 CARDOSO ET AL.

A Potential surface due to
¢ (2) one element
dxy)=otoayrtasz
INAN

&2

Ok

(7t 26)
(@)

¢ Potential surface
approximated by
triangles

(b)

Figure 7 Geometrical meaning of potentials.

1
B.= M [bid)i + bjd)j + bkd)k] (19)

Considering that the size of all elements is much
smaller than the domain size, we can admit that the
distribution of magnetic field inside each element is
(nearly) constant and equal to the value obtained in
the centroid of the element. Therefore, we substitute
the value of » in Equations (18) and (19) by an
average value r., given by the distance from the
centroid of the element to the domain axis of symme-
try.

From Equation (7) we obtain

14
Ho=vB,= =5 led,+ o+ adl (20)

and

14
H.=vB.= H [, + qubj + bidd (21

with r, = (r; + r; + r;)/3 being the r coordinate of
the element centroid.

Partial Line Integral of Vector H around a
Node

In this section, we will compute the contribution of a
given element to the line integral of vector H around
one of the element’s nodes. Let EY be the contribution
of element e to the line integral corresponding to the
contour surrounding node i (Fig. 6). Recalling that H
is constant inside the element, we can then write

and
E{=—HAr + HAz (22)
If we note that
Ar=rp—rg= —c/2

Az =zp,—zg=b/2

and replacing H, and H_ in Equation (22) by Equa-
tions (20) and (21), we obtain

E?

v
i m [(bibi + cici)d)i + (bibj + cicj)d)j

+ (b, + cick)d)k] (23)

E7 and Ej can be both computed in a similar
manner:

14
B = 2rA [(Bbi + cicd i+ (bb; + cic)) b
+ (bjbk + Cjck)qbk] (24)
Ej

v
= A [(bb; + cic)d; + (bkbj + ckcj)d)j

+ (biby + ckck)d)k] (25)

Using matrix notation, we finally obtain
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FINITE ELEMENT METHOD FOR ELECTROMAGNETICS 139

E » bb;+ cc; bb;+ce; bbb+ cicy
El=571 bibj+ ¢ by ciey
E; ¢ biby + ciey
b
X | bl (26)
b
or
[£7] =[50 ¢°] @7

Matrix [S¢] is both symmetric and singular and is
referred to as the element matrix.

Current Enclosed by the Element

A generic element encloses a total current to which all
three nodes contribute. The contribution of each node
is due to the partial contour associated to the node and
belonging to the element. If we consider the current
density within the element as uniform and assign a
positive value for a current “entering” the plane of
study, we can then write

e e e e A
L=L=L=J 3
or, in matrix notation

- B Al

I g 3

: A

=5 =73 (28)

k. Jg A
L 3.

MAXWELL'S EQUATIONS IN
ELECTROSTATICS

The differential form of Maxwell’s equations for elec-
trostatic problems is as follows:

VXE=0 (29)
V-D=p (30)
We also recall that

VXVf=0 Vf (3D

Thus, in this case we define the scalar electric
potential function V as

E=-VrV (32)

It should be pointed out that the negative sign is
chosen just for convenience. The uniqueness of V is
guaranteed by specifying a value to a particular point
in the domain. In the axisymmetric problems, we have
V = V(r, z), so that

i av av 13
N ar“’ azuz (33)

The integral form of Maxwell’s fourth equation
states that the flux of the displacement vector D
through a closed surface equals the total electric
charge inside the volume delimited by the surface,

which is
L, —>
# D-dS=J pdV (34)
r v

Let us apply this equation to closed surfaces in-
volving each one of the nodes of the domain. These
surfaces’ cross sections are the typical contours that
involve the nodes previously defined.

As an example, the closed surface surrounding
node 7 in Figure 5 represents a surface of revolution
around the z axis, whose cross section is the contour
formed by the medians of the triangular elements that
have node 7 as a vertex. Figure 8 shows again a
generic element of a domain subdivided in triangles.

Let EY be the flux of the displacement vector D in
the region of the closed surface that involves node i
(this surface is formed by faces PO and OS). We can
then write

L, —>
Ef= D - ds (35)

POS

Also, let V;, V;, and V', be the electric potential at
each node of the element. Since the potential function
is continuous, the potential of any point inside the
element can be seen as a linear interpolation, similar
to the magnetostatic case

V(r,z) = NV, + NV, + NV, (36)
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140 CARDOSO ET AL.

Figure 8 Surfaces surrounding nodes of a generic ele-
ment.

with N;, N;, and N, being the shape functions given
by Equation (17).

