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We consider the local gauge-invariant Yang—Mills quantum field theory on the finite hyper-
cubic lattice A ¢ aZ9 c RY, d =2,3,4, a € (0, 1], with L (even) sites on a side and with
the gauge Lie groups G = U(N),SU(N). To each A bond b, there is a unitary matrix gauge
variable U, from an irrep of G. The vector gauge potentials (gluon fields) are parameters in the
Lie algebra of G. The Wilson finite lattice partition function Zj (a) is used. The action A (a)
is a sum of gauge-invariant plaquette actions times [a?~*/g2], g% € (0, g(z)], 0< g(% < 0. Each
plaquette action has the product of four bond variables; the partition function is the integral
over the Boltzmann factor with a product over bonds of G Haar measures. Formally, in the
continuum, ultraviolet (UV) limit a \ 0, the action gives the YM classical continuum action.
For free and periodic boundary conditions (b.c.), and using scaled fields, defined with an a-
dependent noncanonical scaling, we show thermodynamic and UV stable (TUV) stability bounds
for a scaled partition function, with constants independent of L, a and g. Passing to scaled fields
does not alter the model energy-momentum spectrum and can be interpreted as an a priori field
strength renormalization, making the action more regular. With scaled fields, we can isolate the
UV singularity of the finite lattice physical, unscaled free energy fa(a) = [InZp]/As, where
Ag = L4 is the total number of lattice sites. With this, we show the existence of, at least, the
subsequential thermodynamic (A aZ4) and UV limits of a scaled free energy. To obtain
the TUV bounds, the Weyl integration formula is used in the gauge integral and the random
matrix probability distributions of the CUE and GUE appear naturally. Using periodic b.c. and
the multireflection method, the generating function of r scaled plaquette field correlations is
bounded uniformly in L, a, g and the location/orientation of the r plaquette fields. Consequently,
r-scaled plaquette field correlations are also bounded. We also show the physical two-plaquette
field correlation at coincident points has an a~¢ UV singular behaviour; the same as for the
correlation of the derivative of free scalar unscaled fields at coincident points. Using the free
scalar case as a reference, we then have a lattice characterization of UV asymptotic freedom.

PACS: 11.15.Ha, 02.30.Tb, 11.10.St, 24.85.+p
Keywords: Nonabelian and Abelian gauge models, lattice gauge models, stability bounds, gen-
erating function, thermodynamic limit, continuum limit, CUE ensemble, GUE ensemble.
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1. Introduction and description of results

To show the existence and properties of an interacting relativistic quantum
field theory (QFT) in spacetime dimension d = 4 is a fundamental problem in
physics [1-5]. Many partial results have been obtained [4, 6-8]. The quantum
chromodynamics model (QCD) of interacting (anti)quarks and gauge, gluon fields
is considered to be the best candidate for a four-dimensional QFT model which
rigorously exists. The so-called Gap Problem of the Clay Foundation is related to
the proof of two important features of QCD: first, one shall ensure the existence of
the ultraviolet limit of QCD and, second, when considering the underlying physical
quantum mechanical Hilbert space, we must prove the so-called gap problem,
showing that the are no corresponding vectors for free quarks, antiquarks and
gluons. The only physically admitted states are bound states of these fundamental
particles of the model. This is the confinement property! The fact that the first
vector state in the gluonic energy-momentum (E-M) sector spectrum has a mass
ensures a finite range for the strong interactions, according to the Paley—Wiener
theorem [9].

Unfortunately, up to now, we are not able to give a complete answer to these
problems. This paper considers the UV limit of the pure Yang—Mills (YM) model
which corresponds to discard the matter particles (quarks and antiquarks) from QCD
and take only gluons and their nonlinear interaction into account.

We work on a spacetime lattice and use a special class of scaled fields, with
a noncanonical scaling which preserves the decay of correlations (and then the
E-M spectrum), we concentrate on obtaining finiteness properties for the model free
energy, the generating functions of certain gauge invariant plaquette field correlations
for any value of the parameters. Of course, these finiteness properties do not lead
directly to the construction of the UV limit but their proofs give some progress in
this direction and we hope our methods can be coupled to more traditional methods
in constructive quantum field theory to produce other results. We also discuss how
to characterize UV asymptotic freedom on the lattice. Finally, we emphasize that
our methods work also for models with Fermi (Grassmann) fields.

The action of QCD is a sum of an interacting Fermi-gauge field part and a pure-
gauge, self-interacting YM field part. The imaginary-time d-dimensional continuum
spacetime classical smooth field Lagrangian or action of the local gauge-invariant
YM model is given by [1, 4, 5]

ﬂclasslcal - Z / TI' ,uv(x)] dd

{u<v}
= > / Tr {0, A, (x) — By A, (%) +ig[Au(x), A, ()]} d¥x, (1)
{uvy IR
where u,v=0,1,...,(d—1) (the label O denotes the time direction!), A, are the

gauge fields or vector potentials, commonly called gluons, which are matrices in
the Lie algebra of the gauge group G, F,, is the corresponding second order
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antisymmetric field strength tensor, Tr denotes the trace, g > 0 is the gauge field
coupling and [-,-] denotes the Lie algebra commutator.

Here, we will work in a Euclidean imaginary-time formulation of QFT. In this
formulation, the model is defined by a partition function with a Boltzmann factor
given by the exponential of minus the action and integration over all configurations
of the fields is carried out.

One approximation is to work with a discretization of the Euclidean spacetime,
replace the continuum fields by fields on a finite lattice A ¢ RY and make Riemann
sum approximation to the integral in the classical action of Eq. (1). Carrying this
out, infinities emerge due to the unbounded gauge (gluon) field integration and also
the excess of gauge bond variables due to local gauge invariance.

Instead of this approach, Wilson (see e.g. [10, 11]) proposed a finite-valued finite
lattice partition function. We can take e.g. the lattice A to be the finite hypercubic
lattice with spacing a, L € N (L even) sites on a side and a total number of sites
Ay = L¢. With this, we have A c aZ? c R? and we take a € (0,1]. The lattice
volume |A| = Ay is taken to be the total number of sites L¢, instead of the volume
(aL)? in R?, as it is usual in statistical mechanical lattice models [4, 12—14].

In the Wilson finite lattice partition function, the gluon fields are parameters
in the Lie algebra associated with the Lie gauge group G. We choose G to be
compact, e.g. we can take the groups of unitary matrices G = U(N),SU(N), N € N.

Let b, (x) = [x,x}] denote a positively directed lattice bond, connecting the site x
to its neighboring lattice site x; =x+ae*, where e#, u=0,1,...,(d—-1), is the
unitary vector of the u-th spacetime direction.

To each positively oriented bond (or, simply, bond), we assign a unitary matrix
from an irreducible representation of the gauge group G. These are our bond
variables. The physical gluon fields are parameters in the Lie algebra of G. The
integration over the field configurations becomes a product of Haar integrals over
the whole set of variables in gauge group G. In this way, our gauge model is
a random matrix model.

With the finite lattice Wilson partition function (see Eq. (6) below and Section 2),
we get a regularization for the YM model and there are no more infinities. Besides,
local gauge invariance is preserved and the property of Osterwalder—Seiler (OS)
positivity, which allows the construction of an underlying quantum mechanical Hilbert
space and then to prove the existence of a lattice QFT [8], is verified.

Moreover, it is expected that the control of the thermodynamic limit A / aZ¢
and also the continuum limit a \, 0 of gauge field correlations lead to a continuum
spacetime Euclidean QFT. Then, if the remaining OS axioms are verified, by the
OS reconstruction theorem, we obtain a physically acceptable relativistic QFT in
Minkowski space [4, 5].

In this paper, we will concentrate on the pure-gauge, YM model. In an imaginary-
time functional integral formulation, we adopt the above defined hypercubic lattice
ultraviolet (UV) regularization A c aZ¢ c R4, d =2,3,4, a € (0,1].

The starting point is the Wilson plaquette action partition function given below
in Eq. (6). For small gauge coupling 0 < g <« 1, stability bounds (see [15]) for
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the corresponding model partition function have been proved in the seminal work
of Balaban (see [16, 17] and references therein), using renormalization group (RG)
methods and the heavy machinery of multiscale analysis. Applying RG methods in
the continuum spacetime and using momentum slices, the UV limit of the YM
model, in d =4 and with an additional infrared cutoff, was treated in [18]. Using
softer methods, in [19], the d =2 YM model was solved exactly. It is expected that
partition function stability bounds of [16, 17] lead to bounds on YM gauge field
correlations.

Recently, the scaling limit of the YM-Higgs model was analyzed in [20] for
the gauge group SU(2). More recently (see e.g. [21]), a completely different
approach considers the construction of Euclidean QFT using stochastic quantization
and SPDE’s (stochastic differential equations). For the scalar ¢§ model in R3, some
of the important OS axioms were shown and it is to be stressed that one of the
virtues of this method is that the results are valid for any value of the couplings.
Using this approach, the YM model with a general compact Lie gauge group in
three dimensions was considered in [22].

Indeed, in the context of the RG, considering models which are small perturbations
of the free field, the generating function of gauge field correlations and then
correlations can be obtained through a formula which involves the effective actions
generated by applying the RG transformations to the partition function (see e.g.
[23]). However, unfortunately, in the case of gauge fields, this question, as well
as the incorporation of fermionic quark/antiquark fields and the verification of the
whole set of Osterwalder—Schrader—Seiler (OSS) axioms [4, 5], have never been
completely analyzed up to now. This includes the physically interesting d = 4 case.
In d = 4, after showing the mathematical existence of QCD, and checking the
Osterwalder—Schrader—Seiler (OSS) axioms hold, an analysis of the low-lying E-M
spectrum is expected to lead to the confinement of quarks/antiquarks and to the
solution of the YM gap problem.

Recently, in the related [24-26], we introduced an a priori QFT renormalization
procedure on the lattice, with lattice spacing a € (0, 1]. This alternative procedure is
based on a scaling of the physical (original) fields, like a wavefunction renormalization.
The a-dependent scaling is noncanonical. Besides, it preserves OSS positivity and
the particle spectrum since it does not alter the decay rates of correlations. The
new fields are called scaled fields. In the scaled fields, the original, physical action
is more regular. The scaling is a smoothing process and may render some models
finite and other are smoothed by it and present less or milder singularities. Our
scaling transformation can then be viewed as a partial renormalization.

For the free field, the scaling removes the infinities from the free energy and
correlations. Correlations are finite even at coincident points. No smearing with test
functions is needed. Moreover, for the scaled field partition function and correlations,
series expansions in the scaled coupling parameter converge absolutely, up to and
including the critical value. The coefficients of these series are given explicitly. The
random walk expansion associated with scaled field correlations also converge in
this region [27]. These free field results are detailed in Appendix A.
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In the unpublished papers [28, 29], using scaled gauge fields, a simple proof of
TUYV stability bounds is given by a direct analysis of the finite lattice physical Wilson
partition function Z(A, a), with free boundary conditions (b.c.) in configuration space,
starting with the model in the finite hypercubic lattice A c aZ?. The gauge group
is taken to be G = U(N), SU(N), with respective dimensions

on =N, oy =N*—1, 2)

but our methods extend to any other compact Lie group. Recall e*, u=0,1,...,(d-1),
is the lattice unit vector in the spacetime direction u. For each lattice oriented bond
b = [x,x;, = x +ae’], there is a bond variable, i.e. a unitary matrix of the gauge

group, Uj, € G. There are a total of A, = dLY"'(L —1) bonds in the lattice A.
By the exponential map, the gauge fields A, are elements of the Lie algebra
of G, and we write
Up = exp(igaAyp). (3)

With this convenient parametrization, the gauge fields are the usual physical gauge
potentials. The N X N gluon field matrix Ap, in a suitable basis, is given by

N
Ap =) Ao,
c=1

and has components which are the ordinary gluon fields. Here, for @ = 1,2,...,dy,
we take the self-adjoint 6, to form a basis for the self-adjoint matrices of
G = U(N),SU(N). They are the Lie algebra generators and are normalized accordingly
to the trace condition Trf,0z = 6,5, With a Kronecker delta traceless. With all this,
ift b, (x) = [x,x}, = x+ae"], then Ap is the usual gauge field A, (x).

A lattice plaquette p is a set of four bonds forming a minimal lattice square.
The bonds connect four neighbor lattice sites. If p = p,,(x) is a plaquette in the
u < v coordinate plane (u,v =0,1,...,(d — 1)), and if x denotes the lower left
corner of the plaquette, then the sites of A taking part in p are

+

vertices of p = p,, (x), X, Xy Xy +ae’, xy. 4)

v

Each plaquette p € A is associated with a positive Wilson action A, involving the
trace of U,, which is given by the ordered product of the four bond variables
comprising the four consecutive sides of the plaquette. For the plaquette p = p,,, (x),
and using the physical parametrization of Eq. (3), we have

. . . . il

Up(x) = exp [iagA,(x)] exp [zagAV(x;)] {exp [iagA, (x)] exp [iagA,(x})]}
=exp [iagA,(x)| exp [iagAV(x;)] exp [—iagA,(x})| exp [—iagA,(x)]. (5)
Remark 1. We warn the reader that, as usual, we use the same notation g
both for a gauge group element, g € G, and the gauge coupling parameter g > O,

which usually appears as g. There should be no confusion! Also, as the case of
the unitary gauge group G = U(N) is a little simpler than G = SU(N), in the text
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below, we will concentrate on U(N). The analysis for G = SU(N) can be recovered
from G = U(N) with some minor modifications [31].

Now, taking G = U(N), we give a schematic description of the model partition
function and the stability bounds. Precise definitions are given in sections below.
Mainly, we refer the reader to Section 2 where most of the needed definitions can
be found.

The original, physical model partition function Z(A,a) = Z(a) is an integral
over the Boltzmann factor (exponential of minus the action), with a product measure
of U(N) (SU(N)) Haar measures [30-32]

du(V) = | | du(Uy).

beA
one normalized measure for each bond. It reads

d—4
Z(a) = / exp[—% ZA,)(U,,)] du(U)

peA

z/ exp[—g ZZReTr(l —U,,)] du(U). (6)

pPeEA

The Wilson plaquette action A, > 0 is given by
AP(UP) = ZRGTI'(I - Up) = HUp - 1”%—1_59 (7)

and each plaquette action has a prefactor [a9"*/g?], where we take the squared
gauge coupling parameter g> € (0, g(z)], 0 < go < . Here, ||M|lg-s = [Tr M*M)"?
denotes the Hilbert—Schmidt norm (see Section 2 for the last equality).

RemMark 2. Although we have the physical parametrization of the gauge group
bond variable U, in Eq. (5), the value of the partition function representation of
Eq. (6) is independent of the parametrization. Sometimes, we denote this Wilson
partition function as ZY(a).

ReEmark 3. As we see below, the apparent singularity at g = 0, due to the
prefactor (1/g?) in Eq. (6), is removed by adopting the physical parametrization
Up = expligaAyp].

All our results hold for all g* in the range g* € (0, gZ]. Therefore, contrary to
what happens in other works (see, e.g. [16, 17]), our statements are not restricted
to small enough g2.

RemAaRrk 4. The adjoint of the positive oriented bond variable of Eq. (5) can be
interpreted as associated with the negatively oriented bond. For the above plaquette
P = puv(x), the plaquette action A, can be interpreted as an ordered product of
group variables going around the perimeter of the plaquette in a counterclockwise
fashion, with a bond variable for a positively oriented traverse and its adjoint for
a negatively oriented traverse.
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Formally, in [3], using the Baker—Campbell-Hausdorff formula [see [32] and
Eq. (43) below], it is shown that, for small lattice spacing a, the Wilson plaquette
action {(a?*/g%) X ,en Ap(Up)}, as explained in Eq. (1) is the Riemann sum
approximation to the usual classical smooth field continuum YM action

A= <v T v = T
i }/[] (F@Pdl > 3 S alTe[Fe,

{u<v} xeA (8)

Fi, = 04A,(x) = 9 Au(x) +ig[Au(x), Ay (0)].

Here, we have the finite difference derivatives 05A,(x) = a ' [A,(x+aet)—A,(x)]
and used the notation {u < v} ={u,v= ,(d=1)/u< v}

Associated with the classical statistical mechamcal model partition function Z (a)
of Eq. (6), there is a lattice QFT. The Osterwalder—Seiler construction provides, via
a Feynman—Kac formula, a quantum mechanical Hilbert space, self-adjoint mutually
commuting spatial momentum operators and a positive energy operator. A key
property in the construction is Osterwalder—Seiler reflection positivity, which is
ensured here by choosing L € N to be even! (see e.g. [8]).

In principle, considering this lattice QFT and neglecting all the possible internal
degrees of freedom in a more general case (spin, isospin, etc.), there are Ay sites
in the lattice A, and our system has A,dy degrees of freedom, where we recall Jy
is the gauge group dimension [see Eq. (2)]. However, as we explain more precisely
below, there is a copy of the gauge group G attached to each spacetime finite
lattice site x € A, and due to local gauge invariance of the plaquette actions A, in
Eq. (6), when considering the total number A, of bonds and then the whole set of
gauge variables in the lattice A, there is an excess of variables.

By a gauge fixing procedure, the extraneous gauge variables can be eliminated.
Here, we sometimes fix what we call the enhanced temporal gauge. In this gauge,
the temporal bond variables in A are set to the identity (leading to a trivial gauge
group integration), as well as certain specified bond variables on the boundary dA
of A. The gauged away bond variables involve bonds which do not form a lattice
loop. This guarantees that the value of partition function is unchanged [4]. Also,
the maximal number of relevant variables is given by

Ay~ (d—=1L¥" =[(d-1A,/L], ©)

which is roughly the number of nontemporal (spatial) bonds. These are the retained
bond variables or simply, retained bonds. The effective number of degrees of freedom
in our model is then [6yA,].

RemMark 5. We warn the reader that we use abusively the name volume for the
quantity A,. Below, we talk about the volumetric free energy using A, instead of
the lattice volume Ay = L¢. We are not using the physical volume (aL)¢ in R¢. By
doing so, as there is a finite proportionality between them, we will be neglecting
a finite additive (d-dependent) constant value of the free energy.
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In the context of a generic lattice model with partition function Z,, when Ay
degrees of freedom are present, a stability bound is a lower/upper bound on Z, of
the form

e“M < Z) < e, (10)
for some finite real ‘constants’ ¢, and c,.

Usually, in statistical mechanical models, to control the thermodynamic limit
of the free energy, the only requirement is that ¢, and ¢, are uniform in the
‘volume’ Ay. Here, in our lattice YM model, besides this condition, since we are
also interested in taking the UV (continuum) limit a \, 0 afterwards, we do require
that ¢, and ¢, are also uniform in the lattice spacing a. This is why we call our
stability bound a thermodynamic and UV stable stability bound, or simply TUV
bound, for short.

In addition to the physical, unscaled gluon fields which, in order to improve
clarity, we sometimes denote by A, with a superscript u, we will also be using
local, scaled gluon fields A,(x) (without any superscript, or with a superscript s)
which are related to Aj(x) by the a-dependent scaling transformation

Au(x) = a1 AL (x). (11)

This a priori scaling corresponds to a partial renormalization and can be interpreted
as a field strength renormalization.

Associated with the scaled fields are the scaled free energy, scaled generating
functionals and scaled correlations. As it will be made clear below, the scaled
field quantities have good UV regularity properties in the lattice spacing a and the
gauge coupling g. For instance, the scaled free energy and correlations are bounded
uniformly in a € (0,1] for any finite gauge coupling gZ.

Before embarking on the scaling transformations and specific results for the YM
model free energy and correlations, we give a general picture of the use of our
scaled fields and its consequences. For simplicity, we consider the free lattice scalar
field. This case is analyzed in more detail in Appendix A. It is important to stress
that the scaling used in the analysis of the free scalar field case is also employed
for each color component Aj(x) €R, x € A C aZ?, of our gauge fields in our YM
model.

Considering the same hypercubic lattice defined before, we denote the A lattice
physical (or unscaled) scalar field at a lattice site x € A by ¢“(x). Up to boundary
conditions, the physical, free unscaled lattice scalar model action is given by

1 1
AL(9") = 5’ Y [0" () = 0" @]+ gmiad Yl @ ()
X, M1 X

Here, k2,m, >0 and Y, , sums over the finite lattice sites x € A C aZ? and
u=0,1,...,(d-1).
As usual, the finite lattice unscaled partition function is

Zi(a) = / e A\ pgr, (13)



ON YANG-MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 311

where D¢" is the A product of single site Lebesgue measures d¢*(x)/V2r. Recalling
that lattice A has L € N, L even, sites on a side, and its volume is A, = L4, we
can take the thermodynamic limit of the physical, unscaled free energy as

u . 1 u
f“(a) = LI%EIHZA(a).

The scalar model correlations at coincident points are singular in the continuum
limit a \, 0.

