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We consider the local gauge-invariant Yang–Mills quantum field theory on the finite hyper-
cubic lattice Λ ⊂ 𝑎Z𝑑 ⊂ R𝑑 , 𝑑 = 2, 3, 4, 𝑎 ∈ (0, 1], with 𝐿 (even) sites on a side and with
the gauge Lie groups G = U(𝑁 ) , S𝑈 (𝑁 ) . To each Λ bond 𝑏, there is a unitary matrix gauge
variable 𝑈𝑏 from an irrep of G. The vector gauge potentials (gluon fields) are parameters in the
Lie algebra of G. The Wilson finite lattice partition function 𝑍Λ (𝑎) is used. The action 𝐴Λ (𝑎)
is a sum of gauge-invariant plaquette actions times [𝑎𝑑−4/𝑔2 ], 𝑔2 ∈ (0, 𝑔2

0 ], 0 < 𝑔2
0 < ∞. Each

plaquette action has the product of four bond variables; the partition function is the integral
over the Boltzmann factor with a product over bonds of G Haar measures. Formally, in the
continuum, ultraviolet (UV) limit 𝑎 ↘ 0, the action gives the YM classical continuum action.
For free and periodic boundary conditions (b.c.), and using scaled fields, defined with an 𝑎-
dependent noncanonical scaling, we show thermodynamic and UV stable (TUV) stability bounds
for a scaled partition function, with constants independent of 𝐿, 𝑎 and 𝑔. Passing to scaled fields
does not alter the model energy-momentum spectrum and can be interpreted as an a priori field
strength renormalization, making the action more regular. With scaled fields, we can isolate the
UV singularity of the finite lattice physical, unscaled free energy 𝑓Λ (𝑎) = [ln 𝑍Λ ]/Λ𝑠 , where
Λ𝑠 = 𝐿𝑑 is the total number of lattice sites. With this, we show the existence of, at least, the
subsequential thermodynamic (Λ ↗ 𝑎Z𝑑) and UV limits of a scaled free energy. To obtain
the TUV bounds, the Weyl integration formula is used in the gauge integral and the random
matrix probability distributions of the CUE and GUE appear naturally. Using periodic b.c. and
the multireflection method, the generating function of 𝑟 scaled plaquette field correlations is
bounded uniformly in 𝐿, 𝑎, 𝑔 and the location/orientation of the 𝑟 plaquette fields. Consequently,
𝑟-scaled plaquette field correlations are also bounded. We also show the physical two-plaquette
field correlation at coincident points has an 𝑎−𝑑 UV singular behaviour; the same as for the
correlation of the derivative of free scalar unscaled fields at coincident points. Using the free
scalar case as a reference, we then have a lattice characterization of UV asymptotic freedom.

PACS: 11.15.Ha, 02.30.Tb, 11.10.St, 24.85.+p
Keywords: Nonabelian and Abelian gauge models, lattice gauge models, stability bounds, gen-
erating function, thermodynamic limit, continuum limit, CUE ensemble, GUE ensemble.
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1. Introduction and description of results
To show the existence and properties of an interacting relativistic quantum

field theory (QFT) in spacetime dimension 𝑑 = 4 is a fundamental problem in
physics [1–5]. Many partial results have been obtained [4, 6–8]. The quantum
chromodynamics model (QCD) of interacting (anti)quarks and gauge, gluon fields
is considered to be the best candidate for a four-dimensional QFT model which
rigorously exists. The so-called Gap Problem of the Clay Foundation is related to
the proof of two important features of QCD: first, one shall ensure the existence of
the ultraviolet limit of QCD and, second, when considering the underlying physical
quantum mechanical Hilbert space, we must prove the so-called gap problem,
showing that the are no corresponding vectors for free quarks, antiquarks and
gluons. The only physically admitted states are bound states of these fundamental
particles of the model. This is the confinement property! The fact that the first
vector state in the gluonic energy-momentum (E-M) sector spectrum has a mass
ensures a finite range for the strong interactions, according to the Paley–Wiener
theorem [9].

Unfortunately, up to now, we are not able to give a complete answer to these
problems. This paper considers the UV limit of the pure Yang–Mills (YM) model
which corresponds to discard the matter particles (quarks and antiquarks) from QCD
and take only gluons and their nonlinear interaction into account.

We work on a spacetime lattice and use a special class of scaled fields, with
a noncanonical scaling which preserves the decay of correlations (and then the
E-M spectrum), we concentrate on obtaining finiteness properties for the model free
energy, the generating functions of certain gauge invariant plaquette field correlations
for any value of the parameters. Of course, these finiteness properties do not lead
directly to the construction of the UV limit but their proofs give some progress in
this direction and we hope our methods can be coupled to more traditional methods
in constructive quantum field theory to produce other results. We also discuss how
to characterize UV asymptotic freedom on the lattice. Finally, we emphasize that
our methods work also for models with Fermi (Grassmann) fields.

The action of QCD is a sum of an interacting Fermi-gauge field part and a pure-
gauge, self-interacting YM field part. The imaginary-time 𝑑-dimensional continuum
spacetime classical smooth field Lagrangian or action of the local gauge-invariant
YM model is given by [1, 4, 5]

Aclassical =
∑︁

{𝜇<𝜈}

∫
R𝑑

Tr[𝐹𝜇𝜈 (𝑥)]2 𝑑𝑑𝑥

=
∑︁

{𝜇<𝜈}

∫
R𝑑

Tr
{
𝜕𝜇𝐴𝜈 (𝑥) − 𝜕𝜈𝐴𝜇 (𝑥) + 𝑖𝑔[𝐴𝜇 (𝑥), 𝐴𝜈 (𝑥)]

}2
𝑑𝑑𝑥, (1)

where 𝜇, 𝜈 = 0, 1, . . . , (𝑑 − 1) (the label 0 denotes the time direction!), 𝐴𝜇 are the
gauge fields or vector potentials, commonly called gluons, which are matrices in
the Lie algebra of the gauge group G, 𝐹𝜇𝜈 is the corresponding second order
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antisymmetric field strength tensor, Tr denotes the trace, 𝑔 > 0 is the gauge field
coupling and [·, ·] denotes the Lie algebra commutator.

Here, we will work in a Euclidean imaginary-time formulation of QFT. In this
formulation, the model is defined by a partition function with a Boltzmann factor
given by the exponential of minus the action and integration over all configurations
of the fields is carried out.

One approximation is to work with a discretization of the Euclidean spacetime,
replace the continuum fields by fields on a finite lattice Λ ⊂ R𝑑 and make Riemann
sum approximation to the integral in the classical action of Eq. (1). Carrying this
out, infinities emerge due to the unbounded gauge (gluon) field integration and also
the excess of gauge bond variables due to local gauge invariance.

Instead of this approach, Wilson (see e.g. [10, 11]) proposed a finite-valued finite
lattice partition function. We can take e.g. the lattice Λ to be the finite hypercubic
lattice with spacing 𝑎, 𝐿 ∈ N (𝐿 even) sites on a side and a total number of sites
Λ𝑠 = 𝐿𝑑 . With this, we have Λ ⊂ 𝑎Z𝑑 ⊂ R𝑑 and we take 𝑎 ∈ (0, 1]. The lattice
volume |Λ| ≡ Λ𝑠 is taken to be the total number of sites 𝐿𝑑 , instead of the volume
(𝑎𝐿)𝑑 in R𝑑 , as it is usual in statistical mechanical lattice models [4, 12–14].

In the Wilson finite lattice partition function, the gluon fields are parameters
in the Lie algebra associated with the Lie gauge group G. We choose G to be
compact, e.g. we can take the groups of unitary matrices G = U(𝑁), S𝑈 (𝑁), 𝑁 ∈ N.

Let 𝑏𝜇 (𝑥) = [𝑥, 𝑥+𝜇] denote a positively directed lattice bond, connecting the site 𝑥
to its neighboring lattice site 𝑥+𝜇 = 𝑥 + 𝑎𝑒𝜇, where 𝑒𝜇, 𝜇 = 0, 1, . . . , (𝑑 − 1), is the
unitary vector of the 𝜇-th spacetime direction.

To each positively oriented bond (or, simply, bond), we assign a unitary matrix
from an irreducible representation of the gauge group G. These are our bond
variables. The physical gluon fields are parameters in the Lie algebra of G. The
integration over the field configurations becomes a product of Haar integrals over
the whole set of variables in gauge group G. In this way, our gauge model is
a random matrix model.

With the finite lattice Wilson partition function (see Eq. (6) below and Section 2),
we get a regularization for the YM model and there are no more infinities. Besides,
local gauge invariance is preserved and the property of Osterwalder–Seiler (OS)
positivity, which allows the construction of an underlying quantum mechanical Hilbert
space and then to prove the existence of a lattice QFT [8], is verified.

Moreover, it is expected that the control of the thermodynamic limit Λ ↗ 𝑎Z𝑑

and also the continuum limit 𝑎 ↘ 0 of gauge field correlations lead to a continuum
spacetime Euclidean QFT. Then, if the remaining OS axioms are verified, by the
OS reconstruction theorem, we obtain a physically acceptable relativistic QFT in
Minkowski space [4, 5].

In this paper, we will concentrate on the pure-gauge, YM model. In an imaginary-
time functional integral formulation, we adopt the above defined hypercubic lattice
ultraviolet (UV) regularization Λ ⊂ 𝑎Z𝑑 ⊂ R𝑑 , 𝑑 = 2, 3, 4, 𝑎 ∈ (0, 1].

The starting point is the Wilson plaquette action partition function given below
in Eq. (6). For small gauge coupling 0 < 𝑔 ≪ 1, stability bounds (see [15]) for
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the corresponding model partition function have been proved in the seminal work
of Balaban (see [16, 17] and references therein), using renormalization group (RG)
methods and the heavy machinery of multiscale analysis. Applying RG methods in
the continuum spacetime and using momentum slices, the UV limit of the YM
model, in 𝑑 = 4 and with an additional infrared cutoff, was treated in [18]. Using
softer methods, in [19], the 𝑑 = 2 YM model was solved exactly. It is expected that
partition function stability bounds of [16, 17] lead to bounds on YM gauge field
correlations.

Recently, the scaling limit of the YM–Higgs model was analyzed in [20] for
the gauge group SU(2). More recently (see e.g. [21]), a completely different
approach considers the construction of Euclidean QFT using stochastic quantization
and SPDE´s (stochastic differential equations). For the scalar 𝜙4

3 model in R3, some
of the important OS axioms were shown and it is to be stressed that one of the
virtues of this method is that the results are valid for any value of the couplings.
Using this approach, the YM model with a general compact Lie gauge group in
three dimensions was considered in [22].

Indeed, in the context of the RG, considering models which are small perturbations
of the free field, the generating function of gauge field correlations and then
correlations can be obtained through a formula which involves the effective actions
generated by applying the RG transformations to the partition function (see e.g.
[23]). However, unfortunately, in the case of gauge fields, this question, as well
as the incorporation of fermionic quark/antiquark fields and the verification of the
whole set of Osterwalder–Schrader–Seiler (OSS) axioms [4, 5], have never been
completely analyzed up to now. This includes the physically interesting 𝑑 = 4 case.
In 𝑑 = 4, after showing the mathematical existence of QCD, and checking the
Osterwalder–Schrader–Seiler (OSS) axioms hold, an analysis of the low-lying E-M
spectrum is expected to lead to the confinement of quarks/antiquarks and to the
solution of the YM gap problem.

Recently, in the related [24–26], we introduced an a priori QFT renormalization
procedure on the lattice, with lattice spacing 𝑎 ∈ (0, 1]. This alternative procedure is
based on a scaling of the physical (original) fields, like a wavefunction renormalization.
The 𝑎-dependent scaling is noncanonical. Besides, it preserves OSS positivity and
the particle spectrum since it does not alter the decay rates of correlations. The
new fields are called scaled fields. In the scaled fields, the original, physical action
is more regular. The scaling is a smoothing process and may render some models
finite and other are smoothed by it and present less or milder singularities. Our
scaling transformation can then be viewed as a partial renormalization.

For the free field, the scaling removes the infinities from the free energy and
correlations. Correlations are finite even at coincident points. No smearing with test
functions is needed. Moreover, for the scaled field partition function and correlations,
series expansions in the scaled coupling parameter converge absolutely, up to and
including the critical value. The coefficients of these series are given explicitly. The
random walk expansion associated with scaled field correlations also converge in
this region [27]. These free field results are detailed in Appendix A.
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In the unpublished papers [28, 29], using scaled gauge fields, a simple proof of
TUV stability bounds is given by a direct analysis of the finite lattice physical Wilson
partition function 𝑍 (Λ, 𝑎), with free boundary conditions (b.c.) in configuration space,
starting with the model in the finite hypercubic lattice Λ ⊂ 𝑎Z𝑑 . The gauge group
is taken to be G = U(𝑁), SU(𝑁), with respective dimensions

𝛿𝑁 = 𝑁2, 𝛿𝑁 = 𝑁2 − 1, (2)

but our methods extend to any other compact Lie group. Recall 𝑒𝜇, 𝜇=0, 1, . . . , (𝑑−1),
is the lattice unit vector in the spacetime direction 𝜇. For each lattice oriented bond
𝑏 ≡ [𝑥, 𝑥+𝜇 ≡ 𝑥 + 𝑎𝑒𝜇], there is a bond variable, i.e. a unitary matrix of the gauge
group, 𝑈𝑏 ∈ G. There are a total of Λ𝑏 = 𝑑𝐿𝑑−1(𝐿 − 1) bonds in the lattice Λ.

By the exponential map, the gauge fields 𝐴𝑏 are elements of the Lie algebra
of G, and we write

𝑈𝑏 = exp(𝑖𝑔𝑎𝐴𝑏). (3)

With this convenient parametrization, the gauge fields are the usual physical gauge
potentials. The 𝑁 × 𝑁 gluon field matrix 𝐴𝑏, in a suitable basis, is given by

𝐴𝑏 =

𝛿𝑁∑︁
𝑐=1

𝐴𝑐
𝑏𝜃𝑐,

and has components which are the ordinary gluon fields. Here, for 𝛼 = 1, 2, . . . , 𝛿𝑁 ,
we take the self-adjoint 𝜃𝛼 to form a basis for the self-adjoint matrices of
G = U(𝑁), SU(𝑁). They are the Lie algebra generators and are normalized accordingly
to the trace condition Tr𝜃𝛼𝜃𝛽 = 𝛿𝛼𝛽, with a Kronecker delta traceless. With all this,
if 𝑏𝜇 (𝑥) = [𝑥, 𝑥+𝜇 ≡ 𝑥 + 𝑎𝑒𝜇], then 𝐴𝑏 is the usual gauge field 𝐴𝜇 (𝑥).

A lattice plaquette 𝑝 is a set of four bonds forming a minimal lattice square.
The bonds connect four neighbor lattice sites. If 𝑝 ≡ 𝑝𝜇𝜈 (𝑥) is a plaquette in the
𝜇 < 𝜈 coordinate plane (𝜇, 𝜈 = 0, 1, . . . , (𝑑 − 1)), and if 𝑥 denotes the lower left
corner of the plaquette, then the sites of Λ taking part in 𝑝 are

vertices of 𝑝 = 𝑝𝜇𝜈 (𝑥), 𝑥, 𝑥+𝜇, 𝑥
+
𝜇 + 𝑎𝑒𝜈 , 𝑥+𝜈 . (4)

Each plaquette 𝑝 ∈ Λ is associated with a positive Wilson action 𝐴𝑝 involving the
trace of 𝑈𝑝, which is given by the ordered product of the four bond variables
comprising the four consecutive sides of the plaquette. For the plaquette 𝑝 = 𝑝𝜇𝜈 (𝑥),
and using the physical parametrization of Eq. (3), we have

𝑈𝑝 (𝑥) = exp
[
𝑖𝑎𝑔𝐴𝜇 (𝑥)

]
exp

[
𝑖𝑎𝑔𝐴𝜈 (𝑥+𝜇)

] {
exp [𝑖𝑎𝑔𝐴𝜈 (𝑥)] exp

[
𝑖𝑎𝑔𝐴𝜇 (𝑥+𝜈)

]}†
= exp

[
𝑖𝑎𝑔𝐴𝜇 (𝑥)

]
exp

[
𝑖𝑎𝑔𝐴𝜈 (𝑥+𝜇)

]
exp

[
−𝑖𝑎𝑔𝐴𝜇 (𝑥+𝜈)

]
exp [−𝑖𝑎𝑔𝐴𝜈 (𝑥)] . (5)

Remark 1. We warn the reader that, as usual, we use the same notation 𝑔

both for a gauge group element, 𝑔 ∈ G, and the gauge coupling parameter 𝑔 > 0,
which usually appears as 𝑔2. There should be no confusion! Also, as the case of
the unitary gauge group G = U(𝑁) is a little simpler than G = SU(𝑁), in the text
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below, we will concentrate on U(𝑁). The analysis for G = SU(𝑁) can be recovered
from G = U(𝑁) with some minor modifications [31].

Now, taking G = U(𝑁), we give a schematic description of the model partition
function and the stability bounds. Precise definitions are given in sections below.
Mainly, we refer the reader to Section 2 where most of the needed definitions can
be found.

The original, physical model partition function 𝑍 (Λ, 𝑎) ≡ 𝑍Λ(𝑎) is an integral
over the Boltzmann factor (exponential of minus the action), with a product measure
of U(𝑁) (SU(𝑁)) Haar measures [30–32]

𝑑𝜇(𝑈) =
∏
𝑏∈Λ

𝑑𝜇(𝑈𝑏),

one normalized measure for each bond. It reads

𝑍Λ(𝑎) =
∫

exp
[
−𝑎

𝑑−4

𝑔2

∑︁
𝑝∈Λ

𝐴𝑝 (𝑈𝑝)
]
𝑑𝜇(𝑈)

≡
∫

exp
[
−𝑎

𝑑−4

𝑔2

∑︁
𝑝∈Λ

2Re Tr(1 −𝑈𝑝)
]
𝑑𝜇(𝑈). (6)

The Wilson plaquette action 𝐴𝑝 ≥ 0 is given by

𝐴𝑝 (𝑈𝑝) = 2Re Tr(1 −𝑈𝑝) = ∥𝑈𝑝 − 1∥2
𝐻−𝑆 , (7)

and each plaquette action has a prefactor [𝑎𝑑−4/𝑔2], where we take the squared
gauge coupling parameter 𝑔2 ∈ (0, 𝑔2

0], 0 < 𝑔0 < ∞. Here, ∥𝑀 ∥𝐻−𝑆 ≡ [Tr𝑀∗𝑀]1/2

denotes the Hilbert–Schmidt norm (see Section 2 for the last equality).

Remark 2. Although we have the physical parametrization of the gauge group
bond variable 𝑈𝑏 in Eq. (5), the value of the partition function representation of
Eq. (6) is independent of the parametrization. Sometimes, we denote this Wilson
partition function as 𝑍𝑤

Λ
(𝑎).

Remark 3. As we see below, the apparent singularity at 𝑔 = 0, due to the
prefactor (1/𝑔2) in Eq. (6), is removed by adopting the physical parametrization
𝑈𝑏 = exp[𝑖𝑔𝑎𝐴𝑏].

All our results hold for all 𝑔2 in the range 𝑔2 ∈ (0, 𝑔2
0]. Therefore, contrary to

what happens in other works (see, e.g. [16, 17]), our statements are not restricted
to small enough 𝑔2.

Remark 4. The adjoint of the positive oriented bond variable of Eq. (5) can be
interpreted as associated with the negatively oriented bond. For the above plaquette
𝑝 = 𝑝𝜇𝜈 (𝑥), the plaquette action 𝐴𝑝 can be interpreted as an ordered product of
group variables going around the perimeter of the plaquette in a counterclockwise
fashion, with a bond variable for a positively oriented traverse and its adjoint for
a negatively oriented traverse.
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Formally, in [3], using the Baker–Campbell–Hausdorff formula [see [32] and
Eq. (43) below], it is shown that, for small lattice spacing 𝑎, the Wilson plaquette
action

{(
𝑎𝑑−4/𝑔2) ∑

𝑝∈Λ 𝐴𝑝 (𝑈𝑝)
}
, as explained in Eq. (1) is the Riemann sum

approximation to the usual classical smooth field continuum YM action

A =
∑

{𝜇<𝜈}

∫
[−𝐿𝑎,𝐿𝑎]𝑑

Tr[𝐹𝜇𝜈 (𝑥)]2 𝑑𝑑𝑥 ≃
∑︁

{𝜇<𝜈}

∑︁
𝑥∈Λ

𝑎𝑑 Tr
[
𝐹𝑎
𝜇𝜈

]2
,

𝐹𝑎
𝜇𝜈 ≡ 𝜕𝑎𝜇 𝐴𝜈 (𝑥) − 𝜕𝑎𝜈 𝐴𝜇 (𝑥) + 𝑖𝑔[𝐴𝜇 (𝑥), 𝐴𝜈 (𝑥)] .

(8)

Here, we have the finite difference derivatives 𝜕𝑎𝜇 𝐴𝜈 (𝑥) = 𝑎−1 [𝐴𝜈 (𝑥 + 𝑎𝑒𝜇) − 𝐴𝜈 (𝑥)]
and used the notation {𝜇 < 𝜈} ≡ {𝜇, 𝜈 = 0, . . . , (𝑑 − 1)/𝜇 < 𝜈}.

Associated with the classical statistical mechanical model partition function 𝑍Λ(𝑎)
of Eq. (6), there is a lattice QFT. The Osterwalder–Seiler construction provides, via
a Feynman–Kac formula, a quantum mechanical Hilbert space, self-adjoint mutually
commuting spatial momentum operators and a positive energy operator. A key
property in the construction is Osterwalder–Seiler reflection positivity, which is
ensured here by choosing 𝐿 ∈ N to be even! (see e.g. [8]).

In principle, considering this lattice QFT and neglecting all the possible internal
degrees of freedom in a more general case (spin, isospin, etc.), there are Λ𝑠 sites
in the lattice Λ, and our system has Λ𝑏𝛿𝑁 degrees of freedom, where we recall 𝛿𝑁
is the gauge group dimension [see Eq. (2)]. However, as we explain more precisely
below, there is a copy of the gauge group G attached to each spacetime finite
lattice site 𝑥 ∈ Λ, and due to local gauge invariance of the plaquette actions 𝐴𝑝 in
Eq. (6), when considering the total number Λ𝑏 of bonds and then the whole set of
gauge variables in the lattice Λ, there is an excess of variables.

By a gauge fixing procedure, the extraneous gauge variables can be eliminated.
Here, we sometimes fix what we call the enhanced temporal gauge. In this gauge,
the temporal bond variables in Λ are set to the identity (leading to a trivial gauge
group integration), as well as certain specified bond variables on the boundary 𝜕Λ

of Λ. The gauged away bond variables involve bonds which do not form a lattice
loop. This guarantees that the value of partition function is unchanged [4]. Also,
the maximal number of relevant variables is given by

Λ𝑟 ≈ (𝑑 − 1)𝐿𝑑−1 = [(𝑑 − 1)Λ𝑠/𝐿], (9)

which is roughly the number of nontemporal (spatial) bonds. These are the retained
bond variables or simply, retained bonds. The effective number of degrees of freedom
in our model is then [𝛿𝑁Λ𝑟 ].

Remark 5. We warn the reader that we use abusively the name volume for the
quantity Λ𝑟 . Below, we talk about the volumetric free energy using Λ𝑟 instead of
the lattice volume Λ𝑠 = 𝐿

𝑑 . We are not using the physical volume (𝑎𝐿)𝑑 in R𝑑 . By
doing so, as there is a finite proportionality between them, we will be neglecting
a finite additive (𝑑-dependent) constant value of the free energy.
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In the context of a generic lattice model with partition function ZΛ, when Λ 𝑓

degrees of freedom are present, a stability bound is a lower/upper bound on ZΛ of
the form

𝑒𝑐ℓΛ 𝑓 ≤ ZΛ ≤ 𝑒𝑐𝑢Λ 𝑓 , (10)
for some finite real ‘constants’ 𝑐ℓ and 𝑐𝑢.

Usually, in statistical mechanical models, to control the thermodynamic limit
of the free energy, the only requirement is that 𝑐ℓ and 𝑐𝑢 are uniform in the
‘volume’ Λ 𝑓 . Here, in our lattice YM model, besides this condition, since we are
also interested in taking the UV (continuum) limit 𝑎 ↘ 0 afterwards, we do require
that 𝑐ℓ and 𝑐𝑢 are also uniform in the lattice spacing 𝑎. This is why we call our
stability bound a thermodynamic and UV stable stability bound, or simply TUV
bound, for short.

In addition to the physical, unscaled gluon fields which, in order to improve
clarity, we sometimes denote by 𝐴𝑢

𝑏
, with a superscript 𝑢, we will also be using

local, scaled gluon fields 𝐴𝜇 (𝑥) (without any superscript, or with a superscript 𝑠)
which are related to 𝐴𝑢

𝜇 (𝑥) by the 𝑎-dependent scaling transformation

𝐴𝜇 (𝑥) = 𝑎 (𝑑−2)/2𝐴𝑢
𝜇 (𝑥). (11)

This a priori scaling corresponds to a partial renormalization and can be interpreted
as a field strength renormalization.

Associated with the scaled fields are the scaled free energy, scaled generating
functionals and scaled correlations. As it will be made clear below, the scaled
field quantities have good UV regularity properties in the lattice spacing 𝑎 and the
gauge coupling 𝑔. For instance, the scaled free energy and correlations are bounded
uniformly in 𝑎 ∈ (0, 1] for any finite gauge coupling 𝑔2.

Before embarking on the scaling transformations and specific results for the YM
model free energy and correlations, we give a general picture of the use of our
scaled fields and its consequences. For simplicity, we consider the free lattice scalar
field. This case is analyzed in more detail in Appendix A. It is important to stress
that the scaling used in the analysis of the free scalar field case is also employed
for each color component 𝐴𝑐

𝜇 (𝑥) ∈ R, 𝑥 ∈ Λ ⊂ 𝑎Z𝑑 , of our gauge fields in our YM
model.

Considering the same hypercubic lattice defined before, we denote the Λ lattice
physical (or unscaled) scalar field at a lattice site 𝑥 ∈ Λ by 𝜙𝑢 (𝑥). Up to boundary
conditions, the physical, free unscaled lattice scalar model action is given by

𝐴𝑢
Λ(𝜙𝑢) =

1
2
𝜅2
𝑢𝑎

𝑑−2
∑︁
𝑥,𝜇

[
𝜙𝑢 (𝑥+𝜇) − 𝜙𝑢 (𝑥)

]2 + 1
2
𝑚2

𝑢𝑎
𝑑
∑︁
𝑥

[𝜙𝑢 (𝑥)]2. (12)

Here, 𝜅2
𝑢, 𝑚𝑢 > 0 and

∑
𝑥,𝜇 sums over the finite lattice sites 𝑥 ∈ Λ ⊂ 𝑎Z𝑑 and

𝜇 = 0, 1, . . . , (𝑑 − 1).
As usual, the finite lattice unscaled partition function is

𝑍𝑢
Λ(𝑎) =

∫
𝑒
−𝐴𝑢

Λ
(𝜙𝑢 )

𝐷𝜙𝑢, (13)
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where 𝐷𝜙𝑢 is the Λ product of single site Lebesgue measures 𝑑𝜙𝑢 (𝑥)/
√

2𝜋. Recalling
that lattice Λ has 𝐿 ∈ N, 𝐿 even, sites on a side, and its volume is Λ𝑠 = 𝐿

𝑑 , we
can take the thermodynamic limit of the physical, unscaled free energy as

𝑓 𝑢 (𝑎) = lim
𝐿↗∞

1
𝐿𝑑

ln 𝑍𝑢
Λ(𝑎).

The scalar model correlations at coincident points are singular in the continuum
limit 𝑎 ↘ 0.

We now introduce 𝑎-dependent scaled scalar fields by making the change of
variables

𝜙(𝑥) = 𝑠(𝑎)𝜙𝑢 (𝑥), 𝑠(𝑎) = 𝑎 (𝑑−2)/2𝑡, 𝑡 =
(
2𝑑𝜅2

𝑢 + 𝑚2
𝑢𝑎

2)1/2
. (14)

The scaled scalar free field action is

𝐴Λ(𝜙) = 𝐴𝑢
Λ(𝜙𝑢 = [𝑠(𝑎)]−1𝜙) = −𝜅2

∑︁
𝑥,𝜇

𝜙(𝑥)𝜙(𝑥+𝜇) +
1
2

∑︁
𝑥

𝜙2(𝑥),

where 𝜅2 is the scaled hopping parameter 𝜅2 =
(
2𝑑 + 𝑚2

𝑢𝑎
2/𝜅2

𝑢

)−1.
The finite lattice scaled free field partition function is

𝑍Λ(𝑎) =
∫

𝑒−𝐴Λ (𝜙)𝐷𝜙 = 𝑠Λ𝑠𝑍𝑢
Λ(𝑎), (15)

where we recall that Λ𝑠 = 𝐿
𝑑 is the number of sites in Λ and the scaled measure 𝐷𝜙

is defined a product measure, similarly to the unscaled measure 𝐷𝜙𝑢 in Eq. (13).
The scaled scalar model partition function 𝑍Λ(𝑎) obeys the TUV stability bound

𝑒𝑐ℓΛ𝑠 ≤ 𝑍Λ(𝑎) ≤ 𝑒𝑐𝑢Λ𝑠 ,

with real finite constants 𝑐ℓ and 𝑐𝑢 independent of Λ𝑠 and the lattice spacing 𝑎.
The important point is that, in terms of scaled fields, all singularities disappear,

and the scaled free energy is finite, for 𝑑 = 3, 4, and is given by

𝑓 (𝑎) = lim
𝐿↗∞

1
𝐿𝑑

ln 𝑍Λ(𝑎).

We observe that scaled field correlations, to be defined below, also remain finite as
𝑎 ↘ 0, even at coincident points, for 𝑑 = 3, 4.

Furthermore, in the thermodynamic limit 𝐿 ↗ ∞, the unscaled free energy is
related to the scaled one by

𝑓 (𝑎) = ln 𝑠(𝑎) + 𝑓 𝑢 (𝑎), (16)

meaning that we have isolated completely the 𝑎 ↘ 0 singularity of 𝑓 𝑢 (𝑎).
Regarding correlations, the physical, unscaled two-point correlation

⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢 ≡ 1
𝑍𝑢
Λ

∫
𝜙𝑢 (𝑥)𝜙𝑢 (𝑦) 𝑒−𝐴𝑢

Λ
(𝜙𝑢 )

𝐷𝜙𝑢,
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using the change of variables of Eq. (14), is related to the corresponding scaled
two-point correlation (similarly defined without the 𝑢 superscripts) by

⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢 =
1

𝑠2(𝑎) ⟨𝜙(𝑥)𝜙(𝑦)⟩.

Both correlations have the same asymptotic decay rate at large distances. More
generally, the scaling transformation does not affect the Osterwalder–Schrader positivity
property [4, 5] nor does it alter the decay rates of correlations. Thus, the E-M
spectrum is unchanged.

As is known, the unscaled correlations are singular in the continuum limit 𝑎 ↘ 0.
However, the scaled free scalar model correlations remain finite as 𝑎 ↘ 0, even at
coincident points, for 𝑑 = 3, 4. For example, for the unscaled two-point correlation
at coincident points we have the following singular behaviour

⟨[𝜙𝑢 (𝑥)]2⟩ ≃ 1
𝑠2(𝑎) ≃ 𝑎2−𝑑 .

This behaviour can be taken as a characterization of UV asymptotic freedom on
the lattice.

In the YM case, we consider only gauge-invariant correlations which behave as
derivative fields (think of the electromagnetic field for the abelian gauge group U(1)).
For scalar free fields the unscaled finite lattice derivative field correlation is〈

𝜕𝑎𝜇𝜙
𝑢 (𝑥)𝜕𝑎𝜇𝜙𝑢 (𝑦)

〉𝑢 ≡
〈

1
𝑎

[
𝜙𝑢 (𝑥+𝜇) − 𝜙𝑢 (𝑥)

] 1
𝑎

[
𝜙𝑢 (𝑦+𝜇) − 𝜙𝑢 (𝑦)

]〉𝑢
,

with derivatives replaced by finite differences. This correlation behaves as 𝑠−2(𝑎)𝑎−2

≃ 𝑎−𝑑 , for coincident points. This behaviour can also be taken as a characterization
of UV asymptotic freedom on the lattice for derivative field correlations.

We remind the reader that, even for a finite lattice with spacing 𝑎 ∈ (0, 1],
the partition function may not exist due to zero modes in the action. This is e.g.
the case for periodic b.c. where the action has a zero mode for 𝑚𝑢 = 0. This
problem is usually eliminated by adding to the action a small mass term (an infrared
regulator). Then the partition function exists and obeys TUV stability bounds. Then,
the regulator may be removed after taking the thermodynamic limit. Alternatively,
for example, if free b.c. is used, there is no zero mode, the finite lattice partition
function exists and agrees with that in the infrared regulator procedure. In this
paper, we deal with the Wilson YM model and no infrared regulator is needed for
free and periodic b.c.