Electric Field Inside the Element

The electric field inside devices that possess axial
symmetry is given by

B Ei + i (37
with
av 1
E,=—— ==y 0V + bV + b)) ()
av 1
=~ = 3R (cViteVi+aV) (39

From the constitutive equation D= SE, we can
determine the components of the displacement vector,
as follows:

&
D,. = SEV = - ﬁ (biVi + ijj + kak) (40)

z

£
D,.=¢cE.= — A (cVit+cVi+aV) (41)

Partial Flux of Displacement Vector

The flux of the displacement vector through the closed
surface that involves node i of the triangular element
is given by

L —> 5 —>
Ef=ﬁ D-ds=D-As (42)
POS

since D is constant inside the element. Recalling that
D =D, + D.u, (43)

and
N .
As = —-=27mra, —

we then obtain for node i

B = 27r.e
4A

[(bb; + cc)V,
+ (bibj + c,-cj)Vj + (b + cc) V] (44)

Following a similar procedure for nodes j and £,
we obtain

. 2Tr.e
Ef = x (b, + co)Vit (bpy+ eV,
+ (bbi + e Vi (49)
. 2mre
Ep = C4A [(bid; + cie) Vi + (bib; + cic) V;

+ (byby + ckck) Vk] (46)

Using matrix notation, we can finally write

EY

Ej

E}
d2mr e bb;+ cic; bb;+ cc; bbb+ ciey
=2 A( bb; + cic; bbbyt ciey
bkbk + CiCr

Vi
e
Vi

Internal Charge

For each element that has node i as a vertex, there is
a charge contribution to the total electric charge inside
the surface surrounding the node. If we assume a
constant volumetric charge density, the contribution
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FINITE ELEMENT METHOD FOR ELECTROMAGNETICS 141

Table 1 Correspondence Between Electrostatics
and Electrokinetics

Electrostatics Electrokinetics
E E
V V
D J
p 0
e T

of nodes i, j, and k to the total element charge in the
closed surface that surrounds the nodes is given by

A
0i=0;=0i=p2mr.3

or, in matrix form,

A
) p2r, 3
0 X
i = | p2mr, 3
k A

] p2mr, ?_

ELECTROKINETIC PHENOMENA

The equations that govern the phenomenon of electric
conduction in continuous media are as follows:

V X E = 0 (Maxwell’s 1st equation)  (48)
V - J = 0 (continuity equation) (49)
J = oE (Ohm’s law) (50)

From Equation (48) we can define the scalar elec-
tric potential, V, as follows:

E=-Vr (51)

in the same way as in the electrostatic case.

Looking at Equations (29), (30), and (32), and
(48), (49), and (50), we can identify a complete sim-
ilarity that allows us to establish the following corre-
spondence between electrostatics and electrokinetics
(Table 1).

As a consequence, the partial fluxes of vector J for
the generic element are obtained by following a sim-
ilar procedure, which yields

E;
E;
E;
2mr o bb,+ cic; bb;+cc; bby+ ciey
=2 AC b+ ¢cc; biby+ ciey
bb, + cic
Vi
X | Vil (52)
Vi

In this case, the load vector is null owing to the
continuity equation.

SYSTEM OF EQUATIONS

Magnetostatics

In magnetostatic problems, the term

> >

f:§ H-dl (53)
POS

represents the contribution of vector H to the line
integral along a closed contour that involves node i of
element e. The total value of the integral along the
same contour is given by

NE N
25f=§ H-dl (54)
C,

e=1

In this equation, index e denotes those elements
that have node i as a vertex and NE, the total number
of elements. Similarly, the total current enclosed by
this contour is given by

NE N
21,?:# J-ds (55)
T,

e=1
i

Therefore, Maxwell’s second equation applied to
the closed contour C, that surrounds node i (to which
surface I'; is associated) is given by

NE NE
DE=2I (56)
e=1

e=1

For all nodes in the domain, we have
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142 CARDOSO ET AL.

NE NE
> E W
e=1

e=1

NE NE

e=1

NE NE
D E I

Le=1 o Le=1 -

with #» = the total number of nodes. Using matrix
notation, we obtain

[S14] =[] (58)

with [S] being called global system matrix, and [/]
the load vector.

Electrostatics and Electrokinetics

In electrostatic problems, the term

L, —>
E;f—# D - ds (59)
POS

represents the flux contribution due to the displace-
ment vector through the closed surface, which sur-
rounds node i of element e. The total flux through the
surface surrounding node 7 is then given by

NE
S =
ZE;'zjgg D-ds (60)
e=1 I
The total charge inside the surface is

> 0= J pdV (61)

Vv

so that Gauss’ theorem applied to this surface yields
NE NE

2 E =20 (62)
e=1 e=1

For all nodes in the domain, we have

z (1,1) (2,1) (3,1)

on O ®
\/ V—IG: A A (V=\0V

(1,0) (2,0) (3,0)

Figure 9 Domain with axial symmetry used in the numer-
ical example: a resistor manually meshed in four triangles.