We now introduce a-dependent scaled scalar fields by making the change of
variables

d(x) = s(a)p"(x), s(a) = ald=212 t= (2dkﬁ + miaz)l/z. (14)
The scaled scalar free field action is
Ar(9) = AL (4" = [s(@)]” Z $()(xf) + 5 Z ¢ (x),

where «? is the scaled hopping parameter x> = (2d + m2a*/k2)" '
The finite lattice scaled free field partition function is

Zn(a) = / e MO Dy = M 7Y (a), (15)

where we recall that Ay = L9 is the number of sites in A and the scaled measure D¢
is defined a product measure, similarly to the unscaled measure D¢" in Eq. (13).
The scaled scalar model partition function Z,(a) obeys the TUV stability bound

eceAs < ZA(CI) < eC“As,
with real finite constants ¢, and c, independent of Ay and the lattice spacing a.

The important point is that, in terms of scaled fields, all singularities disappear,
and the scaled free energy is finite, for d = 3,4, and is given by

. 1
f(@) = Jim 5 InZy(a).

We observe that scaled field correlations, to be defined below, also remain finite as
a ™\, 0, even at coincident points, for d = 3,4.

Furthermore, in the thermodynamic limit L " co, the unscaled free energy is
related to the scaled one by

f(a) =Ins(a) + f“(a), (16)

meaning that we have isolated completely the a N\, O singularity of f“(a).
Regarding correlations, the physical, unscaled two-point correlation

1 u u
@ WO = 5 [ # e ) e Do
A
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using the change of variables of Eq. (14), is related to the corresponding scaled
two-point correlation (similarly defined without the u superscripts) by

(¢“(x)¢"(y)" = 21 (@ (x)p(y)).
s*(a)
Both correlations have the same asymptotic decay rate at large distances. More
generally, the scaling transformation does not affect the Osterwalder—Schrader positivity
property [4, 5] nor does it alter the decay rates of correlations. Thus, the E-M
spectrum is unchanged.

As is known, the unscaled correlations are singular in the continuum limit a \, 0.
However, the scaled free scalar model correlations remain finite as a \, 0, even at
coincident points, for d = 3,4. For example, for the unscaled two-point correlation
at coincident points we have the following singular behaviour

u 2\ 1 ~ 2-d
(9" = s = a>.
This behaviour can be taken as a characterization of UV asymptotic freedom on
the lattice.
In the YM case, we consider only gauge-invariant correlations which behave as
derivative fields (think of the electromagnetic field for the abelian gauge group U(1)).
For scalar free fields the unscaled finite lattice derivative field correlation is

(G50 0350 )" = (L]0 - ¢ 0] L6070 - 0]

u
B

with derivatives replaced by finite differences. This correlation behaves as s~2(a)a >
~ g4, for coincident points. This behaviour can also be taken as a characterization
of UV asymptotic freedom on the lattice for derivative field correlations.

We remind the reader that, even for a finite lattice with spacing a € (0, 1],
the partition function may not exist due to zero modes in the action. This is e.g.
the case for periodic b.c. where the action has a zero mode for m, = 0. This
problem is usually eliminated by adding to the action a small mass term (an infrared
regulator). Then the partition function exists and obeys TUV stability bounds. Then,
the regulator may be removed after taking the thermodynamic limit. Alternatively,
for example, if free b.c. is used, there is no zero mode, the finite lattice partition
function exists and agrees with that in the infrared regulator procedure. In this
paper, we deal with the Wilson YM model and no infrared regulator is needed for
free and periodic b.c.

We now return to the YM model and describe how we apply the scaling
transformation. For the abelian U(1) case we can define the scaling transformation
by a similar change of variables of Eq. (11), namely

Au(x) =a' "I A% (x).

In terms of the gauge fields A,(x), the action becomes regular both in g and
a € (0,1], and the U(1) Haar measure is proportional to the Lebesgue measure.
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In the nonabelian case, the implementation and the effect of the scaling is
more complicated than the scalar free field case. The scaling is performed in
each color component A, of the physical or unscaled gluon field A}, by defin-
ing

c — 4(d-2)/2 pu,
AL (x)=a AL (%), (17)

so that the bond variable U, is parametrized as U, = expliga= ¢ ¥/24,]. In
doing this, the action of each plaquette Boltzmann factor becomes also regular.
However, the Haar measure is not proportional to the Lebesgue and does not
transform simply by a multiplicative factor. This complexity does not lead to
a multiplicative scaling for the partition function and correlations. Below, we show
how we deal with this problem. The Haar measure for unitary groups is obtained
n [33-36].

Before we get to this point, in order to be able to compare our method with the
renormalization method developed in [21], we illustrate how our scaling leads to
the absence of singularities in the scalar ¢4 model. From [21, 22, 37], the unscaled
action is the free action Al (¢") of Eq. (12) plus a local quartic potential. Namely,
for spacetime dimension d 3, we have (for 4 > 0)

Ay (9" = —K a ) [¢"() - ¢“(0)]°

X,p
v ( - i) @ DI WP +da* Y ¢ )"
= AL (¢") + AT, (9"). (18)

In d = 3, the sums are over x € A C aZ® and u = 0,1,2. Also, we have

¢ =c(a,) =ci(a)+cr(a)d, where ci(a) = O(1) and cy(a) = O(]|Inal). The form of

[Ac(a,A)/a] is a renormalization which removes the UV divergences and keeps the

physical mass finite in the continuum limit a \, 0. In A perturbation, we take care

of the O(A) tadpole contribution and the so-called ‘rising sun’ O(A%) contribution.

For simplicity, we suppress the a,d dependence of c(a,d) and put ¢ = c(a, ).
As before, in terms of scaled fields,

¢(x) =s¢"(x),  s=a"P, 1= [2dK; + (mua)’]'?,

the scaled ¢4 action is

Asn(9) =« Z¢<x>¢(x+>+22 OV

[¢(x>]2 L Z[¢(x>]4

= Ap(@) + Ara(9), (19)

where Ax(¢) is independent of the coupling A and corresponds to the scalar free
action. The key fact is that A4(¢) has a minimum at ¢?(x) = c/2, where it
assumes the value (—Aac’A;/4).
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We let Z/f\r denote also the scaled free scalar field partition function of Eq. (15).
Then, Z}C\r satisfies the TUV stability bound (recalling Ay = L9, d = 3)

fr fr
et < Z}c\r < eCulls,

where ¢T=[(1-L"")In V2] (see Appendix C) and clz,r =0 (by Jensen’s inequality).
Now, we let Zs o denote the partition function for the ¢§ model. We have

Zyp = / e~ A4 (9) de = Z/f\r/ e~ ALA(P) d,ufr(qﬁ),

where, using Eq. (19), du™(¢) = [e=42(9) dg/Z' is a probability measure.
For the upper bound, reinstating the A,a dependence in ¢, taking the minimum
value of A;A(¢) given above, we have

Zy A < €Xp [a/lC2(/1, a)AS] exp [CerAS] = pCulls

Now, by Jensen’s inequality and using the lower bound Z/f{ > 1, we have the

lower bound
Zip > e [AA@) dul (@) = peehs

with, here, c, = [(c/la/tz)Co - (3/1a/t4)C§] and Cy is the coincident point two-point
correlation for the free scaled field given in Eq. (A17) and bounded in Eq. (A23).
Writing the upper and lower bound together, we have the TUV stability bound

eCths < 7y p < el (20)

From the values of c¢¢, ¢, and ¢ given above and using, for Cy described in
Remark A3 below, we see that the constants in Eq. (20) are uniform in a € (0, 1]
so that the bound in Eq. (20) is a TUV stability bound.

Let us now come back to the gauge field case. As a simple application of our
method, we first consider the abelian case of the gauge group U(1) case in more
detail. For the special case of U(1), both the pure-gauge action and the coupling
with Bose and Fermi fields were treated in [38—41]. The starting point for all these
papers is a quadratic action for the electromagnetic potentials. In these papers, in
order to remove the null space of the quadratic form and define the model partition
function, a gauge fixing is required at the onset. This is not what we do here.
Instead, we make a rigorous connection between the Wilson partition function and
the Wilson plaquette action which is not quadratic in the fields.

To see the effect of the scaling transformation on the U(1) Haar measure, we
parametrize the bond variable U, with the physical potential as U, = exp(iagAj).

The measure 1is | |(¢21_g dAZ). In terms of scaled fields A,, the measure is
T
b

2 \1/2
l—[l(%) dAb/(Zn)]. Hence, for G = U(1), the unscaled and scaled gauge
a
b



ON YANG-MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 315

finite lattice partition functions are related by
g2 Ar/2
Z/'((a) = ZK((Z) = (F) Z/S\(a),

where we recall that A, is the number of retained gauge variables after the enhanced
temporal gauge is fixed (see Eq. (9)).
Here, Z}(a) is the scaled partition function, expressed with an action written

in terms of scaled fields and with the measure l_l dA, [ (2m), |Ap| < 7.
b
Also, Z3(a) obeys TUV stability bounds (65 =1 is the U(1) group dimension)
eCtONAr < Z3(a) < eCudNAr 21)

Motivated by the scaling relation above, for the abelian case, in the nonabelian
YM case of the gauge groups G = U(N), SU(N), by defining a scaled field partition
function by

' d-4\ONAr/2
Z\(a) = (?) Z\(a), (22)
d-4\1/2
with one factor of [—— for each of the oyA, effective degrees of freedom,

g2
Z3(a) obeys TUV stability bounds.

Here, we consider two types of boundary conditions (b.c.) on the lattice A.
Namely, our TUV bounds on the scaled partition function Zf\’B = Z%B(A, a) hold for
both free and periodic b.c. The index B is left blank, for free b.c., and B = P, for
periodic b.c. The adoption of periodic b.c. extends the TUV bound result of [28] and
is convenient for us to use the multiple reflection method [4] to analyze a generating
function and correlations. The partition function ZZ’B is related to Z3(a) as in
Eq. (22) obeys the the same TUV stability bound of Eq. (21) with a corrected
value of 6y = N2, (N> —1). Namely, we have

ecdeAl‘ < Z/S\,B < ecu(SNAr’ (23)
where we recall that the finite constants ¢, and ¢, are both uniform in A, and
a € (0,1].

Using Eq. (22), the proof of the bound of Eq. (23) is one of our main results
and is stated in Theorem 1.

The TUV stability bound on the scaled partition function [see Eq. (23)] arises
from an interesting factorization structure of the bounds for Z/'(’B and hence Z/S\’B .
For Z/”{’B , the upper and lower bounds factorize as

Ar wB _ _A
z," <Z,7 <z,

where each factor is a single plaquette partition function of one bond variable.
Expressions for the ‘constants’ z, and z, involve probability distributions of the
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circular unitary random matrix and the Gaussian unitary ensembles, CUE [42, 43],
and are analyzed in Theorem 2. This analysis leads to the TUV stability bound of
Eq. (23).

REMARK 6. A key point in our method, as it can be checked in the expressions
and bounds on z, and z, given below, is that our lower and upper bounds on the
unscaled partition functions do exhibit the same multiplicative singular factor. This
is what allows us to define a scaled partition function by extracting the singular
factor multiplicatively.

The random matrix ensemble CUE arises naturally in the above context. To
go further, and extract the singular behaviour of z, and z,, the Gaussian unitary
random matrix ensemble GUE [42, 43] also shows up. We notice that both z, and
7, are given by integrals with class function integrands. We emphasize that this
property was not present for the integrand of the unscaled partition function Z¥
but does hold for the bounds. We recall that a class function f(U) on the gauge
group G is constant over each group conjugacy class, i.e. f(U) satisfies the property
f(U) = f(VUV™Y), for all V € G.

We now explain how these random matrix ensembles appear in our bounds.

Our upper and lower stability bounds have an interesting factorization structure. In
continuum scalar field models such a factorization is achieved by imposing Dirichlet
decoupling on the covariance of the free field Gaussian measure (see Chapter 9 of
[4] and [44-46]). In the continuum, in the exponents of the stability bounds, we
typically have the volume in R¢. We show in Appendix C, how this factorization is
accomplished in lattice scalar field models where each factor is a partition function
of single bond ‘transfer matrix’. Here, the exponent in the TUV stability bound is
the number A, = d(L —1)L4" of lattice bonds in A.

In the YM model, the factorization involves products of single-plaquette, single-
bond variable partition functions. A new, global quadratic upper bound in the gluon
fields, for the positive Wilson plaquette action, is proved in Lemma 2. This upper
bound gives a lower bound on the partition function. This bound gives rise to
the factorized lower bound on the partition function. For the upper bound, since
each plaquette action is positive (it is a Hilbert—-Schmidt norm!), we simply set
some plaquettes actions to zero. We denote by z, (z) the single-bond Haar integral
partition functions describing the single-plaquette partition function for the upper
(lower) stability bound on the partition function with periodic b.c.

By the spectral theorem, as U is unitary, there exists a unitary V which
diagonalizes Uy, i.e. V7IU,V = diag(e',...,e"N), A; € (-x,x]. The A; are called
the angular eigenvalues of U. Recalling Eq. (11), the fundamental relation between
scaled gluon fields and the angular eigenvalues is given by the equality (see Lemma 1)

N ON 5 g2 SN 5
> B=a? Y |ar| = e > agl (24)
j c=1

j=1 c=1
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which is used to deal with the above quadratic bound on the Wilson action. It is
immediate for G = U(1).

With this, for A = (4y,...,4dy) and dd = dA;...d1y, by the Weyl integration
formula [30-32, 47]

/ F(U) der(U)
U(N)

1 , s dd
=¥ ‘/(_7r I f (diag(A1, 2, ...,4n)) 1—[ leiti — e ’lklzw, (25)

k,j=1,...N:k<j

the N2-dimensional Haar integration over the N X N matrix unitary gauge group G
is reduced to an N-dimensional integration over the angular eigenvalues of U. In
Eq. (25), the measure corresponds to the probability density of the circular unitary
ensemble (CUE) and in the bounds on z, and z, the probability density for the
Gaussian unitary ensemble (GUE). Random matrix theory appears in a natural way
in our context (see [42, 43]).

From the Weyl formula of Eq. (25), we see that, even in the case of class
functions, the measure

|ei/lj _ ei/lk|2 da
k.j=1,...,N; k<j

does not obey a multiplicative scaling relation under a change of variables trans-
formation. However, for small enough A, scaling A; by (sdy), this measure scales
with a factor s°N.

Going further, the importance of the TUV bound of Eq. (23), for the scaled
partition function Z3(a) = Z°(A, a), is that it ensures us that the finite lattice scaled
YM free energy

1
fala) = fH (A a) = ~ InZ; (a) (26)
satisfies the bound
ce £ fala) <cy. 27

However, recalling that the finite constants c, and c, are both uniform in A, and a,
by the Bolzano—Weierstrass theorem [48], this shows that the thermodynamic limit

fia)= lim f*(A a)
A azd

exists at least in the subsequential sense. Subsequently, by the same reason, the
continuum limit exists, at least in the subsequential sense, and defines the bounded

function
S — 1 S
f a{rg)f (a),

of the model parameters.
From the above discussion, we see that our scaling transformation, used to define
the scaled gluon fields, allowed us to subtract the exact singularity of the physical



318 P. A. FARIA DA VEIGA and M. O’CARROLL

or unscaled free energy

fala) = fU(A a) = (InZg(a) /A,
In fact, we see that the scaled and unscaled free energies are related by

(d-4)/2
£5(a) = f(a) + 65 In 2 — (28)

which is analogous to Eq. (16) for the scaled scalar free field model.

It is to be remarked that, as a first step towards showing the existence (the
continuum and thermodynamic limits) of the YM models and QCD, here and in [28],
we only concentrated on the finiteness of the scaled free energy per degree of
freedom. Next, in [29], the finiteness analysis was extended to the generating function
of gauge-invariant plaquette fields and their correlations. There, we did not invest in
analyzing the properties these quantities satisfy and if there is possibly more than
the physical models of interest. It is also worth noticing that the techniques and
methods used in [28], combined with the results of [24-26] were used to prove
the existence of a scaled free energy for a bosonic lattice QCD model, with the
(anti)quark fields replaced with spin zero, multicomponent complex or real scalar
fields. This is the content of [49]. With these results in mind, we mention that our
methods and techniques can eventually be coupled with new and more traditional
methods, such as explicit renormalization and multiscale analysis, to make progress
towards the complete construction of QFT models, e.g. to show the existence of the
continuum and the thermodynamic limits of correlations for the SU(3) YM model
and QCD, and also other interesting models which are still not fully understood.

We now turn to generating functions and correlations. The folklore tells us
that the TUV bound of Eq. (23) is enough to bound the generating function and
correlations. For the case of the scaled free field (see Appendix A), the generating
function for powers of the field at a single point x is

(@74 =exp 3 [1o)]

where J is a constant source strength, and the expectations {[¢(x)]"), r=1,2,...,
are Gaussians and are also bounded. So as not to think that these boundedness
properties only hold for the scaled scalar free field, in Appendix B, we prove that
they also hold for another scaled field model, which we call truncated model and
which is a good candidate for a continuum QFT model that exists and in perturbation
theory it is nontrivial (non-Gaussian) in d = 4. This is important because of the
recent triviality results for ¢j by Aizenman and Dumenil-Copin [50].

The model partition function, denoted here by Z%, is obtained from the scaled
free field partition function (see Eqs. (A4) and (A6) of Appendix A) by replacing
the bond factor exp[:<2¢(x)¢(x;)], where «? > 0 is the (squared) hopping parameter

and x;, = x +ae", by the truncation [1+af¢(x)¢(x;)]. We call this model the
truncated model. The partition function Z) obeys the TUV stability bound, recalling
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that Ay = L9,
eths < 78 < euls, (29)

with finite constants ¢, and ¢, independent of Ay and a € (0,1]. The bounds
depend on A, in the exponent and not the physical volume (aL)¢ in R,
We also prove that the generating function (e’?(*)) obeys the bound
<eJ¢(x)> < ecu—c‘gelz

>

with the same constants ¢, and ¢, of Eq. (29). Applying Cauchy estimates, this
bound leads to the bound on the coincident point correlation with » = 1,2,...
fields ¢

(P"(x)) < ee™tr!,

The point is that the TUV stability bound using the lattice number of sites Ay = L¢
is enough to bound the generating function and correlations.

Concerning the YM model, inspired by [51], we define a gauge-invariant physical,
unscaled plaquette field as follows. Consider the plaquette p = p,,(x), u < v, in
the puv coordinate plane. The unscaled plaquette field associated with p is given
by, recalling that U, = exp{iX,},

i

1 1
Tr F(x) = e ImTe(U, - 1) = Tr[U}), - U,] = e Tr(sin X,,). (30)

2a%g
The reason for the above [1/(a’g)] multiplicative factor in Eq. (30) is that,

if one uses the physical parametrization for U, = exp(igaA;), then we obtain, for

0 <a <1, that Tr?;;‘ ~ TrF[,‘V, where

Fi, =04A,(x) = 05 Au(x) +ig[Au(x), Ay (x)], (3D
with a commutator in the Lie algebra of G = U(N), SU(N).

Similarly to what we did for the gauge fields and Wilson action, we define the
scaled plaquette field ¥, (x) by

(d-4)/2
TrF, (x) = al? Tr 7, (x) =

ImTr (U, -1). (32)

As before, we emphasize that, in the above equations, g =0 is only an apparent
singularity follows from Lemma 2 (see below).

To analyze the plaquette field generating functions, we use this scaled plaquette
field. The scaled field plaquette correlations are proved to be bounded, uniformly in
a € (0,1]. These bounds imply bounds on the singular behaviour, when a \, 0, of
the physical, unscaled plaquette correlations. For example, the bound implies that
the physical, unscaled plaquette-plaquette correlation has a singularity of at most
a4, when a \ 0.

Remark 7. It is important to remark that the exponential decay of physical,
unscaled plaquette field correlations is the same as that of scaled plaquette field
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correlations. Hence, the associated E-M spectrum is also the same. Also, in the
abelian case, it is known that local polynomials in the plaquette fields form a dense
set in the subspace of gauge-invariant vectors in the associated model quantum
mechanical Hilbert space . Whether or not these local fields form a dense set in
the nonabelian case requires further investigation. We know it generates the low-lying
E-M massive glueball spectrum. Possibly, more general loop variables are needed
to go up in the spectrum [8].

Rather than bounding the scaled plaquette field correlations directly, we bound
the generating function of r-scaled (r € N) plaquette field correlations. To do this, we
use periodic b.c. and the multireflection method (see [4]). Based on the work of [51],
we define a scaled generating function for the correlation of r € N gauge-invariant
scaled plaquette fields as

<exp{2 Jj Tr?-‘,fj(x]‘)}> = % / exp{zrl JiTeFp (x)) = ij Z Ap(Up)} du(U)
=1 A j=1 8

pPeA
=G, A(J) = Gr(Aa, T, (33)
where J) denotes the whole set of r source strengths {J,...,J,} and x the set of
r external points {xi,...,x,}. We note that the denominator is the J (") =0 value

of the numerator integral, with periodic b.c., which is the periodic b.c. partition
function Z/’: . Also, here p; is a short notation for p, ., .(x;).
A
Of course, the scaled plaquette fields correlation are given by the source derivatives
(0/0J;) at J() =0, i.e. setting all the sources to zero. Namely, for yz = {y1,...,y,},
we have

8}”
Graa(J" ) (34)
311(Y1)---5Jr()’r) A )](r):o

In Theorem 4 below, we prove that the scaled generating function G, x(J)¥)
is absolutely bounded, with a bound that is independent of L, a, g, and the
location and orientation of the r external plaquette fields. This bound leads to the
existence of a sequential or subsequential thermodynamic limit G, (/")) and then
to a continuum a \, 0 (at least subsequential) limit G,(J).