We now return to the YM model and describe how we apply the scaling
transformation. For the abelian U(1) case we can define the scaling transformation
by a similar change of variables of Eq. (11), namely

𝐴𝜇 (𝑥) = 𝑎 (𝑑−2)/2𝐴𝑢
𝜇 (𝑥).

In terms of the gauge fields 𝐴𝜇 (𝑥), the action becomes regular both in 𝑔 and
𝑎 ∈ (0, 1], and the U(1) Haar measure is proportional to the Lebesgue measure.
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In the nonabelian case, the implementation and the effect of the scaling is
more complicated than the scalar free field case. The scaling is performed in
each color component 𝐴

𝑢,𝑐
𝜇 of the physical or unscaled gluon field 𝐴𝑢

𝜇 by defin-
ing

𝐴𝑐
𝜇 (𝑥) = 𝑎 (𝑑−2)/2𝐴𝑢,𝑐

𝜇 (𝑥), (17)

so that the bond variable 𝑈𝑏 is parametrized as 𝑈𝑏 = exp[𝑖𝑔𝑎−(𝑑−4)/2𝐴𝑏]. In
doing this, the action of each plaquette Boltzmann factor becomes also regular.
However, the Haar measure is not proportional to the Lebesgue and does not
transform simply by a multiplicative factor. This complexity does not lead to
a multiplicative scaling for the partition function and correlations. Below, we show
how we deal with this problem. The Haar measure for unitary groups is obtained
in [33–36].

Before we get to this point, in order to be able to compare our method with the
renormalization method developed in [21], we illustrate how our scaling leads to
the absence of singularities in the scalar 𝜙4

3 model. From [21, 22, 37], the unscaled
action is the free action 𝐴𝑢

Λ
(𝜙𝑢) of Eq. (12) plus a local quartic potential. Namely,

for spacetime dimension 𝑑 = 3, we have (for 𝜆 > 0)

𝐴𝑢
4,Λ(𝜙𝑢) =

1
2
𝜅2
𝑢𝑎

∑︁
𝑥,𝜇

[
𝜙𝑢 (𝑥+𝜇) − 𝜙𝑢 (𝑥)

]2

+1
2

(
𝑚2

𝑢 −
𝑐𝜆

𝑎

)
𝑎3

∑︁
𝑥

[𝜙𝑢 (𝑥)]2 + 𝜆𝑎3
∑︁
𝑥

[𝜙𝑢 (𝑥)]4

≡ 𝐴𝑢
Λ(𝜙𝑢) + 𝐴𝑢

𝐼,Λ(𝜙𝑢). (18)

In 𝑑 = 3, the sums are over 𝑥 ∈ Λ ⊂ 𝑎Z3 and 𝜇 = 0, 1, 2. Also, we have
𝑐 ≡ 𝑐(𝑎, 𝜆) = 𝑐1(𝑎) +𝑐2(𝑎)𝜆, where 𝑐1(𝑎) = O(1) and 𝑐2(𝑎) = O(| ln 𝑎 |). The form of
[𝜆𝑐(𝑎, 𝜆)/𝑎] is a renormalization which removes the UV divergences and keeps the
physical mass finite in the continuum limit 𝑎 ↘ 0. In 𝜆 perturbation, we take care
of the O(𝜆) tadpole contribution and the so-called ‘rising sun’ O(𝜆2) contribution.
For simplicity, we suppress the 𝑎, 𝜆 dependence of 𝑐(𝑎, 𝜆) and put 𝑐 ≡ 𝑐(𝑎, 𝜆).

As before, in terms of scaled fields,
𝜙(𝑥) = 𝑠𝜙𝑢 (𝑥), 𝑠 = 𝑎 (𝑑−2)/2𝑡, 𝑡 = [2𝑑𝜅2

𝑢 + (𝑚𝑢𝑎)2]1/2,

the scaled 𝜙4
3 action is

𝐴4,Λ(𝜙) = −𝜅2
∑︁
𝑥,𝜇

𝜙(𝑥)𝜙(𝑥+𝜇) +
1
2

∑︁
𝑥

[𝜙(𝑥)]2 − 𝑐𝜆𝑎2

𝑠2

∑︁
𝑥

[𝜙(𝑥)]2 + 𝜆𝑎
3

𝑠4

∑︁
𝑥

[𝜙(𝑥)]4

≡ 𝐴Λ(𝜙) + 𝐴𝐼,Λ(𝜙), (19)
where 𝐴Λ(𝜙) is independent of the coupling 𝜆 and corresponds to the scalar free
action. The key fact is that 𝐴4,Λ(𝜙) has a minimum at 𝜙2(𝑥) = 𝑐/2, where it
assumes the value (−𝜆𝑎𝑐2Λ𝑠/4).
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We let 𝑍 fr
Λ

denote also the scaled free scalar field partition function of Eq. (15).
Then, 𝑍 fr

Λ
satisfies the TUV stability bound (recalling Λ𝑠 = 𝐿

𝑑 , 𝑑 = 3)

𝑒
𝑐fr
ℓ
Λ𝑠 ≤ 𝑍 fr

Λ ≤ 𝑒𝑐fr
𝑢Λ𝑠 ,

where 𝑐fr
𝑢 = [(1 − 𝐿−1) ln

√
2] (see Appendix C) and 𝑐fr

ℓ
= 0 (by Jensen’s inequality).

Now, we let 𝑍4,Λ denote the partition function for the 𝜙4
3 model. We have

𝑍4,Λ =

∫
𝑒−𝐴4,Λ (𝜙) 𝑑𝜙 ≡ 𝑍 fr

Λ

∫
𝑒−𝐴𝐼,Λ (𝜙) 𝑑𝜇f𝑟 (𝜙),

where, using Eq. (19), 𝑑𝜇fr(𝜙) =
∫
𝑒−𝐴Λ (𝜙) 𝑑𝜙/𝑍 fr

Λ
is a probability measure.

For the upper bound, reinstating the 𝜆, 𝑎 dependence in 𝑐, taking the minimum
value of 𝐴𝐼,Λ(𝜙) given above, we have

𝑍4,Λ ≤ exp
[
𝑎𝜆𝑐2(𝜆, 𝑎)Λ𝑠

]
exp

[
𝑐fr
𝑢Λ𝑠

]
≡ 𝑒𝑐𝑢Λ𝑠 .

Now, by Jensen’s inequality and using the lower bound 𝑍 fr
Λ
≥ 1, we have the

lower bound
𝑍4,Λ ≥ 𝑒−

∫
𝐴𝐼,Λ (𝜙) 𝑑𝜇fr (𝜙) ≡ 𝑒𝑐ℓΛ𝑠 ,

with, here, 𝑐ℓ =
[
(𝑐𝜆𝑎/𝑡2)𝐶0 − (3𝜆𝑎/𝑡4)𝐶2

0
]

and 𝐶0 is the coincident point two-point
correlation for the free scaled field given in Eq. (A17) and bounded in Eq. (A23).

Writing the upper and lower bound together, we have the TUV stability bound

𝑒𝑐ℓΛ𝑠 ≤ 𝑍4,Λ ≤ 𝑒𝑐𝑢Λ𝑠 . (20)

From the values of 𝑐ℓ , 𝑐𝑢 and 𝑐 given above and using, for 𝐶0 described in
Remark A3 below, we see that the constants in Eq. (20) are uniform in 𝑎 ∈ (0, 1]
so that the bound in Eq. (20) is a TUV stability bound.

Let us now come back to the gauge field case. As a simple application of our
method, we first consider the abelian case of the gauge group U(1) case in more
detail. For the special case of U(1), both the pure-gauge action and the coupling
with Bose and Fermi fields were treated in [38–41]. The starting point for all these
papers is a quadratic action for the electromagnetic potentials. In these papers, in
order to remove the null space of the quadratic form and define the model partition
function, a gauge fixing is required at the onset. This is not what we do here.
Instead, we make a rigorous connection between the Wilson partition function and
the Wilson plaquette action which is not quadratic in the fields.

To see the effect of the scaling transformation on the U(1) Haar measure, we
parametrize the bond variable 𝑈𝑏 with the physical potential as 𝑈𝑏 = exp(𝑖𝑎𝑔𝐴𝑢

𝑏
).

The measure is
∏
𝑏

(
𝑎𝑔

2𝜋
𝑑𝐴𝑢

𝑏

)
. In terms of scaled fields 𝐴𝑏, the measure is∏

𝑏

[(
𝑔2

𝑎𝑑−4

)1/2

𝑑𝐴𝑏/(2𝜋)
]
. Hence, for G = U(1), the unscaled and scaled gauge
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finite lattice partition functions are related by

𝑍𝑢
Λ(𝑎) ≡ 𝑍𝑤

Λ (𝑎) =
(
𝑔2

𝑎𝑑−4

)Λ𝑟 /2

𝑍 𝑠
Λ(𝑎),

where we recall that Λ𝑟 is the number of retained gauge variables after the enhanced
temporal gauge is fixed (see Eq. (9)).

Here, 𝑍 𝑠
Λ
(𝑎) is the scaled partition function, expressed with an action written

in terms of scaled fields and with the measure
∏
𝑏

𝑑𝐴𝑏/(2𝜋), |𝐴𝑏 | < 𝜋.

Also, 𝑍 𝑠
Λ
(𝑎) obeys TUV stability bounds (𝛿𝑁 = 1 is the U(1) group dimension)

𝑒𝑐ℓ 𝛿𝑁Λ𝑟 ≤ 𝑍 𝑠
Λ(𝑎) ≤ 𝑒

𝑐𝑢 𝛿𝑁Λ𝑟 . (21)

Motivated by the scaling relation above, for the abelian case, in the nonabelian
YM case of the gauge groups G = U(𝑁), SU(𝑁), by defining a scaled field partition
function by

𝑍 𝑠
Λ(𝑎) =

(
𝑎𝑑−4

𝑔2

) 𝛿𝑁Λ𝑟 /2

𝑍𝑢
Λ(𝑎), (22)

with one factor of
(
𝑎𝑑−4

𝑔2

)1/2

for each of the 𝛿𝑁Λ𝑟 effective degrees of freedom,

𝑍 𝑠
Λ
(𝑎) obeys TUV stability bounds.
Here, we consider two types of boundary conditions (b.c.) on the lattice Λ.

Namely, our TUV bounds on the scaled partition function 𝑍
𝑠,𝐵

Λ
≡ 𝑍 𝑠,𝐵 (Λ, 𝑎) hold for

both free and periodic b.c. The index 𝐵 is left blank, for free b.c., and 𝐵 = 𝑃, for
periodic b.c. The adoption of periodic b.c. extends the TUV bound result of [28] and
is convenient for us to use the multiple reflection method [4] to analyze a generating
function and correlations. The partition function 𝑍

𝑠,𝐵

Λ
is related to 𝑍𝑢

Λ
(𝑎) as in

Eq. (22) obeys the the same TUV stability bound of Eq. (21) with a corrected
value of 𝛿𝑁 = 𝑁2, (𝑁2 − 1). Namely, we have

𝑒𝑐ℓ 𝛿𝑁Λ𝑟 ≤ 𝑍
𝑠,𝐵

Λ
≤ 𝑒𝑐𝑢 𝛿𝑁Λ𝑟 , (23)

where we recall that the finite constants 𝑐ℓ and 𝑐𝑢 are both uniform in Λ𝑟 and
𝑎 ∈ (0, 1].

Using Eq. (22), the proof of the bound of Eq. (23) is one of our main results
and is stated in Theorem 1.

The TUV stability bound on the scaled partition function [see Eq. (23)] arises
from an interesting factorization structure of the bounds for 𝑍𝑢,𝐵

Λ
and hence 𝑍

𝑠,𝐵

Λ
.

For 𝑍𝑢,𝐵

Λ
, the upper and lower bounds factorize as

𝑧
Λ𝑟

ℓ
≤ 𝑍

𝑢,𝐵

Λ
≤ 𝑧Λ𝑟

𝑢 ,

where each factor is a single plaquette partition function of one bond variable.
Expressions for the ‘constants’ 𝑧ℓ and 𝑧𝑢 involve probability distributions of the
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circular unitary random matrix and the Gaussian unitary ensembles, CUE [42, 43],
and are analyzed in Theorem 2. This analysis leads to the TUV stability bound of
Eq. (23).

Remark 6. A key point in our method, as it can be checked in the expressions
and bounds on 𝑧ℓ and 𝑧𝑢 given below, is that our lower and upper bounds on the
unscaled partition functions do exhibit the same multiplicative singular factor. This
is what allows us to define a scaled partition function by extracting the singular
factor multiplicatively.

The random matrix ensemble CUE arises naturally in the above context. To
go further, and extract the singular behaviour of 𝑧ℓ and 𝑧𝑢, the Gaussian unitary
random matrix ensemble GUE [42, 43] also shows up. We notice that both 𝑧ℓ and
𝑧𝑢 are given by integrals with class function integrands. We emphasize that this
property was not present for the integrand of the unscaled partition function 𝑍𝑢

Λ

but does hold for the bounds. We recall that a class function 𝑓 (𝑈) on the gauge
group G is constant over each group conjugacy class, i.e. 𝑓 (𝑈) satisfies the property
𝑓 (𝑈) = 𝑓 (𝑉𝑈𝑉−1), for all 𝑉 ∈ G.

We now explain how these random matrix ensembles appear in our bounds.
Our upper and lower stability bounds have an interesting factorization structure. In

continuum scalar field models such a factorization is achieved by imposing Dirichlet
decoupling on the covariance of the free field Gaussian measure (see Chapter 9 of
[4] and [44–46]). In the continuum, in the exponents of the stability bounds, we
typically have the volume in R𝑑 . We show in Appendix C, how this factorization is
accomplished in lattice scalar field models where each factor is a partition function
of single bond ‘transfer matrix’. Here, the exponent in the TUV stability bound is
the number Λ𝑏 = 𝑑 (𝐿 − 1)𝐿𝑑−1 of lattice bonds in Λ.

In the YM model, the factorization involves products of single-plaquette, single-
bond variable partition functions. A new, global quadratic upper bound in the gluon
fields, for the positive Wilson plaquette action, is proved in Lemma 2. This upper
bound gives a lower bound on the partition function. This bound gives rise to
the factorized lower bound on the partition function. For the upper bound, since
each plaquette action is positive (it is a Hilbert–Schmidt norm!), we simply set
some plaquettes actions to zero. We denote by 𝑧𝑢 (𝑧ℓ) the single-bond Haar integral
partition functions describing the single-plaquette partition function for the upper
(lower) stability bound on the partition function with periodic b.c.

By the spectral theorem, as 𝑈 is unitary, there exists a unitary 𝑉 which
diagonalizes 𝑈𝑏, i.e. 𝑉−1𝑈𝑏𝑉 = diag(𝑒𝑖𝜆1 , . . . , 𝑒𝑖𝜆𝑁 ), 𝜆 𝑗 ∈ (−𝜋, 𝜋]. The 𝜆 𝑗 are called
the angular eigenvalues of 𝑈. Recalling Eq. (11), the fundamental relation between
scaled gluon fields and the angular eigenvalues is given by the equality (see Lemma 1)

𝑁∑︁
𝑗=1

𝜆2
𝑗 = 𝑎

2𝑔2
𝛿𝑁∑︁
𝑐=1

��𝐴𝑢,𝑐

𝑏

��2 =
𝑔2

𝑎𝑑−4

𝛿𝑁∑︁
𝑐=1

��𝐴𝑐
𝑏

��2 , (24)
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which is used to deal with the above quadratic bound on the Wilson action. It is
immediate for G = U(1).

With this, for 𝜆 = (𝜆1, . . . , 𝜆𝑁 ) and 𝑑𝜆 = 𝑑𝜆1 . . . 𝑑𝜆𝑁 , by the Weyl integration
formula [30–32, 47]∫

U(𝑁 )
𝑓 (𝑈) 𝑑𝜎(𝑈)

=
1
𝑁!

∫
(−𝜋,𝜋 ]𝑁

𝑓 (diag(𝜆1, 𝜆2, . . . , 𝜆𝑁 ))
∏

𝑘, 𝑗=1,...,𝑁 ;𝑘< 𝑗

|𝑒𝑖𝜆 𝑗 − 𝑒𝑖𝜆𝑘 |2 𝑑𝜆

(2𝜋)𝑁 , (25)

the 𝑁2-dimensional Haar integration over the 𝑁 × 𝑁 matrix unitary gauge group G
is reduced to an 𝑁-dimensional integration over the angular eigenvalues of 𝑈. In
Eq. (25), the measure corresponds to the probability density of the circular unitary
ensemble (CUE) and in the bounds on 𝑧𝑢 and 𝑧ℓ the probability density for the
Gaussian unitary ensemble (GUE). Random matrix theory appears in a natural way
in our context (see [42, 43]).

From the Weyl formula of Eq. (25), we see that, even in the case of class
functions, the measure ∏

𝑘, 𝑗=1,...,𝑁 ; 𝑘< 𝑗

|𝑒𝑖𝜆 𝑗 − 𝑒𝑖𝜆𝑘 |2 𝑑𝜆

does not obey a multiplicative scaling relation under a change of variables trans-
formation. However, for small enough 𝜆𝑘 , scaling 𝜆𝑘 by (𝑠𝜆𝑘), this measure scales
with a factor 𝑠𝛿𝑁 .

Going further, the importance of the TUV bound of Eq. (23), for the scaled
partition function 𝑍 𝑠

Λ
(𝑎) ≡ 𝑍 𝑠 (Λ, 𝑎), is that it ensures us that the finite lattice scaled

YM free energy
𝑓 𝑠Λ (𝑎) ≡ 𝑓 𝑠 (Λ, 𝑎) = 1

Λ𝑠

ln 𝑍 𝑠
Λ(𝑎) (26)

satisfies the bound
𝑐ℓ ≤ 𝑓 𝑠Λ (𝑎) ≤ 𝑐𝑢. (27)

However, recalling that the finite constants 𝑐ℓ and 𝑐𝑢 are both uniform in Λ𝑟 and 𝑎,
by the Bolzano–Weierstrass theorem [48], this shows that the thermodynamic limit

𝑓 𝑠 (𝑎) = lim
Λ↗𝑎Z𝑑

𝑓 𝑠 (Λ, 𝑎)

exists at least in the subsequential sense. Subsequently, by the same reason, the
continuum limit exists, at least in the subsequential sense, and defines the bounded
function

𝑓 𝑠 = lim
𝑎↘0

𝑓 𝑠 (𝑎),

of the model parameters.
From the above discussion, we see that our scaling transformation, used to define

the scaled gluon fields, allowed us to subtract the exact singularity of the physical
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or unscaled free energy

𝑓 𝑢Λ (𝑎) ≡ 𝑓 𝑢 (Λ, 𝑎) = (ln 𝑍𝑢
Λ(𝑎))/Λ𝑟 .

In fact, we see that the scaled and unscaled free energies are related by

𝑓 𝑠Λ (𝑎) = 𝑓 𝑢Λ (𝑎) + 𝛿𝑁 ln
𝑎 (𝑑−4)/2

𝑔
, (28)

which is analogous to Eq. (16) for the scaled scalar free field model.
It is to be remarked that, as a first step towards showing the existence (the

continuum and thermodynamic limits) of the YM models and QCD, here and in [28],
we only concentrated on the finiteness of the scaled free energy per degree of
freedom. Next, in [29], the finiteness analysis was extended to the generating function
of gauge-invariant plaquette fields and their correlations. There, we did not invest in
analyzing the properties these quantities satisfy and if there is possibly more than
the physical models of interest. It is also worth noticing that the techniques and
methods used in [28], combined with the results of [24–26] were used to prove
the existence of a scaled free energy for a bosonic lattice QCD model, with the
(anti)quark fields replaced with spin zero, multicomponent complex or real scalar
fields. This is the content of [49]. With these results in mind, we mention that our
methods and techniques can eventually be coupled with new and more traditional
methods, such as explicit renormalization and multiscale analysis, to make progress
towards the complete construction of QFT models, e.g. to show the existence of the
continuum and the thermodynamic limits of correlations for the SU(3) YM model
and QCD, and also other interesting models which are still not fully understood.

We now turn to generating functions and correlations. The folklore tells us
that the TUV bound of Eq. (23) is enough to bound the generating function and
correlations. For the case of the scaled free field (see Appendix A), the generating
function for powers of the field at a single point 𝑥 is

⟨𝑒𝐽 𝜙 (𝑥 )⟩ = exp
1
2
[
𝐽2⟨[𝜙(𝑥)]2⟩

]
,

where 𝐽 is a constant source strength, and the expectations ⟨[𝜙(𝑥)]𝑟 ⟩, 𝑟 = 1, 2, . . .,
are Gaussians and are also bounded. So as not to think that these boundedness
properties only hold for the scaled scalar free field, in Appendix B, we prove that
they also hold for another scaled field model, which we call truncated model and
which is a good candidate for a continuum QFT model that exists and in perturbation
theory it is nontrivial (non-Gaussian) in 𝑑 = 4. This is important because of the
recent triviality results for 𝜙4

4 by Aizenman and Dumenil-Copin [50].
The model partition function, denoted here by 𝑍 𝑡

Λ
, is obtained from the scaled

free field partition function (see Eqs. (A4) and (A6) of Appendix A) by replacing
the bond factor exp[𝜅2𝜙(𝑥)𝜙(𝑥+𝜇)], where 𝜅2 > 0 is the (squared) hopping parameter
and 𝑥+𝜇 = 𝑥 + 𝑎𝑒𝜇, by the truncation

[
1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇)

]
. We call this model the

truncated model. The partition function 𝑍 𝑡
Λ

obeys the TUV stability bound, recalling
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that Λ𝑠 = 𝐿
𝑑 ,

𝑒𝑐ℓΛ𝑠 ≤ 𝑍 𝑡
Λ ≤ 𝑒𝑐𝑢Λ𝑠 , (29)

with finite constants 𝑐ℓ and 𝑐𝑢 independent of Λ𝑠 and 𝑎 ∈ (0, 1]. The bounds
depend on Λ𝑠 in the exponent and not the physical volume (𝑎𝐿)𝑑 in R𝑑 .

We also prove that the generating function ⟨𝑒𝐽 𝜙 (𝑥 )⟩ obeys the bound

⟨𝑒𝐽 𝜙 (𝑥 )⟩ ≤ 𝑒𝑐𝑢−𝑐ℓ 𝑒𝐽2
,

with the same constants 𝑐ℓ and 𝑐𝑢 of Eq. (29). Applying Cauchy estimates, this
bound leads to the bound on the coincident point correlation with 𝑟 = 1, 2, . . .
fields 𝜙

⟨𝜙𝑟 (𝑥)⟩ ≤ 𝑒𝑒𝑐𝑢−𝑐ℓ 𝑟! .
The point is that the TUV stability bound using the lattice number of sites Λ𝑠 = 𝐿

𝑑

is enough to bound the generating function and correlations.
Concerning the YM model, inspired by [51], we define a gauge-invariant physical,

unscaled plaquette field as follows. Consider the plaquette 𝑝 = 𝑝𝜇𝜈 (𝑥), 𝜇 < 𝜈, in
the 𝜇𝜈 coordinate plane. The unscaled plaquette field associated with 𝑝 is given
by, recalling that 𝑈𝑝 = exp{𝑖𝑋𝑝},

Tr F 𝑢
𝑝 (𝑥) =

1
𝑎2𝑔

Im Tr(𝑈𝑝 − 1) = 𝑖

2𝑎2𝑔
Tr[𝑈†

𝑝 −𝑈𝑝] =
1
𝑎2𝑔

Tr(sin 𝑋𝑝). (30)

The reason for the above [1/(𝑎2𝑔)] multiplicative factor in Eq. (30) is that,
if one uses the physical parametrization for 𝑈𝑏 = exp(𝑖𝑔𝑎𝐴𝑏), then we obtain, for
0 < 𝑎 ≪ 1, that Tr F 𝑢

𝑝 ≃ Tr 𝐹𝑎
𝜇𝜈 , where

𝐹𝑎
𝜇𝜈 = 𝜕𝑎𝜇 𝐴𝜈 (𝑥) − 𝜕𝑎𝜈 𝐴𝜇 (𝑥) + 𝑖𝑔[𝐴𝜇 (𝑥), 𝐴𝜈 (𝑥)], (31)

with a commutator in the Lie algebra of G = U(𝑁), SU(𝑁).
Similarly to what we did for the gauge fields and Wilson action, we define the

scaled plaquette field F 𝑠
𝑝 (𝑥) by

Tr F 𝑠
𝑝 (𝑥) = 𝑎𝑑/2 Tr F 𝑢

𝑝 (𝑥) =
𝑎 (𝑑−4)/2

𝑔
Im Tr

(
𝑈𝑝 − 1

)
. (32)

As before, we emphasize that, in the above equations, 𝑔 = 0 is only an apparent
singularity follows from Lemma 2 (see below).

To analyze the plaquette field generating functions, we use this scaled plaquette
field. The scaled field plaquette correlations are proved to be bounded, uniformly in
𝑎 ∈ (0, 1]. These bounds imply bounds on the singular behaviour, when 𝑎 ↘ 0, of
the physical, unscaled plaquette correlations. For example, the bound implies that
the physical, unscaled plaquette-plaquette correlation has a singularity of at most
𝑎−𝑑 , when 𝑎 ↘ 0.

Remark 7. It is important to remark that the exponential decay of physical,
unscaled plaquette field correlations is the same as that of scaled plaquette field
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correlations. Hence, the associated E-M spectrum is also the same. Also, in the
abelian case, it is known that local polynomials in the plaquette fields form a dense
set in the subspace of gauge-invariant vectors in the associated model quantum
mechanical Hilbert space H . Whether or not these local fields form a dense set in
the nonabelian case requires further investigation. We know it generates the low-lying
E-M massive glueball spectrum. Possibly, more general loop variables are needed
to go up in the spectrum [8].

Rather than bounding the scaled plaquette field correlations directly, we bound
the generating function of 𝑟-scaled (𝑟 ∈ N) plaquette field correlations. To do this, we
use periodic b.c. and the multireflection method (see [4]). Based on the work of [51],
we define a scaled generating function for the correlation of 𝑟 ∈ N gauge-invariant
scaled plaquette fields as〈

exp
{ 𝑟∑︁
𝑗=1
𝐽 𝑗 Tr F 𝑠

𝑝 𝑗
(𝑥 𝑗)

}〉
=

1
𝑍𝑃
Λ

∫
exp

{ 𝑟∑︁
𝑗=1
𝐽 𝑗 Tr F 𝑠

𝑝 𝑗
(𝑥 𝑗) −

𝑎𝑑−4

𝑔2

∑︁
𝑝∈Λ

𝐴𝑝 (𝑈𝑝)
}
𝑑𝜇(𝑈)

≡ 𝐺𝑟 ,Λ(𝐽 (𝑟 ) ,𝑥) ≡ 𝐺𝑟 (Λ, 𝑎, 𝐽 (𝑟 ) ,𝑥), (33)

where 𝐽 (𝑟 ) denotes the whole set of 𝑟 source strengths {𝐽1, . . . , 𝐽𝑟 } and 𝑥 the set of
𝑟 external points {𝑥1, . . . , 𝑥𝑟 }. We note that the denominator is the 𝐽 (𝑟 ) = 0 value
of the numerator integral, with periodic b.c., which is the periodic b.c. partition
function 𝑍𝑃

Λ
. Also, here 𝑝 𝑗 is a short notation for 𝑝𝜇 𝑗 𝜈 𝑗 (𝑥 𝑗).

Of course, the scaled plaquette fields correlation are given by the source derivatives
(𝜕/𝜕𝐽 𝑗) at 𝐽 (𝑟 ) = 0, i.e. setting all the sources to zero. Namely, for 𝑦𝐸 = {𝑦1, . . . , 𝑦𝑟 },
we have

𝐶𝑟 ,Λ(𝑦𝐸) ≡ 𝐶𝑟 (Λ, 𝑎, 𝑦𝐸) =
𝜕𝑟

𝜕𝐽1(𝑦1) . . . 𝜕𝐽𝑟 (𝑦𝑟 )
𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) )

����
𝐽 (𝑟 )=0

. (34)

In Theorem 4 below, we prove that the scaled generating function 𝐺𝑟 ,Λ(𝐽 (𝑟 ) ,𝑥)
is absolutely bounded, with a bound that is independent of 𝐿, 𝑎, 𝑔, and the
location and orientation of the 𝑟 external plaquette fields. This bound leads to the
existence of a sequential or subsequential thermodynamic limit 𝐺𝑟 ,𝑎 (𝐽 (𝑟 ) ) and then
to a continuum 𝑎 ↘ 0 (at least subsequential) limit 𝐺𝑟 (𝐽 (𝑟 ) ).

The generating function bound also has an interesting structure. The bound has
only a product of single-plaquette, single bond-variable partition function 𝑧𝑢 (𝐽) with
a source strength field 𝐽 in the numerator; in the denominator only a product
of 𝑧ℓ (the same as in the preceding case!) occurs. In the bound for 𝑧𝑢 (𝐽) the
probability density for the Gaussian symplectic ensemble (GSE) appears (see [43]).
The generating function is jointly analytic, entire function in the source strengths
𝐽1, . . . , 𝐽𝑟 of the 𝑟 plaquette fields (for SU(𝑁), the analyticity domain is finite). The
𝑟-plaquette field correlations admit a Cauchy integral representation and are bounded
by Cauchy bounds. In particular, the coincident point plaquette-plaquette physical
field correlation is bounded by const 𝑎−𝑑 . The 𝑎−𝑑 factor at small 𝑎 behaviour is the
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same as that of the physical or unscaled real derivative scalar free field two-point
correlation (the physical free field correlation has a singular behaviour 𝑎−(𝑑−2) ).
For the free field, these singular behaviours are a measure of ultraviolet asymptotic
freedom, in the context of the lattice approximation to a continuum QFT.

In this way, we conclude that the singular behaviour of the plaquette correlations
is bounded by the singular behaviour of the free derivative scalar field correlations in
𝑑 = 2, 3, 4. For the physically relevant 𝑑 = 4 case, we can say more. The behaviour of
the coincident plaquette, physical plaquette-plaquette correlation is exactly 𝑎−𝑑ℎ(𝑔),
for some function ℎ(𝑔) which is bounded.

For the free physical scalar field, locally scaled field correlations are bounded
uniformly in 𝑎 ∈ (0, 1], such as no smearing of the fields is needed to achieve
boundedness. The two-point correlation of physical fields for coincident points has an
𝑎2−𝑑 singular behaviour, for 𝑑 = 3, 4. If we consider correlations of physical derivative
scalar fields, then the singular behaviour is different. The two-point correlation of
physical derivative scalar fields, at coincident points, has an 𝑎−𝑑 , 𝑎 ↘ 0 singularity,
for 𝑑 = 2, 3, 4; for the massless case the exact value is 𝑎−𝑑/𝑑.

For the free field, the relation between the correlations of physical fields or
physical derivative fields and their scaled counterparts is developed in Appendix A.

In this paper, first, we give detailed and much simplified proofs of the theorems
of the unpublished references [28, 29], using free boundary conditions. Moreover,
we are able to incorporate the case of periodic boundary conditions in the present
analysis. Similar finiteness results are shown to hold for the generating function of
gauge-invariant plaquette fields [51] and their correlations. For doing this, we adopt
periodic b.c. and apply the multireflection method [4].

Besides, in order the allow the reader see how our methods work in a simpler
case, we discuss the special case of the abelian gauge group U(1). For this group,
the Haar measure is much simpler as compared with U(𝑁 > 1) [33–36] and
computations can be carried out more explicitly and transparently, and we emphasize
that the independence of our bounds on 𝑎 ∈ (0, 1] is already manifest in this case
and the reader can better appreciate why this holds true.

For both, free and periodic b.c., our TUV stability bounds on the scaled partition
functions (defined by extracting the 𝑎 ↘ 0 singularity) lead to at least the existence
of the subsequential thermodynamic and ultraviolet limits of the corresponding scaled
free energies per effective degree of freedom. The existence of these subsequential
continuum limits apply to any gauge model with the same Wilson action and
free/periodic b.c.

We now emphasize that our method does not intend to be a substitute to other
powerful methods such as the RG multiscale formalism. However, it corresponds to
a simple way to obtain TUV and generating function bounds, as well as it allows to
a simple characterization of UV asymptotic freedom in the context of a lattice field
theory. Our results hold for the whole one-parameter family of models depending
on the gauge coupling 𝑔, such that 𝑔2 ∈ (0, 𝑔2

0], 0 < 𝑔2
0 < ∞. As pointed out before,

the type of singularity we met for the plaquette-plaquette correlation is typical of
UV asymptotic models, as it is expected on physical grounds. Concerning the mass,
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whether or not our YM models have a mass is not known for now. However, we
can think that applying our methods with the ones developed in [51] can be used to
attack this question. Recall that in [51], a gauge-invariant glueball state was shown
to be present in the E-M spectrum, with mass gap of −8 ln 𝛽 (0 < 𝛽 = 1/𝑔2 ≪ 1).
This state is isolated from above and below (going down to the vacuum state!) in
the spectrum and shows it determines a mass gap. The needed spectral methods,
based on the analysis of correlations and the Bethe–Salpeter operator kernel, are
the same developed by [52] and employed e.g. in [53, 54] and in many other cases
of strongly coupled lattice QCD. We still have a long way to go to get more
substantial progress regarding YM and QCD models.