NE NE
> E; > 0
e=1

e=1

NE NE

NE NE
> E: > 0
e=1

Le=t 1 Le=
or, in matrix notation:

[cltvl =121 (64)

In electrokinetic problems, the continuity equation
applied to the closed surface, which surrounds node i
is given by

NE
D E=0 (65)
e=1

For all nodes in the domain, we have the following
matrix equation:

[GlV]=0 (66)

NUMERICAL APPLICATION

The methodology proposed can be applied to a simple
axisymmetric domain, as the one illustrated in Figure 9,
which consists of an electrokinetic problem. It is an
annular resistor with internal and external radii equal to
I m and 2 m, respectively. Its conductivity is uniform
and equals 2 S/m. Between the internal and external
cylindrical surfaces a fixed voltage of 100 V is applied.
This problem can be solved manually, as follows.
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Table 2 Element |

Local node numbering
Global node numbering
r coordinate (m)

z coordinate (m)

—_ e
S —= NN

SN AW

Calculation of Element Matrices (Table 2)

From Equation (15), it follows:

by=2z,—2z2;=0—-0=>5b,=0

b2:Z3_21:O_1$b2:_1

b3221_22:1_0$b3:1

c,=ry—1rn=2—-1=>c¢ =1

1-2>¢,=—1

Cy=Tr —7r;

ci=r,—r=1—-1=>¢=0

with the element area given by A = (b,¢c, — b,c,)/2
> A= %, and the centroid given by . = (r, + r, +
r)/3="(1+1+2)3=4

Thus, by applying Equation (52), the element ma-
trix for element 1 can be evaluated by

2.77.2.2 1 -1 0
M=—"—|-1 2 -1|>
41 Lo -1 1
4 -4 0
2
M=""l-4 8 —4
300 -4 4

By repeating the procedure for elements 2, 3, and
4, we obtain the following element matrices:

s[5 0 =5
T
M2:7 0 5 =5 5
31-5 =5 10]
(7 =7 0]
2
M=""1-7 14 -7
310 -7 7]
T8 0 —8
2
w=""l0o 8 -8
31-8 -8 16

Assembling of Global System of Equations
and Assignment of Boundary Conditions

Applying the procedure described in [1] and [3] for
assembling the global system of equation and the
attribution of boundary conditions, we obtain the fol-
lowing system:

1 0 0 0 00 v 100
01 0 0 00 v, 100
00 25 —12 0 0 V| 1500
00 —12 23 0 0 Vil — | 400
0 0 0 10 Vs 0
00 O 0 0 1 Vs 0

which, after solution, yields the following nodal val-
ues for the electric potentials:

Vi=V,=100V, V,=37.819V,

V,=37.123V Vi=V,=0V

Evaluation of Electric Field Inside the
Elements

The electric field can be evaluated inside each element
by Equations (38) and (39), as follows:

E’_’:_(o,V,_1_V2+1.V4)=100—37.123 =

[ E/=62.877 V/m |} (67)

E/=-(1.V,-1.Vy+0.V)= —(100-100) = E,'=0 V/m
E7=62181 Vim, E’=-0.696 V/m

E’ =37.123 Vim, E=-0.696 V/m
E/=37819 Vim, E. = 0V/m

Comparison with Analytical Calculation of
Electric Field

The electric field of the annular resistor shown in
Figure 9 can be calculated by the following equation:
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Figure 10 FE mesh of the annular resistor of Figure 9.

with b and a, respectively, the external and internal
radius of the resistor, AV the potential drop between b
and a, and r, the radial coordinate position, spanning
from a to b. By applying this equation to, say, element 1,
and by substituting » by the centroid, r,, it follows that

100
E'= => E'=68.27 V/m

T 3
37 In()

This result is different from Equation (67) by
—8.9%, which can be considered acceptable in this
case, since a coarse mesh has been employed to
enable a calculation by hand.

Comparison with Numerical Solution
Issued from the FE Simulation

The problem of Figure 9 was solved with the aid of an
educational FE computer package, LMAG-2D [2].
Figures 10—12 present the results of the FE simula-
tion. They show the triangular mesh, the lines of
electric potential, and the electric field along the re-
sistor, respectively.

According to the scale in Figure 12, it can be seen
that the centroid of the element 1 (indicated in the
figure by a cross) of the mesh shown in Figure 9 lies
in the strip corresponding to an electric field £ =
70.6 V/m (light brown strip in Fig. 12). The deviation
with respect to the analytical value is 3.4%, a better

Potential lines
No. Value (V)

1
a
3
4
5
6
7
8
9
a

Figure 11 Visualization of potential lines in the resistor.

E(Vim)
90.6

85.6
80.6
75.6

70.6
65.6

60.6

E5.6

50.6

45.6
40.6
35.6

| TN

Figure 12 Visualization of the electric field in the resistor
through color shades. The cross indicates the centroid of the
element 1 of the mesh shown in Figure 9.

result when compared with the previous calculation
by hand, since a finer mesh has been employed, as
depicted in Figure 10.

It can be noticed that the results obtained by using
the proposed methodology agree well with those ob-
tained by the numerical solution.

CONCLUSION

An approach to the finite element method, which is
suitable to teach this concept to undergraduate stu-
dents of electrical engineering, as well as its applica-
tion to stationary problems of electromagnetics with
axial symmetry, has been presented. It is based on the
direct integration of the Maxwell’s equations and the
use of first-order triangular elements, thereby avoid-
ing the complex mathematical treatment of this theory
that is often encountered in the literature. The meth-
odology has been applied to the solution of a simple
academic problem, and its results are equivalent to
those obtained by both analytical equations and nu-
merical solutions issued from an FE computer pack-
age for teaching purposes (LMAG-2D).
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