The generating function bound also has an interesting structure. The bound has
only a product of single-plaquette, single bond-variable partition function z,(J) with
a source strength field J in the numerator; in the denominator only a product
of z, (the same as in the preceding case!) occurs. In the bound for z,(J) the
probability density for the Gaussian symplectic ensemble (GSE) appears (see [43]).
The generating function is jointly analytic, entire function in the source strengths
Ji,...,J, of the r plaquette fields (for SU(N), the analyticity domain is finite). The
r-plaquette field correlations admit a Cauchy integral representation and are bounded
by Cauchy bounds. In particular, the coincident point plaquette-plaquette physical
field correlation is bounded by consta™?. The a~¢ factor at small a behaviour is the

Coa(ye) =Cr(Aa,yE) =
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same as that of the physical or unscaled real derivative scalar free field two-point
correlation (the physical free field correlation has a singular behaviour a~(4=2)).
For the free field, these singular behaviours are a measure of ultraviolet asymptotic
freedom, in the context of the lattice approximation to a continuum QFT.

In this way, we conclude that the singular behaviour of the plaquette correlations
is bounded by the singular behaviour of the free derivative scalar field correlations in
d =2,3,4. For the physically relevant d = 4 case, we can say more. The behaviour of
the coincident plaquette, physical plaquette-plaquette correlation is exactly a~4h(g),
for some function i(g) which is bounded.

For the free physical scalar field, locally scaled field correlations are bounded
uniformly in a € (0,1], such as no smearing of the fields is needed to achieve
boundedness. The two-point correlation of physical fields for coincident points has an
a’~? singular behaviour, for d = 3, 4. If we consider correlations of physical derivative
scalar fields, then the singular behaviour is different. The two-point correlation of
physical derivative scalar fields, at coincident points, has an a~?, a \, 0 singularity,
for d =2,3,4; for the massless case the exact value is a“’/d.

For the free field, the relation between the correlations of physical fields or
physical derivative fields and their scaled counterparts is developed in Appendix A.

In this paper, first, we give detailed and much simplified proofs of the theorems
of the unpublished references [28, 29], using free boundary conditions. Moreover,
we are able to incorporate the case of periodic boundary conditions in the present
analysis. Similar finiteness results are shown to hold for the generating function of
gauge-invariant plaquette fields [S1] and their correlations. For doing this, we adopt
periodic b.c. and apply the multireflection method [4].

Besides, in order the allow the reader see how our methods work in a simpler
case, we discuss the special case of the abelian gauge group U(1). For this group,
the Haar measure is much simpler as compared with U(N > 1) [33-36] and
computations can be carried out more explicitly and transparently, and we emphasize
that the independence of our bounds on a € (0, 1] is already manifest in this case
and the reader can better appreciate why this holds true.

For both, free and periodic b.c., our TUV stability bounds on the scaled partition
functions (defined by extracting the a \, O singularity) lead to at least the existence
of the subsequential thermodynamic and ultraviolet limits of the corresponding scaled
free energies per effective degree of freedom. The existence of these subsequential
continuum limits apply to any gauge model with the same Wilson action and
free/periodic b.c.

We now emphasize that our method does not intend to be a substitute to other
powerful methods such as the RG multiscale formalism. However, it corresponds to
a simple way to obtain TUV and generating function bounds, as well as it allows to
a simple characterization of UV asymptotic freedom in the context of a lattice field
theory. Our results hold for the whole one-parameter family of models depending
on the gauge coupling g, such that g> € (0, gé], 0< g(z) < oo. As pointed out before,
the type of singularity we met for the plaquette-plaquette correlation is typical of
UV asymptotic models, as it is expected on physical grounds. Concerning the mass,
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whether or not our YM models have a mass is not known for now. However, we
can think that applying our methods with the ones developed in [51] can be used to
attack this question. Recall that in [51], a gauge-invariant glueball state was shown
to be present in the E-M spectrum, with mass gap of —8In8 (0 <8 =1/g> < 1).
This state is isolated from above and below (going down to the vacuum state!) in
the spectrum and shows it determines a mass gap. The needed spectral methods,
based on the analysis of correlations and the Bethe—Salpeter operator kernel, are
the same developed by [52] and employed e.g. in [53, 54] and in many other cases
of strongly coupled lattice QCD. We still have a long way to go to get more
substantial progress regarding YM and QCD models.

We give a brief overview of our main results. In Lemma 2, we give a repre-
sentation for the Wilson plaquette action and for plaquette fields. This representation
is used to prove an upper bound on the action which is quadratic in the gluon
fields. In turn, this bound is used to obtain a lower bound on the Wilson partition
function in Theorem 1.

In Theorem 1, we obtain a factorized stability bound on the Wilson partition
function. The positivity of each plaquette action in the Wilson action plays a role in
the proof of the upper stability bound and its factorization. Each factor is a partition
function of a single plaquette action with only a single bond variable. The stability
bound is good enough for the existence of the thermodynamic limit of the free
energy. However, the bound is not uniform in the lattice spacing a € (0, 1]. So, it
is not enough to show, subsequently, the existence of the continuum a \, 0 limit.
Upper and lower bounds on the single plaquette partition function are obtained in
Theorem 2.

We define a scaled partition function and, using the results of Theorems 1
and 2, in Theorem 3, we prove that it satisfies upper and lower stability bound,
which are uniform in a € (0,1] and leads to a scaled free energy which does have
a subsequential continuum limit, at least. To obtain TUV stability bound, it is crucial
to scale the physical gluon field A%, as it appears in the physical parametrization
Uy = expligaA¥] and use the scaled gluon field A, = a(?"2/2AY

Also, we consider the generating function for correlations of r = 0,1,2,...
plaquette fields defined in Egs. (30) and (32). In Theorem 4, we prove that this
generating function is bounded uniformly in the number of lattice sites, a € (0, 1]
and g2 € (0, g% < o0]. The exponent of the exponential bound is the sum of the
square of the r source strengths. The bound is also independent of the location
and orientation of the r plaquette fields. Using analyticity in the sources and
Cauchy bounds these results imply that the r-plaquette correlations are also bounded
uniformly in a € (0, 1] and g? € (0, gg < oo]. In particular, the bound is UV regular,
meaning the bound holds if some of the positions of the plaquette fields coincide.

The paper is organized as follows. In Section 2, we define the model with
the Wilson action for periodic and free b.c. In Section 3, we define and treat
an approximate model. In the approximate model, we set to zero, in the Wilson
action, plaquette actions corresponding to interior horizontal plaquettes (i.e. plaquettes
orthogonal to the time direction), plus some specified plaquettes on the boundary
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dA of A. Next, by a judicious integration procedure, we carry out all the remaining
gauge bond variable integrations. In each integration, a factor is extracted which
is a plaquette partition function depending only on a single bond variable. In
this way, we obtain explicit and exact results for the approximate model partition
function, free energy and plaquette correlations, as well as their continuum limits,
in Subsections 3.1, 3.2 and 3.3. For the complete model, TUV stability bounds and
bounds for the generating functions for the gauge-invariant plaquette correlations are
given in Sections 4 and 5, as our four main theorems. These theorems are proved
in Section 6. Section 7 is devoted to some concluding remarks. We provide three
appendices aiming at giving the reader the opportunity to understand essential steps in
our proofs for the YM model in a context of simpler model cases. In Appendix A,
we develop the relation between original physical, unscaled quantities and their
scaled counterparts for the free field. The use of scaled fields removes the UV
divergences of the free energy and correlations, even at coincident points. Comparing
the a ™\, 0 behaviour of the free scalar case with the physical field coincident-point
plaquette-plaquette correlation gives us a characterization of ultraviolet asymptotic
freedom.

As a bonus, the scaled field free energy and correlations admit absolutely
convergent power series in the scaled coupling (hopping) parameter up to and
including the critical point. The same holds for the random walk expansion associated
with the scaled field free energy and scaled field correlations.

In contrast with the scalar model analyzed in [50], in Appendix B, we treat
a lattice scalar field model, which is non-Gaussian in perturbation theory in d = 3, 4.
We prove that it obeys TUV stability bounds with the exponent of the exponential
proportional to the number of lattice sites Ay = L¢ (not the volume (aL)? in R9).
The proportionality constants are uniform in L € N (even) and a € (0, 1]. This
bound is sufficient to bound the scaled field free energy and correlations, even at
coincident points, uniformly in a € (0, 1].

Finally, we note that we have obtained local factorized bounds of the YM
partition function in the text. In Appendix C, we show how local factorized bounds
are obtained in the case of Bose fields.

2. The Wilson YM model
This section is devoted to the definition of our lattice YM model.

Remark 8. We warn the reader that all definitions given above (lattice, sites,
plaquettes, partition function,...) are assumed to hold here and below in our text.
In order to simplify the notation, sometimes, we will drop the u and s superscripts
to differ the same quantity in its unscaled and scaled versions, respectively. Instead,
we will assign two different letters for them, making clear in the text which is
which. Also, our notation will avoid to write the a-dependence explicitly. Finally, as
it was observed above, we concentrate on the case of the gauge group G = U(N).
The case of the gauge group G = SU(N) is obtained from this one with minor
adaptations.
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We describe the partition function of the free and periodic b.c. scaled YM
models and their gauge invariance properties. The superscript P will denote periodic
b.c. quantities.

Free b.c. bonds: Recalling that a lattice site is x = (x%,x!,...,x4"!), where 0 labels
the time direction, e*, u=0,1,...,(d —1), is the unit vector of the u-th direction
and b, (x) is the lattice bond with initial point x and terminal point x} = x+ae” € A,
the number of free b.c. bonds in A is A, = d(L — 1)L, Sometimes, we refer to
the bonds in the time direction x° as vertical bonds. The other (spatial) bonds are
called horizontal.

Periodic b.c. bonds: In addition to free b.c. bonds, we have additional or extra bonds
in our periodic lattice. An extra bond has initial point at the extreme right lattice
site and terminal point at the extreme left lattice site, in each coordinate direction.
If A, denotes the number of extra bonds, we have A, = dL~'. The total number of
bonds in A with periodic b.c. (henceforth called periodic bonds) is AzI: =Ap + A..

Free b.c. plaquettes : The free b.c. plaquettes are the plaquettes p,,(x), in the
pv-plane, with pu < v. Its vertices are the lattice sites x, xf =x +ae*, xff +ae”,
xy =x+ae” of A.

Periodic b.c. plaquettes: In addition to the free b.c. lattice plaquettes, there are
also extra plaquettes formed at least with one periodic b.c. bond. The periodic
b.c. plaquettes are comprised of all plaquettes that can be formed from the totality
of periodic b.c. bonds. We denote the total number of free (periodic) plaquettes
by A, (Ag). We have, A, =A,, for d=2; A, = 3L3,6L%, respectively, for d = 3, 4.
AIIj is given by A, plus the number of boundary plaquettes.

Recalling that a € (0,1] and g* € (0,g7), 0 < g2 < oo, and letting B = blank or P,
to denote the free and periodic b.c., respectively, we represent the model partition
function, with B-type b.c., by Eq. (6). Namely, we have

d-4
Z8(a) = / exp[—% ZAp(Up)} du(U)

pPeEA

d-4
E/exp[—% Z2R6Tr(l -Up)

pPEA

du(U), (35)

with du(U) = [1pen du(Up). The Wilson plaquette action A,(U,) is defined ac-
cording to Eq. (7) and is given by
Ap(Up) =2ReTr(1-U,) = |Up = 1ll3;_g =Tr(2-U, —U}) =2Tr(1"cos X,,).  (36)

Here, || - ||g-s means the Hilbert-Schmidt norm and the dagger sign denotes the
adjoint. The last equality is proved below, before Lemma 1. For p = p,,(x), the
plaquette with vertices as in Eq. (4), and bonds by = [x,x\], by = [x{,x} + ae”],



ON YANG-MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 325
by = [x},x] +ae”] and b4 = [x,x)], we have
— ot — T_ X
Up = Up,Up, U, Uy, = U Up, [Up,Up, | = ™7, (37)

The last equality for A,(U,) above uses the fact U, is a unitary variable, as
given in Eq. (37). All the above definitions are independent of the gauge variable
parametrization.

If we adopt the physical parametrization of Eq. (7), i.e. U, =exp[igaA,], with
Ay, — A;, denoting the unscaled Wilson action, we obtain

ZuB — AT b g8 38
Aa — eXp|— g2 8 . (38)

Here, we assigned a gauge bond variable for each bond » which is a unitary matrix
U € G = U(N). The measure dg? is the product over bonds b of the single-bond G
Haar measures do(U). dgB is expressed in terms of the physical, unscaled gauge
potentials A%, according to Eq. (3). For p denoting any fixed plaquette, the model

unscaled action is
AnE =% AL (39)
p

where the sum >}, is over plaquettes in the lattice A with the b.c. of type B.
Obviously, the plaquette actions A, and then the total action A“B_ are pointwise
positive. This is an important property which we will use when deriving our bounds
below.

To define Aj,, we first recall some important facts about unitary matrices and
their representation in terms of elements of the Lie algebra of self-adjoint matrices
associated with the gauge group G.

For an N X N matrix M, recall the Hilbert-Schmidt norm is |M|lg_s =
[Tr(MM)]'/%. Let M; and M, be N x N matrices. Then (M;, M,) = Tr(M|M>)
is a sesquilinear inner product. We also have the following properties, which are
summarized in the next lemma.

Lemma 1. (1) Let X be a self-adjoint matrix. Define exp(iX) by the Taylor
series expansion of the exponential. Then exp(iX) is unitary.

(2) Given a unitary N XN matrix U, by the spectral theorem, there exists a unitary
V such that V-'UV = diag(e™1,...,e"'™W), A; € (—-n,n]. The A; are the angular
eigenvalues of U. Define X = V~'diag(dy,...,Ay)V. Then, X is self-adjoint,
U = exp(iX), and the exponential map is onto (see [30]).

(3) For «a = 1,2,...,N, let the self-adjoint 0, form a basis for the self-adjoint
matrices (the U(N) Lie algebra generators), with the normalization condition
Tr60,6p = 64, with a Kronecker delta. Then, with X being an N XN self-adjoint
matrix, X has the representation X = 3,,_, N2 Xoba With xo = Tr X6, for x,
real.
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(4) For U and X related as in item 2, we have the important equalities,
X112 g =Tr(XTX) = Z Ieol? = x| = Z A5 < Nn?, A € (-m, 7).
I<a<N? I<j<N

Thus, the exponential map is onto, for |x| < N'/*nx.
(5) In particular, if X, = agAj}, the equality of the last item takes the form

XI5 s =Tr(X'X) = > | |2:i/12.:a2g262N|A”’c|2: CH 6ZN|AC|2
H-S a & J v b ad—4 bl >

l<a<N? c=1
(40)

where we used the scaling relation given in Eq. (11), namely,
Ap = @412 48, (41)
Eq. (40) uses the content of Eq. (24).

The unscaled gauge field A} has the representation A} =2 1<,<sy Ay %04, and
we refer to A>“ as the physical, unscaled color or gauge components of AY. For
P = puv(x), the plaquette variable Up, is given by Eq. (5), with A,(x) — Aj(x).
Likewise, adopting the physical parametrization for the Uj, in U, and with U, = e"*r,
the positive unscaled plaquette action A, for the plaquette p is defined as in below
Eq. (6), by

A% = |lUp = 1ll_g =2ReTr(1 - Up,) =2Tr(1"cos X,,) = Tr(2- U, - U}).  (42)

For concreteness, we give the case of the gauge group G = U(2), as an example.
Here, X =3 ,_1.. 4Xa0q, With Tr0,0p = 64p (with a Kronecker delta), and, for o,
for j =1,2,3,4 being the three 2 X 2 traceless and hermitian Pauli spin matrices
01,09,03, and o4 =1 is the 2 x 2 identity. For U(2), we can take 60, = (Tj/\/z.

This completes the description of the model.

Using the Baker-Campbell-Hausdorff formula [32] for noncommuting operators
X and Y,

1 1 1
eXe¥ =7, Z=X+Y+ E[X,Y] + E[X, [X,Y]] - E[Y, [X,Y]]+---, (43)
formally, it is shown in [3], for small lattice spacing a > 0, that
Up = exp [ia’gFL,(x) + R] , R=0(d),

where Fy, (x) is the finite lattice unscaled nonabelian strength field tensor given in
Eq. (31). Namely, we have

F,(x) = 0,A5(x)"05 A, (x) +ig[A) (x), AT (x)],
with finite difference derivatives

GﬁAﬁ(x) =q! [Aﬁ(x + ae#)”A"f(x)] . (44)
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Also, it is shown that the unscaled plaquette action satisfies, for small a, A;’, ~
a*g® Tr [F ;j‘,(x)]z. Each term in [F ;’V(x)] is self-adjoint. Hence, the square is a self-
adjoint and positive matrix, and its trace is positive. The quantity {[a?"*/g*] ¥, Ap}
is the Riemann sum approximation to the classical smooth field continuum YM
action { f Tr(F[jv)z(x) dx}. When A / aZ? and after a \, 0, formally, and the
finite difference derivatives become ordinary partial derivatives.

We now discuss gauge invariance and gauge fixing in detail. We take the global
gauge group Gobal as the product of a G = U(N), SU(N) group at each lattice

site. Namely,
gglobal = 1_[ G,

XEA

where an element of G, is an element of G. It transforms the bond variables
Uy = Ux’x; and its adjoint UZ to

U, .+ - UU, +U,, Ut . - UsU" LU (45)
Al T Xp XX HXXp
respectively. It is easy to see that TrU,, is invariant under these transformation. From
this, it follows that the plaquette action A,(U,) and the total action 3 ,A,(U))
are also invariant under this local gauge transformation.

Due to the local gauge invariance of the action A}, and so also A8 = 2p Al
there is an excess of gauge variables in the definition of the partition function given
of Eq. (38). By a gauge fixing procedure [4], we eliminate gauge variables by
setting them, in the action, equal to the identity and performing the trivial gauge
bond variable integration. In this process of gauging away some of the gauge group
bond variables, the value of the partition function is unchanged, as long as the
gauged away bonds do not form a closed loop in A (see [4]).

We work with the enhanced temporal gauge. This gauge will be fixed to prove
some of our main results.

In the enhanced temporal gauge, the temporal bond variables in A are set to
the identity, as well as certain specified bond variables on the boundary dA of A.
The number A, of retained bonds (see Eq. (9)) is, for free b.c., A, = [(L - 1)?],
[2L+1)(L-1)?], [(BL>=L>—-L—1)(L—1)], respectively, for d =2,3,4. Clearly,
A, = (d - 1)L4, for sufficiently large L, and A, / o0 as A / aZ¢. For periodic
b.c., the same bond variables are gauged away; the number of nongauged away
bond variables is then (A, +A.), where we recall that A, is the number of extra
bonds to implement periodic b.c.

The precise definition of gauged away bonds, for free b.c., is as follows (see
page 4 of [49] for more details). We label the sites of the u-th lattice coordinate by
1,2,...,L. The enhanced temporal gauge is defined by setting in A the following
bond variables to 1. First, for any d = 2,3,4, we gauge away all temporal bond
variables in A by setting gp,(x) = 1. For d =2, take also g, (,0 1, = 1. For
d =3, set also g, 0y 1 ,2) =1 and g, (co_; ,1_ 2y = 1. Similarly, for d =4, set
also to 1 all gbl(x():l,xl,x2,x3)’ gbz(xozl,x':l,xz,x3) and gb3(X0:1,xl:],x2:],x3)' For d =2
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the gauged away bond variables form a comb with the teeth along the temporal
direction, and the open end at the maximum value of x’. For d = 3, the gauged
away bonds can be visualized as forming a scrub brush with bristles along the x°
direction and the grip forming a comb. For any d, all gauged away bond variables
are associated with bonds in the hypercubic lattice A which form a maximal tree.
Hence, by adding any other bond to this set, we form a closed loop.

In the next section, we consider the case of an approximate model and obtain
TUYV stability bounds. This analysis is intended to allow the reader to get an overall
view on how the TUV bounds hold, showing a factorization structure.

3. TUYV stability and plaquette field correlations for an approximate model

With the definitions given in Section 2 for our YM model in mind, in this
section, we restrict our attention to a simplified lattice YM model. Of particular
interest are the contents of the basic Eqs. (35), (36), (37), (38), (39) and (42),
which will be used repeatedly here, as well as in the next sections.

Before attacking the complete nonabelian mode, in order to allow the reader to
understand better the main points of our proofs, we consider a simplified YM model,
with free b.c. In the Wilson action, we set to zero the actions corresponding to
internal horizontal plaquettes (i.e. those plaquettes which are orthogonal to the time
direction), plus certain specified plaquettes on the boundary dA of the lattice A.
We refer to this model as the approximate model.

For the approximate model, the free energy, plaquette field [check Eq. (30)]
correlations and their thermodynamic limits, as well as their continuum limits, are
obtained explicitly and exactly. The bounds obeyed in the approximate model are
a good guide for the model without approximation.