We give a brief overview of our main results. In Lemma 2, we give a repre-
sentation for the Wilson plaquette action and for plaquette fields. This representation
is used to prove an upper bound on the action which is quadratic in the gluon
fields. In turn, this bound is used to obtain a lower bound on the Wilson partition
function in Theorem 1.

In Theorem 1, we obtain a factorized stability bound on the Wilson partition
function. The positivity of each plaquette action in the Wilson action plays a role in
the proof of the upper stability bound and its factorization. Each factor is a partition
function of a single plaquette action with only a single bond variable. The stability
bound is good enough for the existence of the thermodynamic limit of the free
energy. However, the bound is not uniform in the lattice spacing 𝑎 ∈ (0, 1]. So, it
is not enough to show, subsequently, the existence of the continuum 𝑎 ↘ 0 limit.
Upper and lower bounds on the single plaquette partition function are obtained in
Theorem 2.

We define a scaled partition function and, using the results of Theorems 1
and 2, in Theorem 3, we prove that it satisfies upper and lower stability bound,
which are uniform in 𝑎 ∈ (0, 1] and leads to a scaled free energy which does have
a subsequential continuum limit, at least. To obtain TUV stability bound, it is crucial
to scale the physical gluon field 𝐴𝑢

𝑏
, as it appears in the physical parametrization

𝑈𝑏 = exp[𝑖𝑔𝑎𝐴𝑢
𝑏
] and use the scaled gluon field 𝐴𝑏 = 𝑎 (𝑑−2)/2𝐴𝑢

𝑏
Also, we consider the generating function for correlations of 𝑟 = 0, 1, 2, . . .

plaquette fields defined in Eqs. (30) and (32). In Theorem 4, we prove that this
generating function is bounded uniformly in the number of lattice sites, 𝑎 ∈ (0, 1]
and 𝑔2 ∈ (0, 𝑔2

0 < ∞]. The exponent of the exponential bound is the sum of the
square of the 𝑟 source strengths. The bound is also independent of the location
and orientation of the 𝑟 plaquette fields. Using analyticity in the sources and
Cauchy bounds these results imply that the 𝑟-plaquette correlations are also bounded
uniformly in 𝑎 ∈ (0, 1] and 𝑔2 ∈ (0, 𝑔2

0 < ∞]. In particular, the bound is UV regular,
meaning the bound holds if some of the positions of the plaquette fields coincide.

The paper is organized as follows. In Section 2, we define the model with
the Wilson action for periodic and free b.c. In Section 3, we define and treat
an approximate model. In the approximate model, we set to zero, in the Wilson
action, plaquette actions corresponding to interior horizontal plaquettes (i.e. plaquettes
orthogonal to the time direction), plus some specified plaquettes on the boundary
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𝜕Λ of Λ. Next, by a judicious integration procedure, we carry out all the remaining
gauge bond variable integrations. In each integration, a factor is extracted which
is a plaquette partition function depending only on a single bond variable. In
this way, we obtain explicit and exact results for the approximate model partition
function, free energy and plaquette correlations, as well as their continuum limits,
in Subsections 3.1, 3.2 and 3.3. For the complete model, TUV stability bounds and
bounds for the generating functions for the gauge-invariant plaquette correlations are
given in Sections 4 and 5, as our four main theorems. These theorems are proved
in Section 6. Section 7 is devoted to some concluding remarks. We provide three
appendices aiming at giving the reader the opportunity to understand essential steps in
our proofs for the YM model in a context of simpler model cases. In Appendix A,
we develop the relation between original physical, unscaled quantities and their
scaled counterparts for the free field. The use of scaled fields removes the UV
divergences of the free energy and correlations, even at coincident points. Comparing
the 𝑎 ↘ 0 behaviour of the free scalar case with the physical field coincident-point
plaquette-plaquette correlation gives us a characterization of ultraviolet asymptotic
freedom.

As a bonus, the scaled field free energy and correlations admit absolutely
convergent power series in the scaled coupling (hopping) parameter up to and
including the critical point. The same holds for the random walk expansion associated
with the scaled field free energy and scaled field correlations.

In contrast with the scalar model analyzed in [50], in Appendix B, we treat
a lattice scalar field model, which is non-Gaussian in perturbation theory in 𝑑 = 3, 4.
We prove that it obeys TUV stability bounds with the exponent of the exponential
proportional to the number of lattice sites Λ𝑠 = 𝐿

𝑑 (not the volume (𝑎𝐿)𝑑 in R𝑑).
The proportionality constants are uniform in 𝐿 ∈ N (even) and 𝑎 ∈ (0, 1]. This
bound is sufficient to bound the scaled field free energy and correlations, even at
coincident points, uniformly in 𝑎 ∈ (0, 1].

Finally, we note that we have obtained local factorized bounds of the YM
partition function in the text. In Appendix C, we show how local factorized bounds
are obtained in the case of Bose fields.

2. The Wilson YM model
This section is devoted to the definition of our lattice YM model.

Remark 8. We warn the reader that all definitions given above (lattice, sites,
plaquettes, partition function,. . . ) are assumed to hold here and below in our text.
In order to simplify the notation, sometimes, we will drop the 𝑢 and 𝑠 superscripts
to differ the same quantity in its unscaled and scaled versions, respectively. Instead,
we will assign two different letters for them, making clear in the text which is
which. Also, our notation will avoid to write the 𝑎-dependence explicitly. Finally, as
it was observed above, we concentrate on the case of the gauge group G = U(𝑁).
The case of the gauge group G = SU(𝑁) is obtained from this one with minor
adaptations.
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We describe the partition function of the free and periodic b.c. scaled YM
models and their gauge invariance properties. The superscript 𝑃 will denote periodic
b.c. quantities.

Free b.c. bonds: Recalling that a lattice site is 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑑−1), where 0 labels
the time direction, 𝑒𝜇, 𝜇 = 0, 1, . . . , (𝑑 − 1), is the unit vector of the 𝜇-th direction
and 𝑏𝜇 (𝑥) is the lattice bond with initial point 𝑥 and terminal point 𝑥𝜇+ ≡ 𝑥+𝑎𝑒𝜇 ∈ Λ,
the number of free b.c. bonds in Λ is Λ𝑏 = 𝑑 (𝐿 − 1)𝐿𝑑−1. Sometimes, we refer to
the bonds in the time direction 𝑥0 as vertical bonds. The other (spatial) bonds are
called horizontal.

Periodic b.c. bonds: In addition to free b.c. bonds, we have additional or extra bonds
in our periodic lattice. An extra bond has initial point at the extreme right lattice
site and terminal point at the extreme left lattice site, in each coordinate direction.
If Λ𝑒 denotes the number of extra bonds, we have Λ𝑒 = 𝑑𝐿

𝑑−1. The total number of
bonds in Λ with periodic b.c. (henceforth called periodic bonds) is Λ𝑃

𝑏
= Λ𝑏 + Λ𝑒.

Free b.c. plaquettes : The free b.c. plaquettes are the plaquettes 𝑝𝜇𝜈 (𝑥), in the
𝜇𝜈-plane, with 𝜇 < 𝜈. Its vertices are the lattice sites 𝑥, 𝑥𝜇+ ≡ 𝑥 + 𝑎𝑒𝜇, 𝑥𝜇+ + 𝑎𝑒𝜈 ,
𝑥𝜈+ ≡ 𝑥 + 𝑎𝑒𝜈 of Λ.

Periodic b.c. plaquettes: In addition to the free b.c. lattice plaquettes, there are
also extra plaquettes formed at least with one periodic b.c. bond. The periodic
b.c. plaquettes are comprised of all plaquettes that can be formed from the totality
of periodic b.c. bonds. We denote the total number of free (periodic) plaquettes
by Λ𝑝 (Λ𝑃

𝑝 ). We have, Λ𝑝 = Λ𝑟 , for 𝑑 = 2; Λ𝑝 ≃ 3𝐿3, 6𝐿4, respectively, for 𝑑 = 3, 4.
Λ𝑃

𝑝 is given by Λ𝑝 plus the number of boundary plaquettes.

Recalling that 𝑎 ∈ (0, 1] and 𝑔2 ∈ (0, 𝑔2
0), 0 < 𝑔2

0 < ∞, and letting 𝐵 = blank or𝑃,
to denote the free and periodic b.c., respectively, we represent the model partition
function, with 𝐵-type b.c., by Eq. (6). Namely, we have

𝑍𝐵
Λ (𝑎) =

∫
exp

[
−𝑎

𝑑−4

𝑔2

∑︁
𝑝∈Λ

𝐴𝑝 (𝑈𝑝)
]
𝑑𝜇(𝑈)

≡
∫

exp
[
−𝑎

𝑑−4

𝑔2

∑︁
𝑝∈Λ

2Re Tr(1 −𝑈𝑝)
]
𝑑𝜇(𝑈), (35)

with 𝑑𝜇(𝑈) = ∏
𝑏∈Λ 𝑑𝜇(𝑈𝑏). The Wilson plaquette action 𝐴𝑝 (𝑈𝑝) is defined ac-

cording to Eq. (7) and is given by

𝐴𝑝 (𝑈𝑝) = 2Re Tr(1−𝑈𝑝) = ∥𝑈𝑝 − 1∥2
𝐻−𝑆 = Tr

(
2−𝑈𝑝 −𝑈†

𝑝

)
= 2 Tr(1˘ cos 𝑋𝑝). (36)

Here, ∥ · ∥𝐻−𝑆 means the Hilbert–Schmidt norm and the dagger sign denotes the
adjoint. The last equality is proved below, before Lemma 1. For 𝑝 = 𝑝𝜇𝜈 (𝑥), the
plaquette with vertices as in Eq. (4), and bonds 𝑏1 = [𝑥, 𝑥𝜇+ ], 𝑏2 = [𝑥𝜇+ , 𝑥

𝜇
+ + 𝑎𝑒𝜈],
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𝑏3 = [𝑥𝜈+ , 𝑥𝜈+ + 𝑎𝑒𝜇] and 𝑏4 = [𝑥, 𝑥𝜈+], we have

𝑈𝑝 = 𝑈𝑏1𝑈𝑏2𝑈
†
𝑏3
𝑈

†
𝑏4

= 𝑈𝑏1𝑈𝑏2

[
𝑈𝑏4𝑈𝑏3

]†
= 𝑒𝑖𝑋𝑝 . (37)

The last equality for 𝐴𝑝 (𝑈𝑝) above uses the fact 𝑈𝑝 is a unitary variable, as
given in Eq. (37). All the above definitions are independent of the gauge variable
parametrization.

If we adopt the physical parametrization of Eq. (7), i.e. 𝑈𝑏 = exp[𝑖𝑔𝑎𝐴𝑏], with
𝐴𝑝 → 𝐴𝑢

𝑝, denoting the unscaled Wilson action, we obtain

𝑍
𝑢,𝐵

Λ,𝑎
=

∫
exp

[
−𝑎

𝑑−4

𝑔2 𝐴𝑢,𝐵

]
𝑑𝑔𝐵. (38)

Here, we assigned a gauge bond variable for each bond 𝑏 which is a unitary matrix
𝑈 ∈ G = U(𝑁). The measure 𝑑𝑔𝐵 is the product over bonds 𝑏 of the single-bond G
Haar measures 𝑑𝜎(𝑈). 𝑑𝑔𝐵 is expressed in terms of the physical, unscaled gauge
potentials 𝐴𝑢

𝑏
, according to Eq. (3). For 𝑝 denoting any fixed plaquette, the model

unscaled action is
𝐴𝑢,𝐵 =

∑︁
𝑝

𝐴𝑢
𝑝, (39)

where the sum
∑

𝑝 is over plaquettes in the lattice Λ with the b.c. of type 𝐵.
Obviously, the plaquette actions 𝐴𝑢

𝑝, and then the total action 𝐴𝑢,𝐵, are pointwise
positive. This is an important property which we will use when deriving our bounds
below.

To define 𝐴𝑢
𝑝, we first recall some important facts about unitary matrices and

their representation in terms of elements of the Lie algebra of self-adjoint matrices
associated with the gauge group G.

For an 𝑁 × 𝑁 matrix 𝑀 , recall the Hilbert–Schmidt norm is ∥𝑀 ∥𝐻−𝑆 =

[Tr(𝑀†𝑀)]1/2. Let 𝑀1 and 𝑀2 be 𝑁 × 𝑁 matrices. Then (𝑀1, 𝑀2) ≡ Tr(𝑀†
1𝑀2)

is a sesquilinear inner product. We also have the following properties, which are
summarized in the next lemma.

Lemma 1. (1) Let 𝑋 be a self-adjoint matrix. Define exp(𝑖𝑋) by the Taylor
series expansion of the exponential. Then exp(𝑖𝑋) is unitary.

(2) Given a unitary 𝑁 ×𝑁 matrix 𝑈, by the spectral theorem, there exists a unitary
𝑉 such that 𝑉−1𝑈𝑉 = diag(𝑒𝑖𝜆1 , . . . , 𝑒𝑖𝜆𝑁 ), 𝜆 𝑗 ∈ (−𝜋, 𝜋]. The 𝜆 𝑗 are the angular
eigenvalues of 𝑈. Define 𝑋 = 𝑉−1diag(𝜆1, . . . , 𝜆𝑁 )𝑉 . Then, 𝑋 is self-adjoint,
𝑈 = exp(𝑖𝑋), and the exponential map is onto (see [30]).

(3) For 𝛼 = 1, 2, . . . , 𝑁 , let the self-adjoint 𝜃𝛼 form a basis for the self-adjoint
matrices (the U(𝑁) Lie algebra generators), with the normalization condition
Tr 𝜃𝛼𝜃𝛽 = 𝛿𝛼𝛽 , with a Kronecker delta. Then, with 𝑋 being an 𝑁×𝑁 self-adjoint
matrix, 𝑋 has the representation 𝑋 =

∑
1≤𝛼≤𝑁2 𝑥𝛼𝜃𝛼, with 𝑥𝛼 = Tr 𝑋𝜃𝛼, for 𝑥𝛼

real.
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(4) For 𝑈 and 𝑋 related as in item 2, we have the important equalities,

∥𝑋 ∥2
𝐻−𝑆 = Tr

(
𝑋†𝑋

)
=

∑︁
1≤𝛼≤𝑁2

|𝑥𝛼 |2 = |𝑥 |2 =
∑︁

1≤ 𝑗≤𝑁

𝜆2
𝑗 ≤ 𝑁𝜋2, 𝜆 𝑗 ∈ (−𝜋, 𝜋] .

Thus, the exponential map is onto, for |𝑥 | ≤ 𝑁1/2𝜋.
(5) In particular, if 𝑋𝑏 = 𝑎𝑔𝐴𝑢

𝑏
, the equality of the last item takes the form

∥𝑋 ∥2
𝐻−𝑆 = Tr

(
𝑋†𝑋

)
=

∑︁
1≤𝛼≤𝑁2

|𝑥𝛼 |2 =

𝑁∑︁
𝑗=1
𝜆2
𝑗 = 𝑎

2𝑔2
𝛿𝑁∑︁
𝑐=1

��𝐴𝑢,𝑐

𝑏

��2 =
𝑔2

𝑎𝑑−4

𝛿𝑁∑︁
𝑐=1

��𝐴𝑐
𝑏

��2 ,
(40)

where we used the scaling relation given in Eq. (11), namely,

𝐴𝑏 = 𝑎 (𝑑−2)/2𝐴𝑢
𝑏 . (41)

Eq. (40) uses the content of Eq. (24).

The unscaled gauge field 𝐴𝑢
𝑏

has the representation 𝐴𝑢
𝑏
=
∑

1≤𝛼≤ 𝛿𝑁
𝐴
𝑢,𝛼

𝑏
𝜃𝛼, and

we refer to 𝐴
𝑢,𝛼

𝑏
as the physical, unscaled color or gauge components of 𝐴𝑢

𝑏
. For

𝑝 = 𝑝𝜇𝜈 (𝑥), the plaquette variable 𝑈𝑝, is given by Eq. (5), with 𝐴𝜇 (𝑥) → 𝐴𝑢
𝜇 (𝑥).

Likewise, adopting the physical parametrization for the 𝑈𝑏 in 𝑈𝑝 and with 𝑈𝑝 = 𝑒𝑖𝑋𝑝 ,
the positive unscaled plaquette action 𝐴𝑢

𝑝 for the plaquette 𝑝 is defined as in below
Eq. (6), by

𝐴𝑢
𝑝 = ∥𝑈𝑝 − 1∥2

𝐻−𝑆 = 2Re Tr(1 −𝑈𝑝) = 2 Tr(1˘ cos 𝑋𝑝) = Tr
(
2 −𝑈𝑝 −𝑈†

𝑝

)
. (42)

For concreteness, we give the case of the gauge group G = U(2), as an example.
Here, 𝑋 =

∑
𝛼=1,...,4 𝑥𝛼𝜃𝛼, with Tr 𝜃𝛼𝜃𝛽 = 𝛿𝛼𝛽 (with a Kronecker delta), and, for 𝜎𝑗 ,

for 𝑗 = 1, 2, 3, 4 being the three 2 × 2 traceless and hermitian Pauli spin matrices
𝜎1, 𝜎2, 𝜎3, and 𝜎4 = 𝐼 is the 2 × 2 identity. For U(2), we can take 𝜃 𝑗 = 𝜎𝑗/

√
2.

This completes the description of the model.
Using the Baker–Campbell–Hausdorff formula [32] for noncommuting operators

𝑋 and 𝑌 ,

𝑒𝑋𝑒𝑌 = 𝑒𝑍 ; 𝑍 = 𝑋 + 𝑌 + 1
2
[𝑋,𝑌 ] + 1

12
[𝑋, [𝑋,𝑌 ]] − 1

12
[𝑌, [𝑋,𝑌 ]] + · · · , (43)

formally, it is shown in [3], for small lattice spacing 𝑎 > 0, that

𝑈𝑝 = exp
[
𝑖𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑥) + 𝑅
]
, 𝑅 = O(𝑎3),

where 𝐹𝑎
𝜇𝜈 (𝑥) is the finite lattice unscaled nonabelian strength field tensor given in

Eq. (31). Namely, we have

𝐹𝑎
𝜇𝜈 (𝑥) = 𝜕𝑎𝜇 𝐴𝑢

𝜈 (𝑥)˘𝜕𝑎𝜈 𝐴𝑢
𝜇 (𝑥) + 𝑖𝑔[𝐴𝑢

𝜇 (𝑥), 𝐴𝑢
𝜈 (𝑥)],

with finite difference derivatives

𝜕𝑎𝜇 𝐴
𝑢
𝜈 (𝑥) = 𝑎−1 [𝐴𝑢

𝜈 (𝑥 + 𝑎𝑒𝜇)˘𝐴𝑢
𝜈 (𝑥)

]
. (44)
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Also, it is shown that the unscaled plaquette action satisfies, for small 𝑎, 𝐴𝑢
𝑝 ≃

𝑎4𝑔2 Tr
[
𝐹𝑎
𝜇𝜈 (𝑥)

]2. Each term in
[
𝐹𝑎
𝜇𝜈 (𝑥)

]
is self-adjoint. Hence, the square is a self-

adjoint and positive matrix, and its trace is positive. The quantity {[𝑎𝑑−4/𝑔2]∑𝑝 𝐴𝑝}
is the Riemann sum approximation to the classical smooth field continuum YM
action {

∫
Tr(𝐹𝑎

𝜇𝜈)2(𝑥) 𝑑𝑑𝑥}. When Λ ↗ 𝑎Z𝑑 and after 𝑎 ↘ 0, formally, and the
finite difference derivatives become ordinary partial derivatives.

We now discuss gauge invariance and gauge fixing in detail. We take the global
gauge group Gglobal as the product of a G = U(𝑁), SU(𝑁) group at each lattice
site. Namely,

Gglobal =
∏
𝑥∈Λ

G𝑥 ,

where an element of G𝑥 is an element of G. It transforms the bond variables
𝑈𝑏 ≡ 𝑈𝑥,𝑥+𝜇 and its adjoint 𝑈†

𝑏
to

𝑈𝑥,𝑥+𝜇 → 𝑈𝑥𝑈𝑥,𝑥+𝜇𝑈
†
𝑥+𝜇
, 𝑈

†
𝑥,𝑥+𝜇

→ 𝑈𝑥+𝜇𝑈
†
𝑥,𝑥+𝜇

𝑈†
𝑥 , (45)

respectively. It is easy to see that Tr𝑈𝑝 is invariant under these transformation. From
this, it follows that the plaquette action 𝐴𝑝 (𝑈𝑝) and the total action

∑
𝑝 𝐴𝑝 (𝑈𝑝)

are also invariant under this local gauge transformation.
Due to the local gauge invariance of the action 𝐴𝑢

𝑝, and so also 𝐴𝑢,𝐵 =
∑

𝑝 𝐴
𝑢
𝑝,

there is an excess of gauge variables in the definition of the partition function given
of Eq. (38). By a gauge fixing procedure [4], we eliminate gauge variables by
setting them, in the action, equal to the identity and performing the trivial gauge
bond variable integration. In this process of gauging away some of the gauge group
bond variables, the value of the partition function is unchanged, as long as the
gauged away bonds do not form a closed loop in Λ (see [4]).

We work with the enhanced temporal gauge. This gauge will be fixed to prove
some of our main results.

In the enhanced temporal gauge, the temporal bond variables in Λ are set to
the identity, as well as certain specified bond variables on the boundary 𝜕Λ of Λ.
The number Λ𝑟 of retained bonds (see Eq. (9)) is, for free b.c., Λ𝑟 = [(𝐿 − 1)2],
[(2𝐿 + 1) (𝐿 − 1)2], [(3𝐿3 − 𝐿2 − 𝐿 − 1) (𝐿 − 1)], respectively, for 𝑑 = 2, 3, 4. Clearly,
Λ𝑟 ≃ (𝑑 − 1)𝐿𝑑 , for sufficiently large 𝐿, and Λ𝑟 ↗ ∞ as Λ ↗ 𝑎Z𝑑 . For periodic
b.c., the same bond variables are gauged away; the number of nongauged away
bond variables is then (Λ𝑟 + Λ𝑒), where we recall that Λ𝑒 is the number of extra
bonds to implement periodic b.c.

The precise definition of gauged away bonds, for free b.c., is as follows (see
page 4 of [49] for more details). We label the sites of the 𝜇-th lattice coordinate by
1, 2, . . . , 𝐿. The enhanced temporal gauge is defined by setting in Λ the following
bond variables to 1. First, for any 𝑑 = 2, 3, 4, we gauge away all temporal bond
variables in Λ by setting 𝑔𝑏0 (𝑥 ) = 1. For 𝑑 = 2, take also 𝑔𝑏1 (𝑥0=1,𝑥1 ) = 1. For
𝑑 = 3, set also 𝑔𝑏1 (𝑥0=1,𝑥1 ,𝑥2 ) = 1 and 𝑔𝑏2 (𝑥0=1,𝑥1=1,𝑥2 ) = 1. Similarly, for 𝑑 = 4, set
also to 1 all 𝑔𝑏1 (𝑥0=1,𝑥1 ,𝑥2 ,𝑥3 ) , 𝑔𝑏2 (𝑥0=1,𝑥1=1,𝑥2 ,𝑥3 ) and 𝑔𝑏3 (𝑥0=1,𝑥1=1,𝑥2=1,𝑥3 ) . For 𝑑 = 2
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the gauged away bond variables form a comb with the teeth along the temporal
direction, and the open end at the maximum value of 𝑥0. For 𝑑 = 3, the gauged
away bonds can be visualized as forming a scrub brush with bristles along the 𝑥0

direction and the grip forming a comb. For any 𝑑, all gauged away bond variables
are associated with bonds in the hypercubic lattice Λ which form a maximal tree.
Hence, by adding any other bond to this set, we form a closed loop.

In the next section, we consider the case of an approximate model and obtain
TUV stability bounds. This analysis is intended to allow the reader to get an overall
view on how the TUV bounds hold, showing a factorization structure.

3. TUV stability and plaquette field correlations for an approximate model
With the definitions given in Section 2 for our YM model in mind, in this

section, we restrict our attention to a simplified lattice YM model. Of particular
interest are the contents of the basic Eqs. (35), (36), (37), (38), (39) and (42),
which will be used repeatedly here, as well as in the next sections.

Before attacking the complete nonabelian mode, in order to allow the reader to
understand better the main points of our proofs, we consider a simplified YM model,
with free b.c. In the Wilson action, we set to zero the actions corresponding to
internal horizontal plaquettes (i.e. those plaquettes which are orthogonal to the time
direction), plus certain specified plaquettes on the boundary 𝜕Λ of the lattice Λ.
We refer to this model as the approximate model.

For the approximate model, the free energy, plaquette field [check Eq. (30)]
correlations and their thermodynamic limits, as well as their continuum limits, are
obtained explicitly and exactly. The bounds obeyed in the approximate model are
a good guide for the model without approximation.

In Subsection 3.1, we define the approximate model and treat stability. In Sub-
section 3.2, we obtain plaquette field correlations considering the gauge group U(1).
The plaquette field correlation results are extended to U(𝑁 ≥ 2) in Subsection 3.3.

The complete, nonapproximate model is treated in the ensuing sections. For 𝑑 = 2,
the results obtained for the complete model and the approximate model coincide.

The physical gauge-invariant plaquette field plaquette-plaquette correlation is most
singular for coincident points. The ultraviolet limit 𝑎 ↘ 0 singular behaviour
is (const/𝑎𝑑). The same behaviour occurs for the coincident-point derivative field
correlations in the case of the real, massless scalar free field, as shown in Appendix A.

Of course, the abelian G = U(1) case and, for the model without approximation,
the formal 𝑔 ↘ 0 limit gives us the lattice free electromagnetic field with a quadratic
action. (See Remark 10 in Subsection 3.1). The plaquette-plaquette field correlations
can be obtained exactly in a momentum space representation and the coincident
point plaquette-plaquette field correlation is equal to {4/[𝑑 (𝑑 − 1)𝑎𝑑]}.

Using our scaled field method, we obtain TUV stability bounds and bounds on
the scaled free energy and also the boundedness of two-point plaquette scaled field
correlation. For the abelian gauge group G = U(1), the Haar measure is simpler,
formulae are more familiar and the analysis becomes more transparent.
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For 𝑑 = 2, the results for the two-point plaquette field correlation are exact. For
𝑑 = 3, 4, the results are also exact for the approximate model. This seemingly gross
approximation gives the correct picture for bounds for the complete YM model with
the nonabelian gauge group G = U(𝑁 > 1).

3.1. Approximate model: TUV stability
Using the physical parametrization and starting from the free b.c. partition function

of Eq. (38), we set
𝑈𝑏 = 𝑒𝑖 𝜃𝑏 = 𝑒

𝑖𝑎𝑔𝐴𝑢
𝑏 ,

where we recall 𝐴𝑢
𝑏

is the physical, unscaled gauge potential. For the plaquette
𝑝 = 𝑝𝜇𝜈 (𝑥), set

𝜃𝜇𝜈 (𝑥) = 𝜃𝜇 (𝑥) + 𝜃𝜈 (𝑥+𝜇) − 𝜃𝜈 (𝑥) − 𝜃𝜇 (𝑥+𝜈),
where 𝜃𝜇 (𝑥) ≡ 𝜃𝑏=𝑏𝜇 (𝑥 ) .

Then, the finite lattice free b.c. unscaled partition function reads

𝑍𝑢
Λ(𝑎) =

∫
| 𝜃𝑏 | ≤𝜋

exp
[
−𝑎

𝑑−4

𝑔2

∑︁
𝑥,𝜇<𝜈

2
[
1 − cos

(
𝜃𝜇𝜈 (𝑥)

) ] ] ∏
𝑏∈Λ

𝑑𝜃𝑏

2𝜋
.

In terms of the fields 𝐴𝑢
𝑏
, setting 𝐴𝜇𝜈 (𝑥) ≡ 𝑎𝐹𝑎

𝜇𝜈 (𝑥), where 𝐹𝑎
𝜇𝜈 (𝑥), given in

Eq. (31), is the usual field strength antisymmetric second order tensor, defined with
finite difference derivatives. We have

𝑍𝑢
Λ(𝑎) =

(
𝑎𝑔

2𝜋

)Λ𝑟 ∫
|𝐴𝑏 | ≤𝜋/(𝑎𝑔)

exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑥,𝜇<𝜈

2
[
1 − cos

(
𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑥)
) ]} ∏

𝑏

𝑑𝐴𝑏,

Now, we transform to the locally scaled fields 𝜒𝑏 defined by

𝜒𝑏 = 𝑎 (𝑑−2)/2𝐴𝑢
𝑏 . (46)

In terms of these fields, the free b.c. unscaled partition function is

𝑍𝑢
Λ(𝑎) =

(
𝑔

2𝜋
𝑎 (4−𝑑)/2

)Λ𝑟

×
∫
|𝜒𝑏 | ≤ (𝜋/𝑔)𝑎 (𝑑−4)/2

exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑥,𝜇<𝜈

2
[
1 − cos

(
𝑔𝑎 (4−𝑑)/2𝜒𝜇𝜈 (𝑥)

) ]}∏
𝑏

𝑑𝜒𝑏,

Remark 9. We note that, instead of the above simple expression, in the nonabelian
case U(𝑁 > 1), the Haar measure presents also a weight function factor besides the
product of Lebesgue measures [33–36].

Remark 10. In the 𝐴𝑏 variables, the Boltzmann factor, for 𝑎 ↘ 0, is approximately

exp
{
−𝑎𝑑

∑︁
𝑥,𝜇<𝜈

[
𝐹𝑎
𝜇𝜈 (𝑥)

]2
}
,



330 P. A. FARIA DA VEIGA and M. O’CARROLL

for 𝑑 = 2, 3, and for 𝑑 = 4 and 𝑔 ↘ 0. In both cases, the action approximates the
continuum model action.

In the 𝜒𝑏 variables, the Boltzmann factor, for 𝑎 ↘ 0, is approximately

exp
{
−

∑︁
𝑥,𝜇<𝜈

[
𝜒𝜇𝜈 (𝑥)

]2
}
,

for 𝑑 = 2, 3 and the same holds for 𝑑 = 4 and 𝑔 ↘ 0. Here, in both cases, the
action is independent of the lattice spacing 𝑎. In the above quadratic approximation
of the action, the model can be solved explicitly by diagonalizing the corresponding
quadratic form.

We now define more precisely and analyze our approximate model. We also
outline the bond gauge integration procedure. This is done for each value of the
spacetime dimension 𝑑 = 2, 3, 4. For simplicity, we identify coordinates of a lattice
site in each lattice direction, 𝜇 = 0, 1, 2, . . . , (𝑑 − 1), with the labels 1, 2, . . . , 𝐿. We
have:
• 𝑑 = 4: For 𝑥0 = 𝐿, 𝐿 − 1, . . . , 2, set the plaquette actions to zero in the planes

parallel to the 𝜇𝜈 = 12, 13, 23 coordinate planes. For 𝑥0 = 1, 𝑥3 = 𝐿, . . . , 2, set the
plaquette actions to zero in the coordinate planes parallel to the 12-plane;

• 𝑑 = 3: For 𝑥0 = 𝐿, 𝐿 − 1, . . . , 2, set to zero the plaquette actions in the planes
parallel to the 12-plane;

• 𝑑 = 2: maintain all the plaquette actions.

Remark 11. We remark that a simpler approximate model can be defined by
setting to zero all horizontal plaquette actions. Such a model can also be solved
exactly and the same results given here, for our approximate model, also hold.
Boundary effects disappear in the thermodynamic limit. In our approximate model,
fewer plaquette actions are discarded.

Simplified, approximate model for the abelian gauge group G = U(1)
With these definitions, we now perform the bond integration. For ease of

visualization, we carry it out explicitly for 𝑑 = 3.
For 𝑑 = 3, we integrate over successive planes of horizontal bonds starting at the

coordinate 𝑥0 = 𝐿 and ending at 𝑥0 = 2. For the 𝑥0 = 1 horizontal plane, we integrate
over successive lines of horizontal bonds in the coordinate direction two, starting
at 𝑥1 = 𝐿 and ending at 𝑥1 = 2. For each horizontal bond variable integration, the
bond variable appears in only one plaquette.

The simplification that occurs in our original model is that, in the approximate
model, we can carry out all bond integrations. Besides, for each integration, we can
extract a single plaquette partition function of a single bond variable.

We emphasize that, for 𝑑 = 2, the model was solved without any approximation
in [19].

After integration, each integral depends, in principle, on the other bond variables
of the plaquette which are present in the plaquette variable 𝑈𝑝 [see Eq. (5)].
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However, as in [19], for 𝑑 = 2, by a change of variables, the integral is independent
of the other variables and their integrals are trivially done. Here, we are using the
simplest case of the left and right invariance of the gauge group Haar measure
(see e.g. [30–32] and Eq. (54) below). In this way, a factor is extracted from the
partition function which corresponds to the scaled partition function of a single
plaquette of a single bond variable.