In Subsection 3.1, we define the approximate model and treat stability. In Sub-
section 3.2, we obtain plaquette field correlations considering the gauge group U(1).
The plaquette field correlation results are extended to U(N > 2) in Subsection 3.3.

The complete, nonapproximate model is treated in the ensuing sections. For d = 2,
the results obtained for the complete model and the approximate model coincide.

The physical gauge-invariant plaquette field plaquette-plaquette correlation is most
singular for coincident points. The ultraviolet limit a Y\, 0 singular behaviour
is (const/a?). The same behaviour occurs for the coincident-point derivative field
correlations in the case of the real, massless scalar free field, as shown in Appendix A.

Of course, the abelian G = U(1) case and, for the model without approximation,
the formal g \, O limit gives us the lattice free electromagnetic field with a quadratic
action. (See Remark 10 in Subsection 3.1). The plaquette-plaquette field correlations
can be obtained exactly in a momentum space representation and the coincident
point plaquette-plaquette field correlation is equal to {4/[d(d — 1)a“]}.

Using our scaled field method, we obtain TUV stability bounds and bounds on
the scaled free energy and also the boundedness of two-point plaquette scaled field
correlation. For the abelian gauge group G = U(1), the Haar measure is simpler,
formulae are more familiar and the analysis becomes more transparent.



ON YANG-MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 329

For d =2, the results for the two-point plaquette field correlation are exact. For
d = 3,4, the results are also exact for the approximate model. This seemingly gross
approximation gives the correct picture for bounds for the complete YM model with
the nonabelian gauge group G = U(N > 1).

3.1. Approximate model: TUV stability

Using the physical parametrization and starting from the free b.c. partition function
of Eq. (38), we set
Ub — 6[91’ — eiugAZ

where we recall A is the physical, unscaled gauge potential. For the plaquette
p= puv(x)v set . .
Oy (x) = 0, (x) + 60, (x,) — 0, (x) — 0,(x3),
where 6,(x) = Op=b, (x)-
Then, the finite lattice free b.c. unscaled partition function reads

Z/”\(a):/le| exp[—— Z [1=cos(f,y(x))] d6y
pl<m

2
X, U<V beA

In terms of the fields Aj, setting A, (x) = aFj, (x), where Fj, (x), given in
Eq. (31), is the usual field strength antisymmetric second order tensor, defined with
finite difference derivatives. We have

y g\
7@ = (5] [ o Atz on) [

X, u<v
Now, we transform to the locally scaled fields y; defined by
o = a2 AL, (46)

In terms of these fields, the free b.c. unscaled partition function is
Ar
Zu(a) (4 d)/2
27r

X - l—cos ga(“ d)/ZX (x) } dys,
Ahls(n/g)a(d—4)/2 { Z uv )] 1:[

X, u<v

ReEmARrk 9. We note that, instead of the above simple expression, in the nonabelian
case U(N > 1), the Haar measure presents also a weight function factor besides the
product of Lebesgue measures [33-36].

Remark 10. In the A, variables, the Boltzmann factor, for a \ 0, is approximately

exp{=a’ 3 [F (]}

X,u<v
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for d =2,3, and for d =4 and g N\, 0. In both cases, the action approximates the
continuum model action.
In the y, variables, the Boltzmann factor, for a “\, 0, is approximately

exp(- 3 [t @]},

X,u<v

for d = 2,3 and the same holds for d =4 and g \, 0. Here, in both cases, the
action is independent of the lattice spacing a. In the above quadratic approximation
of the action, the model can be solved explicitly by diagonalizing the corresponding
quadratic form.

We now define more precisely and analyze our approximate model. We also
outline the bond gauge integration procedure. This is done for each value of the
spacetime dimension d = 2,3,4. For simplicity, we identify coordinates of a lattice
site in each lattice direction, u=0,1,2,...,(d — 1), with the labels 1,2,...,L. We
have:

ed=4: For x"=L,L-1,...,2, set the plaquette actions to zero in the planes
parallel to the uv =12,13,23 coordinate planes. For =1, x3=L,...,2, set the
plaquette actions to zero in the coordinate planes parallel to the 12-plane;

ed =23 For xX"=L,L-1,...,2, set to zero the plaquette actions in the planes
parallel to the 12-plane;

® d =2: maintain all the plaquette actions.

ReEMark 11. We remark that a simpler approximate model can be defined by
setting to zero all horizontal plaquette actions. Such a model can also be solved
exactly and the same results given here, for our approximate model, also hold.
Boundary effects disappear in the thermodynamic limit. In our approximate model,
fewer plaquette actions are discarded.

Simplified, approximate model for the abelian gauge group G = U(1)

With these definitions, we now perform the bond integration. For ease of
visualization, we carry it out explicitly for d = 3.

For d =3, we integrate over successive planes of horizontal bonds starting at the
coordinate x° = L and ending at x° = 2. For the x* = 1 horizontal plane, we integrate
over successive lines of horizontal bonds in the coordinate direction two, starting
at x! = L and ending at x' =2. For each horizontal bond variable integration, the
bond variable appears in only one plaquette.

The simplification that occurs in our original model is that, in the approximate
model, we can carry out all bond integrations. Besides, for each integration, we can
extract a single plaquette partition function of a single bond variable.

We emphasize that, for d =2, the model was solved without any approximation
in [19].

After integration, each integral depends, in principle, on the other bond variables
of the plaquette which are present in the plaquette variable U, [see Eq. (5)].
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However, as in [19], for d =2, by a change of variables, the integral is independent
of the other variables and their integrals are trivially done. Here, we are using the
simplest case of the left and right invariance of the gauge group Haar measure
(see e.g. [30-32] and Eq. (54) below). In this way, a factor is extracted from the
partition function which corresponds to the scaled partition function of a single
plaquette of a single bond variable.

After the bond integration procedure is completed, we obtain

Ar
u _ 8 Ar
740 = || “

where z is the scaled single bond partition function. Namely, we have
Z:/ ex {—— Z [1-cos(ga™" d)/zX)]}dX.
1X|<(n/g)ald-/2 X, U<v

Using the following elementary trigonometric inequalities in the above integrand
(see e.g. [13] for a proof of the second one)

1 —cosu<u?/2, u €R,

2 (48)
l—cosuz—z, u € (—m,nj,

bl

we obtain the upper and lower bounds

4
z< / exp[——zxz] X =z, (49)
IX|<(n/g)ald=4)/2 4

z> / e X ax > / e X dX =%, >0, (50)
X< (x/g)ald=4)/2 IXI<(x/80)

for all a € (0,1] and 0<g2§g§<oo.
We now define the scaled free b.c. partition function Z}(a), by extracting the
a ™\, 0 singularity in Eq. (47). It reads

and

—Ar
Zi(a) = . (51)

s _ 8
Zy(a) = [zﬂ-a(d—4)/2
In this way, in terms of Z3(a), we obtain the TUV stability bound
0 <z < Zi(a) < zly,

so that, defining the scaled free energy per effective degree of freedom in the finite
d-dimensional hypercubic lattice A by

fala) = ln Zy(a)=Ingz, (52)
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the TUV bounds ensure, the thermodynamic limit A 7 aZ¢ and the continuum
limit a \, O exist (here, not only the subsequential limits as below!) and we obtain

fs = lima\o 1imA/|aZd f/i (a)

=limg,\oInz

/e_X2 dX = /2, d=23,
R

/ e—2g’2[1—c05(gX)] dX, d = 4.
[X|<n/g

Besides, for d =4, we have limg\ o " = +//2.

Simplified approximate model with gauge group G = U(N)

Still considering the approximate model, here we extend our TUV bounds to the
more general nonabelian G = U(N) case. Using the same bond integration procedure
as in the above U(1) case, the simplified model, free b.c. unscaled partition function
with the gauge group U(N) also factorizes as

Zya=2",
where
ad—4
7= / exp[— —Tr(2-U - UT)} do (V). (53)
U(N) 8

Here, z is the partition function of a single plaquette with the single bond variable U.

We explain how the factorization occurs, and we use the left and right invariance
of the single bond Haar measure do (U). We recall the invariance property (see e.g.
[30-32]): let f(U) be a function of the bond variable U € U(N) and let W € U(N).
Then,

fW)do(U) = fWU)do(U) = / fWUW)do(U). (54)
U(N) U(N) U(N)
Returning to the bond integration procedure, let U;, U,, Uz, Us be the plaquette
p bond variables and U, = UjU,U3U,, as in Eq. (5). Consider the integration over
Ui, where, in the partition function Z}(a), U; only appears in the plaquette p. The
integral over the bond variable U; is

8

By the Haar measure left and right invariance (take W = U,UsUs and U = U,
above!), the integral is just the single bond partition function z, and is independent
of the other bond variables. In this way, we extract the factors z from the partition
function Z}(a).

/ exp{— > Tr(2-Up, - U;)} do(Uy).
U(N)
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To continue our analysis, we note that the above integrand is a class function
on G. For the U(N) group integral of a class function, the N> dimensional integral
over the n X n matrix group reduces to an N-dimensional integral over the angular
eigenvalues of U, according to the Weyl integration formula [30-32, 47].

The angular eigenvalues are defined as follows. If the eigenvalues of the unitary
matrix U are denoted by {e!1,...,e"™N}, with A; € (-m,x], j =1,...,N, then
A= (A,...,Ay) are called the angular eigenvalues of U. The Weyl integration
formula reads

1 da
Loy, F0dr@ =5 [ e, 59)

where dd =dA,...dAly is a product measure of Lebesgue measures, and the weight
function or density p(A) arises from a squared Vandermonde determinant. It is given

by
p)= [ lev-ef= [] {2[1-cos(; -]} (56)

1<j<k<N 1<j<k<N

In this way, applying the Weyl integration formula to z of Eq. (53), we obtain

1 2a9*
= - 1—cosA; ) dA.
2= Ny /(_M]N eXp[ e i:lZN( cos J)] p (1)

.....

Next, we use Eq. (48) to give bounds on (1 —cosu) and the density bound
( 4 )N(N—l)/z

= P < p(D) < P(D),

where p(A4) = []i<jcken |/lj —/lk|2. The lower bound holds for all |4;] < /2 and
there is no restriction for the upper bound. Besides, we make use of the changes
of variables, with y = (y1,...,yn),

d—4y\1/2 d-4\1/2

a a 2
y = A, y = ( ) —A,
( g ) ¢ ) =«

respectively, in the lower and upper bounds. Doing this, we obtain the following
bound on z

2\ N(N-1) 1 2 \N2/2 A
(E) N!(2ﬂ)N(%) /fXP[_ 2 yﬂp(y)dy

1<j<N

N2 2 \N2)2
e N o B A SR

1<j<N

where we have the integration domains £ = {y : |yx| < (7/2)(a?*/g*)'/?} and
U ={y:|yi] <2(a?*/g*>)'/?}. We easily recognize the above integrands as being
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proportional to the well-known (see e.g. [42, 43]) Gaussian Unitary Ensemble (GUE)
probability density in RY of random matrix theory.

Extracting the a \, O singularity and defining the normalized U(N) approximate
model finite lattice scaled partition with free b.c. by

gd—4\N?Ar/2
Zy(a) = (?) Zy o (57)
then Z3 =~ obeys the TUV bound
@< Zi(a) =2 < 2y (58)
with
2
1 ad-+\N /2 2494
= —— | —— - 1 —cosA; A)dr. (59
Zs N'(Zﬂ')N( g2 ) ‘/(‘_n’n]N exp[ g2 /_IZ:N( COs I)]p( ) ( )

In Eq. (58), we have

7\ N(N-1)
Z¢ = (;) G((ad_4/82)1/277/2)9

N2
2, = (%) G((ad‘4/g2)l/22),

where, up to a normalization (see [42, 49]), G is the probability in the GUE given
by
1
Gu) = —/ exp[— yz-]ﬁ(/l)dxl < G().
N'(27Z')N |}’k|<” 1<jZ<N J

We now define a scaled finite lattice free energy by

@ =1z (@),

Hence, the above TUV bounds ensure the existence of the thermodynamic and
continuum limits of the scaled free energy given by, with G (o) = lim, 7 G (1),

f5=lim lim f(a)

aNOA Sazd
In G (o), d=23
= 1
ln{— exp[_zg—z (1—cos(gy;) ]ﬁ(y)dy}, d=4,
NN Jiy<n/e 1<]‘Z<N ' )

at least in the subsequential sense. Furthermore, for d =4, we get limg\ o f* =
In G(0).
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3.2. Approximate model: plaquette field correlations for U(1)

Here, first we take the gauge group to be G =U(1). As shown below, in
this simple abelian group case, we are able to compute the plaquette-plaquette
correlation exactly for the approximate model and for vertical plaquettes (plaquettes
with two vertical bonds). This computation allows us to show the boundedness of
the scaled field plaquette-plaquette correlation. In the next subsection, we consider
the nonabelian gauge groups U(N > 2).

For the plaquette p = p,,(x), we define the physical unscaled gauge-invariant
plaquette field as in Eq. (30), using the unscaled fields Aj. In the abelian case,

with the physical parametrization U, = ¢'“$%b, it reduces to
u 1 b a
F,(Up) = % sin [ang/“,(x)] , (60)

where A}, =aFy,, for the abelian version of the field tensor Fj;, given in Eq. (31),
i.e. without the commutator term.

Next, considering a sufficiently small lattice spacing a, we show this plaquette
field leads to the expected physical correlation, i.e.

Fo(Up) = Fj, =0;A7 - 07 A, 0<ax 1.

Then, the gauge-invariant unscaled plaquette-plaquette correlation is defined by

u ’ _ 1 1. a I .
TR0 =5 Lo 5550) [ 590 )
X CXP{—a;—24 2 2[1—cos(a2gFﬁv<z>)]} [ ] aas. 61
Z,u<v b

As seen above, we emphasize that in the abelian case we can deal easily with the
G Haar measure and express it in terms of the unscaled fields Aj.

For small a, the right-hand side of Eq. (61) becomes

Fii, () Fgo(y) exp {—a”’ > [F[,‘V(z)]z} [ ]aas.

Z,u<v b

1
N Jiat|<(n/ag)

Note that the above action is the Riemann sum approximation to the smooth
field classical continuum action 2., /[—La,La]d d?x [Fﬁv(x))]z, where the field
strength antisymmetric tensor in the abelian case is Fy, (x) = ,A5(x) — d,A}(x).
Hence, we obtain the lattice approximation to the unscaled plaquette-plaquette
correlation.

Now, for a € (0,1], we define a U(1) gauge-invariant scaled plaquette-plaquette
correlation by
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<7jl‘SV(x)7—;Js(r(y)>

1 ad-4\1/2 2d-4\ 112

- N |AY| /( )[(?) Sin[angﬁv(x)]}[(?) sin[ang;‘U(y)]
b < ag
qd—* .
X exp e Z 2 (1 —cos(a gFﬁv(z))) ndAz
Z, U<V b

= a(F, (0T g (), .

where we observe the change of coefficients on the sine terms, as compared with
Eq. (61), and where N is the normalization constant

d-4
N = exp{—a—2 Z 2(1 —cos(ang;‘V(x)))} l_[dAZ.
Ay |<7/(ag) 8 b

X, U<V

Using the scaled gauge field y, = a'¥"2/2AY% (see Eq. (46)), we can rewrite the
plaquette-plaquette correlation as

(Fiv () F 5o (¥))
1 ad=* a4 -1/2 ' qd-4 -1/2
- I = et
d-4 d—4y\ —1/2
XexP{—a—2 Z 2(1 —cos(a—z) )(,w(Z))} l_ld,\/b,
8 iy 8 b

where N’ is the measure normalization.

Now, for the approximate model, we compute the plaquette-plaquette correlation
exactly. We also show that its thermodynamic limit exists and that the correlation of
Eq. (62) is bounded uniformly in a € (0, 1]. The continuum limit of (¥, ()%, ()}
also exists! [In the next subsection, we extend these results to the case of the
nonabelian gauge group U(N), N > 2.]

More precisely, for the approximate model, we will show that (F;, (x)7 ., (x)) is
bounded uniformly in a € (0,1] and 0 < g% < g(z) < oo. The importance of this result
is that it shows us that the coincident point (x = y) physical plaquette-plaquette
correlation behaves as const/a<.

The a4 behaviour is analogous to what occurs if we transform the physical
massless scalar field ¢*“(x), by a local scaling factor, to a scaled field ¢(x) =
a'@=2/2(2d)'?¢*(x). The scaled field action is independent of the lattice spacing a
(see [24] and Appendix A for more details.) Moreover, the scaled field correlations
are bounded at coincident points, uniformly in a € (0,1], for d = 3,4, and the
unscaled derivative field two-point correlation has the exact value 2/(da“), for
dimensions d = 2, 3, 4.

In order to simplify the notation, like in Eq. (62), below N will mean the
average of the constant which is identically 1, with the relevant measure ap-
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pearing in the corresponding average integral, including the exponential density
factor.

For the complete model with gauge group G = U(N), the integrals do not
factorize, but for the approximate model they do factorize, which makes much easier
the analysis of the plaquette-plaquette correlation. For this reason, from now on this
subsection, we deal with only the approximate model. Note that we also take the
two plaquettes, containing the external points, to be vertical (i.e. with at least one
bond in the time direction).

To analyze the plaquette-plaquette correlation for the approximate model, we
follow the same integration procedure employed before in our treatment of the
partition function (see Subsection 3.1). The result is that all gauge integrals with
densities given by the exponential of the actions factorize, provided they do not
contain the external points x and y. As before, the factorized terms correspond to
single plaquette partition functions depending only on a single bond variable. They
are present both in the numerator and the normalization integrals in the denominator
in (F;, ()7, (y)). Thus, they do cancel out.

After this partial cancellation, we are left in the numerator with integrals whose
coordinate supports contain the x and y external points. However, since the single
plaquette field correlation is zero by the A — —A symmetry, the only nonzero
contribution occurs when the points x and y coincide.

For coincident points x =y, the contributions depend on a single bond variable
x»(x). Taking into account the partial cancellation between the numerator and
denominator of the normalized plaquette-plaquette correlation, the infinite volume
limit can then be taken. By translation invariance, the remaining integral does not
depend on the lattice site point x =y we fixed. Thus, we can suppress x and the
bond lower index b in y,(x) and simply write y. Doing this, we obtain

s 2 1 ad_4 s 2 ad_4 e
<[7_;‘V(x)] >_N |/\/|<(7r/g)a(d—4)/2{( 82 )Sln ( 82 ) X]}
qd—* qd=-4\"1/2
ol e

where N denotes here the normalization with the integral over a single variable y,

which is
ad—4 ad—* -1/2
N = expy———5—2|1 —cos|| —— x!lidx.
lxl<(x/g)ald=4)/2 8 g

Using the trigonometric inequalities of Eq. (48), for a € (0,1] and 0 < g? <
g(z) < oo, we have the bound

1 4
Tsvng—/ % ex l—— z]d,
([Fr (017 Moo Jiyienatasizg X S| 72X | X
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where, for

N = / exp(—x?) dy.
lxl<mald=H/2/g

and the constant N is defined as N; but with g replaced by gy in the integral
domain.
Similarly, we obtain the lower bound
4
= xPe X dy
bis (d-4)/2
<[7—71Sv(0)]2> > lx|<(m/2g)a

/ T g
R

where the numerator is bounded below taking the integration domain to be

| < [(ra'=7%)/(2g0)].

Thus, we see that the scaled plaquette-plaquette correlation at coincident points is
uniformly bounded for a € (0,1] and 0 < g?> < gé. Using these bounds and the
relation given in Eq. (62), we see that the scaled plaquette-plaquette correlation at
coincident points has the exact singular behaviour a~¢ (rather than just an upper
bound for the singular behaviour!).

From these bounds, the continuum limit

F(x) = ig([ffy(ﬂ]z),

exists and is given by

/ xle ™ dy N

L = > d=2,3,

Jerac

F=1 (64)

/ Sm(gX)} 2M1-cos(en)1/2? gy

lxl<n/g 8 ’ d=4

/ 210520V gy
lxl<n/g

Furthermore, from Eq. (64), for d =4, the g \, 0 limit also exists and is 1/2.

In the next subsection, considering the approximate model, we extend these exact
and explicit results to scaled correlations with the nonabelian gauge group U(N),
N > 2. In the following sections, we obtain boundedness results for the YM model
without approximation. The nonabelian case N > 2 is more difficult than the abelian
N =1 case. One of the difficulties is that the gauge group Haar measure is much
more complicated than the product Lebesgue measure of the abelian model [33-36].
In our extension to the nonabelian case, rather than treat directly the correlations,
we bound the two-point plaquette field scaled normalized generating function (with
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the scaled partition function in the denominator). Bounds on correlations follow
from this, using analyticity and Cauchy bounds for the source derivatives of the
generating function at zero source field strengths.

To obtain bounds on the scaled generating function which are independent of the
number of lattice sites, we use the well-known multiple reflection method (see [4]).
This method makes multiple use of the Cauchy—Schwarz inequality in the quantum
mechanical physical Hilbert space of the associated quantum field theory.

3.3. Approximate model: plaquette field correlations for U(N > 2)

In this subsection, we analyze the plaquette field correlations for the nonabelian
case of the gauge group G = U(N). The physical unscaled gauge-invariant plaquette
field Tr#,, for the plaquette p = p,,(x) is defined in Eq. (30). Taking the
physical parametrization, U, = exp{iagAj} }, for small lattice spacing a, we have that
Tr ¥, (x) = Tr Fjj, (x), where Fj, is given by Eq. (31).

With U, = exp(iX,), we also define the gauge-invariant scaled plaquette field by

1/2 1/2
T 75, (x) = a/? Tr F, = (a_z) ImTe(Up - 1) = (a_z) Tr(sin X, ).
g 8

For small a, we have
Tr 75, (x) = a?? Tr F&, (x).

As explained in the previous subsection, when analyzing the plaquette-plaquette
correlation in the G = U(1l), with external points x and y, for the approximate
model, whenever the external points x and y are not endpoints of the bonds, we have
a factorization and cancellation of the single plaquette, single bond partition functions
in the numerator and denominator of the scaled plaquette-plaquette correlations. By
the left-right invariance of the Haar measure, the integrals associated with these
factors are again over a single bond Haar measure and, by gauge integration
properties, the only nonzero contributions are those with coincident points x = y.
This property allows us to take the infinite volume limit A 7~ aZ.

With this argument, we have that the usual truncated [4] plaquette-plaquette
correlation is then equal to the nontruncated one. The integrands are class functions,
and we can apply the Weyl integration formula (see [30-32, 47]) to pass from
integrals over N2, N X N matrix elements, to integrals over N angular eigenvalues.
Doing this [compare with Eq. (63)], the coincident point scaled plaquette-plaquette
correlation becomes, with U being the single plaquette gauge variable,

(Tr )2>
1
Nz U(N)

d
) (= nﬂjN[( ) j NSin/l] exp{ 2( g2 ) _Z (1—COS/1j)}p(/l)a’/l_

Jj=l,....N

1/2 2
(g ) ImTr(U- 1)] exp{ ( )Tr(l U- UT)}dO'(U)

.....
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Note that the single plaquette correlation is obtained by replacing the squared
bracket factor by the single bracket (power one!) in the above integrand. By the
transformation of variables A; — (—4;), the single plaquette correlation (Tr ;) = 0,
as asserted above.

In view of the recent result of [50], on the triviality of the continuum limit of the
qﬁj model, we investigate whether or not the continuum limit of the approximate model
is Gaussian. For this, we also want to consider the scaled four-plaquette correlation
and, more generally, the r-th power of the scaled plaquette field at coincident points.
Following the same gauge integration procedure as before, and after using the Weyl
integration formula to pass to angular eigenvalues, the thermodynamic limit of the
r-th power of the plaquette field at coincident points reduces to

(TrF )"

1 ad-+\12 " a
= — sin A ; exp{—Z— (I —cosA ‘)}p(ﬁ) da,
Ny (n,ﬂ]N[( g ) j:;,N ’] g Z !
(65)

where the ratio is taken over single plaquette single variable bond variable integrals.
Here, N, is a corresponding normalization constant and p(A1) is given in Eq. (56).
It is worth noticing that, for the abelian gauge group U(1), we have p(d) = 1.

From Eq. (65), we easily see the r-correlation is zero if r is odd. For even r,
making a change of variables, using elementary inequalities and the well-known
Lebesgue integral convergence theorems, we obtain that the continuum limit of the
above coincident point truncated correlations exists. With

p =[] -l

1<j<k<N

and T,(g) = lim\o{[TrF3,1"), for d =2,3, we obtain, letting A = (2ad‘4/g2)_]/2 y,

=% [, (2 ») o[- 3 s3]

.....

with an associated measure normalization N,. For d =4, letting 4 = gy, we obtain

T,(g) =

Ny gNN-D)
sin(gy;)\" 2[1 - cos(gy;)]
X/ [( > —’) }p(gy)eXp[— > =%
(~n/g.n/gM\;.i N 8 j=l....N 8
For d =4, the g \, 0 limit 7,, of T,(g), is
1 / o, 2| 4N
T, = — ( y,-) p(y) GXP[— y~] d’y, (66)
Ny Jern j:l,Z,N J=T.,N !

with a normalization Nj.
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Note that, for r = 2,4, the right-hand side of Eq. (66) is, respectively,

2i =1, NiVi)G and X iy ooy N(ViVj, Yks Ye)G, Where ()G is the expectation
in the GUE (Gaussian Unitary Ensemble) (see e.g. [30, 42, 43]).

Finally, for the case of an abelian gauge group U(1), we then see that the
continuum limit is Gaussian for d = 2,3. For d = 4 the continuum limit followed
by the g N\, 0 limit is also Gaussian.

From Eq. (66), for d =4 and taking the gauge group G = U(2), we have

1 2.2
T,=—r /2(y1 +y2)" (y1 = y2)? e V172 dy, dy,
4 Jr
1
=g Jo (V20 (V2 =7 e,

with & = /R2 e~ (r*+e?) dn de, where we made the (7/4) rotation change of variables

V2e = (y; —y») and V25 = (y +y»). By performing the integrals in the denominator
and the € integral in the numerator, we obtain

2r/2
= \/; .

which shows a Gaussian, noninteracting behaviour. Whether or not this is the
behaviour we have for any gauge group U(N > 2) is still to be analyzed.

T, e dn,

4. Thermodynamic and ultraviolet stability bounds: the general G = U(N > 1)
case

We now obtain factorized stability bounds for the unscaled partition function
Z/'(’B (a) of the complete model defined in Eq. (38) with boundary condition B. In
doing this, we are improving the proofs of [28, 49] and are extending the results
to the periodic b.c. case. The bounds are factorized as a product. In the product,
each factor is a single bond variable, single plaquette partition function. First, we
give Lemma 2 which yields an exact representation for the Wilson plaquette action
and is used to prove that the plaquette action upper bound is quadratic in each
gluon field. This growth is in contrast to the classical Lagrangian action which has
a quartic growth in the fields and which is used in [18, 22]. The upper quadratic
bound on A, is used to obtain the factorized lower bound on ZX’B (a).

Again, as an example, it is worth recalling that, for the abelian gauge group
U(1), the bound is obtained by elementary inequalities. Indeed, writing the unscaled
plaquette gauge variable Uj, =exp {i(61 + 62— 63— 04)}, 10| <m, j=1,2,3,4, and
using the first of Eq. (48)], we obtain

A, =2[1—cos(0; + 62— 03— 04)] < (01 +602— 03— 04)° <407 +65+63+67),

where we have expanded the square in the first inequality and used the bound
2uv < u? +v?%, u,v € R, to obtain the second inequality.
The following lemma is a much improved version of Lemma 2 of [49].
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A N2 .
LEMMA 2. Let U; = eLi, where Lj=i Zg’zl xh0q, so that | L;| < ||Ljlln-s = |x7].

Here, x{, is real and x{, =—-iTr0,L;. Let also

U, (6) = Ui (6)U(8)UL(8)UJ (6),

with U;(6) = e®Li, for 6 € [0,1]. Then, by the fundamental theorem of calculus,
we have the representation

1
U,—1= /O ds [LlUl(é)Uz(é)Ug(é)Uj(a)+U1(5)£2U2(5)U§(5)Uj(5)
~U1(6)U2(8) LU (O)U (6) = U1 () Ua(6)U3 (8) LaU} (8)]
1 )
=/ d6{£1+/ dé[lelul(S)UZ(S)U;‘(S)U}(S)+...]}
0 0

1 o _ _
+/ ds {.£2+/ d8 | £,U1(8) LU,O)UIBUI(B) + ..
0 0 - -

——

1 o) _ _
_ / ds {1:3+ / dé | LU, (§)U(8) LU S)UT () + ...
0 0 o -

——

1 o - R
- / dé {L4+ / d§ | L1U1(8)Ux(8)US (8) LaUL () +. .. (67)
0 0 - -

———

For a single retained unscaled plaquette action A,(U,)=2ReTr(1-U,), using
the representation of Eq. (67), the second equality holds without the isolated L;
terms, which give an imaginary trace, and we have the global quadratic upper
bound

AL = U~ 1% _s = [2Re Te(UY - 1)| < C2 Z %, C=2VN,  (68)
1<j<4
where C?> = 4N. In particular, for the physical parametrization U, = expligaA}]

and the scaled field parametrization Uy, = expliga*=?/?A,], we have, respectively,
d—4
a

—A, < czad-zz |AY>  and (2 Z 1A, %, (69)
8 b b
where Y., runs over the bonds of the plaquettes and C?> = 4N. Hence, the plaquette

energy “:—2_4Ap is regular in g%, for all g* > 0, and has the quadratic growth bound

in the fields.

When there are only one, two or three retained bond variables in a plaquette,
in the first equality, the sum over j has, respectively, only one, two and three terms
and the numerical factor 4 in C>N is replaced by 1, 2 and 3, respectively. For the
total unscaled action A“B = 2, A}, we have the global quadratic upper bound

A%B <2(d-1)C? Z 1xP)2 = 2(d - 1)C? Z 14,12, (70)
b b
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where, whenever gauge fixing is applied, the sum runs over all A, lattice bonds.
Concerning the unscaled and scaled plaquette fields

" 1
TrF, = %ImTr(Up -1),

and
TrF, = a?’? Tr ¥,

we also have the representation of Eq. (67), and the L; terms are, respectively

e =a 2 e (A4 AY = AY = AY), L, terms only
=a~ T ((%A’j - BVAZ) ) L terms only,
and
Tr Fp = Tr (Gu Ay = 0, AL) L; terms only.

The coefficients in the integral terms are proportional to g, so that the plaquette
fields are also regular in g, for g* > 0.

Remark 12. From the second equality in Eq. (67), and taking the real part of
the trace, only the double integrals contribute. From this representation, the bound
given in Lemma 2 is obtained by inspection. We give a proof for the bound using
only the first line. The iteration of the fundamental theorem of calculus in Eq. (67)
produces the diverse terms in the Baker—Campbell-Haussdorft formula [32]. Here,
instead, there is no question of convergence involved.

ReMARK 13. The apparent singularity at g = 0, due to the action prefactor (1/g%)
[see Eq. (6)], which persists in the corresponding scaled expression, is removed and
the ‘action’ A,/g” is regular at g =0, if we use the physical field parametrization
Up = expligaAy], for the unscaled bond variable U,, or the scaled bond field
Up = expliga®4/?A,]. In both cases, the action is bounded by a quadratic growth.
This is in contrast to the classical Lagrangian, where cubic and quartic interactions
are present, and the growth is quartic. This growth behaviour is also present in the
analysis of the existence of YM models in [18, 22]. Besides, in these references,
an explicit infrared regulator is introduced contrary to the Wilson YM case where
an infrared cutoff is not needed for periodic and free b.c.

For completeness of the present paper, we give the proof of Lemma 2 in
Section 6. A preliminary version of the stability bounds was given in [49]. The
following four theorems are also proved in Section 6. Our results on stability and
boundedness of the generating function and correlations are for the Wilson YM
model. We sometimes use gauge fixing but there are no additional infrared regulator
terms added to the action like in [18, 22].

Our stability bounds on the unscaled partition function Z/L(’B (a), leading to TUV

stability bounds for the scaled partition function Zf\’B (a) are given by the following
theorem.
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THeOREM 1. The unscaled partition function Z/'(’B(a) satisfies the following
stability bounds:

Free b.c.: For B= blank, we have
2 < Z%a) < 2, (71)
Periodic b.c.: For B =P, we obtain
e < 7P < 74(a) < 20, (72)
where

Zu =/exp [-2(a®*/g*) Re Tr(1 - U)]] do(U). (73)

Also, we have U =¢'X, C*=4N, X=3Y,_,

,,,,,

a=1,..., N2 k=1,..., N
where Ay,...,AN are the angular eigenvalues of U. Finally,
7= / exp [-2C*(a?™*/g*)(d — 1) Tt X*]| do(U). (74)

Remark 14. Using Jensen’s inequality, we obtain the factorized lower bound
Zi(a) > £*r, where

qd-4 ) qd-4
& =exp {—?/ WU -1l g dO’(U)} > exp [—ZN?] ,

where we recall A, is the number of plaquettes in A. We have A, = A,, for d =2;
Ay = 3L3,6L%, respectively, for d =3,4. In Theorem 2 below, we obtain factorized
lower and upper bounds with A, = (d — 1)L? factors. In both the upper and lower

bound a factor of [(ad‘4/g2)‘N2/2] is extracted. This factor dominates the a, g2
dependence.

We continue by giving more detailed bounds for z, and z,. In these bounds, we

extract a factor of [(a?™*/g?)~N 2 2] from both z, and z,. Note that the integrands
of both z, and z, only depend on the angular eigenvalues of the gauge variable U,
they are class functions on G. The N2-dimensional integration over the group can
be reduced to an N-dimensional integration over the angular eigenvalues of U by
the Weyl integration formula of Eq. (55) (see [30-32, 47]). For the group U(N),
we explicitly have

fU) do(U) =

Dp)dNa, 75
. Ne @) (_”’H]Nf( )p () (75)
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where
Nc(N) = [2n)VN1], A=(A1,...,AN), dNA=dA, ... dn
and  p(d) = ]—[ e — ek |2,
1<j<k<N

In our stability and generating function bounds in the G = U(N) case, the
following integrals of the Gaussian unitary ensemble (GUE) and Gaussian symplectic
ensemble (GSE) probability distributions (see [42, 43]), of random matrix theory,
arise naturally. Let, for 8 =2,4 and u > 0,

() = /( ~ exp|-(1/28 Y, 3| ##P()a"y. (76)
u.u I<j<N

where p(y) = ]_[lgj<k5N(yj—yk)2, Ig(u) < Ig(e0) = N, is the normalization constant
for the GUE and the GSE probability distributions for 5 = 2, 4, respectively. Explicitly,

we have NG = [(2m)V/227N*2 T1,_;oy j1] and Ns = [2m)N24N [Ticyon (2)1]:
For the upper bound on z, and lower bound on z,, we have the following result.

Tueorem 2. For C? = 4N, we have the bounds on z, and 7z, appearing in
Theorem 1

2= NG [ n eXPI=2(a"4/8%) T <jen (1 = cos )] p(A) dVa
< (a?*/g%) NP (r/2)V NG (N)NZ (N)
= (ad_4/g2)_N2/2€Cu, (77)

and
ze=Ng! /(—n,n]N exp[-2C>(d - 1)(a?™*/g?) 2i<j<N ﬂ?] p(A) dVa

> (ad™4/g?) "N NG (N) (4/x)V VD2 [2(d - 1) 2Ny,
= (ad™4/g?) "N 2ect, (78)

where, recalling Eq. (76), I, = L(n[2(d = 1)C?]'?/(2g0)). The constants ¢, and c;
are real and finite, and independent of a, a € (0,1] and g* € (0, g(z)], 0< gog< oo

Concerning the existence of the thermodynamic and continuum limits of the
scaled free energy we define the scaled partition function by

s - 2 u
Z\%(a) = (@™ g?) "N 2P (a), (79)
and a finite lattice scaled free energy by
S 1 S
P (a) = —In z2%(a). (80)

Using Theorems 1 and 2, together with the Bolzano—Weierstrass theorem [48],
we prove the following theorem.
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THeEOREM 3. The scaled free energy f/‘z’B(a) converges subsequentially, at least,
to a thermodynamic limit

s,B _ : s,B
@ = tim S a),

and, subsequently, again, at least subsequentially, to a continuum limit

s,B . s,B
B > .
A al\r%f (a)

Besides, f*8(a) satisfies the bounds
—00 < cp < f5B(a) < ¢y < o0. (81)

and so does its subsequential continuum limit f*B. The constants c; and c, are
. . 2 2
finite real constants independent of a € (0,1] and g~ € (0,g5], 0 < go < oo.

RemMArRk 15. For the case of the free scaled scalar field, the TUV stability
bound follows by bounding spectral representations [check Eq. (A17)] and their
finite lattice counterparts. For the case of bond independent couplings, the TUV
stability bound is proven in Appendix C. The proof uses a multiple reflection bound
in addition to the Holder inequality to decouple the d coordinate directions. In this
way, the proof of TUV is reduced to a TUV bound for the partition function Z. of
a one-dimensional chain. In turn, this bound is obtained by bounding a single bond
‘transfer matrix’. The bound can also be obtained by successive integration for free
boundary conditions. The free boundary conditions serve as an infrared regulator,
i.e. no mass term is needed in the action to exclude the zero mode.

5. Generating function for plaquette field correlations

Here, we obtain bounds for the generating function of gauge-invariant plaquette
field correlations. Bounds for the field correlations follow from analyticity in the
source field strengths, using Cauchy estimates on the generating function. The same
hypercubic lattice A is maintained, with periodic b.c., and we use the multiple
reflection method [4]. Our choice of correlations is guided by the E-M spectral
results for lattice YM with strong gauge coupling g > 1 (see [51]). We fix the
lattice spacing a = 1 and denote the plaquette coupling constant by y = a?~*/g%. For
0 <y < 1, a lattice quantum field theory is constructed via a Feynman—Kac formula.
By polymer expansion methods, infinite lattice correlations exist and are analytic in
vyeC, |yl <1 (see [8]). In [51], for 0 <y <« 1, it is shown that, associated with
the truncated plaquette-plaquette correlation, there is an isolated particle (glueball)
state in the low-lying E-M spectrum, with mass of order (“8Invy). Furthermore, it
is proved that the low-lying spectrum is generated by limits of local polynomials
in the plaquette field. No more general loop variables are needed. The isolated
dispersion curve of the glueball is the only low-lying spectrum that is present. This
is true for SU(2). For SU(N # 2), there are two glueball particles, one with charge
conjugation + and one with charge conjugation —.
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Returning to our model, we consider the generating function for the correlation
of r € N gauge-invariant real plaquette fields. For p = p,,(x), as defined in Eq. (30),
with U, = e'*r € U(N), the physical, unscaled plaquette field is given by

. 1 i 1 .
Tr 7Y, (x) = e ImTr(U, — 1) = g Tr(U, — (Up)?) = pom Tr sin X,.

Recalling Eq. (32), parametrizing U, by the physical, unscaled gauge field
Up = expliagA}}, we have

Tr 7, (x) = TrFy, (x) =Tr [Gl‘fA,'f(x) -0y A, (x)] ,
where Fi,(x) = 95A7(x) — 97 A (x) +ig [AZ (x),Aﬁ(x)], with a commutator in the
Lie algebra of U(N).
Next, define the gauge-invariant scaled plaquette field by

d—4

1/2
Tr F, (x) = a®> Tr F, = ( ) ImTr(U, - 1). (82)

2
8
Using once more the physical, unscaled field parametrization, we have that
Tr 7, (x) = a? Tr [0 A% (x) — 05 AL (x)] .

With our choice of the scaling factor [(a?~*/g?)!/?], the generating function for
scaled plaquette field correlations is finite, uniformly in a € (0,1]. It may seem
surprising that the generating function is pointwise bounded. However, it is known
that a similar phenomenon occurs in the case of a free massless or massive scalar
field in d = 3,4. Namely, as analyzed in [26], if instead of the given physical
field ¢“(x), we use a locally scaled field ¢(x) ~ a¢=2/2¢*(x), then the r—point
correlation for the scaled ¢ fields is bounded pointwise, uniformly in a € (0, 1].
No smearing by a smooth test function is needed to achieve boundedness! We give
more details regarding the properties of scalar fields in Appendix A.

Remark 16. We can also define other plaquette fields and their associated scaled
fields. For instance, we can also work with the field

1 a 2
Tr?-(,“,(x) = %Ap ~Tr [Fw,(x)] s

and the associated scaled fields given by TrS,, (x) = a? Tr H,, (x). The results and
proofs obtained below for the generating function of correlations of the scaled field
Tr My, (x) carry over to TrS,, (x).

The r-plaquette scaled field generating function, associated with the field of
Eq. (82), is defined by

1
Graa(l") = —5— 20 (a,]"),
Z;\’P(a) s



348 P. A. FARIA DA VEIGA and M. O’CARROLL

where, for the source strengths J;, j =1,...,r, we have Jr) = (J1,...,J,) and
ij (a,J")) is defined similarly to ZX’P (a) (see Eq. (38)), but with the inclusion
of r local source factors in the integrand given by

exp[z > Jj(xj)Tr?“;/(Upj)].

xeA1Lj<r

Here, we adopt the convention that the plaquette p; originates at the lattice point
x; and p; is a shorthand for p; = py. ., (xj). The r-plaquette correlation, with a set
ye = (¥1,...,y,) of r lattice external points in A is given by
a}’
311(Y1) s ajr(yr)

Our factorized bound is given in the next theorem. For simplicity of notation,
from now on, we set J; = J;(y;)-

Gr,A,a(J(r))

Jj:()

THEOREM 4. Considering the model with periodic b.c., we have:

(1) The r-plaquette scaled field generating function is bounded by

2dAr/(rAS)
I
N < |Zu(” !
1Graa(J)] < 1_[ 24 (Ap+Ae)/(rAs) (&)
I<j<r 2,

(2) From this, if G, ,(J")) denotes a sequential or subsequential thermodynamic
limit A /" aZ?, then

1Gra@) < [T lealrdj/ze

I<j<r

|2d(d—1)/r

with

2= [ exp (W1} P ImTr(U = D] = (@) AL(0)] dor(©)
=™ [exp[i@ ) S Isinyl - 200

1<j<N
x Y (l“cos/lj)]p(/l)dei
1<j<N
_ _N2/2_ N2 12
(ad 4/g2) N /27TN +N/4N
o expl NI

= (a97*1g%) N2 exp(c), + 12 /8N|JP), (84)
aNHN/4 VAN

C

where expc, = . Recalling C* = 4N and using Eq. (78) of
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Theorem 2, we obtain

0= NG exp{—[zcz(d—nad-“/gz] > Aﬁ}pu)dw
(-7, 7N j=1,...N
2
2d — 1)C2q4—4 -N</2 4 N(N-1)/2 0

where ¢, is defined in Theorem 2 and I, = L (nC+/2(d — 1)/(2g0)) and I, is
the function defined in Eq. (76).
Hence, from the bounds of Egs. (83) and (84), it follows that G, 4(J"))
is a jointly analytic, entire complex function of the source field strengths
J} e C.
(3) Letting G,(J)) denote a sequential or subsequential continuum limit a \, 0
of Gr.o(J™)), then

|G- (/)] < exp zr—d(d— 1)(c!, = c¢) + (7*/8)Nr Z |J,-|2}.