After the bond integration procedure is completed, we obtain

𝑍𝑢
Λ(𝑎) =

[
𝑔

2𝜋𝑎 (𝑑−4)/2

]Λ𝑟

𝑧Λ𝑟 , (47)

where 𝑧 is the scaled single bond partition function. Namely, we have

𝑧 =

∫
|𝑋 | ≤ (𝜋/𝑔)𝑎 (𝑑−4)/2

exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑥,𝜇<𝜈

2
[
1 − cos

(
𝑔𝑎 (4−𝑑)/2𝑋

) ]}
𝑑𝑋.

Using the following elementary trigonometric inequalities in the above integrand
(see e.g. [13] for a proof of the second one)

1 − cos 𝑢 ≤ 𝑢2/2, 𝑢 ∈ R,

1 − cos 𝑢 ≥ 2𝑢2

𝜋2 , 𝑢 ∈ (−𝜋, 𝜋],
(48)

we obtain the upper and lower bounds

𝑧 ≤
∫
|𝑋 | ≤ (𝜋/𝑔)𝑎 (𝑑−4)/2

exp
[
− 4
𝜋2 𝑋

2
]
𝑑𝑋 ≡ 𝑧𝑢, (49)

and
𝑧 ≥

∫
|𝑋 | ≤ (𝜋/𝑔)𝑎 (𝑑−4)/2

𝑒−𝑋
2
𝑑𝑋 ≥

∫
|𝑋 | ≤ (𝜋/𝑔0 )

𝑒−𝑋
2
𝑑𝑋 ≡ 𝑧ℓ > 0, (50)

for all 𝑎 ∈ (0, 1] and 0 < 𝑔2 ≤ 𝑔2
0 < ∞.

We now define the scaled free b.c. partition function 𝑍 𝑠
Λ
(𝑎), by extracting the

𝑎 ↘ 0 singularity in Eq. (47). It reads

𝑍 𝑠
Λ(𝑎) =

[
𝑔

2𝜋𝑎 (𝑑−4)/2

]−Λ𝑟

𝑍𝑢
Λ(𝑎) = 𝑧Λ𝑟 . (51)

In this way, in terms of 𝑍 𝑠
Λ
(𝑎), we obtain the TUV stability bound

0 < 𝑧Λ𝑟

ℓ
≤ 𝑍 𝑠

Λ(𝑎) ≤ 𝑧Λ𝑟
𝑢 ,

so that, defining the scaled free energy per effective degree of freedom in the finite
𝑑-dimensional hypercubic lattice Λ by

𝑓 𝑠Λ (𝑎) ≡
1
Λ𝑟

ln 𝑍 𝑠
Λ(𝑎) = ln 𝑧, (52)
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the TUV bounds ensure, the thermodynamic limit Λ ↗ 𝑎Z𝑑 and the continuum
limit 𝑎 ↘ 0 exist (here, not only the subsequential limits as below!) and we obtain

𝑓 𝑠 ≡ lim𝑎↘0 limΛ↗𝑎Z𝑑 𝑓
𝑠
Λ
(𝑎)

= lim𝑎↘0 ln 𝑧

=


∫
R

𝑒−𝑋
2
𝑑𝑋 =

√︁
𝜋/2, 𝑑 = 2, 3,∫

|𝑋 | ≤𝜋/𝑔
𝑒−2𝑔−2 [1−cos(𝑔𝑋) ] 𝑑𝑋, 𝑑 = 4.

Besides, for 𝑑 = 4, we have lim𝑔↘0 𝑓
𝑛 =

√︁
𝜋/2.

Simplified approximate model with gauge group G = U(𝑁)
Still considering the approximate model, here we extend our TUV bounds to the

more general nonabelian G = U(𝑁) case. Using the same bond integration procedure
as in the above U(1) case, the simplified model, free b.c. unscaled partition function
with the gauge group U(𝑁) also factorizes as

𝑍𝑢
Λ,𝑎 = 𝑧Λ𝑟 ,

where
𝑧 =

∫
U(𝑁 )

exp
[
−𝑎

𝑑−4

𝑔2 Tr
(
2 −𝑈 −𝑈†) ] 𝑑𝜎(𝑈). (53)

Here, 𝑧 is the partition function of a single plaquette with the single bond variable 𝑈.
We explain how the factorization occurs, and we use the left and right invariance

of the single bond Haar measure 𝑑𝜎(𝑈). We recall the invariance property (see e.g.
[30–32]): let 𝑓 (𝑈) be a function of the bond variable 𝑈 ∈ U(𝑁) and let 𝑊 ∈ U(𝑁).
Then, ∫

U(𝑁 )
𝑓 (𝑈) 𝑑𝜎(𝑈) =

∫
U(𝑁 )

𝑓 (𝑊𝑈) 𝑑𝜎(𝑈) =
∫

U(𝑁 )
𝑓 (𝑈𝑊) 𝑑𝜎(𝑈). (54)

Returning to the bond integration procedure, let 𝑈1,𝑈2,𝑈3,𝑈4 be the plaquette
𝑝 bond variables and 𝑈𝑝 = 𝑈1𝑈2𝑈3𝑈4, as in Eq. (5). Consider the integration over
𝑈1, where, in the partition function 𝑍𝑢

Λ
(𝑎), 𝑈1 only appears in the plaquette 𝑝. The

integral over the bond variable 𝑈1 is∫
U(𝑁 )

exp
{
−𝑎

(𝑑−4)

𝑔2 Tr
(
2 −𝑈𝑝 −𝑈†

𝑝

)}
𝑑𝜎(𝑈1).

By the Haar measure left and right invariance (take 𝑊 = 𝑈2𝑈3𝑈4 and 𝑈 = 𝑈1
above!), the integral is just the single bond partition function 𝑧, and is independent
of the other bond variables. In this way, we extract the factors 𝑧 from the partition
function 𝑍𝑢

Λ
(𝑎).
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To continue our analysis, we note that the above integrand is a class function
on G. For the U(𝑁) group integral of a class function, the 𝑁2 dimensional integral
over the 𝑛 × 𝑛 matrix group reduces to an 𝑁-dimensional integral over the angular
eigenvalues of 𝑈, according to the Weyl integration formula [30–32, 47].

The angular eigenvalues are defined as follows. If the eigenvalues of the unitary
matrix 𝑈 are denoted by {𝑒𝑖𝜆1 , . . . , 𝑒𝑖𝜆𝑁 }, with 𝜆 𝑗 ∈ (−𝜋, 𝜋], 𝑗 = 1, . . . , 𝑁 , then
𝜆 ≡ (𝜆1, . . . , 𝜆𝑁 ) are called the angular eigenvalues of 𝑈. The Weyl integration
formula reads ∫

U(𝑁 )
𝑓 (𝑈) 𝑑𝜎(𝑈) = 1

𝑁!

∫
(−𝜋,𝜋 ]𝑁

𝑓 (𝜆)𝜌(𝜆) 𝑑𝜆

(2𝜋)𝑁 , (55)

where 𝑑𝜆 = 𝑑𝜆1 . . . 𝑑𝜆𝑁 is a product measure of Lebesgue measures, and the weight
function or density 𝜌(𝜆) arises from a squared Vandermonde determinant. It is given
by

𝜌(𝜆) =
∏

1≤ 𝑗<𝑘≤𝑁

��𝑒𝑖𝜆 𝑗 − 𝑒𝑖𝜆𝑘
��2 =

∏
1≤ 𝑗<𝑘≤𝑁

{
2
[
1 − cos

(
𝜆 𝑗 − 𝜆𝑘

) ]}
. (56)

In this way, applying the Weyl integration formula to 𝑧 of Eq. (53), we obtain

𝑧 =
1

𝑁!(2𝜋)𝑁
∫
(−𝜋,𝜋 ]𝑁

exp
[
−2𝑎𝑑−4

𝑔2

∑︁
𝑗=1,...,𝑁

(1 − cos𝜆 𝑗)
]
𝜌(𝜆) 𝑑𝜆.

Next, we use Eq. (48) to give bounds on (1 − cos 𝑢) and the density bound(
4
𝜋2

)𝑁 (𝑁−1)/2

𝜌̂(𝜆) ≤ 𝜌(𝜆) ≤ 𝜌̂(𝜆),

where 𝜌̂(𝜆) = ∏
1≤ 𝑗<𝑘≤𝑁

��𝜆 𝑗 − 𝜆𝑘
��2. The lower bound holds for all |𝜆 𝑗 | ≤ 𝜋/2 and

there is no restriction for the upper bound. Besides, we make use of the changes
of variables, with 𝑦 = (𝑦1, . . . , 𝑦𝑁 ),

𝑦 =

(
𝑎𝑑−4

𝑔2

)1/2

𝜆, 𝑦 =

(
𝑎𝑑−4

𝑔2

)1/2 2
𝜋
𝜆,

respectively, in the lower and upper bounds. Doing this, we obtain the following
bound on 𝑧(

2
𝜋

)𝑁 (𝑁−1) 1
𝑁!(2𝜋)𝑁

(
𝑔2

𝑎𝑑−4

)𝑁2/2 ∫
L

exp
[
−

∑︁
1≤ 𝑗≤𝑁

𝑦2
𝑗

]
𝜌̂(𝑦) 𝑑𝑦

≤ 𝑧 ≤
(
𝜋

2

)𝑁2
1

𝑁!(2𝜋)𝑁

(
𝑔2

𝑎𝑑−4

)𝑁2/2 ∫
U

exp
[
−

∑︁
1≤ 𝑗≤𝑁

𝑦2
𝑗

]
𝜌̂(𝑦) 𝑑𝑦,

where we have the integration domains L = {𝑦 : |𝑦𝑘 | ≤ (𝜋/2) (𝑎𝑑−4/𝑔2)1/2} and
U = {𝑦 : |𝑦𝑘 | ≤ 2(𝑎𝑑−4/𝑔2)1/2}. We easily recognize the above integrands as being
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proportional to the well-known (see e.g. [42, 43]) Gaussian Unitary Ensemble (GUE)
probability density in R𝑁 of random matrix theory.

Extracting the 𝑎 ↘ 0 singularity and defining the normalized U(𝑁) approximate
model finite lattice scaled partition with free b.c. by

𝑍 𝑠
Λ(𝑎) =

(
𝑎𝑑−4

𝑔2

)𝑁2Λ𝑟 /2

𝑍𝑢
Λ,𝑎, (57)

then 𝑍 𝑠
Λ,𝑎

obeys the TUV bound

𝑧
Λ𝑟

ℓ
≤ 𝑍 𝑠

Λ(𝑎) = 𝑧
Λ𝑟
𝑠 ≤ 𝑧Λ𝑟

𝑢 , (58)

with

𝑧𝑠 =
1

𝑁!(2𝜋)𝑁

(
𝑎𝑑−4

𝑔2

)𝑁2/2 ∫
(−𝜋,𝜋 ]𝑁

exp
[
−2𝑎𝑑−4

𝑔2

∑︁
𝑗=1,...,𝑁

(1 − cos𝜆 𝑗

)
]𝜌(𝜆) 𝑑𝜆. (59)

In Eq. (58), we have

𝑧ℓ =

(
2
𝜋

)𝑁 (𝑁−1)
𝐺
(
(𝑎𝑑−4/𝑔2)1/2𝜋/2

)
,

𝑧𝑢 =

(
𝜋

2

)𝑁2

𝐺
(
(𝑎𝑑−4/𝑔2)1/22

)
,

where, up to a normalization (see [42, 49]), 𝐺 is the probability in the GUE given
by

𝐺 (𝑢) = 1
𝑁!(2𝜋)𝑁

∫
|𝑦𝑘 |<𝑢

exp
[
−

∑︁
1≤ 𝑗≤𝑁

𝑦2
𝑗

]
𝜌̂(𝜆)𝑑𝜆 ≤ 𝐺 (∞).

We now define a scaled finite lattice free energy by

𝑓 𝑠Λ (𝑎) =
1
Λ𝑟

ln 𝑍 𝑠
Λ(𝑎).

Hence, the above TUV bounds ensure the existence of the thermodynamic and
continuum limits of the scaled free energy given by, with 𝐺 (∞) ≡ lim𝑢↗∞𝐺 (𝑢),
𝑓 𝑠 = lim

𝑎↘0
lim

Λ↗𝑎Z𝑑
𝑓 𝑠Λ (𝑎)

=


ln𝐺 (∞), 𝑑 = 2, 3,

ln
{

1
𝑁!(2𝜋)𝑁

∫
|𝑦𝑘 | ≤𝜋/𝑔

exp
[
−2𝑔−2

∑︁
1≤ 𝑗≤𝑁

(
1 − cos(𝑔𝑦 𝑗)

)]
𝜌̂(𝑦)𝑑𝑦

}
, 𝑑 = 4,

at least in the subsequential sense. Furthermore, for 𝑑 = 4, we get lim𝑔↘0 𝑓
𝑠 =

ln𝐺 (∞).
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3.2. Approximate model: plaquette field correlations for U(1)

Here, first we take the gauge group to be G = U(1). As shown below, in
this simple abelian group case, we are able to compute the plaquette-plaquette
correlation exactly for the approximate model and for vertical plaquettes (plaquettes
with two vertical bonds). This computation allows us to show the boundedness of
the scaled field plaquette-plaquette correlation. In the next subsection, we consider
the nonabelian gauge groups U(𝑁 ≥ 2).

For the plaquette 𝑝 = 𝑝𝜇𝜈 (𝑥), we define the physical unscaled gauge-invariant
plaquette field as in Eq. (30), using the unscaled fields 𝐴𝑢

𝑏
. In the abelian case,

with the physical parametrization 𝑈𝑏 = 𝑒
𝑖𝑎𝑔𝐴𝑢

𝑏 , it reduces to

F 𝑢
𝑝 (𝑈𝑝) =

1
𝑎2𝑔

sin
[
𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑥)
]
, (60)

where 𝐴𝑢
𝑝 = 𝑎𝐹𝑎

𝜇𝜈 , for the abelian version of the field tensor 𝐹𝑎
𝜇𝜈 given in Eq. (31),

i.e. without the commutator term.
Next, considering a sufficiently small lattice spacing 𝑎, we show this plaquette

field leads to the expected physical correlation, i.e.

F 𝑢
𝑝 (𝑈𝑝) ≃ 𝐹𝑎

𝜇𝜈 = 𝜕𝑎𝜇 𝐴
𝑢
𝜈 − 𝜕𝑎𝜈 𝐴𝑢

𝜇, 0 < 𝑎 ≪ 1.

Then, the gauge-invariant unscaled plaquette-plaquette correlation is defined by

⟨F 𝑢
𝜇𝜈 (𝑥)F 𝑢

𝜌𝜎 (𝑦)⟩ =
1
N

∫
|𝐴𝑢

𝑏
|<𝜋/(𝑎𝑔)

{[
1
𝑎2𝑔

sin
(
𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑥)
)] [ 1

𝑎2𝑔
sin

(
𝑎2𝑔𝐹𝑎

𝜌𝜎 (𝑦)
)]}

× exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑧,𝜇<𝜈

2
[
1 − cos

(
𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑧)
) ]} ∏

𝑏

𝑑𝐴𝑢
𝑏 . (61)

As seen above, we emphasize that in the abelian case we can deal easily with the
G Haar measure and express it in terms of the unscaled fields 𝐴𝑢

𝑏
.

For small 𝑎, the right-hand side of Eq. (61) becomes

1
N

∫
|𝐴𝑢

𝑏
| ≤ (𝜋/𝑎𝑔)

𝐹𝑎
𝜇𝜈 (𝑥)𝐹𝑎

𝜌𝜎 (𝑦) exp

{
−𝑎𝑑

∑︁
𝑧,𝜇<𝜈

[
𝐹𝑎
𝜇𝜈 (𝑧)

]2
} ∏

𝑏

𝑑𝐴𝑢
𝑏 .

Note that the above action is the Riemann sum approximation to the smooth
field classical continuum action

∑
𝜇<𝜈

∫
[−𝐿𝑎,𝐿𝑎]𝑑 𝑑

𝑑𝑥
[
𝐹𝑎
𝜇𝜈 (𝑥))

]2, where the field
strength antisymmetric tensor in the abelian case is 𝐹𝑎

𝜇𝜈 (𝑥) = 𝜕𝜇𝐴
𝑢
𝜈 (𝑥) − 𝜕𝜈𝐴𝑢

𝜇 (𝑥).
Hence, we obtain the lattice approximation to the unscaled plaquette-plaquette
correlation.

Now, for 𝑎 ∈ (0, 1], we define a U(1) gauge-invariant scaled plaquette-plaquette
correlation by
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⟨F 𝑠
𝜇𝜈 (𝑥)F 𝑠

𝜌𝜎 (𝑦)⟩

=
1
N

∫
|𝐴𝑢

𝑏
|<𝜋/(𝑎𝑔)

[(
𝑎𝑑−4

𝑔2

)1/2

sin[𝑎2𝑔𝐹𝑎
𝜇𝜈 (𝑥)]

] [(
𝑎𝑑−4

𝑔2

)1/2

sin[𝑎2𝑔𝐹𝑎
𝜌𝜎 (𝑦)]

]
× exp

{
−𝑎

𝑑−4

𝑔2

∑︁
𝑧,𝜇<𝜈

2
(
1 − cos(𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑧))
)}∏

𝑏

𝑑𝐴𝑢
𝑏

= 𝑎𝑑 ⟨F 𝑢
𝜇𝜈 (𝑥)F 𝑢

𝜌𝜎 (𝑦)⟩, (62)

where we observe the change of coefficients on the sine terms, as compared with
Eq. (61), and where N is the normalization constant

N ≡
∫
|𝐴𝑢

𝑏
|<𝜋/(𝑎𝑔)

exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑥,𝜇<𝜈

2
(
1 − cos(𝑎2𝑔𝐹𝑎

𝜇𝜈 (𝑥))
)} ∏

𝑏

𝑑𝐴𝑢
𝑏 .

Using the scaled gauge field 𝜒𝑏 = 𝑎 (𝑑−2)/2𝐴𝑢
𝑏

(see Eq. (46)), we can rewrite the
plaquette-plaquette correlation as

⟨F 𝑠
𝜇𝜈 (𝑥)F 𝑠

𝜌𝜎 (𝑦)⟩

=
1
N ′

∫
|𝜒𝑏 |<𝜋(𝑎𝑑−4/𝑔2)1/2

𝑎𝑑−4

𝑔2 sin
[(
𝑎𝑑−4

𝑔2

)−1/2

𝜒𝜇𝜈 (𝑥)]
]

sin
[(
𝑎𝑑−4

𝑔2

)−1/2

𝜒𝜌𝜎 (𝑦)
]

× exp
{
−𝑎

𝑑−4

𝑔2

∑︁
𝑧,𝜇<𝜈

2
(
1 − cos

(
𝑎𝑑−4

𝑔2

)−1/2

𝜒𝜇𝜈 (𝑧)
)} ∏

𝑏

𝑑𝜒𝑏,

where N ′ is the measure normalization.
Now, for the approximate model, we compute the plaquette-plaquette correlation

exactly. We also show that its thermodynamic limit exists and that the correlation of
Eq. (62) is bounded uniformly in 𝑎 ∈ (0, 1]. The continuum limit of ⟨F 𝑠

𝜇𝜈 (𝑥)F 𝑠
𝜌𝜎 (𝑦)⟩

also exists! [In the next subsection, we extend these results to the case of the
nonabelian gauge group U(𝑁), 𝑁 ≥ 2.]

More precisely, for the approximate model, we will show that ⟨F 𝑠
𝜇𝜈 (𝑥)F 𝑠

𝜌𝜎 (𝑥)⟩ is
bounded uniformly in 𝑎 ∈ (0, 1] and 0 < 𝑔2 ≤ 𝑔2

0 < ∞. The importance of this result
is that it shows us that the coincident point (𝑥 = 𝑦) physical plaquette-plaquette
correlation behaves as const/𝑎𝑑 .

The 𝑎−𝑑 behaviour is analogous to what occurs if we transform the physical
massless scalar field 𝜙𝑢 (𝑥), by a local scaling factor, to a scaled field 𝜙(𝑥) =

𝑎 (𝑑−2)/2(2𝑑)1/2𝜙𝑢 (𝑥). The scaled field action is independent of the lattice spacing 𝑎

(see [24] and Appendix A for more details.) Moreover, the scaled field correlations
are bounded at coincident points, uniformly in 𝑎 ∈ (0, 1], for 𝑑 = 3, 4, and the
unscaled derivative field two-point correlation has the exact value 2/(𝑑𝑎𝑑), for
dimensions 𝑑 = 2, 3, 4.

In order to simplify the notation, like in Eq. (62), below N will mean the
average of the constant which is identically 1, with the relevant measure ap-
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pearing in the corresponding average integral, including the exponential density
factor.

For the complete model with gauge group G = U(𝑁), the integrals do not
factorize, but for the approximate model they do factorize, which makes much easier
the analysis of the plaquette-plaquette correlation. For this reason, from now on this
subsection, we deal with only the approximate model. Note that we also take the
two plaquettes, containing the external points, to be vertical (i.e. with at least one
bond in the time direction).

To analyze the plaquette-plaquette correlation for the approximate model, we
follow the same integration procedure employed before in our treatment of the
partition function (see Subsection 3.1). The result is that all gauge integrals with
densities given by the exponential of the actions factorize, provided they do not
contain the external points 𝑥 and 𝑦. As before, the factorized terms correspond to
single plaquette partition functions depending only on a single bond variable. They
are present both in the numerator and the normalization integrals in the denominator
in ⟨F 𝑠

𝜇𝜈 (𝑥)F 𝑠
𝜌𝜎 (𝑦)⟩. Thus, they do cancel out.

After this partial cancellation, we are left in the numerator with integrals whose
coordinate supports contain the 𝑥 and 𝑦 external points. However, since the single
plaquette field correlation is zero by the 𝐴 → −𝐴 symmetry, the only nonzero
contribution occurs when the points 𝑥 and 𝑦 coincide.

For coincident points 𝑥 = 𝑦, the contributions depend on a single bond variable
𝜒𝑏 (𝑥). Taking into account the partial cancellation between the numerator and
denominator of the normalized plaquette-plaquette correlation, the infinite volume
limit can then be taken. By translation invariance, the remaining integral does not
depend on the lattice site point 𝑥 = 𝑦 we fixed. Thus, we can suppress 𝑥 and the
bond lower index 𝑏 in 𝜒𝑏 (𝑥) and simply write 𝜒. Doing this, we obtain

⟨[F 𝑠
𝜇𝜈 (𝑥)]2⟩ = 1

N

∫
|𝜒 |< (𝜋/𝑔)𝑎 (𝑑−4)/2

{(
𝑎𝑑−4

𝑔2

)
sin2

[(
𝑎𝑑−4

𝑔2

)−1/2

𝜒

]}
× exp

{
−𝑎

𝑑−4

𝑔2 2
[
1 − cos

[(
𝑎𝑑−4

𝑔2

)−1/2

𝜒

] ]}
𝑑𝜒, (63)

where N denotes here the normalization with the integral over a single variable 𝜒,
which is

N =

∫
|𝜒 |< (𝜋/𝑔)𝑎 (𝑑−4)/2

exp
{
−𝑎

𝑑−4

𝑔2 2
[
1 − cos

[(
𝑎𝑑−4

𝑔2

)−1/2

𝜒

] ]}
𝑑𝜒.

Using the trigonometric inequalities of Eq. (48), for 𝑎 ∈ (0, 1] and 0 < 𝑔2 ≤
𝑔2

0 < ∞, we have the bound

⟨[F 𝑠
𝜇𝜈 (𝑥)]2⟩ ≤ 1

N1,0

∫
|𝜒 |<𝜋𝑎 (𝑑−4)/2/𝑔

𝜒2 exp
[
− 4
𝜋2 𝜒

2
]
𝑑𝜒,
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where, for
N1 =

∫
|𝜒 |<𝜋𝑎 (𝑑−4)/2/𝑔

exp(−𝜒2) 𝑑𝜒,

and the constant N1,0 is defined as N1 but with 𝑔 replaced by 𝑔0 in the integral
domain.

Similarly, we obtain the lower bound

⟨
[
F 𝑠
𝜇𝜈 (0)

]2⟩ ≥

4
𝜋2

∫
|𝜒 |< (𝜋/2𝑔)𝑎 (𝑑−4)/2

𝜒2𝑒−𝜒
2
𝑑𝜒∫

R

𝑒−(4/𝜋2 )𝜒2
𝑑𝜒

,

where the numerator is bounded below taking the integration domain to be

|𝜒 | ≤ [(𝜋𝑎 (𝑑−4)/2)/(2𝑔0)] .
Thus, we see that the scaled plaquette-plaquette correlation at coincident points is
uniformly bounded for 𝑎 ∈ (0, 1] and 0 < 𝑔2 ≤ 𝑔2

0. Using these bounds and the
relation given in Eq. (62), we see that the scaled plaquette-plaquette correlation at
coincident points has the exact singular behaviour 𝑎−𝑑 (rather than just an upper
bound for the singular behaviour!).

From these bounds, the continuum limit
F 2(𝑥) ≡ lim

𝑎↘0
⟨[F 𝑠

𝜇𝜈 (𝑥)]2⟩,

exists and is given by

F 2(𝑥) =



∫
R

𝜒2𝑒−𝜒
2
𝑑𝜒∫

R

𝑒−𝜒
2
𝑑𝜒

=
1
2
, 𝑑 = 2, 3,

∫
|𝜒 | ≤𝜋/𝑔

[
sin(𝑔𝜒)
𝑔

]2

𝑒−2[1−cos(𝑔𝜒) ]/𝑔2
𝑑𝜒∫

|𝜒 | ≤𝜋/𝑔
𝑒−2[1−cos(𝑔𝜒) ]/𝑔2

𝑑𝜒

, 𝑑 = 4.

(64)

Furthermore, from Eq. (64), for 𝑑 = 4, the 𝑔 ↘ 0 limit also exists and is 1/2.
In the next subsection, considering the approximate model, we extend these exact

and explicit results to scaled correlations with the nonabelian gauge group U(𝑁),
𝑁 ≥ 2. In the following sections, we obtain boundedness results for the YM model
without approximation. The nonabelian case 𝑁 ≥ 2 is more difficult than the abelian
𝑁 = 1 case. One of the difficulties is that the gauge group Haar measure is much
more complicated than the product Lebesgue measure of the abelian model [33–36].
In our extension to the nonabelian case, rather than treat directly the correlations,
we bound the two-point plaquette field scaled normalized generating function (with
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the scaled partition function in the denominator). Bounds on correlations follow
from this, using analyticity and Cauchy bounds for the source derivatives of the
generating function at zero source field strengths.

To obtain bounds on the scaled generating function which are independent of the
number of lattice sites, we use the well-known multiple reflection method (see [4]).
This method makes multiple use of the Cauchy–Schwarz inequality in the quantum
mechanical physical Hilbert space of the associated quantum field theory.

3.3. Approximate model: plaquette field correlations for U(𝑁 ≥ 2)
In this subsection, we analyze the plaquette field correlations for the nonabelian

case of the gauge group G = U(𝑁). The physical unscaled gauge-invariant plaquette
field Tr F 𝑢

𝜇𝜈 for the plaquette 𝑝 = 𝑝𝜇𝜈 (𝑥) is defined in Eq. (30). Taking the
physical parametrization, 𝑈𝑏 = exp{𝑖𝑎𝑔𝐴𝑢

𝑏
}, for small lattice spacing 𝑎, we have that

Tr F 𝑢
𝜇𝜈 (𝑥) ≃ Tr 𝐹𝑎

𝜇𝜈 (𝑥), where 𝐹𝑎
𝜇𝜈 is given by Eq. (31).

With 𝑈𝑝 = exp(𝑖𝑋𝑝), we also define the gauge-invariant scaled plaquette field by

Tr F 𝑠
𝜇𝜈 (𝑥) = 𝑎𝑑/2 Tr F 𝑢

𝜇𝜈 =

(
𝑎𝑑−4

𝑔2

)1/2

Im Tr(𝑈𝑝 − 1) =
(
𝑎𝑑−4

𝑔2

)1/2

Tr(sin 𝑋𝑝).

For small 𝑎, we have
Tr F 𝑠

𝜇𝜈 (𝑥) ≃ 𝑎𝑑/2 Tr 𝐹𝑎
𝜇𝜈 (𝑥).

As explained in the previous subsection, when analyzing the plaquette-plaquette
correlation in the G = U(1), with external points 𝑥 and 𝑦, for the approximate
model, whenever the external points 𝑥 and 𝑦 are not endpoints of the bonds, we have
a factorization and cancellation of the single plaquette, single bond partition functions
in the numerator and denominator of the scaled plaquette-plaquette correlations. By
the left-right invariance of the Haar measure, the integrals associated with these
factors are again over a single bond Haar measure and, by gauge integration
properties, the only nonzero contributions are those with coincident points 𝑥 = 𝑦.
This property allows us to take the infinite volume limit Λ ↗ 𝑎Z𝑑 .

With this argument, we have that the usual truncated [4] plaquette-plaquette
correlation is then equal to the nontruncated one. The integrands are class functions,
and we can apply the Weyl integration formula (see [30–32, 47]) to pass from
integrals over 𝑁2, 𝑁 × 𝑁 matrix elements, to integrals over 𝑁 angular eigenvalues.
Doing this [compare with Eq. (63)], the coincident point scaled plaquette-plaquette
correlation becomes, with 𝑈 being the single plaquette gauge variable,

⟨(Tr F 𝑠
𝜇𝜈)2⟩

=
1
N2

∫
U(𝑁 )

[(
𝑎𝑑−4

𝑔2

)1/2

Im Tr(𝑈−1)
]2

exp
{
−2

(
𝑎𝑑−4

𝑔2

)
Tr(1−𝑈−𝑈†)

}
𝑑𝜎(𝑈)

=
1
N2

∫
(−𝜋,𝜋 ]𝑁

[(
𝑎𝑑−4

𝑔2

)1/2 ∑︁
𝑗=1,...,𝑁

sin𝜆 𝑗

]2

exp
{
−2

(
𝑎𝑑−4

𝑔2

) ∑︁
𝑗=1,...,𝑁

(1−cos𝜆 𝑗)
}
𝜌(𝜆) 𝑑𝜆.
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Note that the single plaquette correlation is obtained by replacing the squared
bracket factor by the single bracket (power one!) in the above integrand. By the
transformation of variables 𝜆 𝑗 → (−𝜆 𝑗), the single plaquette correlation ⟨Tr F 𝑢

𝜇𝜈⟩ = 0,
as asserted above.

In view of the recent result of [50], on the triviality of the continuum limit of the
𝜙4

4 model, we investigate whether or not the continuum limit of the approximate model
is Gaussian. For this, we also want to consider the scaled four-plaquette correlation
and, more generally, the 𝑟-th power of the scaled plaquette field at coincident points.
Following the same gauge integration procedure as before, and after using the Weyl
integration formula to pass to angular eigenvalues, the thermodynamic limit of the
𝑟-th power of the plaquette field at coincident points reduces to

⟨(Tr F 𝑠
𝜇𝜈)𝑟 ⟩

=
1
N𝑟

∫
(−𝜋,𝜋 ]𝑁

[(
𝑎𝑑−4

𝑔2

)1/2 ∑︁
𝑗=1,...,𝑁

sin𝜆 𝑗

]𝑟
exp

{
−2
𝑎𝑑−4

𝑔2

∑︁
𝑗=1,...,𝑁

(1 − cos𝜆 𝑗)
}
𝜌(𝜆) 𝑑𝜆,

(65)
where the ratio is taken over single plaquette single variable bond variable integrals.
Here, N𝑟 is a corresponding normalization constant and 𝜌(𝜆) is given in Eq. (56).
It is worth noticing that, for the abelian gauge group U(1), we have 𝜌(𝜆) = 1.

From Eq. (65), we easily see the 𝑟-correlation is zero if 𝑟 is odd. For even 𝑟,
making a change of variables, using elementary inequalities and the well-known
Lebesgue integral convergence theorems, we obtain that the continuum limit of the
above coincident point truncated correlations exists. With

𝜌̂(𝜆) =
∏

1≤ 𝑗<𝑘≤𝑁

|𝜆 𝑗 − 𝜆𝑘 |2

and 𝑇𝑟 (𝑔) ≡ lim𝑎↘0⟨[Tr F 𝑠
𝜇𝜈]𝑟 ⟩, for 𝑑 = 2, 3, we obtain, letting 𝜆 =

(
2𝑎𝑑−4/𝑔2)−1/2

𝑦,

𝑇𝛼 (𝑔) =
2
N2

∫
R𝑁

( ∑︁
𝑗=1,...,𝑁

𝑦 𝑗

)𝑟
𝜌̂(𝑦) exp

[
−

∑︁
𝑗=1...,𝑁

𝑦2
𝑗

]
𝑑𝑁 𝑦,

with an associated measure normalization N2. For 𝑑 = 4, letting 𝜆 = 𝑔𝑦, we obtain

𝑇𝑟 (𝑔) =
1

N4 𝑔𝑁 (𝑁−1)

×
∫
(−𝜋/𝑔,𝜋/𝑔]𝑁

[( ∑︁
𝑗=1,...,𝑁

sin(𝑔𝑦 𝑗)
𝑔

)𝑟 ]
𝜌(𝑔𝑦) exp

[
−

∑︁
𝑗=1...,𝑁

2[1 − cos(𝑔𝑦 𝑗)]
𝑔2

]
𝑑𝑁 𝑦.

For 𝑑 = 4, the 𝑔 ↘ 0 limit 𝑇𝑟 , of 𝑇𝑟 (𝑔), is

𝑇𝑟 =
1
N4

∫
R𝑁

( ∑︁
𝑗=1,...,𝑁

𝑦 𝑗

)𝑟
𝜌̂(𝑦) exp

[
−

∑︁
𝑗=1...,𝑁

𝑦2
𝑗

]
𝑑𝑁 𝑦, (66)

with a normalization N4.
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Note that, for 𝑟 = 2, 4, the right-hand side of Eq. (66) is, respectively,∑
𝑖, 𝑗 ,𝑘,ℓ=1,...,𝑁 ⟨𝑦𝑖𝑦 𝑗⟩𝐺 and

∑
𝑖, 𝑗 ,𝑘,ℓ=1,...,𝑁 ⟨𝑦𝑖𝑦 𝑗 , 𝑦𝑘 , 𝑦ℓ⟩𝐺 , where ⟨·⟩𝐺 is the expectation

in the GUE (Gaussian Unitary Ensemble) (see e.g. [30, 42, 43]).
Finally, for the case of an abelian gauge group U(1), we then see that the

continuum limit is Gaussian for 𝑑 = 2, 3. For 𝑑 = 4 the continuum limit followed
by the 𝑔 ↘ 0 limit is also Gaussian.

From Eq. (66), for 𝑑 = 4 and taking the gauge group G = U(2), we have

𝑇𝑟 =
1
N4

∫
R2
(𝑦1 + 𝑦2)𝑟 (𝑦1 − 𝑦2)2 𝑒−(𝑦2

1+𝑦
2
2 ) 𝑑𝑦1 𝑑𝑦2

=
1
𝜉

∫
R2 (

√
2𝜂)𝑟 (

√
2𝜖)2 𝑒−(𝜂2+𝜖 2 ) 𝑑𝜂 𝑑𝜖,

with 𝜉 =
∫
R2 𝑒

−(𝜂2+𝜖 2 ) 𝑑𝜂 𝑑𝜖 , where we made the (𝜋/4) rotation change of variables√
2𝜖 = (𝑦1 − 𝑦2) and

√
2𝜂 = (𝑦1 + 𝑦2). By performing the integrals in the denominator

and the 𝜖 integral in the numerator, we obtain

𝑇𝑟 =
2𝑟/2
√
𝜋

∫
R

𝜂𝛼𝑒−𝜂2
𝑑𝜂,

which shows a Gaussian, noninteracting behaviour. Whether or not this is the
behaviour we have for any gauge group U(𝑁 > 2) is still to be analyzed.

4. Thermodynamic and ultraviolet stability bounds: the general G = U(𝑁 ≥ 1)
case

We now obtain factorized stability bounds for the unscaled partition function
𝑍
𝑢,𝐵

Λ
(𝑎) of the complete model defined in Eq. (38) with boundary condition 𝐵. In

doing this, we are improving the proofs of [28, 49] and are extending the results
to the periodic b.c. case. The bounds are factorized as a product. In the product,
each factor is a single bond variable, single plaquette partition function. First, we
give Lemma 2 which yields an exact representation for the Wilson plaquette action
and is used to prove that the plaquette action upper bound is quadratic in each
gluon field. This growth is in contrast to the classical Lagrangian action which has
a quartic growth in the fields and which is used in [18, 22]. The upper quadratic
bound on 𝐴𝑝 is used to obtain the factorized lower bound on 𝑍

𝑢,𝐵

Λ
(𝑎).

Again, as an example, it is worth recalling that, for the abelian gauge group
U(1), the bound is obtained by elementary inequalities. Indeed, writing the unscaled
plaquette gauge variable 𝑈𝑢

𝑝 = exp {𝑖(𝜃1 + 𝜃2 − 𝜃3 − 𝜃4)}, |𝜃 𝑗 | < 𝜋, 𝑗 = 1, 2, 3, 4, and
using the first of Eq. (48)], we obtain

𝐴𝑝 = 2[1 − cos(𝜃1 + 𝜃2 − 𝜃3 − 𝜃4)] ≤ (𝜃1 + 𝜃2 − 𝜃3 − 𝜃4)2 ≤ 4(𝜃2
1 + 𝜃2

2 + 𝜃2
3 + 𝜃2

4),
where we have expanded the square in the first inequality and used the bound
2𝑢𝑣 ≤ 𝑢2 + 𝑣2, 𝑢, 𝑣 ∈ R, to obtain the second inequality.

The following lemma is a much improved version of Lemma 2 of [49].
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Lemma 2. Let 𝑈 𝑗 = 𝑒
L 𝑗 , where L 𝑗 = 𝑖

∑𝑁2
𝛼=1 𝑥

𝑗
𝛼𝜃𝛼, so that |L 𝑗 | ≤ ∥L 𝑗 ∥𝐻−𝑆 = |𝑥 𝑗 |.

Here, 𝑥 𝑗𝛼 is real and 𝑥
𝑗
𝛼 = −𝑖 Tr 𝜃𝛼L 𝑗 . Let also

𝑈𝑝 (𝛿) = 𝑈1(𝛿)𝑈2(𝛿)𝑈†
3 (𝛿)𝑈

†
4 (𝛿),

with 𝑈 𝑗 (𝛿) = 𝑒𝛿L 𝑗 , for 𝛿 ∈ [0, 1]. Then, by the fundamental theorem of calculus,
we have the representation

𝑈𝑝 − 1 =
∫ 1

0
𝑑𝛿

[
L1𝑈1(𝛿)𝑈2(𝛿)𝑈†

3 (𝛿)𝑈
†
4 (𝛿) +𝑈1(𝛿)L2𝑈2(𝛿)𝑈†

3 (𝛿)𝑈
†
4 (𝛿)

−𝑈1(𝛿)𝑈2(𝛿)L3𝑈
†
3 (𝛿)𝑈

†
4 (𝛿) −𝑈1(𝛿)𝑈2(𝛿)𝑈†

3 (𝛿)L4𝑈
†
4 (𝛿)

]
=

∫ 1

0
𝑑𝛿

{
L1 +

∫ 𝛿

0
𝑑𝛿

[
L1L1𝑈1(𝛿)𝑈2(𝛿)𝑈†

3 (𝛿)𝑈
†
4 (𝛿) + . . .

]}
+
∫ 1

0
𝑑𝛿

{
L2 +

∫ 𝛿

0
𝑑𝛿

[
L1𝑈1(𝛿)L2𝑈2(𝛿)𝑈†

3 (𝛿)𝑈
†
4 (𝛿) + . . .

]}
−
∫ 1

0
𝑑𝛿

{
L3 +

∫ 𝛿

0
𝑑𝛿

[
L1𝑈1(𝛿)𝑈2(𝛿)L3𝑈

†
3 (𝛿)𝑈

†
4 (𝛿) + . . .

]}
−
∫ 1

0
𝑑𝛿

{
L4 +

∫ 𝛿

0
𝑑𝛿

[
L1𝑈1(𝛿)𝑈2(𝛿)𝑈†

3 (𝛿)L4𝑈
†
4 (𝛿) + . . .

]}
. (67)

For a single retained unscaled plaquette action 𝐴𝑝 (𝑈𝑝) = 2Re Tr(1−𝑈𝑝), using
the representation of Eq. (67), the second equality holds without the isolated L 𝑗

terms, which give an imaginary trace, and we have the global quadratic upper
bound

A𝑢
𝑝 = ∥𝑈𝑢

𝑝 − 1∥2
𝐻−𝑆 ≡ |2Re Tr(𝑈𝑢

𝑝 − 1) | ≤ 𝐶2
∑︁

1≤ 𝑗≤4
|𝑥 𝑗 |2, 𝐶 = 2

√
𝑁, (68)

where 𝐶2 = 4𝑁 . In particular, for the physical parametrization 𝑈𝑏 = exp[𝑖𝑔𝑎𝐴𝑢
𝑏
]

and the scaled field parametrization 𝑈𝑏 = exp[𝑖𝑔𝑎 (4−𝑑)/2𝐴𝑏], we have, respectively,
𝑎𝑑−4

𝑔2 𝐴𝑝 ≤ 𝐶2𝑎𝑑−2
∑︁
𝑏

|𝐴𝑢
𝑏 |2 and 𝐶2

∑︁
𝑏

|𝐴𝑏 |2, (69)

where
∑

𝑏 runs over the bonds of the plaquettes and 𝐶2 = 4𝑁 . Hence, the plaquette
energy 𝑎𝑑−4

𝑔2 𝐴𝑝 is regular in 𝑔2, for all 𝑔2 ≥ 0, and has the quadratic growth bound
in the fields.

When there are only one, two or three retained bond variables in a plaquette,
in the first equality, the sum over 𝑗 has, respectively, only one, two and three terms
and the numerical factor 4 in 𝐶2𝑁 is replaced by 1, 2 and 3, respectively. For the
total unscaled action 𝐴𝑢,𝐵 =

∑
𝑝 A𝑢

𝑝, we have the global quadratic upper bound

𝐴𝑢,𝐵 ≤ 2(𝑑 − 1)𝐶2
∑︁
𝑏

|𝑥𝑏 |2 = 2(𝑑 − 1)𝐶2
∑︁
𝑏

|𝜆𝑏 |2, (70)
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where, whenever gauge fixing is applied, the sum runs over all Λ𝑟 lattice bonds.
Concerning the unscaled and scaled plaquette fields

Tr F 𝑢
𝑝 =

1
𝑎2𝑔

Im Tr(𝑈𝑝 − 1),

and
Tr F𝑝 = 𝑎𝑑/2 Tr F 𝑢

𝑝 ,

we also have the representation of Eq. (67), and the L 𝑗 terms are, respectively

Tr F 𝑢
𝑝 = 𝑎−𝑑/2 Tr

(
𝐴𝑢

1 + 𝐴𝑢
2 − 𝐴𝑢

3 − 𝐴𝑢
4
)
, L 𝑗 terms only

= 𝑎−𝑑/2 Tr
(
𝜕𝜇𝐴

𝑢
𝜈 − 𝜕𝜈𝐴𝑢

𝜇

)
, L 𝑗 terms only,

and
Tr F𝑝 = Tr

(
𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

)
, L 𝑗 terms only.

The coefficients in the integral terms are proportional to 𝑔, so that the plaquette
fields are also regular in 𝑔, for 𝑔2 ≥ 0.

Remark 12. From the second equality in Eq. (67), and taking the real part of
the trace, only the double integrals contribute. From this representation, the bound
given in Lemma 2 is obtained by inspection. We give a proof for the bound using
only the first line. The iteration of the fundamental theorem of calculus in Eq. (67)
produces the diverse terms in the Baker–Campbell–Haussdorff formula [32]. Here,
instead, there is no question of convergence involved.

Remark 13. The apparent singularity at 𝑔 = 0, due to the action prefactor (1/𝑔2)
[see Eq. (6)], which persists in the corresponding scaled expression, is removed and
the ‘action’ 𝐴𝑝/𝑔2 is regular at 𝑔 = 0, if we use the physical field parametrization
𝑈𝑏 = exp[𝑖𝑔𝑎𝐴𝑢

𝑏
], for the unscaled bond variable 𝑈𝑏, or the scaled bond field

𝑈𝑏 = exp[𝑖𝑔𝑎 (4−𝑑)/2𝐴𝑏]. In both cases, the action is bounded by a quadratic growth.
This is in contrast to the classical Lagrangian, where cubic and quartic interactions
are present, and the growth is quartic. This growth behaviour is also present in the
analysis of the existence of YM models in [18, 22]. Besides, in these references,
an explicit infrared regulator is introduced contrary to the Wilson YM case where
an infrared cutoff is not needed for periodic and free b.c.

For completeness of the present paper, we give the proof of Lemma 2 in
Section 6. A preliminary version of the stability bounds was given in [49]. The
following four theorems are also proved in Section 6. Our results on stability and
boundedness of the generating function and correlations are for the Wilson YM
model. We sometimes use gauge fixing but there are no additional infrared regulator
terms added to the action like in [18, 22].

Our stability bounds on the unscaled partition function 𝑍
𝑢,𝐵

Λ
(𝑎), leading to TUV

stability bounds for the scaled partition function 𝑍
𝑠,𝐵

Λ
(𝑎) are given by the following

theorem.
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Theorem 1. The unscaled partition function 𝑍
𝑢,𝐵

Λ
(𝑎) satisfies the following

stability bounds:
Free b.c.: For 𝐵= blank, we have

𝑧
Λ𝑟

ℓ
≤ 𝑍𝑢

Λ(𝑎) ≤ 𝑧Λ𝑟
𝑢 , (71)

Periodic b.c.: For 𝐵 = 𝑃, we obtain

𝑧
Λ𝑟+Λ𝑒

ℓ
≤ 𝑍

𝑢,𝑃

Λ
≤ 𝑍𝑢

Λ(𝑎) ≤ 𝑧Λ𝑟
𝑢 , (72)

where
𝑧𝑢 =

∫
exp

[
−2(𝑎𝑑−4/𝑔2) Re Tr(1 −𝑈)]

]
𝑑𝜎(𝑈). (73)

Also, we have 𝑈 = 𝑒𝑖𝑋, 𝐶2 = 4𝑁 , 𝑋 =
∑

𝛼=1,...,𝑁2 𝑥𝛼𝜃𝛼 and then

Tr 𝑋2 =
∑︁

𝛼=1,...,𝑁2

𝑥2
𝛼 =

∑︁
𝑘=1,...,𝑁

𝜆2
𝑘 ,

where 𝜆1, . . . , 𝜆𝑁 are the angular eigenvalues of 𝑈. Finally,

𝑧ℓ =

∫
exp

[
−2𝐶2(𝑎𝑑−4/𝑔2) (𝑑 − 1) Tr 𝑋2] 𝑑𝜎(𝑈). (74)

Remark 14. Using Jensen’s inequality, we obtain the factorized lower bound
𝑍𝑢
Λ
(𝑎) ≥ 𝜉Λ𝑝 , where

𝜉 = exp
{
−𝑎

𝑑−4

𝑔2

∫
∥𝑈 − 1∥2

𝐻−𝑆 𝑑𝜎(𝑈)
}
≥ exp

[
−2𝑁

𝑎𝑑−4

𝑔2

]
,

where we recall Λ𝑝 is the number of plaquettes in Λ. We have Λ𝑝 = Λ𝑟 , for 𝑑 = 2;
Λ𝑝 ≃ 3𝐿3, 6𝐿4, respectively, for 𝑑 = 3, 4. In Theorem 2 below, we obtain factorized
lower and upper bounds with Λ𝑟 = (𝑑 − 1)𝐿𝑑 factors. In both the upper and lower
bound a factor of [(𝑎𝑑−4/𝑔2)−𝑁2/2] is extracted. This factor dominates the 𝑎, 𝑔2

dependence.

We continue by giving more detailed bounds for 𝑧𝑢 and 𝑧ℓ . In these bounds, we
extract a factor of [(𝑎𝑑−4/𝑔2)−𝑁2/2] from both 𝑧𝑢 and 𝑧ℓ . Note that the integrands
of both 𝑧𝑢 and 𝑧ℓ only depend on the angular eigenvalues of the gauge variable 𝑈;
they are class functions on G. The 𝑁2-dimensional integration over the group can
be reduced to an 𝑁-dimensional integration over the angular eigenvalues of 𝑈 by
the Weyl integration formula of Eq. (55) (see [30–32, 47]). For the group U(𝑁),
we explicitly have∫

U(𝑁 )
𝑓 (𝑈) 𝑑𝜎(𝑈) = 1

N𝐶 (𝑁)

∫
(−𝜋,𝜋 ]𝑁

𝑓 (𝜆)𝜌(𝜆) 𝑑𝑁𝜆, (75)
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where
N𝐶 (𝑁) = [(2𝜋)𝑁𝑁!], 𝜆 = (𝜆1, . . . , 𝜆𝑁 ), 𝑑𝑁𝜆 = 𝑑𝜆1 . . . 𝑑𝜆𝑁

and 𝜌(𝜆) =
∏

1≤ 𝑗<𝑘≤𝑁

|𝑒𝑖𝜆 𝑗 − 𝑒𝑖𝜆𝑘 |2.

In our stability and generating function bounds in the G = U(𝑁) case, the
following integrals of the Gaussian unitary ensemble (GUE) and Gaussian symplectic
ensemble (GSE) probability distributions (see [42, 43]), of random matrix theory,
arise naturally. Let, for 𝛽 = 2, 4 and 𝑢 > 0,

𝐼𝛽 (𝑢) =
∫
(−𝑢,𝑢)𝑁

exp
[
−(1/2)𝛽

∑︁
1≤ 𝑗≤𝑁

𝑦2
𝑗

]
𝜌̂𝛽/2(𝑦)𝑑𝑁 𝑦, (76)

where 𝜌̂(𝑦) = ∏
1≤ 𝑗<𝑘≤𝑁 (𝑦 𝑗−𝑦𝑘)2, 𝐼𝛽 (𝑢) < 𝐼𝛽 (∞) = N𝛽, is the normalization constant

for the GUE and the GSE probability distributions for 𝛽 = 2, 4, respectively. Explicitly,
we have N𝐺 = [(2𝜋)𝑁/22−𝑁2/2 ∏

1≤ 𝑗≤𝑁 𝑗!] and N𝑆 = [(2𝜋)𝑁/24−𝑁2 ∏
1≤ 𝑗≤𝑁 (2 𝑗)!].

For the upper bound on 𝑧𝑢 and lower bound on 𝑧ℓ , we have the following result.
Theorem 2. For 𝐶2 = 4𝑁 , we have the bounds on 𝑧𝑢 and 𝑧ℓ appearing in

Theorem 1

𝑧𝑢 =N−1
𝐶

∫
(−𝜋,𝜋 ]𝑁 exp[−2(𝑎𝑑−4/𝑔2)∑1≤ 𝑗≤𝑁 (1 − cos𝜆 𝑗)] 𝜌(𝜆) 𝑑𝑁𝜆

≤ (𝑎𝑑−4/𝑔2)−𝑁2/2(𝜋/2)𝑁2N𝐺 (𝑁)N−1
𝐶

(𝑁)

≡ (𝑎𝑑−4/𝑔2)−𝑁2/2𝑒𝑐𝑢 , (77)

and
𝑧ℓ =N−1

𝐶

∫
(−𝜋,𝜋 ]𝑁 exp[−2𝐶2(𝑑 − 1) (𝑎𝑑−4/𝑔2)∑1≤ 𝑗≤𝑁 𝜆

2
𝑗] 𝜌(𝜆) 𝑑𝑁𝜆

≥ (𝑎𝑑−4/𝑔2)−𝑁2/2N−1
𝐶

(𝑁) (4/𝜋2)𝑁 (𝑁−1)/2 [2(𝑑 − 1)𝐶2]−𝑁2/2𝐼ℓ ,

≡ (𝑎𝑑−4/𝑔2)−𝑁2/2𝑒𝑐ℓ , (78)

where, recalling Eq. (76), 𝐼ℓ ≡ 𝐼2(𝜋[2(𝑑 − 1)𝐶2]1/2/(2𝑔0)). The constants 𝑐𝑢 and 𝑐ℓ
are real and finite, and independent of 𝑎, 𝑎 ∈ (0, 1] and 𝑔2 ∈ (0, 𝑔2

0], 0 < 𝑔0 < ∞.

Concerning the existence of the thermodynamic and continuum limits of the
scaled free energy we define the scaled partition function by

𝑍
𝑠,𝐵

Λ
(𝑎) = (𝑎𝑑−4/𝑔2) (𝑁2/2)Λ𝑟 𝑍

𝑢,𝐵

Λ
(𝑎), (79)

and a finite lattice scaled free energy by

𝑓
𝑠,𝐵

Λ
(𝑎) = 1

Λ𝑟

ln 𝑍 𝑠,𝐵

Λ
(𝑎). (80)

Using Theorems 1 and 2, together with the Bolzano–Weierstrass theorem [48],
we prove the following theorem.
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Theorem 3. The scaled free energy 𝑓
𝑠,𝐵

Λ
(𝑎) converges subsequentially, at least,

to a thermodynamic limit

𝑓 𝑠,𝐵 (𝑎) = lim
Λ↗𝑎Z𝑑

𝑓
𝑠,𝐵

Λ
(𝑎),

and, subsequently, again, at least subsequentially, to a continuum limit

𝑓 𝑠,𝐵 = lim
𝑎↘0

𝑓 𝑠,𝐵 (𝑎).

Besides, 𝑓 𝑠,𝐵 (𝑎) satisfies the bounds

−∞ < 𝑐ℓ ≤ 𝑓 𝑠,𝐵 (𝑎) ≤ 𝑐𝑢 < ∞. (81)

and so does its subsequential continuum limit 𝑓 𝑠,𝐵. The constants 𝑐ℓ and 𝑐𝑢 are
finite real constants independent of 𝑎 ∈ (0, 1] and 𝑔2 ∈ (0, 𝑔2

0], 0 < 𝑔0 < ∞.

Remark 15. For the case of the free scaled scalar field, the TUV stability
bound follows by bounding spectral representations [check Eq. (A17)] and their
finite lattice counterparts. For the case of bond independent couplings, the TUV
stability bound is proven in Appendix C. The proof uses a multiple reflection bound
in addition to the Hölder inequality to decouple the 𝑑 coordinate directions. In this
way, the proof of TUV is reduced to a TUV bound for the partition function 𝑍𝑐 of
a one-dimensional chain. In turn, this bound is obtained by bounding a single bond
‘transfer matrix’. The bound can also be obtained by successive integration for free
boundary conditions. The free boundary conditions serve as an infrared regulator,
i.e. no mass term is needed in the action to exclude the zero mode.

5. Generating function for plaquette field correlations
Here, we obtain bounds for the generating function of gauge-invariant plaquette

field correlations. Bounds for the field correlations follow from analyticity in the
source field strengths, using Cauchy estimates on the generating function. The same
hypercubic lattice Λ is maintained, with periodic b.c., and we use the multiple
reflection method [4]. Our choice of correlations is guided by the E-M spectral
results for lattice YM with strong gauge coupling 𝑔2 ≫ 1 (see [51]). We fix the
lattice spacing 𝑎 = 1 and denote the plaquette coupling constant by 𝛾 = 𝑎𝑑−4/𝑔2. For
0 < 𝛾 ≪ 1, a lattice quantum field theory is constructed via a Feynman–Kac formula.
By polymer expansion methods, infinite lattice correlations exist and are analytic in
𝛾 ∈ C, |𝛾 | ≪ 1 (see [8]). In [51], for 0 < 𝛾 ≪ 1, it is shown that, associated with
the truncated plaquette-plaquette correlation, there is an isolated particle (glueball)
state in the low-lying E-M spectrum, with mass of order (˘8 ln 𝛾). Furthermore, it
is proved that the low-lying spectrum is generated by limits of local polynomials
in the plaquette field. No more general loop variables are needed. The isolated
dispersion curve of the glueball is the only low-lying spectrum that is present. This
is true for S𝑈 (2). For S𝑈 (𝑁 ≠ 2), there are two glueball particles, one with charge
conjugation + and one with charge conjugation −.
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Returning to our model, we consider the generating function for the correlation
of 𝑟 ∈ N gauge-invariant real plaquette fields. For 𝑝 = 𝑝𝜇𝜈 (𝑥), as defined in Eq. (30),
with 𝑈𝑝 = 𝑒𝑖𝑋𝑝 ∈ U(𝑁), the physical, unscaled plaquette field is given by

Tr F 𝑢
𝜇𝜈 (𝑥) =

1
𝑎2𝑔

Im Tr(𝑈𝑝 − 1) = − 𝑖

2𝑎2𝑔
Tr(𝑈𝑝 − (𝑈𝑝)†) =

1
𝑎2𝑔

Tr sin 𝑋𝑝 .

Recalling Eq. (32), parametrizing 𝑈𝑝 by the physical, unscaled gauge field
𝑈𝑏 = exp{𝑖𝑎𝑔𝐴𝑢

𝑏
}, we have

Tr F 𝑢
𝜇𝜈 (𝑥) ≃ Tr 𝐹𝑎

𝜇𝜈 (𝑥) = Tr
[
𝜕𝑎𝜇 𝐴

𝑢
𝜈 (𝑥) − 𝜕𝑎𝜈 𝐴𝑢

𝜇 (𝑥)
]
,

where 𝐹𝑎
𝜇𝜈 (𝑥) = 𝜕𝑎𝜇 𝐴𝑢

𝜈 (𝑥) − 𝜕𝑎𝜈 𝐴𝑢
𝜇 (𝑥) + 𝑖𝑔

[
𝐴𝑢
𝜇 (𝑥), 𝐴𝑢

𝜈 (𝑥)
]
, with a commutator in the

Lie algebra of U(𝑁).
Next, define the gauge-invariant scaled plaquette field by

Tr F 𝑠
𝜇𝜈 (𝑥) = 𝑎𝑑/2 Tr F 𝑢

𝜇𝜈 =

(
𝑎𝑑−4

𝑔2

)1/2

Im Tr(𝑈𝑝 − 1). (82)

Using once more the physical, unscaled field parametrization, we have that

Tr F 𝑠
𝜇𝜈 (𝑥) ≃ 𝑎𝑑/2 Tr

[
𝜕𝑎𝜇 𝐴

𝑢
𝜈 (𝑥) − 𝜕𝑎𝜈 𝐴𝑢

𝜇 (𝑥)
]
.

With our choice of the scaling factor [(𝑎𝑑−4/𝑔2)1/2], the generating function for
scaled plaquette field correlations is finite, uniformly in 𝑎 ∈ (0, 1]. It may seem
surprising that the generating function is pointwise bounded. However, it is known
that a similar phenomenon occurs in the case of a free massless or massive scalar
field in 𝑑 = 3, 4. Namely, as analyzed in [26], if instead of the given physical
field 𝜙𝑢 (𝑥), we use a locally scaled field 𝜙(𝑥) ≃ 𝑎 (𝑑−2)/2𝜙𝑢 (𝑥), then the 𝑟–point
correlation for the scaled 𝜙 fields is bounded pointwise, uniformly in 𝑎 ∈ (0, 1].
No smearing by a smooth test function is needed to achieve boundedness! We give
more details regarding the properties of scalar fields in Appendix A.

Remark 16. We can also define other plaquette fields and their associated scaled
fields. For instance, we can also work with the field

TrH𝜇𝜈 (𝑥) =
1
𝑎4𝑔

𝐴𝑝 ≃ Tr
[
𝐹𝑎
𝜇𝜈 (𝑥)

]2
,

and the associated scaled fields given by Tr 𝑆𝜇𝜈 (𝑥) ≡ 𝑎𝑑 TrH𝜇𝜈 (𝑥). The results and
proofs obtained below for the generating function of correlations of the scaled field
Tr𝑀𝜇𝜈 (𝑥) carry over to Tr 𝑆𝜇𝜈 (𝑥).

The 𝑟-plaquette scaled field generating function, associated with the field of
Eq. (82), is defined by

𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) ) =
1

𝑍
𝑠,𝑃

Λ
(𝑎)

𝑍
𝑠,𝑃

𝑟,Λ
(𝑎, 𝐽 (𝑟 ) ),
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where, for the source strengths 𝐽 𝑗 , 𝑗 = 1, . . . , 𝑟 , we have 𝐽 (𝑟 ) = (𝐽1, . . . , 𝐽𝑟 ) and
𝑍
𝑠,𝑃

𝑟,Λ
(𝑎, 𝐽 (𝑟 ) ) is defined similarly to 𝑍

𝑠,𝑃

Λ
(𝑎) (see Eq. (38)), but with the inclusion

of 𝑟 local source factors in the integrand given by

exp
[∑︁
𝑥∈Λ

∑︁
1≤ 𝑗≤𝑟

𝐽 𝑗 (𝑥 𝑗) Tr F 𝑠
𝑝 𝑗
(𝑈𝑝 𝑗

)
]
.

Here, we adopt the convention that the plaquette 𝑝 𝑗 originates at the lattice point
𝑥 𝑗 and 𝑝 𝑗 is a shorthand for 𝑝 𝑗 = 𝑝𝜇 𝑗 ,𝜈 𝑗 (𝑥 𝑗). The 𝑟-plaquette correlation, with a set
𝑦𝐸 = (𝑦1, . . . , 𝑦𝑟 ) of 𝑟 lattice external points in Λ is given by

𝜕𝑟

𝜕𝐽1(𝑦1) . . . 𝜕𝐽𝑟 (𝑦𝑟 )
𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) )

����
𝐽 𝑗=0

.

Our factorized bound is given in the next theorem. For simplicity of notation,
from now on, we set 𝐽𝑖 ≡ 𝐽𝑖 (𝑦𝑖).

Theorem 4. Considering the model with periodic b.c., we have:

(1) The 𝑟-plaquette scaled field generating function is bounded by

|𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) ) | ≤
∏

1≤ 𝑗≤𝑟

��𝑧𝑢 (𝑟𝐽 𝑗)��2𝑑Λ𝑟 /(𝑟Λ𝑠 )

𝑧
2𝑑 (Λ𝑟+Λ𝑒 )/(𝑟Λ𝑠 )
ℓ

. (83)

(2) From this, if 𝐺𝑟 ,𝑎 (𝐽 (𝑟 ) ) denotes a sequential or subsequential thermodynamic
limit Λ ↗ 𝑎Z𝑑 , then��𝐺𝑟 ,𝑎 (𝐽 (𝑟 ) )

�� ≤ ∏
1≤ 𝑗≤𝑟

��𝑧𝑢 (𝑟𝐽 𝑗)/𝑧ℓ ��2𝑑 (𝑑−1)/𝑟
,

with

|𝑧𝑢 (𝐽) | =
∫

exp
[
|𝐽 | (𝑎𝑑−4/𝑔2)1/2 | Im𝑇𝑟 (𝑈 − 1) | − (𝑎𝑑−4/𝑔2)𝐴𝑢

𝑝 (𝑈)
]
𝑑𝜎(𝑈)

= (N𝑐)−1
∫

𝑒𝑥𝑝

[
|𝐽 | (𝑎𝑑−4/𝑔2)1/2

∑︁
1≤ 𝑗≤𝑁

| sin𝜆 𝑗 | − 2𝑎𝑑−4/𝑔2

×
∑︁

1≤ 𝑗≤𝑁

(1˘ cos𝜆 𝑗)
]
𝜌(𝜆) 𝑑𝑁𝜆

≤
(𝑎𝑑−4/𝑔2)−𝑁2/2𝜋𝑁2+𝑁/4N1/2

𝑆

N𝐶

exp[(𝜋2/8)𝑁 |𝐽 |2]

≡ (𝑎𝑑−4/𝑔2)−𝑁2/2 exp(𝑐′𝑢 + 𝜋2/8𝑁 |𝐽 |2), (84)

where exp 𝑐′𝑢 = 𝜋𝑁2+𝑁/4 +
√
N𝑠

N𝐶

. Recalling 𝐶2 = 4𝑁 and using Eq. (78) of
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Theorem 2, we obtain

𝑧ℓ =N−1
𝐶

∫
(−𝜋,𝜋 ]𝑁

exp
{
−
[
2𝐶2(𝑑 − 1)𝑎𝑑−4/𝑔2] ∑︁

𝑗=1,...,𝑁
𝜆2
𝑗

}
𝜌(𝜆)𝑑𝑁𝜆

≥N−1
𝐶

(
2(𝑑 − 1)𝐶2𝑎𝑑−4

𝑔2

)−𝑁2/2 ( 4
𝜋2

)𝑁 (𝑁−1)/2

𝐼ℓ ≡
(
𝑎𝑑−4/𝑔2)−𝑁2/2

𝑒𝑐ℓ ,

where 𝑐ℓ is defined in Theorem 2 and 𝐼ℓ ≡ 𝐼2(𝜋𝐶
√︁

2(𝑑 − 1)/(2𝑔0)) and 𝐼2 is
the function defined in Eq. (76).

Hence, from the bounds of Eqs. (83) and (84), it follows that 𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) )
is a jointly analytic, entire complex function of the source field strengths
𝐽 𝑗 ∈ C.

(3) Letting 𝐺𝑟 (𝐽 (𝑟 ) ) denote a sequential or subsequential continuum limit 𝑎 ↘ 0
of 𝐺𝑟 ,𝑎 (𝐽 (𝑟 ) ), then��𝐺𝑟 (𝐽 (𝑟 ) )

�� ≤ exp
[
2𝑑

𝑟
(𝑑 − 1) (𝑐′𝑢 − 𝑐ℓ) + (𝜋2/8)𝑁𝑟

∑︁
1≤ 𝑗≤𝑟

|𝐽 𝑗 |2
]
.

This bound is independent of the location and orientation of the 𝑟 plaquettes, and
independent of the value of 𝑎 ∈ (0, 1] and 𝑔2.