1<j<r

This bound is independent of the location and orientation of the r plaquettes, and
independent of the value of a € (0,1] and g>.

ReEmMArk 17. Our method to prove the generating function bound uses multiple
reflection bounds [4]. Remember the bound has to be uniform in the volume Ag
(number of lattice sites) and in the lattice spacing a € (0, 1]. For the case of the
free scaled scalar field, the multiple reflection method does not work, as we now
explain. Using multiple reflection with a uniform source field, we have to bound
(exp[J 2 #(x)]). The bound should be in the form exp[c,(J)As], where ¢, (J) is
bounded uniformly in Ay, a € (0,1] and, for finite J or, at least, for small |J|.
However, as the free field is Gaussian,

<exp[]Z ¢(x)]> = exp[%]2 Z C(x, y)],
x X,y

where C(x,y) is the 2-point correlation for the scaled scalar field and is given in
Eq. (A17), in the thermodynamic limit. Using translation invariance, }, , C(x,y) =
As 2 C(x,0). The sum },, C(x,0) gives the zero momentum value of the Fourier
transform. This quantity in not bounded uniformly in a € (0,1], and blows up
as 1/a®> as seen from Eq. (Al17). Of course, (exp[J¢(x)]) = exp[%JzC(x,x)]
and C(x,x) are bounded uniformly in a € (0,1] which can again be seen using
Eq. (A17).

Remark 18. For comparison, the r-point correlation for the free scaled scalar
field, in the thermodynamic limit, is given by
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(exp D 11000 |} =0
j=1

2d + (my[ky)?* .
<oxp| 2D 0 10,0) 3 1l
Je=1

1 r
3 Z JiC(xj, xi)Jk
k=1

2d+(mu//(u)2 —1 - 2
Sexp[ P 470,00 Y 2|,

=

where Al‘l(O, 0) is given in Eq. (A24) and is finite for d > 3. By Griffths I [4],
this bound extends to complex J.

ReMARrk 19. The generating function extends to an entire jointly analytic function
of the source strengths J;, i =1,...,r. (For the case of the gauge group SU(N),
the joint analyticity domain is finite). By Cauchy estimates, it can be used to
bound the r-plaquette scaled field correlations. We use the C” version of the
Cauchy bounds. Recall that, for C, if f(z) is analytic in the disk |z| < R, R > 0,
then |(d"f/dz")(z = 0)| < n! [Supz;|z|=Ro | f(2)|]]/R:, for any 0 < Ry < R (see e.g.
[55]). In particular, the coincident point plaquette-plaquette physical field correlation
is bounded by consta=¢. The a~¢ factor is the same small a behaviour of the
coincident point, two-point correlation of the derivative of the real scalar physical
free field (see Appendix A). Using the free scalar field as a reference, this singular
behaviour is a measure of the ultraviolet asymptotic freedom.

ReMark 20. In obtaining the bounds on the scaled plaquette field generating
function and correlations, we have used the group bond variable parametrization
U, = exp {iga‘(d‘4)/2)(b}. In the physically relevant d = 4 case, U, = €'8¥> and
([Tr F°]")A,a,¢ is independent of the lattice spacing a, so that

<[Tr7_ds]r>A,g = <[Tr7js]r>A,a,g = adr/2<[Tr7:u]r>A,a,g-

For the thermodynamic limit or subsequential limit, we drop the subscript A, so

that we have
([Tr 751" = a® ([ Tr F*“] as-

Of course, the continuum limit of the left-hand side is ([Tr #°]"), and
([TrT“]’)g — a—dr/2<[Tr7_-S]r>g,

which displays the exact dependence on the lattice spacing a as a multiplicative
factor.

Lemma 2 and Theorems 1-4 are proved in the next section.

6. Proofs of the lemma and theorems

Here, following [49], we give a proof of Lemma 2. We also prove Theorems
1-4. The enhanced temporal gauge is sometimes used for proving these theorems.
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The proof of the upper stability bound on the partition function actually does not
depend on this choice.

6.1. Proof of Lemma 2

For simplicity, we consider the case where we have four bonds in a plaquette. The
other cases, when only one, two, or three bonds are retained, are similar. Recalling
that, if A and B are self-adjoint, then Tr(AB) = Tr(BA) = Tr(AB)* (star meaning
complex conjugation) is real, we define, for 1 < j <4, £; = iZlSasNzx'éHm SO
that U; = e%/ and U, = UiU,ULU].

Since [|£;ll < 1 £L,llu-s = Ix/| and letting U,(6) = Ui(6)U2(8)UI(8)U](6),
U;j(0) = e®Li, for 6 € [0,1], by the fundamental theorem of calculus, suppressing &,

1
Up-1-= / 48 | £,0\U;ULU} + Uy LUUSU] = U\ U L3USU] - U U2US £4U|
0

Using the triangle and Cauchy—Schwarz inequalities, we obtain
4

4 4 ) 4 ' 12
10 = 11< YL < Y 1Lilles = ) e < 2] ) /P
j=1 j=1

j=1 j=1
But, ||[U, — 1| > N"'2||U, - 1||z-s. Hence,

4
Ap = U, = 1[5 <4N Y /2,
j=1

By considering the number of terms in the sum over j, the last multiplicative
factor 4 is in C? is replaced by 1, 2 and 3, respectively, when only one, two or
three retained bond variables appear in a retained plaquette.

Alternatively, we can bound the terms of the second equality of Eq. (67), for
(U, — 1) directly.

Using this upper bound on the single plaquette action, we sum over the
plaquettes. Noting that, fixing a given lattice bond, there are at most [2(d — 1)]
plaquettes that have this bound in common, the result for the total action follows.

m]

6.2. Proof of Theorem 1

The case of free b.c.:

Upper bound: For ease of visualization we carry it out explicitly for d = 3. An
upper bound is obtained by discarding all horizontal plaquettes from the action,
except those with temporal coordinates x° = 1. We now perform the horizontal bond
integration. Integrate over successive planes of horizontal bonds starting at x* = L
and ending at x° = 2. For the x” = 1 horizontal plane, integrate over successive lines
in the u =2 direction, starting at x' = L and ending at x' = 2. For each horizontal
bond variable, the bond variable appears in only one plaquette in the action. After
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the integration, in principle, the integral still depends on the other bond variables of
the plaquette. However, using the left or right invariance of the Haar measure, the
integral is independent of the other variables. In this way, we extract a factor z,.
In the total procedure, we integrate over the A, horizontal bonds (see Eq. (9)), so

that we extract a factor z{,\’.

Lower bound: Using Lemma 1 gives the factorization and z,.

The case of periodic b.c.:
Upper bound: Considering the positivity of each term in the model action of Eq. (39),
since AY > A, we have

Z/Iiu < / et dgh = / e tdg =27, <7

Lower bound: Use the global quadratic upper bound of Lemma 2 on all A, UA,
bond variables. Thus, we have

P Ar+Ae
ZyaZ7, ,

where U =exp(iX), X = Y, xa04- O

6.3. Proof of Theorem 2

In Theorem 2, the first line for z, [see Eq. (77)] is the application of the Weyl
integration formula of Eq. (75) (see [30-32, 47]). Use the inequality (see [13])
(1-cosx) > 2x?/n?, x € [-m, ], in the action, and the inequality (1—cosx) < x?/2
in each factor of p(1). After making the change of variables y =2[a¢~%/%/(7g)]A
and using the monotonicity of the integral, the result follows.

To obtain Eq. (78) for z,, apply the Weyl integration formula and use the inequality
2[1 —cos(d; — )] = (4/7*)(A; — A)?, |A¢] < n/2 in each factor of the density
p(2). Then, use the positivity of the integrand and restrict the domain of integration
to (—x/2,7/2]". In making the change of variables y = [a'?"%/%/g]C+/2(d — 1),
the integral 12([a(d‘4)/2/g]Cm)7r/2) appears (see Eq. (76)). Since Ip(u) is
monotone increasing, the integral assumes its smallest value for a = 1 and g°> = g(z).

|

6.4. Proof of Theorem 3

For periodic b.c. and the lower bound, using Theorem 1, we have the finite
volume lattice normalized free energy

» 1 » 1 ad—4 N2A, /2
M= InZ, "= —1In|— +—InZ?
A,a Ar A,a Ar [ g2 Ar A,a
d-41N?Ar/2
>iln a +i1 Arthe
- Ar g2 Ar 4
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Continuing the inequality and using Theorem 2, we have

2 _nN2
. 1 ad—4 N=Ar/2 A, + A, ad—* N=/2 .
AA; >—1In — + In 2 et
’ Ay 8 Ay 8
2 _n2
ad—4 N</2 Ao+ A, ad—4 N</2
>1In — A In ) +cy
8 r 8
which gives, when A — az?,
faP’n > Cy.

A similar calculation for the upper bound, setting to zero the number of extra
bonds in the lattice with periodic b.c., A, =0, proves the theorem for the upper
bound. Of course, for free b.c., set A, =0 in the above calculations. m]

6.5. Proof of Theorem 4

To prove Theorem 4, first use the generalized Holder’s inequality to bound
Gr.aa(J7)) by a product of single plaquette generating functions, i.e.

1Graad N < [ ] 1G1AQCINIY"
1<j<r
Now, since we are adopting periodic b.c., we can apply the multireflection method
(see [4]) to bound each factor in the product. To this end, we make a shift in the
lattice by (1/2a) in each coordinate direction. Also, we use the x/2 lattice rotational
symmetry and translational symmetry to put the single plaquette in the uv = 01
coordinate plane in the first quadrant, with lower left vertex at (a/2,a/2,...,a/2).
Then, we apply the multireflection method to obtain the bound

d
1G1pa(rI))] < 1Gaa(rdj) [P0,

-1
where Gp 4(J) = [Z/’:’a] Zy (), with Z{ (J) denoting Z =~ with a source of

uniform source strength J. The source factor is given by exp[J/ Z;, Tr ¥, (Up)], where
the sum is over an array of plaquettes. The array consists of planes of plaquettes
that are parallel to the Ol coordinate plane. In each plane, they are only alternating,
i.e. like considering only squares of a same color on a chessboard. We obtain
a greater upper bound by noting that

I T, (Up)| < N[ H2 /g ImTe(U,, — D] < J|[a"2/g]| Te(U, 1)
<W[a“=D2[gIN'2U, = Ulm-s,
where we have used the Cauchy-Schwarz inequality in the Hilbert—Schmidt inner
product.

We also increase the bound by summing over all plaquettes in the lattice A that
are parallel to the 01 coordinate plane. We denote this sum by Z;,’. In this way,
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we obtain the upper bound
|Zlf,a(‘])| < / exp[|J|a(d—4)/2g—1N1/2Z ||Up ~||ps - ad—4AP/g2] ng.
p

As in the proof of the upper stability bound, for the periodic model, given
above, we discard plaquette actions in AP, for plaquettes that are not in A so that

28,0 < [ exp[191a g N Y U, ~ Urs - a4/ d.
p

We bound the integral as we did for the upper stability bound for the free b.c.
case. In this manner, we obtain the factorized bound

2% (D) < [zu (D],

and the factorized bound of Theorem 4 for G,,(J")) is proved. Here, we have
used the factorized lower bound of Theorems 1 and 2 for Zf’a.

Now, recalling that Ay = LY, A, ~ (d”1)L? and A, = dL¢"', the factorized bound
for G,o(J")) follows.

Application of the Weyl integration formula of Eq. (75) [30-32, 47] gives the
A integral for z,(J). Using the bounds |sinA;| < |4;], for all j, and

|exp(id;) — exp(i/lk)|2 =2[1"cos(d; — )] < (A - /lk)z,
for each factor of p(A) gives the inequality

zu(J)
S(I/Nc)/(_ ]Nexp[|J|(a(d_4)/2/g) DTl -4at (g2 D] Aﬁ]pu)dm

1<j<N 1<j<N

Making the change of variables y; = [2a?=/2/(gm)] A, a factor of [a'4=%/%/g] -N?
is extracted and the remaining integral is bounded by, with y> =3 j y?,

J 1/2 - 2.]A dVy.
/RNeXp[ﬂl | Z lyil/ Z yilp(y»)d™y
I<j<N I<j<N

Writing exp(—y?) = exp(—y?/2) exp(—y?/2) and using the Cauchy-Schwarz in-
equality, the integral is bounded by

[/ exp(rldl Y lyl- Y yﬁ)dNy]l/z[/ exp(- y?)ﬁz(y)d’vy]l/z.
RN 1<j<N 1<j<N RN

1<j<N

Using the inequality e*Vk| < e$¥% +¢75%, 5 > 0, the Gaussian integral of the bound of
the integral of the first factor is carried out explicitly. For the integral of the second
factor, after making the change of variables wy = (yx/V2) and, up to a numerical
factor, the resulting integral is the normalization constant N for the GSE ensemble
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(see [42, 43]). Keeping track of the numerical factors gives the final inequality for
z4(J) and the proof of Theorem 4 is complete. m]

7. Concluding remarks

We consider the Yang—Mills quantum field theory in an imaginary-time functional
integral formulation on a hypercubic lattice A C azZ¢, d =2,3,4, a € (0,1], with the
Wilson partition function defined with gauge coupling 0 < g2 < gé, for go positive
and finite. This means our results are not restricted to small couplings gq. The lattice
A has L (even) sites on a side, Ay = L sites, and we use both free and periodic
boundary conditions. Letting 0 label the temporal direction, x = (xo, .. ,xd‘l) denotes
a lattice site and e#, u=0,...,(d—1), is a unit vector in the positive u direction.
We are concerned with finiteness properties of physically relevant quantities and
our main goal is to derive stability bounds to control the thermodynamic limit
(A /' aZ%) and the continuum limit (@ \, 0) of the free energy and correlations.

In the Wilson formulation, there is a matrix, gauge variable U, for each
positively oriented lattice bond b. A positively oriented bond b,(x) is a segment
[x,x}, = x+ae!] connecting the A site x to x, in the u-th positive axis direction, and
we take U, to be an element of the compact Lie gauge groups G = U(N), SU(N).
With this, we write the unitary gauge variable U, = ¢'*v, with a self-adjoint element
X, of the G Lie algebra. We also use what we call the physical parametrization
Up = €8, and if b =b,(x) = [x,x}; = x +ae’], we set A, = A,(x). The physical
gauge potentials (gluon fields) A, (x) then lie in the Lie algebra of G.

The partition function for type B (free = no superscript or periodic = P) b.c.
is given by

z8, = / expl(-a®~ /g2 AP1dg",

and its value is independent of the parametrization used for the bond variable
Up. A lattice plaquette (minimal square) p = p,,(x), with positively oriented
bonds by = [x,x}], by = [x,x} +ae”], b3 = [xV,x) +ae”] and by = [x,x)],
in the uv coordinate plane (u < v), is associated with the plaquette variable
U, = Ub1szUZ3UZ4 = ¢Xr, since U, is unitary. The total Wilson action A® is

a sum over all distinct lattice A single plaquette actions A, given by
Ay, = U, = 1|5,_g=2ReTr(1 - U,) =2Tr(1"cos X,).

Here, || -||g-s is the Hilbert-Schmidt norm. Note that A, is pointwise nonnegative
and so is AB =3 » Ap. Last, a copy of the gauge group, denoted by G, is attached
to each lattice point x € A and the gauge group measure dg? is a product measure
over bonds of a gauge group G Haar measure. Whenever periodic b.c. is employed,
as usual, we add extra bonds to A connecting the A endpoints of the boundary
OA of A to the initial points of the boundary JA in each spacetime direction
u=0,1,...,(d-1). The periodic plaquettes are those that can be formed from the
totality of periodic bonds.
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Formally, using the physical parametrization, for small a € (0,1], A, =
a*g® Tr[F, ;fv(x)]z, where, with finite difference derivatives given in Eq. (44),
we have Fj, (x) = 05A,(x)"0)A,(x) +ig[Au(x), A, (x)], and the commutator is
taken over the Lie algebra of G = U(N). Thus, for u < v, (a%™*/g%) 2pAp =
Soen a? Zd’_vlzo Tr[F;’,,,(x)]2 is the Riemann sum approximation to the smooth

M
field continuum Yang-Mills action 3., /[—La,La]d Tr[F, (x)]? d9x, where F,, (x)
is defined as above, but with usual partial derivatives.

The Wilson action is invariant under local gauge transformations from the group
[1ier G [see Eq. (45)]. By this invariance, initially, there is an excess of degrees of
freedom. Then, by a gauge fixing procedure, certain gauge variables are gauged away,
i.e. they are fixed to the identity matrix, and have trivial gauge integration. In this
procedure, there are only A, retained bond variables and the value of the partition
function is not changed if the gauged away bonds do not form a loop on A [4].
We sometimes adopt the enhanced temporal gauge, in which case all temporal
bonds in A are gauged away (i.e. set to the identity with a trivial corresponding
gauge Haar integral) as well as some specified spatial bonds on the boundary of A.
Here, A, is approximately the number of nontemporal (or spatial) bonds, namely,
A~ (d-1)L%,

Since there are oy (the group Lie algebra dimension) components of the gauge
potential, the A lattice total number of degrees of freedom in the Yang—Mills model
is OnA,. Instead of working with the unscaled, physical fields A, (x) = AZ(x), if

we work with scaled fields Aj (x) = a'4=2/2A4(x), we find that the Wilson action

becomes more regular in a € (0,1] and 0 < g° < g(z) < oo. If we define a scaled
field partition function Z3(a) by

Zy(a) = (a2 1g) "N 2 (a),

where, suppressing the boundary condition index B, Zx(a) is the original, unscaled
partition function defined in Section 2, we find that Z3 (a) obeys the thermodynamic
and ultraviolet stability bounds (TUV)

eCthr < Zy(a) < eCulhr

with finite constants c, and c,, independent of a and g2. By the Bolzano—Weierstrass
theorem, this bound leads to the existence of the thermodynamic followed by the
continuum limit of the scaled free energy f;(a) = [InZ3(a)]/As, at least in the
subsequential sense. Note that the scaling we use is noncanonical and that it does not
affect the underlying quantum mechanical energy-momentum spectrum and particle
content of the model, since it does not alter the decay rate of correlations.

What about correlations? For the plaquette p = p,,, as given above, we define
a gauge-invariant unscaled plaquette field, with U, = e Xp,

1 i 1
Tr 7% =— ImTr(U,-1)=———Tr(U, - U") = — Trsin X,,.
pv(x) a2g ( P ) 2a2g ( p p) azg 1 p
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The gauge invariance of the plaquette field results from Eq. (45) and, more directly,
from the gauge invariance of TrU,,.

With the physical parametrization U, = ¢'¢%44, for small a, we have Trf i, (x) =
TrFjj,(x). We also define a scaled plaquette field

(d-4)/2

Tr 73, (x) = ad Tr 7l (x) = &

4

ImTr(U, - 1).

Our results on stability bounds on the partition function and boundedness of
the generating function and correlations are for the Wilson Yang—Mills model with
a priori scaled fields. Sometimes we apply gauge fixing, imposing what we call the
enhanced temporal gauge, but there are no additional infrared regulator terms added
to the action like in [18, 22]. An infrared cutoff is not needed in the Wilson model
with free and periodic b.c..

We have applied our scaled field method to many Bose and Fermi models. Scaling
improves regularity of the physical action. The corresponding partition function and
model correlations are bounded. Correlations are bounded even at coincident points.
In models which are perturbations of the free field, the usual subtraction terms have
finite coefficients.

In particular, for the real scalar field, these properties are proved in Appendix A,
for the free field, and in Appendix B, for a perturbatively non-Gaussian scalar field
model. Denote by ¢*(x) and ¢*(x) the unscaled, physical and the scaled scalar field.
They satisfy the relation ¢*(x) = s(a)¢*(x), where s(a) = a(?=2/? (2dK2 + mftaz)l/2
is a noncanonical x-independent scaling factor. With this, the scaled and unscaled
partition functions satisfy Z}(a) = [s(a)]ASZ/’((a). The scaled partition function
Z3(a) obeys TUV stability bounds with the exponent Ay (number of sites) and not
the R? volume (La)“. The scaled free energy fala) = [InZ3(a)]/As is bounded
uniformly in L and a € (0, 1]. f{(a) then converges to a thermodynamic limit f*(a)
and then to a continuum limit f*, for dimensions d = 3,4.