Remark 17. Our method to prove the generating function bound uses multiple
reflection bounds [4]. Remember the bound has to be uniform in the volume Λ𝑠

(number of lattice sites) and in the lattice spacing 𝑎 ∈ (0, 1]. For the case of the
free scaled scalar field, the multiple reflection method does not work, as we now
explain. Using multiple reflection with a uniform source field, we have to bound
⟨exp[𝐽∑𝑥 𝜙(𝑥)]⟩. The bound should be in the form exp[𝑐𝑢 (𝐽)Λ𝑠], where 𝑐𝑢 (𝐽) is
bounded uniformly in Λ𝑠, 𝑎 ∈ (0, 1] and, for finite 𝐽 or, at least, for small |𝐽 |.
However, as the free field is Gaussian,〈

exp
[
𝐽
∑︁
𝑥

𝜙(𝑥)
]〉

= exp
[
1
2
𝐽2

∑︁
𝑥,𝑦

𝐶 (𝑥, 𝑦)
]
,

where 𝐶 (𝑥, 𝑦) is the 2-point correlation for the scaled scalar field and is given in
Eq. (A17), in the thermodynamic limit. Using translation invariance,

∑
𝑥,𝑦 𝐶 (𝑥, 𝑦) =

Λ𝑠

∑
𝑥 𝐶 (𝑥, 0). The sum

∑
𝑥 𝐶 (𝑥, 0) gives the zero momentum value of the Fourier

transform. This quantity in not bounded uniformly in 𝑎 ∈ (0, 1], and blows up
as 1/𝑎2 as seen from Eq. (A17). Of course, ⟨exp [𝐽𝜙(𝑥)]⟩ = exp

[ 1
2 𝐽

2𝐶 (𝑥, 𝑥)
]

and 𝐶 (𝑥, 𝑥) are bounded uniformly in 𝑎 ∈ (0, 1] which can again be seen using
Eq. (A17).

Remark 18. For comparison, the 𝑟-point correlation for the free scaled scalar
field, in the thermodynamic limit, is given by
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exp

[ 𝑟∑︁
𝑗=1
𝐽 𝑗𝜙(𝑥 𝑗)

]〉
= exp

[
1
2

𝑟∑︁
𝑗 ,𝑘=1

𝐽 𝑗𝐶 (𝑥 𝑗 , 𝑥𝑘)𝐽𝑘
]

≤ exp
{

2𝑑 + (𝑚𝑢/𝜅𝑢)2

4𝑑
Δ−1

1 (0, 0)
𝑟∑︁

𝑗 ,𝑘=1
|𝐽 𝑗 | |𝐽𝑘 |

}
≤ exp

[
𝑟

2𝑑 + (𝑚𝑢/𝜅𝑢)2

4𝑑
Δ−1

1 (0, 0)
𝑟∑︁
𝑗=1
𝐽2
𝑗

]
,

where Δ−1
1 (0, 0) is given in Eq. (A24) and is finite for 𝑑 ≥ 3. By Griffths I [4],

this bound extends to complex 𝐽.

Remark 19. The generating function extends to an entire jointly analytic function
of the source strengths 𝐽𝑖, 𝑖 = 1, . . . , 𝑟 . (For the case of the gauge group SU(𝑁),
the joint analyticity domain is finite). By Cauchy estimates, it can be used to
bound the 𝑟-plaquette scaled field correlations. We use the C𝑟 version of the
Cauchy bounds. Recall that, for C, if 𝑓 (𝑧) is analytic in the disk |𝑧 | < 𝑅, 𝑅 > 0,
then | (𝑑𝑛 𝑓 /𝑑𝑧𝑛) (𝑧 = 0) | ≤ 𝑛! [sup𝑧; |𝑧 |=𝑅0

| 𝑓 (𝑧) |]/𝑅𝑛
0 , for any 0 < 𝑅0 < 𝑅 (see e.g.

[55]). In particular, the coincident point plaquette-plaquette physical field correlation
is bounded by const 𝑎−𝑑 . The 𝑎−𝑑 factor is the same small 𝑎 behaviour of the
coincident point, two-point correlation of the derivative of the real scalar physical
free field (see Appendix A). Using the free scalar field as a reference, this singular
behaviour is a measure of the ultraviolet asymptotic freedom.

Remark 20. In obtaining the bounds on the scaled plaquette field generating
function and correlations, we have used the group bond variable parametrization
𝑈𝑏 = exp

{
𝑖𝑔𝑎−(𝑑−4)/2𝜒𝑏

}
. In the physically relevant 𝑑 = 4 case, 𝑈𝑏 = 𝑒𝑖𝑔𝜒𝑏 and

⟨[Tr F 𝑠]𝑟 ⟩Λ,𝑎,𝑔 is independent of the lattice spacing 𝑎, so that

⟨[Tr F 𝑠]𝑟 ⟩Λ,𝑔 ≡ ⟨[Tr F 𝑠]𝑟 ⟩Λ,𝑎,𝑔 = 𝑎𝑑𝑟/2⟨[Tr F 𝑢]𝑟 ⟩Λ,𝑎,𝑔 .
For the thermodynamic limit or subsequential limit, we drop the subscript Λ, so
that we have

⟨[Tr F 𝑠]𝑟 ⟩𝑔 = 𝑎𝑑𝑟/2⟨[Tr F 𝑢]𝑟 ⟩𝑎,𝑔 .
Of course, the continuum limit of the left-hand side is ⟨[Tr F 𝑠]𝑟 ⟩𝑔 and

⟨[Tr F 𝑢]𝑟 ⟩𝑔 = 𝑎−𝑑𝑟/2⟨[Tr F 𝑠]𝑟 ⟩𝑔,
which displays the exact dependence on the lattice spacing 𝑎 as a multiplicative
factor.

Lemma 2 and Theorems 1–4 are proved in the next section.

6. Proofs of the lemma and theorems
Here, following [49], we give a proof of Lemma 2. We also prove Theorems

1–4. The enhanced temporal gauge is sometimes used for proving these theorems.
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The proof of the upper stability bound on the partition function actually does not
depend on this choice.

6.1. Proof of Lemma 2
For simplicity, we consider the case where we have four bonds in a plaquette. The

other cases, when only one, two, or three bonds are retained, are similar. Recalling
that, if 𝐴 and 𝐵 are self-adjoint, then Tr(𝐴𝐵) = Tr(𝐵𝐴) = Tr(𝐴𝐵)∗ (star meaning
complex conjugation) is real, we define, for 1 ≤ 𝑗 ≤ 4, L 𝑗 = 𝑖

∑
1≤𝛼≤𝑁2 𝑥

𝑗
𝛼𝜃𝛼, so

that 𝑈 𝑗 = 𝑒
L 𝑗 and 𝑈𝑝 = 𝑈1𝑈2𝑈

†
3𝑈

†
4 .

Since ∥L 𝑗 ∥ ≤ ∥L 𝑗 ∥𝐻−𝑆 = |𝑥 𝑗 | and letting 𝑈𝑝 (𝛿) = 𝑈1(𝛿)𝑈2(𝛿)𝑈†
3 (𝛿)𝑈

†
4 (𝛿),

𝑈 𝑗 (𝛿) = 𝑒𝛿L 𝑗 , for 𝛿 ∈ [0, 1], by the fundamental theorem of calculus, suppressing 𝛿,

𝑈𝑝 − 1 =

∫ 1

0
𝑑𝛿

[
L1𝑈1𝑈2𝑈

†
3𝑈

†
4 +𝑈1L2𝑈2𝑈

†
3𝑈

†
4 −𝑈1𝑈2L3𝑈

†
3𝑈

†
4 −𝑈1𝑈2𝑈

†
3L4𝑈

†
4

]
.

Using the triangle and Cauchy–Schwarz inequalities, we obtain

∥𝑈𝑝 − 1∥ ≤
4∑︁
𝑗=1

∥L 𝑗 ∥ ≤
4∑︁
𝑗=1

∥L 𝑗 ∥𝐻−𝑆 =

4∑︁
𝑗=1

|𝑥 𝑗 | ≤ 2
[ 4∑︁
𝑗=1

|𝑥 𝑗 |2
]1/2

.

But, ∥𝑈𝑝 − 1∥ ≥ 𝑁−1/2∥𝑈𝑝 − 1∥𝐻−𝑆 . Hence,

A𝑝 = ∥𝑈𝑝 − 1∥2
𝐻−𝑆 ≤ 4𝑁

4∑︁
𝑗=1

|𝑥 𝑗 |2.

By considering the number of terms in the sum over 𝑗 , the last multiplicative
factor 4 is in 𝐶2 is replaced by 1, 2 and 3, respectively, when only one, two or
three retained bond variables appear in a retained plaquette.

Alternatively, we can bound the terms of the second equality of Eq. (67), for
(𝑈𝑝 − 1) directly.

Using this upper bound on the single plaquette action, we sum over the
plaquettes. Noting that, fixing a given lattice bond, there are at most [2(𝑑 − 1)]
plaquettes that have this bound in common, the result for the total action follows.

□

6.2. Proof of Theorem 1
The case of free b.c.:
Upper bound: For ease of visualization we carry it out explicitly for 𝑑 = 3. An
upper bound is obtained by discarding all horizontal plaquettes from the action,
except those with temporal coordinates 𝑥0 = 1. We now perform the horizontal bond
integration. Integrate over successive planes of horizontal bonds starting at 𝑥0 = 𝐿

and ending at 𝑥0 = 2. For the 𝑥0 = 1 horizontal plane, integrate over successive lines
in the 𝜇 = 2 direction, starting at 𝑥1 = 𝐿 and ending at 𝑥1 = 2. For each horizontal
bond variable, the bond variable appears in only one plaquette in the action. After
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the integration, in principle, the integral still depends on the other bond variables of
the plaquette. However, using the left or right invariance of the Haar measure, the
integral is independent of the other variables. In this way, we extract a factor 𝑧𝑢.
In the total procedure, we integrate over the Λ𝑟 horizontal bonds (see Eq. (9)), so
that we extract a factor 𝑧Λ𝑟

𝑢 .
Lower bound: Using Lemma 1 gives the factorization and 𝑧ℓ .

The case of periodic b.c.:
Upper bound: Considering the positivity of each term in the model action of Eq. (39),
since 𝐴𝑃 ≥ 𝐴, we have

𝑍𝑃
Λ,𝑎 ≤

∫
𝑒−𝐴 𝑑𝑔𝐵 =

∫
𝑒−𝐴 𝑑𝑔 = 𝑍Λ,𝑎 ≤ 𝑧Λ𝑟

𝑢 .

Lower bound: Use the global quadratic upper bound of Lemma 2 on all Λ𝑟 ∪ Λ𝑒

bond variables. Thus, we have
𝑍𝑃
Λ,𝑎 ≥ 𝑧

Λ𝑟+Λ𝑒

ℓ
,

where 𝑈 = exp(𝑖𝑋), 𝑋 =
∑

𝛼 𝑥𝛼𝜃𝛼. □

6.3. Proof of Theorem 2

In Theorem 2, the first line for 𝑧𝑢 [see Eq. (77)] is the application of the Weyl
integration formula of Eq. (75) (see [30–32, 47]). Use the inequality (see [13])
(1− cos 𝑥) ≥ 2𝑥2/𝜋2, 𝑥 ∈ [−𝜋, 𝜋], in the action, and the inequality (1− cos 𝑥) ≤ 𝑥2/2
in each factor of 𝜌(𝜆). After making the change of variables 𝑦 = 2[𝑎 (𝑑−4)/2/(𝜋𝑔)]𝜆
and using the monotonicity of the integral, the result follows.

To obtain Eq. (78) for 𝑧ℓ , apply the Weyl integration formula and use the inequality
2[1 − cos(𝜆 𝑗 − 𝜆𝑘)] ≥ (4/𝜋2) (𝜆 𝑗 − 𝜆𝑘)2, |𝜆ℓ | < 𝜋/2 in each factor of the density
𝜌(𝜆). Then, use the positivity of the integrand and restrict the domain of integration
to (−𝜋/2, 𝜋/2]𝑁 . In making the change of variables 𝑦 = [𝑎 (𝑑−4)/2/𝑔]𝐶

√︁
2(𝑑 − 1)𝜆,

the integral 𝐼2( [𝑎 (𝑑−4)/2/𝑔]𝐶
√︁

2(𝑑 − 1))𝜋/2) appears (see Eq. (76)). Since 𝐼2(𝑢) is
monotone increasing, the integral assumes its smallest value for 𝑎 = 1 and 𝑔2 = 𝑔2

0.
□

6.4. Proof of Theorem 3

For periodic b.c. and the lower bound, using Theorem 1, we have the finite
volume lattice normalized free energy

𝑓
𝑃,𝑛

Λ,𝑎
=

1
Λ𝑟

ln 𝑍𝑃,𝑛

Λ,𝑎
=

1
Λ𝑟

ln
[
𝑎𝑑−4

𝑔2

]𝑁2Λ𝑟 /2

+ 1
Λ𝑟

ln 𝑍𝑃
Λ,𝑎

≥ 1
Λ𝑟

ln
[
𝑎𝑑−4

𝑔2

]𝑁2Λ𝑟 /2

+ 1
Λ𝑟

ln 𝑧Λ𝑟+Λℓ

ℓ
.
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Continuing the inequality and using Theorem 2, we have

𝑓
𝑃,𝑛

Λ,𝑎
≥ 1
Λ𝑟

ln
[
𝑎𝑑−4

𝑔2

]𝑁2Λ𝑟 /2

+ Λ𝑒 + Λ𝑟

Λ𝑟

ln
[(
𝑎𝑑−4

𝑔2

)−𝑁2/2

𝑒𝑐ℓ

]
≥ ln

[
𝑎𝑑−4

𝑔2

]𝑁2/2

+ Λ𝑒 + Λ𝑟

Λ𝑟

[
ln
(
𝑎𝑑−4

𝑔2

)−𝑁2/2

+ 𝑐ℓ
]

which gives, when Λ → 𝑎Z𝑑 ,
𝑓 𝑃,𝑛𝑎 ≥ 𝑐ℓ .

A similar calculation for the upper bound, setting to zero the number of extra
bonds in the lattice with periodic b.c., Λ𝑒 = 0, proves the theorem for the upper
bound. Of course, for free b.c., set Λ𝑒 = 0 in the above calculations. □

6.5. Proof of Theorem 4

To prove Theorem 4, first use the generalized Hölder’s inequality to bound
𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) ) by a product of single plaquette generating functions, i.e.

|𝐺𝑟 ,Λ,𝑎 (𝐽 (𝑟 ) ) | ≤
∏

1≤ 𝑗≤𝑟
|𝐺1,Λ,𝑎 (𝑟𝐽 𝑗) |1/𝑟 .

Now, since we are adopting periodic b.c., we can apply the multireflection method
(see [4]) to bound each factor in the product. To this end, we make a shift in the
lattice by (1/2𝑎) in each coordinate direction. Also, we use the 𝜋/2 lattice rotational
symmetry and translational symmetry to put the single plaquette in the 𝜇𝜈 = 01
coordinate plane in the first quadrant, with lower left vertex at (𝑎/2, 𝑎/2, . . . , 𝑎/2).
Then, we apply the multireflection method to obtain the bound

|𝐺1,Λ,𝑎 (𝑟𝐽 𝑗) | ≤ |𝐺Λ,𝑎 (𝑟𝐽 𝑗) |2
𝑑/Λ𝑠 ,

where 𝐺Λ,𝑎 (𝐽) =

[
𝑍𝑃
Λ,𝑎

]−1
𝑍𝑃
Λ,𝑎

(𝐽), with 𝑍𝑃
Λ,𝑎

(𝐽) denoting 𝑍𝑃
Λ,𝑎

with a source of
uniform source strength 𝐽. The source factor is given by exp[𝐽∑′

𝑝 Tr F𝑝 (𝑈𝑝)], where
the sum is over an array of plaquettes. The array consists of planes of plaquettes
that are parallel to the 01 coordinate plane. In each plane, they are only alternating,
i.e. like considering only squares of a same color on a chessboard. We obtain
a greater upper bound by noting that

|𝐽 Tr F𝑝 (𝑈𝑝) | ≤ |𝐽 | [𝑎 (𝑑−4)/2/𝑔] | Im Tr(𝑈𝑝 − 1) | ≤ |𝐽 | [𝑎 (𝑑−4)/2/𝑔] | Tr(𝑈𝑝 − 1) |
≤ |𝐽 | [𝑎 (𝑑−4)/2/𝑔]𝑁1/2∥𝑈𝑝 − 1∥𝐻−𝑆 ,

where we have used the Cauchy–Schwarz inequality in the Hilbert–Schmidt inner
product.

We also increase the bound by summing over all plaquettes in the lattice Λ that
are parallel to the 01 coordinate plane. We denote this sum by

∑′′
𝑝. In this way,
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we obtain the upper bound��𝑍𝑃
Λ,𝑎 (𝐽)

�� ≤ ∫
exp

[
|𝐽 |𝑎 (𝑑−4)/2𝑔−1𝑁1/2

′′∑︁
𝑝

∥𝑈𝑝 − 1∥𝐻−𝑆 − 𝑎𝑑−4𝐴𝑃/𝑔2
]
𝑑𝑔𝑃 .

As in the proof of the upper stability bound, for the periodic model, given
above, we discard plaquette actions in 𝐴𝑃, for plaquettes that are not in Λ so that��𝑍𝑃

Λ,𝑎 (𝐽)
�� ≤ ∫

exp
[
|𝐽 |𝑎 (𝑑−4)/2𝑔−1𝑁1/2

′′∑︁
𝑝

∥𝑈𝑝 − 1∥𝐻−𝑆 − 𝑎𝑑−4𝐴/𝑔2
]
𝑑𝑔.

We bound the integral as we did for the upper stability bound for the free b.c.
case. In this manner, we obtain the factorized bound��𝑍𝑃

Λ,𝑎 (𝐽)
�� ≤ [𝑧𝑢 (𝐽)]Λ𝑟 ,

and the factorized bound of Theorem 4 for 𝐺𝑟Λ𝑎 (𝐽 (𝑟 ) ) is proved. Here, we have
used the factorized lower bound of Theorems 1 and 2 for 𝑍𝑃

Λ,𝑎
.

Now, recalling that Λ𝑠 = 𝐿
𝑑 , Λ𝑟 ≃ (𝑑˘1)𝐿𝑑 and Λ𝑒 = 𝑑𝐿

𝑑−1, the factorized bound
for 𝐺𝑟𝑎 (𝐽 (𝑟 ) ) follows.

Application of the Weyl integration formula of Eq. (75) [30–32, 47] gives the
𝜆 integral for 𝑧𝑢 (𝐽). Using the bounds | sin𝜆 𝑗 | ≤ |𝜆 𝑗 |, for all 𝑗 , and

| exp(𝑖𝜆 𝑗) − exp(𝑖𝜆𝑘) |2 = 2[1˘ cos(𝜆 𝑗 − 𝜆𝑘)] ≤ (𝜆 𝑗 − 𝜆𝑘)2,

for each factor of 𝜌(𝜆) gives the inequality

𝑧𝑢 (𝐽)

≤ (1/N𝑐)
∫
(−𝜋,𝜋 ]𝑁

exp
[
|𝐽 | (𝑎 (𝑑−4)/2/𝑔)

∑︁
1≤ 𝑗≤𝑁

|𝜆 𝑗 | − 4𝑎𝑑−4/(𝑔2𝜋2)
∑︁

1≤ 𝑗≤𝑁

𝜆2
𝑗

]
𝜌̂(𝜆)𝑑𝑁𝜆.

Making the change of variables 𝑦𝑘 = [2𝑎 (𝑑−4)/2/(𝑔𝜋)]𝜆𝑘 , a factor of [𝑎 (𝑑−4)/2/𝑔]−𝑁2

is extracted and the remaining integral is bounded by, with 𝑦2 =
∑

𝑗 𝑦
2
𝑗 ,∫

R𝑁
exp

[
𝜋 |𝐽 |

∑︁
1≤ 𝑗≤𝑁

|𝑦 𝑗 |/2 −
∑︁

1≤ 𝑗≤𝑁

𝑦2
𝑗

]
𝜌̂(𝑦) 𝑑𝑁 𝑦.

Writing exp(−𝑦2) = exp(−𝑦2/2) exp(−𝑦2/2) and using the Cauchy–Schwarz in-
equality, the integral is bounded by[∫

R𝑁
exp

(
𝜋 |𝐽 |

∑︁
1≤ 𝑗≤𝑁

|𝑦 𝑗 | −
∑︁

1≤ 𝑗≤𝑁

𝑦2
𝑗

)
𝑑𝑁 𝑦

]1/2 [∫
R𝑁

exp
(
−

∑︁
1≤ 𝑗≤𝑁

𝑦2
𝑗

)
𝜌̂2(𝑦)𝑑𝑁 𝑦

]1/2
.

Using the inequality 𝑒𝑠 |𝑦𝑘 | ≤ 𝑒𝑠𝑦𝑘 +𝑒−𝑠𝑦𝑘 , 𝑠 > 0, the Gaussian integral of the bound of
the integral of the first factor is carried out explicitly. For the integral of the second
factor, after making the change of variables 𝑤𝑘 = (𝑦𝑘/

√
2) and, up to a numerical

factor, the resulting integral is the normalization constant N𝑆 for the GSE ensemble
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(see [42, 43]). Keeping track of the numerical factors gives the final inequality for
𝑧𝑢 (𝐽) and the proof of Theorem 4 is complete. □

7. Concluding remarks
We consider the Yang–Mills quantum field theory in an imaginary-time functional

integral formulation on a hypercubic lattice Λ ⊂ 𝑎Z𝑑 , 𝑑 = 2, 3, 4, 𝑎 ∈ (0, 1], with the
Wilson partition function defined with gauge coupling 0 < 𝑔2 < 𝑔2

0, for 𝑔0 positive
and finite. This means our results are not restricted to small couplings 𝑔0. The lattice
Λ has 𝐿 (even) sites on a side, Λ𝑠 = 𝐿

𝑑 sites, and we use both free and periodic
boundary conditions. Letting 0 label the temporal direction, 𝑥 = (𝑥0, . . . , 𝑥𝑑−1) denotes
a lattice site and 𝑒𝜇, 𝜇 = 0, . . . , (𝑑 − 1), is a unit vector in the positive 𝜇 direction.
We are concerned with finiteness properties of physically relevant quantities and
our main goal is to derive stability bounds to control the thermodynamic limit
(Λ ↗ 𝑎Z𝑑) and the continuum limit (𝑎 ↘ 0) of the free energy and correlations.

In the Wilson formulation, there is a matrix, gauge variable 𝑈𝑏 for each
positively oriented lattice bond 𝑏. A positively oriented bond 𝑏𝜇 (𝑥) is a segment
[𝑥, 𝑥+𝜇 ≡ 𝑥+𝑎𝑒𝜇] connecting the Λ site 𝑥 to 𝑥+𝜇 in the 𝜇-th positive axis direction, and
we take 𝑈𝑏 to be an element of the compact Lie gauge groups G = U(𝑁), SU(𝑁).
With this, we write the unitary gauge variable 𝑈𝑏 = 𝑒𝑖𝑋𝑏 , with a self-adjoint element
𝑋𝑏 of the G Lie algebra. We also use what we call the physical parametrization
𝑈𝑏 = 𝑒𝑖𝑎𝑔𝐴𝑏 , and if 𝑏 = 𝑏𝜇 (𝑥) = [𝑥, 𝑥+𝜇 ≡ 𝑥 + 𝑎𝑒𝜇], we set 𝐴𝑏 = 𝐴𝜇 (𝑥). The physical
gauge potentials (gluon fields) 𝐴𝜇 (𝑥) then lie in the Lie algebra of G.

The partition function for type 𝐵 (free = no superscript or periodic = 𝑃) b.c.
is given by

𝑍𝐵
Λ,𝑎 =

∫
exp[(−𝑎𝑑−4/𝑔2)𝐴𝐵]𝑑𝑔̃𝐵,

and its value is independent of the parametrization used for the bond variable
𝑈𝑏. A lattice plaquette (minimal square) 𝑝 = 𝑝𝜇𝜈 (𝑥), with positively oriented
bonds 𝑏1 = [𝑥, 𝑥𝜇+ ], 𝑏2 = [𝑥𝜇+ , 𝑥

𝜇
+ + 𝑎𝑒𝜈], 𝑏3 = [𝑥𝜈+ , 𝑥𝜈+ + 𝑎𝑒𝜇] and 𝑏4 = [𝑥, 𝑥𝜈+],

in the 𝜇𝜈 coordinate plane (𝜇 < 𝜈), is associated with the plaquette variable
𝑈𝑝 = 𝑈𝑏1𝑈𝑏2𝑈

†
𝑏3
𝑈

†
𝑏4

= 𝑒𝑖𝑋𝑝 , since 𝑈𝑏 is unitary. The total Wilson action 𝐴𝐵 is
a sum over all distinct lattice Λ single plaquette actions 𝐴𝑝 given by

𝐴𝑝 = ∥𝑈𝑝 − 1∥2
𝐻−𝑆 = 2Re Tr(1 −𝑈𝑝) = 2 Tr(1˘ cos 𝑋𝑝).

Here, ∥ · ∥𝐻−𝑆 is the Hilbert–Schmidt norm. Note that 𝐴𝑝 is pointwise nonnegative
and so is 𝐴𝐵 =

∑
𝑝 𝐴𝑝. Last, a copy of the gauge group, denoted by G𝑥 is attached

to each lattice point 𝑥 ∈ Λ and the gauge group measure 𝑑𝑔̃𝐵 is a product measure
over bonds of a gauge group G Haar measure. Whenever periodic b.c. is employed,
as usual, we add extra bonds to Λ connecting the Λ endpoints of the boundary
𝜕Λ of Λ to the initial points of the boundary 𝜕Λ in each spacetime direction
𝜇 = 0, 1, . . . , (𝑑 − 1). The periodic plaquettes are those that can be formed from the
totality of periodic bonds.
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Formally, using the physical parametrization, for small 𝑎 ∈ (0, 1], 𝐴𝑝 ≃
𝑎4𝑔2 Tr[𝐹𝑎

𝜇𝜈 (𝑥)]2, where, with finite difference derivatives given in Eq. (44),
we have 𝐹𝑎

𝜇𝜈 (𝑥) = 𝜕𝑎𝜇 𝐴𝜈 (𝑥)˘𝜕𝑎𝜈 𝐴𝜇 (𝑥) + 𝑖𝑔[𝐴𝜇 (𝑥), 𝐴𝜈 (𝑥)], and the commutator is
taken over the Lie algebra of G = U(𝑁). Thus, for 𝜇 < 𝜈, (𝑎𝑑−4/𝑔2)∑𝑝 𝐴𝑝 ≃∑

𝑥∈Λ 𝑎𝑑
∑𝑑−1

𝜇,𝜈=0 Tr[𝐹𝑎
𝜇,𝜈 (𝑥)]2 is the Riemann sum approximation to the smooth

field continuum Yang–Mills action
∑

𝜇<𝜈

∫
[−𝐿𝑎,𝐿𝑎]𝑑 Tr[𝐹𝜇𝜈 (𝑥)]2 𝑑𝑑𝑥, where 𝐹𝜇𝜈 (𝑥)

is defined as above, but with usual partial derivatives.
The Wilson action is invariant under local gauge transformations from the group∏

𝑥∈Λ G𝑥 [see Eq. (45)]. By this invariance, initially, there is an excess of degrees of
freedom. Then, by a gauge fixing procedure, certain gauge variables are gauged away,
i.e. they are fixed to the identity matrix, and have trivial gauge integration. In this
procedure, there are only Λ𝑟 retained bond variables and the value of the partition
function is not changed if the gauged away bonds do not form a loop on Λ [4].
We sometimes adopt the enhanced temporal gauge, in which case all temporal
bonds in Λ are gauged away (i.e. set to the identity with a trivial corresponding
gauge Haar integral) as well as some specified spatial bonds on the boundary of Λ.
Here, Λ𝑟 is approximately the number of nontemporal (or spatial) bonds, namely,
Λ𝑟 ≃ (𝑑 − 1)𝐿𝑑 .

Since there are 𝛿𝑁 (the group Lie algebra dimension) components of the gauge
potential, the Λ lattice total number of degrees of freedom in the Yang–Mills model
is 𝛿𝑁Λ𝑟 . Instead of working with the unscaled, physical fields 𝐴𝜇 (𝑥) ≡ 𝐴𝑢

𝜇 (𝑥), if
we work with scaled fields 𝐴𝑠

𝜇 (𝑥) = 𝑎 (𝑑−2)/2𝐴𝑢 (𝑥), we find that the Wilson action
becomes more regular in 𝑎 ∈ (0, 1] and 0 < 𝑔2 < 𝑔2

0 < ∞. If we define a scaled
field partition function 𝑍 𝑠

Λ
(𝑎) by

𝑍 𝑠
Λ(𝑎) =

(
𝑎 (𝑑−4)/2/𝑔

) 𝛿𝑁Λ𝑟
𝑍Λ(𝑎),

where, suppressing the boundary condition index 𝐵, 𝑍Λ(𝑎) is the original, unscaled
partition function defined in Section 2, we find that 𝑍 𝑠

Λ
(𝑎) obeys the thermodynamic

and ultraviolet stability bounds (TUV)

𝑒𝑐ℓΛ𝑟 ≤ 𝑍 𝑠
Λ(𝑎) ≤ 𝑒

𝑐𝑢Λ𝑟 ,

with finite constants 𝑐ℓ and 𝑐𝑢, independent of 𝑎 and 𝑔2. By the Bolzano–Weierstrass
theorem, this bound leads to the existence of the thermodynamic followed by the
continuum limit of the scaled free energy 𝑓 𝑠

Λ
(𝑎) = [ln 𝑍 𝑠

Λ
(𝑎)]/Λ𝑠, at least in the

subsequential sense. Note that the scaling we use is noncanonical and that it does not
affect the underlying quantum mechanical energy-momentum spectrum and particle
content of the model, since it does not alter the decay rate of correlations.

What about correlations? For the plaquette 𝑝 = 𝑝𝜇𝜈 , as given above, we define
a gauge-invariant unscaled plaquette field, with 𝑈𝑝 = 𝑒𝑖𝑋𝑝 ,

Tr F 𝑢
𝜇𝜈 (𝑥) =

1
𝑎2𝑔

Im Tr(𝑈𝑝 − 1) = − 𝑖

2𝑎2𝑔
Tr
(
𝑈𝑝 −𝑈†

𝑝

)
=

1
𝑎2𝑔

Tr sin 𝑋𝑝 .
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The gauge invariance of the plaquette field results from Eq. (45) and, more directly,
from the gauge invariance of Tr𝑈𝑝.

With the physical parametrization 𝑈𝑏 = 𝑒𝑖𝑔𝑎𝐴𝑏 , for small 𝑎, we have TrF 𝑢
𝜇𝜈 (𝑥) ≃

Tr 𝐹𝑎
𝜇𝜈 (𝑥). We also define a scaled plaquette field

Tr F 𝑠
𝜇𝜈 (𝑥) = 𝑎𝑑 Tr F 𝑢

𝜇𝜈 (𝑥) =
𝑎 (𝑑−4)/2

𝑔
Im Tr(𝑈𝑝 − 1).

Our results on stability bounds on the partition function and boundedness of
the generating function and correlations are for the Wilson Yang–Mills model with
a priori scaled fields. Sometimes we apply gauge fixing, imposing what we call the
enhanced temporal gauge, but there are no additional infrared regulator terms added
to the action like in [18, 22]. An infrared cutoff is not needed in the Wilson model
with free and periodic b.c..

We have applied our scaled field method to many Bose and Fermi models. Scaling
improves regularity of the physical action. The corresponding partition function and
model correlations are bounded. Correlations are bounded even at coincident points.
In models which are perturbations of the free field, the usual subtraction terms have
finite coefficients.

In particular, for the real scalar field, these properties are proved in Appendix A,
for the free field, and in Appendix B, for a perturbatively non-Gaussian scalar field
model. Denote by 𝜙𝑢 (𝑥) and 𝜙𝑠 (𝑥) the unscaled, physical and the scaled scalar field.
They satisfy the relation 𝜙𝑠 (𝑥) = 𝑠(𝑎)𝜙𝑢 (𝑥), where 𝑠(𝑎) = 𝑎 (𝑑−2)/2 (2𝑑𝜅2

𝑢 + 𝑚2
𝑢𝑎

2)1/2

is a noncanonical 𝑥-independent scaling factor. With this, the scaled and unscaled
partition functions satisfy 𝑍 𝑠

Λ
(𝑎) = [𝑠(𝑎)]Λ𝑠𝑍𝑢

Λ
(𝑎). The scaled partition function

𝑍 𝑠
Λ
(𝑎) obeys TUV stability bounds with the exponent Λ𝑠 (number of sites) and not

the R𝑑 volume (𝐿𝑎)𝑑 . The scaled free energy 𝑓 𝑠
Λ
(𝑎) = [ln 𝑍 𝑠

Λ
(𝑎)]/Λ𝑠 is bounded

uniformly in 𝐿 and 𝑎 ∈ (0, 1]. 𝑓 𝑠
Λ
(𝑎) then converges to a thermodynamic limit 𝑓 𝑠 (𝑎)

and then to a continuum limit 𝑓 𝑠, for dimensions 𝑑 = 3, 4.
Moreover, the unscaled, physical two-point normalized correlation is related to

the scaled one by ⟨𝜙𝑠 (𝑥)𝜙𝑠 (𝑦)⟩𝑠 = 𝑠2(𝑎)⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢 and the scaled correlation
is bounded uniformly in Λ and 𝑎, even at coincident points. This property leads
to the existence of its thermodynamic and, subsequently, continuum limits. The
unscaled, physical two-point correlation at coincident points presents the singular
behaviour 𝑎 (𝑑−2)/2, which can be taken as a lattice characterization of UV asymptotic
freedom. The singular behaviour of derivative fields is different and we have, with
finite difference derivatives and ⟨𝜕𝑎𝜌 𝜙𝑢 (𝑥)𝜕𝑎𝜎𝜙𝑢 (𝑦)⟩𝑢 ≃ [1/(𝑠2(𝑎)𝑎2)]. For 𝑥 = 𝑦, we
obtain the behaviour 𝑎−𝑑 , 𝑑 = 1, 2, 3, 4. Again, this behaviour can be taken as
a characterization of UV asymptotic freedom. The same type of analysis can be
used to treat the complete 𝜙4

3-model and we also notice that singularities present
in the construction of 𝜙4

3 in [37], and the stochastic PDE construction of [21] are
greatly reduced using our scaled field method.