Moreover, the unscaled, physical two-point normalized correlation is related to
the scaled one by (¢°(x)¢*(y))* = s2(a){¢"(x)¢"(y))* and the scaled correlation
is bounded uniformly in A and a, even at coincident points. This property leads
to the existence of its thermodynamic and, subsequently, continuum limits. The
unscaled, physical two-point correlation at coincident points presents the singular
behaviour a(¢~?/2, which can be taken as a lattice characterization of UV asymptotic
freedom. The singular behaviour of derivative fields is different and we have, with
finite difference derivatives and (95 ¢"(x)d5¢"(y))" = [1/(s*(a)a?)]. For x =y, we
obtain the behaviour a %, d = 1,2,3,4. Again, this behaviour can be taken as
a characterization of UV asymptotic freedom. The same type of analysis can be
used to treat the complete ¢‘3‘—m0del and we also notice that singularities present
in the construction of qﬁé‘ in [37], and the stochastic PDE construction of [21] are
greatly reduced using our scaled field method.

The scaled field method also applies to treat interacting Fermi fields, and may
be a useful tool to extend our results for Yang—Mills models to QCD. For fermionic
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models TUV bounds, etc., also hold for scaled free field fermionic models [25, 26].
The key fact is that the fermionic Gaussian integral, written here symbolically as
( meaning a  or a y field, where we are suppressing lattice and internal indices
(such as spin, flavor/isospin, ...)

/ M@)e? dy dy = -1,0, 1,

where M(y) is a coefficient one monomial in the Fermi (Grassmann) fields ¢
and . The integrand and the measures factorizes over lattice sites and internal
indices. Thus, for example, considering a model with partition function

ZA=/e’1<*”>eV(*”>e‘Wd&dw

= / H_[(l + Z CZ(b)Mn(b) (‘Z’b))] H_[(l + Z C;(S)Mm(s)(‘ﬁs))]e_&wd‘/_/ dw,

beA n(b) sEA m(s)
(85)

where b denotes a lattice bond and s a lattice site. To arrive at the last equality,
we expand each free field nearest neighbor hopping factor ¢”(¥) and each factor

in "W, of the local interacting potential V(¢). Due to Pauli repulsion, the
expansions are finite, in the finite lattice. For the terms in the bond b expansion,

we make a correspondence with the integers n(b) = 1,2,... For the terms in the
site s expansion, a correspondence with the integers m(s) = 1,2,... is also made.
The scaled field Fermi bond coupling is (see [56])

1

°e 1+ (mya/ky) ' (50)
and each c, ) has at least one factor of «.

In the two above square brackets, the c¢’s are coefficients (with a possible
dependence on a, k) and the M’s are coefficient one monomials in the Fermi fields.
Expand the products and use the basic fact to perform the fermionic integrals. In
this way, we obtain a numerical partition function. Bounding each of the c¢’s by its
absolute value, we obtain the upper stability bound on the fermionic Z,,

s [0+ 5 )] [0+ 5 o)

beA
<exp [ApIn(1+Cp)] exp[AsIn(1+Cy)], (87)

with Cp = maxpep 2y (p) |cZ(b)| and Cs = maXsep X (s) |cfs)|.

For the bound to be independent of the lattice spacing a € (0, 1], renormalization
of the coeflicients may be required. For large enough (m,a/k,) (hence, a small
scaled hopping parameter k), as in Eq. (86), after dividing by the integral of
eV W) which factorizes over sites, the free energy and correlations admit convergent
polymer expansion and the thermodynamic limit.



ON YANG-MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 359

Returning to the Yang—Mills model, we take periodic conditions and apply the
multireflection method. We analyzed the generating function of » € N of the above
scaled plaquette field correlations. It is given by (here, Z/f denotes the measure
normalization and the J’s are source strengths)

¢ 1 r ad—*
<exp{z Jj Tr ﬁf (x])}> - ? / eXp{Z Jf Tr(f;;,‘ (xf) T Z Ap(Up)} du(U)
J=1 A j=1 8

pPeA
=G, A(J¥) =G (A, a,J7).

Here, p; is a shorthand for p,;,;(x;). We proved that G, A(J7)¥) is uniformly
bounded in the x’s and J’s and possesses a finite thermodynamic and continuum
limits, at least in the subsequential sense. Moreover, the generating function extends
to an entire function of the J’s and Cauchy bounds are applied to derive bounds on
r € N scaled plaquette field correlations. (For the gauge group SU(N), the analyticity
domain is finite.) In particular, our analysis shows that the two unscaled plaquette
field correlation presents a singular behaviour which is bounded by a~¢, which is
less than or equal to the singular behaviour of the UV asymptotic freedom behaviour.
In particular, in d = 4, the unscaled coincident point two-plaquette correlation is
equal to a~?M(g), with M(g) uniformly bounded for g* € (0, g2 < o].

In deriving the above results, we have obtained a new global upper bound on
the Wilson plaquette action, which is quadratic in the gluon fields. This is not what
happens in the classical Lagrangian version of the model, which was used in the
analysis of Yang—Mills models in [18, 22], and is also a surprise here, since the
small a naive approximation has positive quartic terms. This quadratic bound on the
Wilson plaquette action is used to obtain a lower bound on the partition function.

Furthermore, the bound on the partition function factorizes and each factor is the
partition function of a single plaquette action with a single bond partition function.
The factorization occurs by setting to zero the actions of the spatial plaquettes. Such
a local factorization does not occur in typical bosonic and fermionic models. The
factorization suggests an avenue for a cluster or polymer expansion. In this case, the
unperturbed partition function has only temporal plaquettes (plaquettes with at least
one bond in the temporal direction) and the perturbation only has spatial plaquettes.

Concerning the integral over the gauge group Haar measure of the single bond
partition function, the integrand is a class function. In this case, with the help of
the Weyl’s integration formula, the N2-dimensional group integral can be reduced
to an N-dimensional integral over the angular eigenvalues. During this process, the
random matrix probability distributions of the circular unitary ensemble (CUE) and
the Gaussian unitary ensemble (GUE) appear.

An open and important question is whether or not the class of Yang—Mills
models we analyzed here has a mass gap in the spectrum.

Lastly, we hope that our methods and techniques, combined with other methods,
will be useful to accomplish a complete construction of the d =4 Yang-Mills and
QCD models, including the verification of the Osterwalder—Schrader axioms.
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APPENDIX A: Unscaled (physical) and scaled real scalar free field model

Here, we consider the case of a one-component (N = 1) real free scalar field
and obtain the relation between the physical, unscaled partition function and the
scaled partition function. Correlations are also analyzed. Considering the scaled
partition function and correlations, the thermodynamic and continuum limits are
obtained. These quantities also admit a convergent expansion in the scaled hopping
parameter «>. The convergence is absolute, up to and including the critical point
k*> = k> = (1/2d). The use of scaled fields removes the UV divergences from the
scaled free energy and correlations, even at coincident points. The use of free b.c.
is proved to provide infrared (IR) regularization and no global local mass term
is needed. The relation between the original physical, unscaled fields and scaled
field correlations at coincident points provides a characterization of UV asymptotic
freedom.

Our analysis here is given in more detail in Appendix A of [49], where we
considered N component fields and to which we refer the reader. Concerning the
lattice A, we use the same as in the text and recall that Ay = L9, L even, is the
total number of sites.

A.1. Partition function

We consider the hypercubic lattice A C aZ¢ c R4, a € (0,1], with L € N, L even
sites on a side and periodic boundary conditions. The total number of sites in A is
denoted by Ay = L¢. For the real scalar field model, the physical or unnormalized
finite lattice partition function is (the lowercase/uppercase index u denotes unscaled)

ZK:/e‘Au(¢u)D¢”, (Al)
where D¢ = [],cp d¢"(x)/V2r, with a Lebesgue measure d¢*(x) for the unscaled
field at each lattice site. Also, up to boundary terms, for u=0,...,(d—1) denoting

a lattice spacetime direction and for any site x € A, the model action is given by

(as before x}, = x +ae, et being the unit vector of the y spacetime direction)

1 1
A(9) = 5K B, (0 = () + smia 8, (6" ()]
= —Kua 7 T (9" ()9 () + % (mia? +2diGa?™?) T[g" (0%, (A2)

where «,,m, > 0. The mass associated with this action and corresponding to the
partition function is defined as the infinite time limit of the exponential decay rate
of the two-point correlation. Equivalently, it is the first isolated point in the E-M
spectrum of the associated lattice QFT, lying above the vacuum and at zero spatial
momentum. We determine this mass in Subsection A.2.

The scaled fields ¢(x) are related to the unscaled fields ¢*(x) by an a-dependent
noncanonical scaling transformation which corresponds to an a priori renormalization
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procedure. It reads (in [49], a similar equation has a misprint in the exponent of a!)
o(x) = s(a)g"(x); s(a) = (2d/<ﬁad_2 +miad)1/2 > (2dki)1/2a(d_2)/2, (A3)

which leads to the scaled field partition function

Zy = / e MDDy A() = AY(¢" =5719), (A4)
where D¢ is defined similarly to D¢".
F
o K =Qd+r) 7, r= miaz//(i, (AS)

the scaled field action of Eq. (A4) is given by

A=K 5, 995 + 3 601

2 2

=3 Zea(#() - 6() + - Sl (01 (A6)
Thus, by a change of variables, the unscaled and scaled finite lattice partition
functions are related by Zy = s e, (A7)
and the corresponding finite lattice free energies satisfy
fa(a) =Ins + f{(a), (A3)
where, as made precise above and omitting the a-dependence,
fa = AisanA and fr= %an”.

Eq. (A8) above, tells us that the singularities of f{(a), when A aZ? and,
subsequently, in the a Y\, limit are killed by the Ins term. Thus, we have isolated
the divergences of f}(a).

Indeed, as it is proved in [49], we have the stability bounds for the scaled
partition function of Eq. (A7)

€N < Zp 4 < e, (A9)

so as, by the Bolzano—Weierstrass theorem [48], the scaled free energy fi(a), in the
thermodynamic limit A " aZ? followed by the continuum limit a \, 0 is bounded.
Letting f denote the result of these two limits, with these considerations, we have

ce £ f <cy. (A10)

We now derive and sum a power series representation, in the scaled hopping
parameter 2, for the free energy. The series is proved to converge absolutely up to
and including the critical value > = k% = (1/2d).

From Appendix A of [49], for d =1, 2,3, 4, we have the momentum representation

1 2 y
@ =35 ‘/(mr]dln[l 2% Zﬂlcosq“]d g. (A1)
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Recalling that the scaled hopping parameter x> depends on a [see Eq. (A5)], the
integral in Eq. (All) is proved to be uniformly bounded for a € (0,1] and also,
by the Lebesgue dominated convergence theorem, that the limit a N\, 0 exists and
is equal to the a =0 value of the rh.s. of Eq. (All).

REMark Al . For d = 1, the integral in Eq. (All) gives the closed form
expression
I [1+V1-—4«
fla)=—-—=In|——|.
2 2
At the critical point, k> = (1/2), f(a) remains bounded and takes the value In V2.

Expanding the logarithm in the integrand of Eq. (A11), and using the multinomial
theorem, we obtain

1 (2«2)" r! 1 "
fla) = B Z ; Z ﬁ l—[ d[ﬁ [_ﬂ’n] cos'J qa’q]. (A12)

rdq.
r>1 Flseees rd|2jrj:r d j:1 .....

We claim that the series is absolutely convergent, for «*> < x> = (1/2d). To see
this, bound the integral factors inside the product by one and then sum over the r;
to get d”. Next, summing over r gives [(—1/2)In(1 - 2«*d)]. This is bounded for
k*> < (1/2d) which proves our claim.

Using [57, Chapter 3], for the trigonometric integrals gives, for 0 < r; < r,
j=1,...,d,

1 (2«2)" r! (r; =N
fla)=3 ) r 2. . rg! Hd /rju - (Ab)

r>2,even Flseees rq4.even| Zj rj=r

with the convention 0O!! =1 and (-1)!! = 1.

Note that all the coefficients of the above series are positive. As «? is a monotone
increasing function of a monotonically decreasing a, by the monotone convergence in
the space ¢; of the counting measure, and by the Lebesgue dominated convergence
theorem, the series in Eq. (A13) converges absolutely for all 0 < «? < «2 = (1/2d).
Denoting by f the a \, 0 limit of f(a), we have the exact result

1 1 r! (rj = 1)!!
/=3 2 rdr 2. ril..rg! Hd T (A19

r>2,even Floeees rq.even| Zj rj=r j=1,...,

A.2. Correlations

We now consider correlations of the real free field scalar case. We obtain the
relation between unscaled and scaled correlations and prove their thermodynamic
and continuum limits exist. We also analyze derivative field correlations. Explicit
momentum space representations are also derived. The previous treatment of the
partition function is widely used here.

First, we obtain the relation between the physical, unscaled two-point correlation
and its scaled counterpart. Recalling Egs. (Al) and (A7), we have, with s = s(a),
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G W)= 5 [ 108 exp (-A"(8")) do
— < [ 50" s6" ) exp (-4 (") o
- 5 [ 9000 exp(-A(0)) do

(A15)

1
= S($()(),
s
where we changed from ¢“(x) to ¢(x) = s¢*(x) and also set, following Egs. (A2)
and (AO). A(9) = A"(8" = 57'9).

Similarly, recalling that x;, = x +ae® and with §,(x) = ¢(x}) — ¢(x), we have,

(950" (x)87¢" (y)" = @ )2<5p¢(x)6y¢(y)> (A16)

As proved in [49], the scaled two-point correlation (¢(x)¢(y)) at the thermody-
namic limit admits the momentum space representation given by

(1)) = et
X)pLy d/ !
(2m) J(-n,n1d (1 -2k2 3, cosq“) (A17)

1 iq(x-y)/a
= —/ dq.
22m)4k? J(Zn.x1d 2y (1 —cos gt) +r/2

Remark A2. For d =1, the above integral gives the closed form expression

<¢2(x)>:(1—4k4)’”2 - ("1)”( )L e

ri!
r>2,even

which is infinite at the critical point x> = 1/2.

Remark A3. From Eq. (Al7), for d = 3,4, we see that for x =y, the two-point
function is bounded from above and below, uniformly in a € (0, 1]. Indeed, a lower
bound is obtained by replacing x> by its maximum value (1/2d) and putting
r = m2/k2 (the maximum of r) in the denominator of the integrand, resulting in
a finite integral. For an upper bound, we set » =0 in the integrand and take a =1
in k72 [see Eq. (A9)].

From Eq. (A17), expanding the denominator of the first equality and using the
multinomial expansion on each term, for coincident points x = y, we obtain, with
OSI”j <r, jzl,...,d,

d
(P=t+ 33007 N |5 [ cosaaal.

rzl ri, evenlz T Jj=1

(A18)
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At this stage, we see that all coefficients of powers of x> are positive. The series
is bounded for 0 < k*> < (1/2d) as the integrals are bounded by (27). Using these
bounds and resumming, we get

(]

([p)]?) < > (2%d)" =

r=0
Now, from (see e.g. [57, Chapter 3]),

n /2 2m— 1N
/ cos?™ x dx = 4/ cos” x dx = 2rn w,
- 0

1
1 —2«2d’

x 2m)!!
so that letting 2m = r;, and recalling the convention O!'! = 0 and (-1)!! =1, we
have
d
. r! (ri—1DN
(g =1+ > (2 > [[— @19
rl...rg! 1 rill
rz2,even rj, even| Z?:] rj=r J=1

The series is monotone increasing in «*. In Eq. (A19), if we bound the product by
one, we see that the series converges absolutely for all 0 < x> < «? = (1/2d). By
the upper bound given below, for d > 2, we can extend the x> convergence domain
up to and including «2.

RemMARrRk A4. By the upper bound below, the convergence of the series in Eq. (A19)
is uniform in the lattice spacing a € (0,1]. The continuum limit exists, up to and
including «2, for ([¢(x)]?) setting 2«* = 1/d in Eq. (A19) and considering d > 2.
Also, the zero mass limit and the continuum limit are interchangeable. Recalling
Eq. (A3) and the scaled/unscaled relation ([¢“(x)]*)* = s72([¢(x)]?), and taking
m2 =0 in s = s(a), we have the zero mass limit of ([¢(x)]?).

Remark AS. Comparing Eq. (A19) with Eq. (A13), for the thermodynamic limit

of free energy, we have that

d

@ = () - 12 (A20)
Hence it is enough to determine only one expansion, for f or for (¢2(x)). We remark
that this equation gives a relation between the derivative of a global quantity in terms
of a local average. This is a more general result. Consider a finite lattice A model
partition function defined with a quadratic form Z, = f exp —%(q),Aqﬁ)} D¢, with
a symmetric matrix A >0, (¢, Ag) = Zx,yEA #(x)Axy¢(y) and a product Lebesgue

measure D¢, such that we have Z) = exp{—%Trln A}. Hence, the associated finite
free energy is

InZ 1
fa = ASA =5 Trin A.

On the other hand, for A = 1 - AM and assuming translation invariance, even at
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finite volume, expanding the log for small enough |1],

=5 Z{ (AM)L,, (A21)
and -
(@2 (0N = [1=AM] 3% = ) (AM)g,. (A22)
From the last two equations, we obtain "
I [wren-1].

This is an equality of the same type as in Eq. (A20). Likely, this result can be
extended to the case when translation invariance is present only in the thermodynamic
limit of a lattice model.

We now prove existence of ([¢(x)]?) at k*> = k2 = (2d)~!. From the second
equality in Eq. (A17), using the basic lower bound (1-cosu) > 2u®/n?, u € (-n,n],
the upper bound «~2 < 2d + (m,/k,)* and spherical coordinates, we get, for d > 2,

20 (\/2 )d—2
sama P4 imidr] =75

where Qg is the d-dimensional solid angle and [p(q)]*> = Zu(q”)z. The last
numerical factor arises from the radial integral by expanding the integration domain
to 0 < p < Vdn. Notice that the bound of Eq. (A23) holds for all a € (0,1] and
0 <k <«

Coming back to the spectral representation of Eq. (Al7), the integrand
is dominated, for a € (0,1] and d = 3,4, by the integrable function
{1/[24=0,1,....ca-1) (1 —cosg*)]}. Recalling that k™% = [2d + (mya/k,)?*], we have

(p(x)9(y)) < (A23)

(WO, x=y,
lim (6(x) () = oo
a0 0, X+,

by the dominated convergence theorem, for x = y, and the Riemann-Lebesgue lemma
for x # y. Here,

d 1
2(0 :—/ d?q =2dA71(0,0),
OOND = 5030 f et S cay (T —cos gy & 4= 24407(0.0)

denote the zero mass (r = 0) coincident point value of (¢(y))o, in the thermodynamic
limit, and Al‘l(x, y) is the kernel of the inverse of minus the unit lattice Laplacian

operator, and A; acts on f € £,(Z4) by
[ALf1(x) =2df (x) - Z[f(X’” =x+ef)+ f(xH =x—eM)], (A24)
)7
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where, here, the lattice site x € Z¢. The integrand is integrable. Thus,

2d + (mya/k,)? 2d + (my [ ky)?

(p(x)e(y)) < 7 (6°(0))o < ¥

and is bounded uniformly for a € (0, 1].

We now obtain a series expansion for scaled scalar field lattice two-point correlation
(#(0)p(x))a, in the thermodynamic limit. Expanding Eq. (A17) as before, we obtain,
writing x = nya. ny = (Rx1,...,0x.q) € Z4 and with a Kronecker delta,

(#(0)¢(x)) = 6(x)
. r! 1 g .
+ Z(Zkz) Z mjzﬂ dlﬁ /_7r cos(n;q;)cos’’ q; dq]}. (A26)

r>1 Floeees rd|Z/~rj=r .....

A~1(0,0), (A25)

Here, the j-th integral with n; =m, r; =5, is

1 T
— / cos(mgq) cos® g dg
2 J_,

1 P d eimq +e—imq s! iq(2k—s)
) ¢ima 4 g=ima _ st dq.
2‘Y+]7T[7r{[ 2 ]k—oz s[k‘(s_k)'e !

......

Substituting this result in Eq. (A26) gives

WOy =ow+ YA Y ]

r>1 Fiseens rd| Z] ri=r o j=1,..., kj=0 ..... rj
7! [6(2k~—r~+n~)+6(2k~—r‘—n-)]
k\(rj = k))! TR A
_ 2r r
—5(X)+ZK Z (rlrz...rd)
r>1 Flseees rd|2rj:r
1
X H { Z N,j,ka[é(zkj—rj+n,)+5(2k,—rj—n,)]}. (A27)
j=l ..... d kj=0 ..... r,

The second equality above is obtained as follows. In d = 1, the number of paths of
length n that start at the origin and end at the site k is

N = ny n!
] T K-k

For nj =0, for any j=1,..., d, such as the path terminates at the origin, r; = 2k;

is even and \
r

N,. g
' (/21

jobej = Nrjorj2 =
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The series in Eq. (A27) converges absolutely for 0 < «? < k> = (1/2d). For

2 =
the point x = nja, n; # 0, the smallest exponent of r is |ny|; for the point

x = (na,0,...,0), n; =1, the leading contribution is of order K2

For the derivative field correlation (6,¢(x)d,¢(y)) a spectral representation can

be obtained from (¢(x)¢(y)) by including an additional factor [(e?" —1)(e 4" —1)]
in the integrand, and we show that, with no sum on p,

(S,0(0)5,4(0))o = (%)( —0)=2,

We have an exact value of the coincident point derivative physical field correlation
2

(056" (0)35¢"(0)); = pTp— = 2ae)

and the physical derivative field correlation satisfies the bound

L (5,0(0)656(0)) < 2(as)™> < —=

€05 8" (0)d5¢" (0))5] < (@)? W’

which shows that the singular behaviour is a=¢.

With similar arguments for the unscaled two-point correlation, we have the
thermodynamic limit

1 eir(x=y)
G WO =55 [ . ap.
2(2”) (-n/a,n]ald Ky
— 2 (1 —cosaph) + m2/2
a

Thus, from Eq. (A17), even at coincident points, and for d = 3,4, the scaled
two-point correlation is bounded uniformly in a € (0, 1]). Using the scaling relation
between the unscaled, physical field and the scaled field correlations, the physical two-
point correlation behaves as a’~?¢ at coincident points and the derivative field
two-point correlation singular behaviour is a~?. As mentioned above, these behaviours
characterize the free field and can be taken as a measure of UV asymptotic freedom
on the lattice.

The mass m associated with the aZ< lattice QFT is given by the zero of the Fourier
transform of the convolution inverse of the two-point correlation (¢"(x)¢“(y))4 at
zero spatial momentum, namely ['(p° = im,p = 0). It corresponds to the solution
of the equation

2 fu [1 - cosh(ma)] +m? =0,

u

or, using the equality (coshu — 1) =2sinh®(u/2), u € R,

. o ma mia2
sinh® — =

2 4K
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With this, we see the solution is, with r = (my,a/«k,)?,

2 . (mua) 2 [Vr V4+r
m=—sinh™ [—|=—1In[—+
a 2Ky, 2 2

3
m m
Ku Ky
The mass m is real analytic in a, m, and «, # 0.

A.3. Scaled two-point correlation: random walk expansions, number of paths and
spectral representations

We would be remiss if we did not establish the connection with random walk
expansions for the scaled two-point correlation (@(x)¢(y)). We give a description
of some of our findings. For a simple random walk in dimension one, it is well
known that the number of paths starting and ending at the origin, and of length n,
even, is [60]

g A28)
= T (

As shown below in Eq. (A34), in dimension d > 1, the number of paths is given
by

N = Z (m rzij. .rd) j:l_l dE’J" (A29)

Floeees rql 2 ri=r, |r even

Furthermore, in the thermodynamic limit, the free energy

1 2r
f=5 > N <()2d).d=12...., (A30)
2 r
r>2, even
and the local correlation
@en=1+ > N&¥, K=< (1/2d), d=3,4,... (A31)
r>2, even
Furthermore, i .
2 _ 2
o5 =5 [(¢°(x)) - 1] (A32)

Thus, it turns out that the only input needed for these numerical formulae is the
d =1 combinatorial factor Z,. Whether or not this property is a consequence of
a more fundamental behaviour is to be investigated.

The number [N,/(2d)"] = p, is the fraction of the total number of paths of
length r, with initial and endpoint at the origin. Denoting by (#?(x)). the value of
(¢*(x)) at the critical point «* = x2 = (1/2d), we have

@@Ne=1+ > pr

r even>2
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For simplicity of notation, we do drop the s (scaled) upper indices in this section.
We write the free b.c. scaled field action of Eq. (A6) as, with inner product in
6(aZ),

(¢, [1-«°S]9),

N —

with
GOSN = (1=} =60+ 3 | D SeSum Sy
r=1

Here, the elements of the symmetric matrix S are given by

1, ly; =il =1,
Syme = (A33)

0, otherwise.

The above Neumann series converges absolutely for [«?| < (1/2d), as |S| = 2d.
Comparing this series with the series obtained from spectral representation, we
can equate the x> coefficients. For example, for coincident points x =y, and for r

and r; (j=1,...,d) being even integers, we have
d
r r! (”j— 1)”
Sy Sxixo o Sx x=2
AL r-1 rlral. . rg! rill
X[2XD5eees Xp_ | FloeeeTg€40,1,..0r} j=1 J

d d
) Z (rlrz.r..rd)ggrj’ er:r, (A34)

Flseees rqg€{0,1,..., r}
where we have used the multinomial coefficient and used the number of paths
starting and ending at zero, according to Eq. (A28).

ReEmArRk A6. The second equality above follows on writing r = 3,
the exponent of 2", and using double factorial identities, namely, for even n,
2"(n— 1! 2(n—1)! 3 n!
n!! T (n/2-D!(n/2)!  [(n/2)1]?
In [60], the number =, is deduced by a combinatorial argument. The same result
is obtained here by an analytic argument in Remark A2.

Remark A7 . Since, using Eq. (A33), the product in the left-hand side of
Eq. (A34) is 0 or 1, the right-hand side of this equation is the counting of paths
of length r (even) that start and end at site x = 0.

Remark A8. From Eq. (A21), we see that the free energy satisfies Eq. (A30),
for d =1,2,3,4 and «* < (1/2d). Likewise, Eq. (A22) tells us that (¢>(x)) obeys
Eq. (A31). Hence, we have the relation of Eq. (A32). Note the only input for all

—

this results is the combinatorial factor E,, for d = 1.
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On the other hand, for d =1, we also have

1+\/1—4/<4
f:_il -2

K> < % so that 0 < f < InV2. In Appendix C, we show the inequality f < InV2
holds for any dimension d, provided that x*> < (1/2d). We also have the correlation
inequality 1
($*(x)) = —— > I; d=1, ¥ <1/2.

1 — 4x*
Whether or not there is a deeper reason for this bound to be true needs further
investigation.

Eq. (A34) is an explicit formula for the number of paths of length » that begin
at x and terminate at the same point x. Note that if there are no restrictions on
endpoints of the paths, then the r.h.s. is [(2d)”] upon replacing the j product by 1,
and removing the r; even restriction, as it should be.

Next, we consider free b.c. and follow closely the treatment given in [49], for
periodic b.c. We derive the spectral representation for the partition function and free
energy. Similar considerations apply for the two-point correlation. For the free b.c.

action, we write
A= ) dM(x (),
X, yEA

where M(x,y) = %6” - %Zy H,(x,y), and where H,(x,y) is associated with an
LXx L tridiagonal symmetric matrix with unit elements on the nearest neighbor of the
diagonal, and zero otherwise. M is diagonalized by a product over u of eigenvectors
of H,. The orthogonal eigenvectors are sin p#x* with x* =a,2a,... La (recall we
chose the number L of sites on the hypercubic lattice side to be L even). The
orthogonal eigenvectors of H are
HoyHt
n sin 21
L+1
Hu

Here, we identify the L points along a line in the u=0,1,...,(d —1) coordinate
direction with a, 2a,...,La. The momenta p* lie in the set
Try

7’={p=(p°,...,pd“);p”—a(L e ﬂ=0,1,...,(d—1)},

with r, =—L,—L+2,...,-2,1,3,...,(L—1). There are L? elements in the set P.
We have chosen the p’s so that P lies in (-m/a,m/a]®. The pH spacing is
{2n/[a(L +1)]}, for r, positive and r, negative.

The eigenvalues of M are

A(p) = %[1 -2 Zcos(p"a)],

u
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and the spectral representation for the free b.c. partition function, in terms of the
spectral parameter g = pa, g € aP, now follows as in [49] for the periodic b.c.
case. Namely,

7y = exp{—% Z In (2A(p = q/a))}.
q

Here, the ¢* spacing is [2n/(L +1)] and |g*| < 7.
From this spectral representation and bounds on the Riemann sum approximation,
the thermodynamic limit of the finite lattice free energy

1 (L+1)? 2 \¢ )
fA:ﬁanAz—Z(Zﬂ')de Z(L+1) In{1 -2« Zcosq” ,
q H

is the same as the thermodynamic limit of the periodic b.c. free energy given in
Eq. (A1l).

We now show the relation between (¢(x)@(y)), the scaled free field two-point
correlation and the much analyzed resolvent of minus the unit lattice Laplacian A;
(see e.g. [58-62] and references therein).

Letting x = nya, y =nya and ny —ny, =n, we have

ing

1
(008, = /

(-mxpd 1 =223, cosgH

_ On the other hand, noting that we have, in Fourier space, the unit lattice Laplacian
Ai(q) =X, 2(1-cosq"), we have the resolvent

1 e'nd
Ay — -1 — dd ,
(Ar=2) (2m)d ‘/(_,r’,r]d 2u2(1—=cosgh) -z 1
for z ¢ [0,4d]. Thus, we have the desired relation

((na)9ny@) = 5 (A1 =) (nyomy).

1 m?a?
z=—|—=-2d| =~ .

2 2
K K

where

APPENDIX B: Truncated model of real scalar fields

In this Appendix, we analyze the scalar scaled field truncated model. The
ingredients for proving the results in this Appendix are the same used in the
text or involve well known results, and will only be indicated. This lattice model,
non-Gaussian in perturbation theory, illustrates that a TUV stability bound where the
exponent is proportional to the number of lattice sites Ay = L and not the volume
(aL)? in RY, with a constant of proportionality which is independent of L € N
(even) and a € (0, 1] is sufficient to bound correlations uniformly in a € (0, 1].
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Starting from the scalar scaled field model of Appendix A, recalling that x> > 0
is the (squared) hopping parameter and xj, = x+ae”, the truncated model is obtained

by replacing the bond factor exp[:<2¢(x)¢(x;)], by the truncation [1 +a/¢>(x)¢(x;)].
Its finite lattice A c aZ9, a € (0, 1], partition function reads

Z’A=/]—[ [1+a¢(x)p(xp)] dui(4), (B1)
X,[

where the measure is a product of normalized Gaussian measures, with identity
covariances duj(¢) = Hx[exp (—¢2(x) /2) d¢(x)/ VZn] and the parameter a verifies

the condition « > 0.

We notice that the model satisfies Osterwalder—Schrader positivity and Griffiths I
inequality (see e.g. [4, 63]). Concerning the truncated model, our first result is
a stability bound.

ProposiTION 1. Letting Ay = L denote the number of sites in A, we have the
stability bound

e =17 < [ [][1+Valowl] [1+alow)l] dur(e)
X,

= / l_l [1 +\/E|¢(x)|]2d dur (@) < e“ubds, B2)

where c, =0 by Griffiths I inequality and c, = In [/ (1 +\/E|¢|)2d e 912 dq&/\/ﬂ .

Proof: For the upper bound, use
1+ ap(0)d(x;)] < 1+alg()Ig(xp)] < [1+Va [p(0)] [T+ Valp()I] .

For the lower bound, use Griffiths I inequality [4, 63]. O
Consider the finite lattice generating function with a single point source
zZvJ
(o100, = 2t , (B3)
Z,

where Z/‘\(J)=/ exp[Jo(y)] n [1 +af¢(x)¢(x;)] du;(¢), satisfying Z! (J=0)=Z}.

X,H

Concerning this quantity, we have the following upper bound.
ProposiTiON 2. The generating function (e’?)). satisfies the bound
(!N, < e—c[+J2+c”’2, (B4)
where

Cun = “‘[/ (1+Valgl)*'e™*" 2 dg/V2r|,

with a single point normalized Gaussian measure with unit covariance (see Eqg. (B1)).
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Proof: The proof uses the multireflection bound [4, 49] and Cauchy-Schwarz
inequality multiple times in the underlying quantum Hilbert space. Finally, the
Cauchy-Schwarz inequality is used to factorize the J dependence. An analogous
proof for the YM model is given in the text. With these methods, we obtain

(e P, < [Zif\ / exp{JZx: ¢(x)} l_[

X,

< e—%{/ exp[ZJZ ¢(x)] d/l[((b)}l/ms

x{/ [T1r+vale@1] [1+valeel] dm(¢)}

1/As
1+ a¢(x)¢(X;)] dﬂ1(¢)]

1/2As

< e‘cfejzecui.

. . . . 2
Above, in passing from the first to the second equality, we have written e~ %"/2 =

e=#*4¢=%*14 and considered each of the exponential terms in the rh.s. in each
factor of du;(¢). O

As usual [see Eq. (34)], correlations are defined by the zero source value of the
source derivatives of the generating function (e’/?()),. For the truncated model, we
have the coincident point correlation bound.

ProrosiTioN 3. We have the bound
(¢ (M)Al < ¢, = e ctruatlyl, (B5)

Proof: The coefficients of the Taylor series of Zx(J) in J are all positive by
Griffiths T inequality [4, 63]. The bound extends to complex source J and (e’/¢™)),
is an entire function of J. The upper bound results from using Cauchy estimates
on the source derivatives, namely,

2
< r!max[ecfeu| ecuﬂ] =c,. (B6)
[J]=1

[(¢" (Al =

dr
ERCRIEIN

J=0
m]
For d =1, we can obtain exact explicit results for the above correlations. They
emerge, by inspection, just by expanding the product of bond factors and controlling
the terms individually. In doing so, we note that if a lattice site is intersected by
only one bond, then the integral for that site vanishes.
d =1 and free b.c.

We have Z) = 1. We also have TUV stability for all o > 0 and we have
ce =c, =0. Also, we have

(p(0)$(y)) = a1 = exp{(|x - yl/a) Ina}.
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This behaviour gives a decay for 0 < @« < 1 and a blowup for @ > 1. The a =1
value is the critical point. We perform a finite renormalization for a € (0, 1] setting
a =e ™ for the mass m > 0. Thus,

(B(x)g(y)) = e,

For a power of the field, at a single point, we obtain a Gaussian behaviour,
namely (recalling we are dealing with a unit covariance),

(¢"(y)) = (r—DIL

However, if x # y, we have
(B0 =1, x#y,
so that the truncated four-point correlation satisfies
(2 (NP> ()" = (> () () = ($*(x)) (& (»)) = 2{ () $(1))
=-2p(x)(y))?
= D¢ 2mixyl, X # Y, (B7)

which implies that our truncated scalar field model is non-Gaussian and triviality
does not hold. This is in contrast with the recent result of [50] for the complete
scalar field model with a quartic interaction, in d = 4.

Scaling limit (denoted by scl)

The scaling limit is obtained by fixing the mass as my > 0 taking a \, 0,
ny,ny /" oo, where x =nya and y =nya so that x,y — x,,ys € R. Thus,

scl{p(x)p(y)) = e~ mslxs sl
SC1<¢2(X)¢2(y)>tr — _De-2mslxs—ysl
We now consider periodic b.c.

d =1 and periodic b.c

Using periodic b.c., with similar methods, the following list of results is derived
for d =1.

Partition function: Z} =1+ a*.
1 a <1,
Free energy: f = I In(1 + k) L7

Ina; a > 1.

In the thermodynamic limit, the two-point correlation presents a discontinuous «
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derivative at « = 1. Indeed, we have

alx—yl/a; a<l,

(p(x)p(y)) =

a~lx-yl/a, a > 1.
a=a.,=1 is a critical point.

We can perform a finite renormalization setting @ = e, for m >0 and a < 1,
and a = ™4, for @ > 1, and m 1is the scalar field mass. Thus,

(p(0)¢(y)) = e "1,

Also, we can take the scaling limit sc/ and obtain nontriviality of the model
like in the d =1 free b.c. case.

Finally, for the free or periodic b.c., we can obtain the critical exponents and,
also, we can take the limit my; — 0.

Now, taking d = 3,4, we carry out perturbation theory to order @ and obtain

e

SLI N

2d  4d?
which is to be compared with the free scaled field value a. = 1/(2d). Here, a. is
small but not very small (not o, <« 1).

For the configuration x; = x, = 0 and x3 = x4 = ae”, the truncated four-point
correlation {¢(x1)d(x2)d(x3)d(x4))" satisfies the non-Gaussian (nontrivial) behaviour

(B(x1)p(x2)P(x3)$(x4))" = =20 # 0.

With the negative sign and considering the ladder, leading order approximation
in a lattice Bethe—Salpeter equation (see [52-54], the negative sign of the above
truncated four-point correlation implies that potential between the interacting particles
is repulsive and does not favor the formation of bound states.

APPENDIX C: Factorized bounds for bose field model partition functions

In the text, bounds are obtained on the YM partition function which admit
a factorization into local quantities, i.e. single plaquette partition functions of a single
bond variable. This factorization seems to be peculiar to local gauge-invariant YM
models.

In this appendix, we show how to obtain factorized local bounds for Bose field
models. Each factor involves only the ‘transfer matrix’ of a single bond. For the
continuum limit a \, 0, it is important that the constants appearing in the bounds
are uniform in the lattice spacing a € (0,1], and include the critical values of
the model parameters. In particular, for the free field free energy, the bounds on
the partition function allow us to show, in dimension d, that f(a) < InV2, in the
thermodynamic limit, as long as «*> < (1/2d). Our bounds also allow the bond
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factor coupling parameters to be space dependent, where as other bounds (e.g. those
using the momentum representation) require the couplings to be space independent.

Variants of the method apply to numerous bosonic models, as for /l¢‘3‘ with
small 4 > 0, the truncated model of Appendix B, etc. For simplicity, we treat the
free scalar scaled field model partition function with free b.c. and the local bond
factors given by

Fy = e 0®860),

For this model with free b.c., we have the finite lattice partition function, given
in terms of the bond factors, which reads

Zn= / [ [Fendui(o), (C1)
MH,X

where duj(¢) is a product measure of normalized Gaussian measures with unit
covariance.

By the generalized Holder inequality, we have

1/d

ZASHﬂ/[ﬂF,‘iﬂdﬂl(¢)]l/d§ ]_[“_[ZKL] ’
x wooc

where Z/’i . 1s the partition function of a one-dimensional chain which we shall now
define.

For a fixed spacetime direction u=0,1,...,(d—-1), we index each sequence of
L4 points (lattice sites) in the x* = 1 hyperplane by c. ZKC of a chain with L
sites parallel to the p direction, starting at x* = 1 denotes the partition function
and ending at x* = L. The couplings in the chain ¢ are denoted by «2. For
the generic chain ¢, we denote the L sites by 1,2,...,L and the L — 1 bound
coupling parameters by K%y, K242, ...,K%L_l)ﬂ, suppressing the ¢ dependence. The

field variables are denoted by ¢, ¢, ..., ¢r. Having done this, we now write

ze=(r. [ 7W.wi),,

J=l...(L-1)

The product is the composition of integral operators T(K%j, 1) with the operator
kernel K(¢, ¢’,Kf,j) given by (8 € R)

1 1 1
K04 ) = = o (—Z(pz) exp (dBd’) exp (‘Z(W) :

and f(¢) = (27)"4e~%*/4. Thus,
zZe<ifP ] Ire, i,
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<[ [T iree.mi]}™
W oc j=1

d-1
=IAPE ] [, wlle,
b

and

where we have indexed the d(L —1)L¢~! bonds of the lattice A by b.
This is our factorized bound! If all the couplings are equal, say Ki = k? for any

bond b, the product over the bonds is ||T(/<2)||(L‘1)Ld_1 and
Zy < 2 exp [L4N(L = 1) In [T )] = e
Of course, here,
cu= 2+ (1= L) I TG,

which is our upper stability bound.
We obtain a convenient bound for ||7(«?)|| using a Holmgren bound ||T(x?)||x
for the norm (see e.g. [13] and Chapter 4 of [64]). We have

IT(A) < 1Kl =sup,, [/R K(¢,¢',x%) d¢'}

1
=sup, [\/ﬁexp(z(l - 4d2/<4)¢2)]
=42, K2 < (1/24d).
Since ||f|| = 1, the thermodynamic limit f(a) of the finite lattice model free

energy f(A,a) satisfies

In ZA

I 2
f@= tim =28 <32 < (120)

1
2
The bound is independent of the coupling parameters.

Alternatively, for an upper bound on Z., we set the maximum k condition,

dk* =1/2, in Z.. For free b.c., we evaluate Z. by successive integration. The result
is expressed in the following lemma.

Lemma Cl1. We have ]
L_

1
Z. = , C2
U\/l—b, 2

where the b; satisfy the recursion relation

1 1
— . bi=-.
4(1-b;) Ty

~

bj+1 =
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The solution to this recursion is
J
b, = ———,
T2+ 1)

so that we have

4 - ﬁ 2(j+1)  20-hr
LN J+2 VLt
Proof: By induction, we obtain the b; recursion. To solve the recursion, we note

that b* = 1/2 is a fixed point and pass to the variable c; where b; =b"+c;. The
recursion for ¢, is

(C3)

<

Cn 1
Cl’l = T A 1= 7
1T 1 2, =7y
or
1 1
)
Cn+l Cn

Telescoping (1/cu41) gives

n—1 n—1
i:l+ [ 1 —i]:l+2(—2)zcll—2(n—l).

Cn  Ci1 Ck+1  Ck

k=1 k=1
or ) !
Tt
n n+2
that b,=———, and 1 - b, = ————.
so tha 2n+1) 2n+1)
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