The scaled field method also applies to treat interacting Fermi fields, and may
be a useful tool to extend our results for Yang–Mills models to QCD. For fermionic
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models TUV bounds, etc., also hold for scaled free field fermionic models [25, 26].
The key fact is that the fermionic Gaussian integral, written here symbolically as
(𝜓̃ meaning a 𝜓 or a 𝜓̄ field, where we are suppressing lattice and internal indices
(such as spin, flavor/isospin, . . . )∫

𝑀 (𝜓̃)𝑒 𝜓̄𝜓 𝑑𝜓̄ 𝑑𝜓 = −1, 0, 1,

where 𝑀 (𝜓̃) is a coefficient one monomial in the Fermi (Grassmann) fields 𝜓̄

and 𝜓. The integrand and the measures factorizes over lattice sites and internal
indices. Thus, for example, considering a model with partition function

𝑍Λ =

∫
𝑒ℎ ( 𝜓̃)𝑒𝑉 ( 𝜓̃)𝑒− 𝜓̄𝜓𝑑𝜓̄𝑑𝜓

=

∫ [∏
𝑏∈Λ

(
1 +

∑︁
𝑛(𝑏)

𝑐𝑏
𝑛(𝑏)𝑀𝑛(𝑏) (𝜓̃𝑏)

)] [∏
𝑠∈Λ

(
1 +

∑︁
𝑚(𝑠)

𝑐𝑠
𝑚(𝑠)𝑀𝑚(𝑠) (𝜓̃𝑠)

)]
𝑒− 𝜓̄𝜓𝑑𝜓̄ 𝑑𝜓,

(85)
where 𝑏 denotes a lattice bond and 𝑠 a lattice site. To arrive at the last equality,
we expand each free field nearest neighbor hopping factor 𝑒ℎ( 𝜓̃) and each factor
in 𝑒𝑉 ( 𝜓̃) , of the local interacting potential 𝑉 (𝜓̃). Due to Pauli repulsion, the
expansions are finite, in the finite lattice. For the terms in the bond 𝑏 expansion,
we make a correspondence with the integers 𝑛(𝑏) = 1, 2, . . . For the terms in the
site 𝑠 expansion, a correspondence with the integers 𝑚(𝑠) = 1, 2, . . . is also made.
The scaled field Fermi bond coupling is (see [56])

𝜅 =
1

1 + (𝑚𝑢𝑎/𝜅𝑢)
. (86)

and each 𝑐𝑛(𝑏) has at least one factor of 𝜅.
In the two above square brackets, the 𝑐’s are coefficients (with a possible

dependence on 𝑎, 𝜅) and the 𝑀’s are coefficient one monomials in the Fermi fields.
Expand the products and use the basic fact to perform the fermionic integrals. In
this way, we obtain a numerical partition function. Bounding each of the 𝑐’s by its
absolute value, we obtain the upper stability bound on the fermionic 𝑍Λ,

|𝑍Λ | ≤
[∏
𝑏∈Λ

(
1 +

∑︁
𝑛(𝑏)

|𝑐𝑏
𝑛(𝑏) |

)] [∏
𝑠∈Λ

(
1 +

∑︁
𝑚(𝑠)

|𝑐𝑠
𝑚(𝑠) |

)]
≤ exp [Λ𝑏 ln (1 + 𝐶𝑏)] exp [Λ𝑠 ln (1 + 𝐶𝑠)] , (87)

with 𝐶𝑏 ≡ max𝑏∈Λ
∑

𝑛(𝑏) |𝑐𝑏𝑛(𝑏) | and 𝐶𝑠 ≡ max𝑠∈Λ
∑

𝑚(𝑠) |𝑐𝑠(𝑠) |.
For the bound to be independent of the lattice spacing 𝑎 ∈ (0, 1], renormalization

of the coefficients may be required. For large enough (𝑚𝑢𝑎/𝜅𝑢) (hence, a small
scaled hopping parameter 𝜅), as in Eq. (86), after dividing by the integral of
𝑒𝑉 ( 𝜓̃) , which factorizes over sites, the free energy and correlations admit convergent
polymer expansion and the thermodynamic limit.
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Returning to the Yang–Mills model, we take periodic conditions and apply the
multireflection method. We analyzed the generating function of 𝑟 ∈ N of the above
scaled plaquette field correlations. It is given by (here, 𝑍𝑃

Λ
denotes the measure

normalization and the 𝐽’s are source strengths)〈
exp

{ 𝑟∑︁
𝑗=1
𝐽 𝑗 Tr F 𝑠

𝑝 𝑗
(𝑥 𝑗)

}〉
=

1
𝑍𝑃
Λ

∫
exp

{ 𝑟∑︁
𝑗=1
𝐽 𝑗 Tr F 𝑠

𝑝 𝑗
(𝑥 𝑗) −

𝑎𝑑−4

𝑔2

∑︁
𝑝∈Λ

𝐴𝑝 (𝑈𝑝)
}
𝑑𝜇(𝑈)

≡𝐺𝑟 ,Λ(𝐽 (𝑟 ) ,𝑥) ≡ 𝐺𝑟 (Λ, 𝑎, 𝐽 (𝑟 ) ,𝑥).

Here, 𝑝 𝑗 is a shorthand for 𝑝𝜇 𝑗 𝜈 𝑗 (𝑥 𝑗). We proved that 𝐺𝑟 ,Λ(𝐽 (𝑟 ) ,𝑥) is uniformly
bounded in the 𝑥’s and 𝐽’s and possesses a finite thermodynamic and continuum
limits, at least in the subsequential sense. Moreover, the generating function extends
to an entire function of the 𝐽’s and Cauchy bounds are applied to derive bounds on
𝑟 ∈ N scaled plaquette field correlations. (For the gauge group S𝑈 (𝑁), the analyticity
domain is finite.) In particular, our analysis shows that the two unscaled plaquette
field correlation presents a singular behaviour which is bounded by 𝑎−𝑑 , which is
less than or equal to the singular behaviour of the UV asymptotic freedom behaviour.
In particular, in 𝑑 = 4, the unscaled coincident point two-plaquette correlation is
equal to 𝑎−𝑑𝑀 (𝑔), with 𝑀 (𝑔) uniformly bounded for 𝑔2 ∈ (0, 𝑔2

0 < ∞].
In deriving the above results, we have obtained a new global upper bound on

the Wilson plaquette action, which is quadratic in the gluon fields. This is not what
happens in the classical Lagrangian version of the model, which was used in the
analysis of Yang–Mills models in [18, 22], and is also a surprise here, since the
small 𝑎 naive approximation has positive quartic terms. This quadratic bound on the
Wilson plaquette action is used to obtain a lower bound on the partition function.

Furthermore, the bound on the partition function factorizes and each factor is the
partition function of a single plaquette action with a single bond partition function.
The factorization occurs by setting to zero the actions of the spatial plaquettes. Such
a local factorization does not occur in typical bosonic and fermionic models. The
factorization suggests an avenue for a cluster or polymer expansion. In this case, the
unperturbed partition function has only temporal plaquettes (plaquettes with at least
one bond in the temporal direction) and the perturbation only has spatial plaquettes.

Concerning the integral over the gauge group Haar measure of the single bond
partition function, the integrand is a class function. In this case, with the help of
the Weyl’s integration formula, the 𝑁2-dimensional group integral can be reduced
to an 𝑁-dimensional integral over the angular eigenvalues. During this process, the
random matrix probability distributions of the circular unitary ensemble (CUE) and
the Gaussian unitary ensemble (GUE) appear.

An open and important question is whether or not the class of Yang–Mills
models we analyzed here has a mass gap in the spectrum.

Lastly, we hope that our methods and techniques, combined with other methods,
will be useful to accomplish a complete construction of the 𝑑 = 4 Yang–Mills and
QCD models, including the verification of the Osterwalder–Schrader axioms.
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APPENDIX A: Unscaled (physical) and scaled real scalar free field model
Here, we consider the case of a one-component (𝑁 = 1) real free scalar field

and obtain the relation between the physical, unscaled partition function and the
scaled partition function. Correlations are also analyzed. Considering the scaled
partition function and correlations, the thermodynamic and continuum limits are
obtained. These quantities also admit a convergent expansion in the scaled hopping
parameter 𝜅2. The convergence is absolute, up to and including the critical point
𝜅2 = 𝜅2

𝑐 = (1/2𝑑). The use of scaled fields removes the UV divergences from the
scaled free energy and correlations, even at coincident points. The use of free b.c.
is proved to provide infrared (IR) regularization and no global local mass term
is needed. The relation between the original physical, unscaled fields and scaled
field correlations at coincident points provides a characterization of UV asymptotic
freedom.

Our analysis here is given in more detail in Appendix A of [49], where we
considered 𝑁 component fields and to which we refer the reader. Concerning the
lattice Λ, we use the same as in the text and recall that Λ𝑠 = 𝐿

𝑑 , 𝐿 even, is the
total number of sites.

A.1. Partition function

We consider the hypercubic lattice Λ ⊂ 𝑎Z𝑑 ⊂ R𝑑 , 𝑎 ∈ (0, 1], with 𝐿 ∈ N, 𝐿 even
sites on a side and periodic boundary conditions. The total number of sites in Λ is
denoted by Λ𝑠 = 𝐿

𝑑 . For the real scalar field model, the physical or unnormalized
finite lattice partition function is (the lowercase/uppercase index 𝑢 denotes unscaled)

𝑍𝑢
Λ =

∫
𝑒−𝐴𝑢 (𝜙𝑢 )𝐷𝜙𝑢, (A1)

where 𝐷𝜙𝑢 =
∏

𝑥∈Λ 𝑑𝜙
𝑢 (𝑥)/

√
2𝜋, with a Lebesgue measure 𝑑𝜙𝑢 (𝑥) for the unscaled

field at each lattice site. Also, up to boundary terms, for 𝜇 = 0, . . . , (𝑑 −1) denoting
a lattice spacetime direction and for any site 𝑥 ∈ Λ, the model action is given by
(as before 𝑥+𝜇 = 𝑥 + 𝑎𝑒𝜇, 𝑒𝜇 being the unit vector of the 𝜇 spacetime direction)

𝐴𝑢 (𝜙𝑢) = 1
2
𝜅2
𝑢𝑎

𝑑−2 ∑
𝑥,𝜇

(
𝜙𝑢 (𝑥+𝜇) − 𝜙𝑢 (𝑥)

)2 + 1
2
𝑚2

𝑢𝑎
𝑑
∑

𝑥 [𝜙𝑢 (𝑥)]2

=−𝜅2
𝑢𝑎

𝑑−2 ∑
𝑥,𝜇

(
𝜙𝑢 (𝑥)𝜙𝑢 (𝑥+𝜇)

)
+ 1

2
(
𝑚2

𝑢𝑎
𝑑 + 2𝑑𝜅2

𝑢𝑎
𝑑−2) ∑

𝑥 [𝜙𝑢 (𝑥)]2, (A2)

where 𝜅𝑢, 𝑚𝑢 > 0. The mass associated with this action and corresponding to the
partition function is defined as the infinite time limit of the exponential decay rate
of the two-point correlation. Equivalently, it is the first isolated point in the E-M
spectrum of the associated lattice QFT, lying above the vacuum and at zero spatial
momentum. We determine this mass in Subsection A.2.

The scaled fields 𝜙(𝑥) are related to the unscaled fields 𝜙𝑢 (𝑥) by an 𝑎-dependent
noncanonical scaling transformation which corresponds to an a priori renormalization
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procedure. It reads (in [49], a similar equation has a misprint in the exponent of 𝑎!)

𝜙(𝑥) = 𝑠(𝑎)𝜙𝑢 (𝑥); 𝑠(𝑎) =
(
2𝑑𝜅2

𝑢𝑎
𝑑−2 + 𝑚2

𝑢𝑎
𝑑
)1/2 ≥

(
2𝑑𝜅2

𝑢

)1/2
𝑎 (𝑑−2)/2, (A3)

which leads to the scaled field partition function

𝑍Λ =

∫
𝑒−𝐴(𝜙)𝐷𝜙; 𝐴(𝜙) = 𝐴𝑢 (𝜙𝑢 = 𝑠−1𝜙), (A4)

where 𝐷𝜙 is defined similarly to 𝐷𝜙𝑢.
For

𝜅2 = (2𝑑 + 𝑟)−1, 𝑟 = 𝑚2
𝑢𝑎

2/𝜅2
𝑢, (A5)

the scaled field action of Eq. (A4) is given by

𝐴(𝜙) =−𝜅2 ∑
𝑥,𝜇 𝜙(𝑥)𝜙(𝑥+𝜇) +

1
2
∑

𝑥 [𝜙(𝑥)]2

=
𝜅2

2
∑

𝑥,𝜇

(
𝜙(𝑥+𝜇) − 𝜙(𝑥)

)2 + 𝜅
2𝑟

2
∑

𝑥 [𝜙(𝑥)]2. (A6)

Thus, by a change of variables, the unscaled and scaled finite lattice partition
functions are related by

𝑍Λ = 𝑠Λ𝑠𝑍𝑢
Λ, (A7)

and the corresponding finite lattice free energies satisfy
𝑓Λ(𝑎) = ln 𝑠 + 𝑓 𝑢Λ (𝑎), (A8)

where, as made precise above and omitting the 𝑎-dependence,

𝑓Λ =
1
Λ𝑠

ln 𝑍Λ and 𝑓 𝑢Λ =
1
𝑁𝑠

ln 𝑍𝑢.

Eq. (A8) above, tells us that the singularities of 𝑓 𝑢
Λ
(𝑎), when Λ ↗ 𝑎Z𝑑 and,

subsequently, in the 𝑎 ↘ limit are killed by the ln 𝑠 term. Thus, we have isolated
the divergences of 𝑓 𝑢

Λ
(𝑎).

Indeed, as it is proved in [49], we have the stability bounds for the scaled
partition function of Eq. (A7)

𝑒𝑐ℓΛ𝑠 ≤ 𝑍Λ,𝑎 ≤ 𝑒𝑐𝑢Λ𝑠 , (A9)
so as, by the Bolzano–Weierstrass theorem [48], the scaled free energy 𝑓Λ(𝑎), in the
thermodynamic limit Λ ↗ 𝑎Z𝑑 followed by the continuum limit 𝑎 ↘ 0 is bounded.
Letting 𝑓 denote the result of these two limits, with these considerations, we have

𝑐ℓ ≤ 𝑓 ≤ 𝑐𝑢. (A10)
We now derive and sum a power series representation, in the scaled hopping

parameter 𝜅2, for the free energy. The series is proved to converge absolutely up to
and including the critical value 𝜅2 = 𝜅2

𝑐 = (1/2𝑑).
From Appendix A of [49], for 𝑑 = 1, 2, 3, 4, we have the momentum representation

𝑓 (𝑎) = − 1
2(2𝜋)𝑑

∫
(−𝜋,𝜋 ]𝑑

ln
[
1 − 2𝜅2

∑︁
𝜇

cos 𝑞𝜇
]
𝑑𝑑𝑞. (A11)
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Recalling that the scaled hopping parameter 𝜅2 depends on 𝑎 [see Eq. (A5)], the
integral in Eq. (A11) is proved to be uniformly bounded for 𝑎 ∈ (0, 1] and also,
by the Lebesgue dominated convergence theorem, that the limit 𝑎 ↘ 0 exists and
is equal to the 𝑎 = 0 value of the r.h.s. of Eq. (A11).

Remark A1 . For 𝑑 = 1, the integral in Eq. (A11) gives the closed form
expression

𝑓 (𝑎) = −1
2

ln
[
1 +

√
1 − 4𝜅4

2

]
.

At the critical point, 𝜅2 = (1/2), 𝑓 (𝑎) remains bounded and takes the value ln
√

2.
Expanding the logarithm in the integrand of Eq. (A11), and using the multinomial

theorem, we obtain

𝑓 (𝑎) = 1
2

∑︁
𝑟≥1

(2𝜅2)𝑟
𝑟

∑︁
𝑟1 ,...,𝑟𝑑 |

∑
𝑗 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

∏
𝑗=1,...,𝑑

[
1

2𝜋

∫
(−𝜋,𝜋 ]

cos𝑟 𝑗 𝑞 𝑑𝑞
]
. (A12)

We claim that the series is absolutely convergent, for 𝜅2 < 𝜅2
𝑐 = (1/2𝑑). To see

this, bound the integral factors inside the product by one and then sum over the 𝑟 𝑗
to get 𝑑𝑟 . Next, summing over 𝑟 gives [(−1/2) ln(1 − 2𝜅2𝑑)]. This is bounded for
𝜅2 < (1/2𝑑) which proves our claim.

Using [57, Chapter 3], for the trigonometric integrals gives, for 0 ≤ 𝑟 𝑗 ≤ 𝑟,
𝑗 = 1, . . . , 𝑑,

𝑓 (𝑎) = 1
2

∑︁
𝑟≥2,even

(2𝜅2)𝑟
𝑟

∑︁
𝑟1 ,...,𝑟𝑑 ,even |∑ 𝑗 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

∏
𝑗=1,...,𝑑

(𝑟 𝑗 − 1)!!
𝑟 𝑗!!

, (A13)

with the convention 0!! ≡ 1 and (−1)!! ≡ 1.
Note that all the coefficients of the above series are positive. As 𝜅2 is a monotone

increasing function of a monotonically decreasing 𝑎, by the monotone convergence in
the space ℓ1 of the counting measure, and by the Lebesgue dominated convergence
theorem, the series in Eq. (A13) converges absolutely for all 0 ≤ 𝜅2 ≤ 𝜅2

𝑐 = (1/2𝑑).
Denoting by 𝑓 the 𝑎 ↘ 0 limit of 𝑓 (𝑎), we have the exact result

𝑓 =
1
2

∑︁
𝑟≥2,even

1
𝑟 𝑑𝑟

∑︁
𝑟1 ,...,𝑟𝑑 ,even |∑ 𝑗 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

∏
𝑗=1,...,𝑑

(𝑟 𝑗 − 1)!!
𝑟 𝑗!!

. (A14)

A.2. Correlations
We now consider correlations of the real free field scalar case. We obtain the

relation between unscaled and scaled correlations and prove their thermodynamic
and continuum limits exist. We also analyze derivative field correlations. Explicit
momentum space representations are also derived. The previous treatment of the
partition function is widely used here.

First, we obtain the relation between the physical, unscaled two-point correlation
and its scaled counterpart. Recalling Eqs. (A1) and (A7), we have, with 𝑠 ≡ 𝑠(𝑎),
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⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢 ≡ 1
𝑍𝑢

∫
𝜙𝑢 (𝑥)𝜙𝑢 (𝑦) exp {−𝐴𝑢 (𝜙𝑢)} 𝑑𝜙𝑢

=
1

𝑠2𝑍𝑢

∫
𝑠𝜙𝑢 (𝑥)𝑠𝜙𝑢 (𝑦) exp {−𝐴𝑢 (𝜙𝑢)} 𝑑𝜙𝑢

=
1
𝑠2𝑍

∫
𝜙(𝑥)𝜙(𝑦) exp {−𝐴(𝜙)} 𝑑𝜙

=
1
𝑠2 ⟨𝜙(𝑥)𝜙(𝑦)⟩,

(A15)

where we changed from 𝜙𝑢 (𝑥) to 𝜙(𝑥) = 𝑠𝜙𝑢 (𝑥) and also set, following Eqs. (A2)
and (A6),

𝐴(𝜙) = 𝐴𝑢 (𝜙𝑢 = 𝑠−1𝜙).
Similarly, recalling that 𝑥+𝜇 = 𝑥 + 𝑎𝑒𝜇 and with 𝛿𝜇 (𝑥) = 𝜙(𝑥+𝜇) − 𝜙(𝑥), we have,

⟨𝜕𝑎𝜌 𝜙𝑢 (𝑥)𝜕𝑎𝜈 𝜙𝑢 (𝑦)⟩𝑢 =
1

(𝑎𝑠)2 ⟨𝛿𝜌𝜙(𝑥)𝛿𝜈𝜙(𝑦)⟩. (A16)

As proved in [49], the scaled two-point correlation ⟨𝜙(𝑥)𝜙(𝑦)⟩ at the thermody-
namic limit admits the momentum space representation given by

⟨𝜙(𝑥)𝜙(𝑦)⟩ = 1
(2𝜋)𝑑

∫
(−𝜋,𝜋 ]𝑑

𝑒𝑖𝑞 (𝑥−𝑦)/𝑎(
1 − 2𝜅2 ∑

𝜇 cos 𝑞𝜇
) 𝑑𝑑𝑞

=
1

2(2𝜋)𝑑𝜅2

∫
(−𝜋,𝜋 ]𝑑

𝑒𝑖𝑞 (𝑥−𝑦)/𝑎∑
𝜇 (1 − cos 𝑞𝜇) + 𝑟/2

𝑑𝑑𝑞.

(A17)

Remark A2 . For 𝑑 = 1, the above integral gives the closed form expression

⟨𝜙2(𝑥)⟩ =
(
1 − 4𝜅4

)−1/2
= 1 +

∑︁
𝑟≥2,even

(𝑟 − 1)!!
𝑟!!

(
2𝜅2

)𝑟
, 𝜅2 < 1/2,

which is infinite at the critical point 𝜅2 = 1/2.
Remark A3 . From Eq. (A17), for 𝑑 = 3, 4, we see that for 𝑥 = 𝑦, the two-point

function is bounded from above and below, uniformly in 𝑎 ∈ (0, 1]. Indeed, a lower
bound is obtained by replacing 𝜅2 by its maximum value (1/2𝑑) and putting
𝑟 = 𝑚2

𝑢/𝜅2
𝑢 (the maximum of 𝑟) in the denominator of the integrand, resulting in

a finite integral. For an upper bound, we set 𝑟 = 0 in the integrand and take 𝑎 = 1
in 𝜅−2 [see Eq. (A5)].

From Eq. (A17), expanding the denominator of the first equality and using the
multinomial expansion on each term, for coincident points 𝑥 = 𝑦, we obtain, with
0 ≤ 𝑟 𝑗 ≤ 𝑟, 𝑗 = 1, . . . , 𝑑,

⟨[𝜙(𝑥)]2⟩ = 1 +
∑︁
𝑟≥1

(2𝜅2)𝑟
∑︁

𝑟 𝑗 , even |∑𝑑
𝑗=1 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

𝑑∏
𝑗=1

[
1

2𝜋

∫ 𝜋

−𝜋

cos𝑟 𝑗 𝑞 𝑑𝑞
]
.

(A18)
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At this stage, we see that all coefficients of powers of 𝜅2 are positive. The series
is bounded for 0 < 𝜅2 < (1/2𝑑) as the integrals are bounded by (2𝜋). Using these
bounds and resumming, we get

⟨[𝜙(𝑥)]2⟩ ≤
∞∑︁
𝑟=0

(2𝜅2𝑑)𝑟 = 1
1 − 2𝜅2𝑑

.

Now, from (see e.g. [57, Chapter 3]),∫ 𝜋

−𝜋

cos2𝑚 𝑥 𝑑𝑥 = 4
∫ 𝜋/2

0
cos2𝑚 𝑥 𝑑𝑥 = 2𝜋

(2𝑚 − 1)!!
(2𝑚)!! ,

so that letting 2𝑚 = 𝑟 𝑗 , and recalling the convention 0!! ≡ 0 and (−1)!! ≡ 1, we
have

⟨[𝜙(𝑥)]2⟩ = 1 +
∑︁

𝑟≥2,even
(2𝜅2)𝑟

∑︁
𝑟 𝑗 , even |∑𝑑

𝑗=1 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

𝑑∏
𝑗=1

(𝑟 𝑗 − 1)!!
𝑟 𝑗!!

. (A19)

The series is monotone increasing in 𝜅2. In Eq. (A19), if we bound the product by
one, we see that the series converges absolutely for all 0 ≤ 𝜅2 < 𝜅2

𝑐 ≡ (1/2𝑑). By
the upper bound given below, for 𝑑 > 2, we can extend the 𝜅2 convergence domain
up to and including 𝜅2

𝑐.

Remark A4. By the upper bound below, the convergence of the series in Eq. (A19)
is uniform in the lattice spacing 𝑎 ∈ (0, 1]. The continuum limit exists, up to and
including 𝜅2

𝑐, for ⟨[𝜙(𝑥)]2⟩ setting 2𝜅2 = 1/𝑑 in Eq. (A19) and considering 𝑑 > 2.
Also, the zero mass limit and the continuum limit are interchangeable. Recalling
Eq. (A3) and the scaled/unscaled relation ⟨[𝜙𝑢 (𝑥)]2⟩𝑢 = 𝑠−2⟨[𝜙(𝑥)]2⟩, and taking
𝑚2

𝑢 = 0 in 𝑠 ≡ 𝑠(𝑎), we have the zero mass limit of ⟨[𝜙(𝑥)]2⟩.

Remark A5. Comparing Eq. (A19) with Eq. (A13), for the thermodynamic limit
of free energy, we have that

𝜅2 𝑑𝑓

𝑑𝜅2 = [⟨𝜙2(𝑥)⟩ − 1]/2. (A20)

Hence it is enough to determine only one expansion, for 𝑓 or for ⟨𝜙2(𝑥)⟩. We remark
that this equation gives a relation between the derivative of a global quantity in terms
of a local average. This is a more general result. Consider a finite lattice Λ model
partition function defined with a quadratic form 𝑍Λ =

∫
exp{− 1

2 (𝜙, 𝐴𝜙)} 𝐷𝜙, with
a symmetric matrix 𝐴 > 0, (𝜙, 𝐴𝜙) = ∑

𝑥,𝑦∈Λ 𝜙(𝑥)𝐴𝑥𝑦𝜙(𝑦) and a product Lebesgue
measure 𝐷𝜙, such that we have 𝑍Λ = exp{− 1

2 Tr ln 𝐴}. Hence, the associated finite
free energy is

𝑓Λ =
ln 𝑍Λ
Λ𝑠

= − 1
2Λ𝑠

Tr ln 𝐴.

On the other hand, for 𝐴 = 1 − 𝜆𝑀 and assuming translation invariance, even at
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finite volume, expanding the log for small enough |𝜆 |,

𝑓Λ =
1
2

∑︁
𝑛≥1

1
𝑛
(𝜆𝑀)𝑛00, (A21)

and
⟨𝜙2(𝑥)⟩Λ = [1 − 𝜆𝑀]−1

𝑥𝑥 =
∑︁
𝑛≥0

(𝜆𝑀)𝑛00. (A22)

From the last two equations, we obtain

𝜆
𝑑𝑓Λ

𝑑𝜆
=

1
2
[
⟨𝜙2(𝑥)⟩ − 1

]
.

This is an equality of the same type as in Eq. (A20). Likely, this result can be
extended to the case when translation invariance is present only in the thermodynamic
limit of a lattice model.

We now prove existence of ⟨[𝜙(𝑥)]2⟩ at 𝜅2 = 𝜅2
𝑐 = (2𝑑)−1. From the second

equality in Eq. (A17), using the basic lower bound (1−cos 𝑢) ≥ 2𝑢2/𝜋2, 𝑢 ∈ (−𝜋, 𝜋],
the upper bound 𝜅−2 ≤ 2𝑑 + (𝑚𝑢/𝜅𝑢)2 and spherical coordinates, we get, for 𝑑 > 2,

⟨𝜙(𝑥)𝜙(𝑦)⟩ ≤ 𝜋2Ω𝑑

4(2𝜋)𝑑
[
2𝑑 + (𝑚𝑢/𝜅𝑢)2] (

√
𝑑𝜋)𝑑−2

𝑑 − 2
, (A23)

where Ω𝑑 is the 𝑑-dimensional solid angle and [𝜌(𝑞)]2 =
∑

𝜇 (𝑞𝜇)2. The last
numerical factor arises from the radial integral by expanding the integration domain
to 0 ≤ 𝜌 ≤

√
𝑑𝜋. Notice that the bound of Eq. (A23) holds for all 𝑎 ∈ (0, 1] and

0 ≤ 𝜅2 ≤ 𝜅2
𝑐.

Coming back to the spectral representation of Eq. (A17), the integrand
is dominated, for 𝑎 ∈ (0, 1] and 𝑑 = 3, 4, by the integrable function
{1/[∑𝜇=0,1,..., (𝑑−1) (1 − cos 𝑞𝜇)]}. Recalling that 𝜅−2 = [2𝑑 + (𝑚𝑢𝑎/𝜅𝑢)2], we have

lim
𝑎↘0

⟨𝜙(𝑥)𝜙(𝑦)⟩ =

⟨𝜙2(0)⟩0, 𝑥 = 𝑦,

0, 𝑥 ≠ 𝑦,

by the dominated convergence theorem, for 𝑥 = 𝑦, and the Riemann–Lebesgue lemma
for 𝑥 ≠ 𝑦. Here,

⟨𝜙2(0)⟩0(𝑎) =
𝑑

(2𝜋)𝑑

∫
(−𝜋,𝜋 ]𝑑

1∑
𝜇=0,1,..., (𝑑−1) (1 − cos 𝑞𝜇) 𝑑

𝑑𝑞 = 2𝑑Δ−1
1 (0, 0),

denote the zero mass (𝑟 = 0) coincident point value of ⟨𝜙(𝑦)⟩0, in the thermodynamic
limit, and Δ−1

1 (𝑥, 𝑦) is the kernel of the inverse of minus the unit lattice Laplacian
operator, and Δ1 acts on 𝑓 ∈ ℓ2(Z𝑑) by

[Δ1 𝑓 ] (𝑥) = 2𝑑𝑓 (𝑥) −
∑︁
𝜇

[ 𝑓 (𝑥𝜇+ = 𝑥 + 𝑒𝜇) + 𝑓 (𝑥𝜇− = 𝑥 − 𝑒𝜇)], (A24)
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where, here, the lattice site 𝑥 ∈ Z𝑑 . The integrand is integrable. Thus,

⟨𝜙(𝑥)𝜙(𝑦)⟩ ≤ 2𝑑 + (𝑚𝑢𝑎/𝜅𝑢)2

2𝑑
⟨𝜙2(0)⟩0 ≤ 2𝑑 + (𝑚𝑢/𝜅𝑢)2

2𝑑
Δ−1(0, 0), (A25)

and is bounded uniformly for 𝑎 ∈ (0, 1].
We now obtain a series expansion for scaled scalar field lattice two-point correlation

⟨𝜙(0)𝜙(𝑥)⟩Λ, in the thermodynamic limit. Expanding Eq. (A17) as before, we obtain,
writing 𝑥 = 𝑛𝑥𝑎. 𝑛𝑥 = (𝑛𝑥,1, . . . , 𝑛𝑥,𝑑) ∈ Z𝑑 and with a Kronecker delta,

⟨𝜙(0)𝜙(𝑥)⟩ = 𝛿(𝑥)

+
∑︁
𝑟≥1

(2𝜅2)𝑟
∑︁

𝑟1 ,...,𝑟𝑑 |
∑

𝑗 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

∏
𝑗=1,...,𝑑

[
1

2𝜋

∫ 𝜋

−𝜋

cos(𝑛 𝑗𝑞 𝑗) cos𝑟 𝑗 𝑞 𝑗 𝑑𝑞 𝑗

]
. (A26)

Here, the 𝑗-th integral with 𝑛 𝑗 = 𝑚, 𝑟 𝑗 = 𝑠, is

1
2𝜋

∫ 𝜋

−𝜋

cos(𝑚𝑞) cos𝑠 𝑞 𝑑𝑞

=
1

2𝑠+1𝜋

∫ 𝜋

−𝜋

{[
𝑒𝑖𝑚𝑞 + 𝑒−𝑖𝑚𝑞

2

] ∑︁
𝑘=0,...,𝑠

[
𝑠!

𝑘!(𝑠 − 𝑘)!𝑒
𝑖𝑞 (2𝑘−𝑠)

]}
𝑑𝑞.

Substituting this result in Eq. (A26) gives

⟨𝜙(0)𝜙(𝑥)⟩ = 𝛿(𝑥) +
∑︁
𝑟≥1

(2𝜅2)𝑟
∑︁

𝑟1 ,...,𝑟𝑑 |
∑

𝑗 𝑟 𝑗=𝑟

𝑟!
𝑟1! . . . 𝑟𝑑!

∏
𝑗=1,...,𝑑

{
1

2𝑟 𝑗+1

∑︁
𝑘 𝑗=0,...,𝑟 𝑗

×
𝑟 𝑗!

𝑘 𝑗!(𝑟 𝑗 − 𝑘 𝑗)!
[
𝛿(2𝑘 𝑗 − 𝑟 𝑗 + 𝑛 𝑗) + 𝛿(2𝑘 𝑗 − 𝑟 𝑗 − 𝑛 𝑗)

]}
= 𝛿(𝑥) +

∑︁
𝑟≥1

𝜅2𝑟
∑︁

𝑟1 ,...,𝑟𝑑 |
∑
𝑟 𝑗=𝑟

(
𝑟

𝑟1𝑟2 . . . 𝑟𝑑

)
×

∏
𝑗=1,...,𝑑

{ ∑︁
𝑘 𝑗=0,...,𝑟 𝑗

𝑁𝑟 𝑗 ,𝑘 𝑗

1
2

[
𝛿(2𝑘 𝑗 − 𝑟 𝑗 + 𝑛 𝑗) + 𝛿(2𝑘 𝑗 − 𝑟 𝑗 − 𝑛 𝑗)

]}
. (A27)

The second equality above is obtained as follows. In 𝑑 = 1, the number of paths of
length 𝑛 that start at the origin and end at the site 𝑘 is

𝑁𝑛,𝑘 ≡
(
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)! .

For 𝑛 𝑗 = 0, for any 𝑗 = 1, . . . , 𝑑, such as the path terminates at the origin, 𝑟 𝑗 = 2𝑘 𝑗

is even and
𝑁𝑟 𝑗 ,𝑘 𝑗 = 𝑁𝑟 𝑗 ,𝑟 𝑗/2 =

𝑟 𝑗![
(𝑟 𝑗/2)!

]2 = 𝑁𝑟 .
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The series in Eq. (A27) converges absolutely for 0 ≤ 𝜅2 ≤ 𝜅2
𝑐 = (1/2𝑑). For

the point 𝑥 = 𝑛1𝑎, 𝑛1 ≠ 0, the smallest exponent of 𝑟 is |𝑛1 |; for the point
𝑥 = (𝑛1𝑎, 0, . . . , 0), 𝑛1 = 1, the leading contribution is of order 𝜅2.

For the derivative field correlation ⟨𝛿𝜇𝜙(𝑥)𝛿𝜈𝜙(𝑦)⟩ a spectral representation can
be obtained from ⟨𝜙(𝑥)𝜙(𝑦)⟩ by including an additional factor [(𝑒𝑖𝑞𝜇 −1) (𝑒−𝑖𝑞𝜈 −1)]
in the integrand, and we show that, with no sum on 𝜌,

⟨𝛿𝜌𝜙(0)𝛿𝜌𝜙(0)⟩0 =

(
1
𝜅2𝑑

)
(𝑟 = 0) = 2,

We have an exact value of the coincident point derivative physical field correlation

⟨𝜕𝑎𝜌 𝜙𝑢 (0)𝜕𝑎𝜌 𝜙𝑢 (0)⟩𝑢0 =
2

𝑎2𝑠2(𝑚𝜇 = 0) =
2

𝑎𝑑
(
2𝑑𝜅2

𝑢

)𝑑−2 ,

and the physical derivative field correlation satisfies the bound

|⟨𝜕𝑎𝜌 𝜙𝑢 (0)𝜕𝑎𝜌 𝜙𝑢 (0)⟩𝑢0 | ≤
1

(𝑎𝑠)2 ⟨𝛿𝜌𝜙(0)𝛿𝜎𝜙(0)⟩0 ≤ 2(𝑎𝑠)−2 ≤ 2
𝑎𝑑

(
2𝑑𝜅2

𝑢

)𝑑−2 ,

which shows that the singular behaviour is 𝑎−𝑑 .
With similar arguments for the unscaled two-point correlation, we have the

thermodynamic limit

⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢𝑎 =
1

2(2𝜋)𝑑

∫
(−𝜋/𝑎,𝜋/𝑎]𝑑

𝑒𝑖 𝑝 (𝑥−𝑦)

𝜅2
𝑢

𝑎2
∑

𝜇 (1 − cos 𝑎𝑝𝜇) + 𝑚2
𝑢/2

𝑑𝑑𝑝.

Thus, from Eq. (A17), even at coincident points, and for 𝑑 = 3, 4, the scaled
two-point correlation is bounded uniformly in 𝑎 ∈ (0, 1]). Using the scaling relation
between the unscaled, physical field and the scaled field correlations, the physical two-
point correlation behaves as 𝑎2−𝑑 at coincident points and the derivative field
two-point correlation singular behaviour is 𝑎−𝑑 . As mentioned above, these behaviours
characterize the free field and can be taken as a measure of UV asymptotic freedom
on the lattice.

The mass 𝑚 associated with the 𝑎Z𝑑 lattice QFT is given by the zero of the Fourier
transform of the convolution inverse of the two-point correlation ⟨𝜙𝑢 (𝑥)𝜙𝑢 (𝑦)⟩𝑢𝑎 at
zero spatial momentum, namely Γ̃(𝑝0 = 𝑖𝑚, ®𝑝 = 0). It corresponds to the solution
of the equation

2
𝜅2
𝑢

𝑎2 [1 − cosh(𝑚𝑎)] + 𝑚2
𝑢 = 0,

or, using the equality (cosh 𝑢 − 1) = 2 sinh2(𝑢/2), 𝑢 ∈ R,

sinh2 𝑚𝑎

2
=
𝑚2

𝑢𝑎
2

4𝜅2
𝑢

.
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With this, we see the solution is, with 𝑟 = (𝑚𝑢𝑎/𝜅𝑢)2,

𝑚 =
2
𝑎

sinh−1
(
𝑚𝑢𝑎

2𝜅𝑢

)
=

2
𝑎

ln
[√
𝑟

2
+
√

4 + 𝑟
2

]
=
𝑚𝑢

𝜅𝑢
+ O

(
𝑎2

(
𝑚𝑢

𝜅𝑢

)3)
.

The mass 𝑚 is real analytic in 𝑎, 𝑚𝑢 and 𝜅𝑢 ≠ 0.

A.3. Scaled two-point correlation: random walk expansions, number of paths and
spectral representations

We would be remiss if we did not establish the connection with random walk
expansions for the scaled two-point correlation ⟨𝜙(𝑥)𝜙(𝑦)⟩. We give a description
of some of our findings. For a simple random walk in dimension one, it is well
known that the number of paths starting and ending at the origin, and of length 𝑛,
even, is [60]

Ξ𝑛 =
𝑛!

[(𝑛/2)!]2 . (A28)

As shown below in Eq. (A34), in dimension 𝑑 > 1, the number of paths is given
by

𝑁𝑟 =
∑︁

𝑟1 ,...,𝑟𝑑 |
∑
𝑟𝑖=𝑟 , |𝑟 even

(
𝑟

𝑟1 𝑟2 . . . 𝑟𝑑

) ∏
𝑗=1,...,𝑑

Ξ𝑟 𝑗 . (A29)

Furthermore, in the thermodynamic limit, the free energy

𝑓 =
1
2

∑︁
𝑟≥2, even

𝑁𝑟

𝜅2𝑟

𝑟
, 𝜅2 ≤ (1/2𝑑), 𝑑 = 1, 2, . . . , (A30)

and the local correlation
⟨𝜙2(𝑥)⟩ = 1 +

∑︁
𝑟≥2, even

𝑁𝑟 𝜅
2𝑟 , 𝜅2 ≤ (1/2𝑑), 𝑑 = 3, 4, . . . (A31)

Furthermore,
𝜅2 𝑑𝑓

𝑑𝜅2 =
1
2
[
⟨𝜙2(𝑥)⟩ − 1

]
. (A32)

Thus, it turns out that the only input needed for these numerical formulae is the
𝑑 = 1 combinatorial factor Ξ𝑛. Whether or not this property is a consequence of
a more fundamental behaviour is to be investigated.

The number [𝑁𝑟/(2𝑑)𝑟 ] ≡ 𝑝𝑟 is the fraction of the total number of paths of
length 𝑟 , with initial and endpoint at the origin. Denoting by ⟨𝜙2(𝑥)⟩𝑐 the value of
⟨𝜙2(𝑥)⟩ at the critical point 𝜅2 = 𝜅2

𝑐 = (1/2𝑑), we have

⟨𝜙2(𝑥)⟩𝑐 = 1 +
∑︁

𝑟 even≥2
𝑝𝑟 .
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For simplicity of notation, we do drop the 𝑠 (scaled) upper indices in this section.
We write the free b.c. scaled field action of Eq. (A6) as, with inner product in
ℓ2(𝑎Z𝑑), 1

2
(
𝜙, [1 − 𝜅2𝑆]𝜙

)
,

with

⟨𝜙(𝑥)𝜙(𝑦)⟩ = (1 − 𝜅2𝑆)−1
𝑥𝑦 = 𝛿𝑥𝑦 +

∞∑︁
𝑟=1

𝜅2𝑟
[ ∑︁
𝑥1 ,𝑥2 ,...,𝑥𝑟−1

𝑆𝑥,𝑥1𝑆𝑥1 ,𝑥2 . . . 𝑆𝑥𝑟−1𝑦

]
.

Here, the elements of the symmetric matrix 𝑆 are given by

𝑆𝑦 𝑗 ,𝑦𝑘 =


1, |𝑦 𝑗 − 𝑦𝑘 | = 1,

0, otherwise.
(A33)

The above Neumann series converges absolutely for |𝜅2 | < (1/2𝑑), as |𝑆 | = 2𝑑.
Comparing this series with the series obtained from spectral representation, we

can equate the 𝜅2𝑟 coefficients. For example, for coincident points 𝑥 = 𝑦, and for 𝑟
and 𝑟 𝑗 ( 𝑗 = 1, . . . , 𝑑) being even integers, we have∑︁
𝑥1 ,𝑥2 ,...,𝑥𝑟−1

𝑆𝑥,𝑥1𝑆𝑥1 ,𝑥2 . . . 𝑆𝑥𝑟−1𝑥 = 2𝑟
∑︁

𝑟1 ,...,𝑟𝑑 ∈{0,1,...,𝑟 }

𝑟!
𝑟1!𝑟2! . . . 𝑟𝑑!

𝑑∏
𝑗=1

(𝑟 𝑗 − 1)!!
𝑟 𝑗!!

=
∑︁

𝑟1 ,...,𝑟𝑑 ∈{0,1,...,𝑟 }

(
𝑟

𝑟1𝑟2 . . . 𝑟𝑑

) 𝑑∏
𝑗=1

Ξ𝑟 𝑗 ,

𝑑∑︁
𝑗=1
𝑟 𝑗 = 𝑟, (A34)

where we have used the multinomial coefficient and used the number of paths
starting and ending at zero, according to Eq. (A28).

Remark A6 . The second equality above follows on writing 𝑟 =
∑

𝑗=1,...,𝑑 𝑟 𝑗 in
the exponent of 2𝑟 , and using double factorial identities, namely, for even 𝑛,

2𝑛 (𝑛 − 1)!!
𝑛!!

=
2(𝑛 − 1)!

(𝑛/2 − 1)! (𝑛/2)! =
𝑛!

[(𝑛/2)!]2 .

In [60], the number Ξ𝑛 is deduced by a combinatorial argument. The same result
is obtained here by an analytic argument in Remark A2 .

Remark A7 . Since, using Eq. (A33), the product in the left-hand side of
Eq. (A34) is 0 or 1, the right-hand side of this equation is the counting of paths
of length 𝑟 (even) that start and end at site 𝑥 = 0.

Remark A8 . From Eq. (A21), we see that the free energy satisfies Eq. (A30),
for 𝑑 = 1, 2, 3, 4 and 𝜅2 < (1/2𝑑). Likewise, Eq. (A22) tells us that ⟨𝜙2(𝑥)⟩ obeys
Eq. (A31). Hence, we have the relation of Eq. (A32). Note the only input for all
this results is the combinatorial factor Ξ𝑛, for 𝑑 = 1.
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On the other hand, for 𝑑 = 1, we also have

𝑓 = −1
2

ln
1 +

√
1 − 4𝜅4

2
,

𝜅2 ≤ 1
2 , so that 0 ≤ 𝑓 ≤ ln

√
2. In Appendix C, we show the inequality 𝑓 ≤ ln

√
2

holds for any dimension 𝑑, provided that 𝜅2 ≤ (1/2𝑑). We also have the correlation
inequality

⟨𝜙2(𝑥)⟩ = 1
√

1 − 4𝜅4
≥ 1; 𝑑 = 1, 𝜅2 < 1/2.

Whether or not there is a deeper reason for this bound to be true needs further
investigation.

Eq. (A34) is an explicit formula for the number of paths of length 𝑟 that begin
at 𝑥 and terminate at the same point 𝑥. Note that if there are no restrictions on
endpoints of the paths, then the r.h.s. is [(2𝑑)𝑟 ] upon replacing the 𝑗 product by 1,
and removing the 𝑟 𝑗 even restriction, as it should be.

Next, we consider free b.c. and follow closely the treatment given in [49], for
periodic b.c. We derive the spectral representation for the partition function and free
energy. Similar considerations apply for the two-point correlation. For the free b.c.
action, we write

𝐴 =
∑︁
𝑥,𝑦∈Λ

𝜙(𝑥)𝑀 (𝑥, 𝑦)𝜙(𝑦),

where 𝑀 (𝑥, 𝑦) = 1
2
𝛿𝑥𝑦 −

𝜅2

2
∑

𝜇 𝐻𝜇 (𝑥, 𝑦), and where 𝐻𝜇 (𝑥, 𝑦) is associated with an
𝐿×𝐿 tridiagonal symmetric matrix with unit elements on the nearest neighbor of the
diagonal, and zero otherwise. 𝑀 is diagonalized by a product over 𝜇 of eigenvectors
of 𝐻𝜇. The orthogonal eigenvectors are sin 𝑝𝜇𝑥𝜇 with 𝑥𝜇 = 𝑎, 2𝑎, . . . 𝐿𝑎 (recall we
chose the number 𝐿 of sites on the hypercubic lattice side to be 𝐿 even). The
orthogonal eigenvectors of 𝐻 are ∏

𝜇

sin
𝜋𝑝𝜇𝑥𝜇

𝐿 + 1
.

Here, we identify the 𝐿 points along a line in the 𝜇 = 0, 1, . . . , (𝑑 − 1) coordinate
direction with 𝑎, 2𝑎,. . . ,𝐿𝑎. The momenta 𝑝𝜇 lie in the set

P =

{
𝑝 = (𝑝0, . . . , 𝑝𝑑−1) ; 𝑝𝜇 =

𝜋𝑟𝜇

𝑎(𝐿 + 1) , 𝜇 = 0, 1, . . . , (𝑑 − 1)
}
,

with 𝑟𝜇 = −𝐿,−𝐿 + 2, . . . ,−2, 1, 3, . . . , (𝐿 − 1). There are 𝐿𝑑 elements in the set P.
We have chosen the 𝑝’s so that P lies in (−𝜋/𝑎, 𝜋/𝑎]𝑑 . The 𝑝𝜇 spacing is
{2𝜋/[𝑎(𝐿 + 1)]}, for 𝑟𝜇 positive and 𝑟𝜇 negative.

The eigenvalues of 𝑀 are

𝜆(𝑝) = 1
2

[
1 − 2𝜅2

∑︁
𝜇

cos(𝑝𝜇𝑎)
]
,



ON YANG–MILLS STABILITY BOUNDS AND PLAQUETTE FIELD GENERATING FUNCTION 371

and the spectral representation for the free b.c. partition function, in terms of the
spectral parameter 𝑞 = 𝑝𝑎, 𝑞 ∈ 𝑎P, now follows as in [49] for the periodic b.c.
case. Namely,

𝑍Λ = exp
{
−1

2

∑︁
𝑞

ln (2𝜆(𝑝 = 𝑞/𝑎))
}
.

Here, the 𝑞𝜇 spacing is [2𝜋/(𝐿 + 1)] and |𝑞𝜇 | < 𝜋.
From this spectral representation and bounds on the Riemann sum approximation,

the thermodynamic limit of the finite lattice free energy

𝑓Λ =
1
𝐿𝑑

ln 𝑍Λ = − (𝐿 + 1)𝑑
2(2𝜋)𝑑𝐿𝑑

∑︁
𝑞

(
2𝜋
𝐿 + 1

)𝑑
ln
(
1 − 2𝜅2

∑︁
𝜇

cos 𝑞𝜇
)
,

is the same as the thermodynamic limit of the periodic b.c. free energy given in
Eq. (A11).

We now show the relation between ⟨𝜙(𝑥)𝜙(𝑦)⟩, the scaled free field two-point
correlation and the much analyzed resolvent of minus the unit lattice Laplacian Δ1
(see e.g. [58–62] and references therein).

Letting 𝑥 ≡ 𝑛𝑥𝑎, 𝑦 ≡ 𝑛𝑦𝑎 and 𝑛𝑥 − 𝑛𝑦 ≡ 𝑛, we have

⟨𝜙(𝑛𝑥𝑎)𝜙(𝑛𝑦𝑎)⟩ =
1

(2𝜋)𝑑

∫
(−𝜋,𝜋 ]𝑑

𝑒𝑖𝑛𝑞

1 − 2𝜅2 ∑
𝜇 cos 𝑞𝜇

𝑑𝑑𝑞.

On the other hand, noting that we have, in Fourier space, the unit lattice Laplacian
Δ̃1(𝑞) =

∑
𝜇 2 (1 − cos 𝑞𝜇), we have the resolvent

(Δ1 − 𝑧)−1
=

1
(2𝜋)𝑑

∫
(−𝜋,𝜋 ]𝑑

𝑒𝑖𝑛𝑞∑
𝜇 2 (1 − cos 𝑞𝜇) − 𝑧 𝑑

𝑑𝑞,

for 𝑧 ∉ [0, 4𝑑]. Thus, we have the desired relation

⟨𝜙(𝑛𝑥𝑎)𝜙(𝑛𝑦𝑎)⟩ =
1
𝜅2 (Δ1 − 𝑧)−1 (𝑛𝑥 , 𝑛𝑦),

where
𝑧 = −

(
1
𝜅2 − 2𝑑

)
= −𝑚

2
𝑢𝑎

2

𝜅2
𝑢

.

APPENDIX B: Truncated model of real scalar fields
In this Appendix, we analyze the scalar scaled field truncated model. The

ingredients for proving the results in this Appendix are the same used in the
text or involve well known results, and will only be indicated. This lattice model,
non-Gaussian in perturbation theory, illustrates that a TUV stability bound where the
exponent is proportional to the number of lattice sites Λ𝑠 = 𝐿

𝑑 and not the volume
(𝑎𝐿)𝑑 in R𝑑 , with a constant of proportionality which is independent of 𝐿 ∈ N
(even) and 𝑎 ∈ (0, 1] is sufficient to bound correlations uniformly in 𝑎 ∈ (0, 1].
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Starting from the scalar scaled field model of Appendix A, recalling that 𝜅2 > 0
is the (squared) hopping parameter and 𝑥+𝜇 = 𝑥+𝑎𝑒𝜇, the truncated model is obtained
by replacing the bond factor exp[𝜅2𝜙(𝑥)𝜙(𝑥+𝜇)], by the truncation

[
1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇)

]
.

Its finite lattice Λ ⊂ 𝑎Z𝑑 , 𝑎 ∈ (0, 1], partition function reads

𝑍 𝑡
Λ =

∫ ∏
𝑥,𝜇

[
1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇)

]
𝑑𝜇𝐼 (𝜙), (B1)

where the measure is a product of normalized Gaussian measures, with identity
covariances 𝑑𝜇𝐼 (𝜙) =

∏
𝑥

[
exp

(
−𝜙2(𝑥)/2

)
𝑑𝜙(𝑥)/

√
2𝜋

]
and the parameter 𝛼 verifies

the condition 𝛼 > 0.
We notice that the model satisfies Osterwalder–Schrader positivity and Griffiths I

inequality (see e.g. [4, 63]). Concerning the truncated model, our first result is
a stability bound.

Proposition 1. Letting Λ𝑠 = 𝐿
𝑑 denote the number of sites in Λ, we have the

stability bound

𝑒𝑐ℓΛ𝑠 = 1 ≤ 𝑍 𝑡
Λ
≤
∫ ∏

𝑥,𝜇

[
1 +

√
𝛼 |𝜙(𝑥) |

] [
1 +

√
𝛼 |𝜙(𝑥+𝜇) |

]
𝑑𝜇𝐼 (𝜙)

≤
∫ ∏

𝑥

[
1 +

√
𝛼 |𝜙(𝑥) |

]2𝑑
𝑑𝜇𝐼 (𝜙) ≤ 𝑒𝑐𝑢Λ𝑠 , (B2)

where 𝑐ℓ = 0 by Griffiths I inequality and 𝑐𝑢 = ln
[∫ (

1 +
√
𝛼 |𝜙|

)2𝑑
𝑒−𝜙2/2 𝑑𝜙/

√
2𝜋

]
.

Proof : For the upper bound, use
|1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇) | ≤ 1 + 𝛼 |𝜙(𝑥) | |𝜙(𝑥+𝜇) | ≤

[
1 +

√
𝛼 |𝜙(𝑥) |

] [
1 +

√
𝛼 |𝜙(𝑥+𝜇) |

]
.

For the lower bound, use Griffiths I inequality [4, 63]. □

Consider the finite lattice generating function with a single point source

⟨𝑒𝐽 𝜙 (𝑦)⟩Λ =
𝑍 𝑡
Λ
(𝐽)
𝑍 𝑡
Λ

, (B3)

where 𝑍 𝑡
Λ
(𝐽) =

∫
exp[𝐽𝜙(𝑦)]

∏
𝑥,𝜇

[
1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇)

]
𝑑𝜇𝐼 (𝜙), satisfying 𝑍 𝑡

Λ
(𝐽 = 0) = 𝑍 𝑡

Λ
.

Concerning this quantity, we have the following upper bound.
Proposition 2. The generating function ⟨𝑒𝐽 𝜙 (𝑦)⟩Λ satisfies the bound

⟨𝑒𝐽 𝜙 (𝑦)⟩Λ ≤ 𝑒−𝑐ℓ+𝐽2+𝑐𝑢,2 , (B4)
where

𝑐𝑢,2 = ln
[∫ (

1 +
√
𝛼 |𝜙 |

)4𝑑
𝑒−𝜙2/2 𝑑𝜙/

√
2𝜋

]
,

with a single point normalized Gaussian measure with unit covariance (see Eq. (B1)).
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Proof : The proof uses the multireflection bound [4, 49] and Cauchy–Schwarz
inequality multiple times in the underlying quantum Hilbert space. Finally, the
Cauchy–Schwarz inequality is used to factorize the 𝐽 dependence. An analogous
proof for the YM model is given in the text. With these methods, we obtain

⟨𝑒𝐽 𝜙 (𝑦)⟩Λ ≤
[

1
𝑍 𝑡
Λ

∫
exp

{
𝐽
∑︁
𝑥

𝜙(𝑥)
}∏

𝑥,𝜇

[
1 + 𝛼𝜙(𝑥)𝜙(𝑥+𝜇)

]
𝑑𝜇𝐼 (𝜙)

]1/Λ𝑠

≤ 𝑒−𝑐ℓ
{∫

exp
[
2𝐽

∑︁
𝑥

𝜙(𝑥)
]
𝑑𝜇𝐼 (𝜙)

}1/2Λ𝑠

×
{∫ ∏

𝑥,𝜇

[
1 +

√
𝛼 |𝜙(𝑥) |

]2 [1 +
√
𝛼 |𝜙(𝑥+𝜇) |

]2
𝑑𝜇𝐼 (𝜙)

}1/2Λ𝑠

≤ 𝑒−𝑐ℓ 𝑒𝐽2
𝑒𝑐𝑢,2 .

Above, in passing from the first to the second equality, we have written 𝑒−𝜙2/2 =

𝑒−𝜙2/4𝑒−𝜙2/4 and considered each of the exponential terms in the r.h.s. in each
factor of 𝑑𝜇𝐼 (𝜙). □

As usual [see Eq. (34)], correlations are defined by the zero source value of the
source derivatives of the generating function ⟨𝑒𝐽 𝜙 (𝑦)⟩Λ. For the truncated model, we
have the coincident point correlation bound.

Proposition 3. We have the bound

|⟨𝜙𝑟 (𝑦)⟩Λ | ≤ 𝑐𝑟 ≡ 𝑒−𝑐ℓ+𝑐𝑢,2+1𝑟!. (B5)

Proof : The coefficients of the Taylor series of 𝑍Λ(𝐽) in 𝐽 are all positive by
Griffiths I inequality [4, 63]. The bound extends to complex source 𝐽 and ⟨𝑒𝐽 𝜙 (𝑦)⟩Λ
is an entire function of 𝐽. The upper bound results from using Cauchy estimates
on the source derivatives, namely,

|⟨𝜙𝑟 (𝑦)⟩Λ | =
���� [ 𝑑𝑟𝑑𝐽𝑟 ⟨exp[𝐽𝜙(𝑦)]⟩Λ

]
𝐽=0

���� ≤ 𝑟! max
|𝐽 |=1

[
𝑒𝑐ℓ 𝑒 |𝐽 |

2
𝑒𝑐𝑢,2

]
≡ 𝑐𝑟 . (B6)

□

For 𝑑 = 1, we can obtain exact explicit results for the above correlations. They
emerge, by inspection, just by expanding the product of bond factors and controlling
the terms individually. In doing so, we note that if a lattice site is intersected by
only one bond, then the integral for that site vanishes.

𝒅 = 1 and free b.c.
We have 𝑍 𝑡

Λ
= 1. We also have TUV stability for all 𝛼 > 0 and we have

𝑐ℓ = 𝑐𝑢 = 0. Also, we have

⟨𝜙(𝑥)𝜙(𝑦)⟩ = 𝛼 |𝑥−𝑦 |/𝑎 = exp{(|𝑥 − 𝑦 |/𝑎) ln𝛼}.
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This behaviour gives a decay for 0 < 𝛼 < 1 and a blowup for 𝛼 > 1. The 𝛼 = 1
value is the critical point. We perform a finite renormalization for 𝑎 ∈ (0, 1] setting
𝛼 = 𝑒−𝑚𝑎, for the mass 𝑚 > 0. Thus,

⟨𝜙(𝑥)𝜙(𝑦)⟩ = 𝑒−𝑚 |𝑥−𝑦 | .

For a power of the field, at a single point, we obtain a Gaussian behaviour,
namely (recalling we are dealing with a unit covariance),

⟨𝜙𝑟 (𝑦)⟩ = (𝑟 − 1)!!.
However, if 𝑥 ≠ 𝑦, we have

⟨𝜙2(𝑥)𝜙2(𝑦)⟩ = 1, 𝑥 ≠ 𝑦,

so that the truncated four-point correlation satisfies

⟨𝜙2(𝑥)𝜙2(𝑦)⟩t𝑟 = ⟨𝜙2(𝑥)𝜙2(𝑦)⟩ − ⟨𝜙2(𝑥)⟩ ⟨𝜙2(𝑦)⟩ − 2⟨𝜙(𝑥)𝜙(𝑦)⟩2

=−2⟨𝜙(𝑥)𝜙(𝑦)⟩2

=−2𝑒−2𝑚 |𝑥−𝑦 | , 𝑥 ≠ 𝑦, (B7)

which implies that our truncated scalar field model is non-Gaussian and triviality
does not hold. This is in contrast with the recent result of [50] for the complete
scalar field model with a quartic interaction, in 𝑑 = 4.

Scaling limit (denoted by s𝑐𝑙)
The scaling limit is obtained by fixing the mass as 𝑚𝑠 > 0 taking 𝑎 ↘ 0,

𝑛𝑥 , 𝑛𝑦 ↗ ∞, where 𝑥 = 𝑛𝑥𝑎 and 𝑦 = 𝑛𝑦𝑎 so that 𝑥, 𝑦 → 𝑥𝑠, 𝑦𝑠 ∈ R. Thus,

s𝑐𝑙⟨𝜙(𝑥)𝜙(𝑦)⟩ = 𝑒−𝑚𝑠 |𝑥𝑠−𝑦𝑠 | ,

s𝑐𝑙⟨𝜙2(𝑥)𝜙2(𝑦)⟩𝑡𝑟 =−2𝑒−2𝑚𝑠 |𝑥𝑠−𝑦𝑠 | .

We now consider periodic b.c.

𝒅 = 1 and periodic b.c
Using periodic b.c., with similar methods, the following list of results is derived

for 𝑑 = 1.

Partition function: 𝑍 𝑡
Λ
= 1 + 𝛼𝐿 .

Free energy: 𝑓Λ =
1
𝐿

ln(1 + 𝛼𝐿) 𝐿↗∞
−→


0; 𝛼 ≤ 1,

ln𝛼; 𝛼 > 1.

In the thermodynamic limit, the two-point correlation presents a discontinuous 𝛼
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derivative at 𝛼 = 1. Indeed, we have

⟨𝜙(𝑥)𝜙(𝑦)⟩ =

𝛼 |𝑥−𝑦 |/𝑎; 𝛼 ≤ 1,

𝛼−|𝑥−𝑦 |/𝑎; 𝛼 > 1.

𝛼 = 𝛼𝑐 = 1 is a critical point.

We can perform a finite renormalization setting 𝛼 = 𝑒−𝑚𝑎, for 𝑚 > 0 and 𝛼 < 1,
and 𝛼 = 𝑒𝑚𝑎, for 𝛼 > 1, and 𝑚 is the scalar field mass. Thus,

⟨𝜙(𝑥)𝜙(𝑦)⟩ = 𝑒−𝑚 |𝑥−𝑦 | .

Also, we can take the scaling limit scl and obtain nontriviality of the model
like in the 𝑑 = 1 free b.c. case.

Finally, for the free or periodic b.c., we can obtain the critical exponents and,
also, we can take the limit 𝑚𝑠 → 0.

Now, taking 𝑑 = 3, 4, we carry out perturbation theory to order 𝛼2 and obtain

𝛼𝑐 =
1
2

[
1 −

√︁
1 − 2/𝑑

]
=

1
2𝑑

+ 1
4𝑑2 + . . . ,

which is to be compared with the free scaled field value 𝛼𝑐 = 1/(2𝑑). Here, 𝛼𝑐 is
small but not very small (not 𝛼𝑐 ≪ 1).

For the configuration 𝑥1 = 𝑥2 = 0 and 𝑥3 = 𝑥4 = 𝑎𝑒𝜇, the truncated four-point
correlation ⟨𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)⟩tr satisfies the non-Gaussian (nontrivial) behaviour

⟨𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)⟩tr = −2𝛼2 ≠ 0.

With the negative sign and considering the ladder, leading order approximation
in a lattice Bethe–Salpeter equation (see [52–54], the negative sign of the above
truncated four-point correlation implies that potential between the interacting particles
is repulsive and does not favor the formation of bound states.

APPENDIX C: Factorized bounds for bose field model partition functions
In the text, bounds are obtained on the YM partition function which admit

a factorization into local quantities, i.e. single plaquette partition functions of a single
bond variable. This factorization seems to be peculiar to local gauge-invariant YM
models.

In this appendix, we show how to obtain factorized local bounds for Bose field
models. Each factor involves only the ‘transfer matrix’ of a single bond. For the
continuum limit 𝑎 ↘ 0, it is important that the constants appearing in the bounds
are uniform in the lattice spacing 𝑎 ∈ (0, 1], and include the critical values of
the model parameters. In particular, for the free field free energy, the bounds on
the partition function allow us to show, in dimension 𝑑, that 𝑓 (𝑎) ≤ ln

√
2, in the

thermodynamic limit, as long as 𝜅2 ≤ (1/2𝑑). Our bounds also allow the bond
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factor coupling parameters to be space dependent, where as other bounds (e.g. those
using the momentum representation) require the couplings to be space independent.

Variants of the method apply to numerous bosonic models, as for 𝜆𝜙4
3 with

small 𝜆 > 0, the truncated model of Appendix B, etc. For simplicity, we treat the
free scalar scaled field model partition function with free b.c. and the local bond
factors given by

𝐹𝑥,𝜇 = 𝑒𝜅
2𝜙 (𝑥 )𝜙 (𝑥+𝜇 ) .

For this model with free b.c., we have the finite lattice partition function, given
in terms of the bond factors, which reads

𝑍Λ =

∫ ∏
𝜇,𝑥

𝐹𝑥,𝜇 𝑑𝜇𝐼 (𝜙), (C1)

where 𝑑𝜇𝐼 (𝜙) is a product measure of normalized Gaussian measures with unit
covariance.

By the generalized Hölder inequality, we have

𝑍Λ ≤∏
𝜇

∫ [∏
𝑥

𝐹𝑑
𝑥,𝜇 𝑑𝜇𝐼 (𝜙)

]1/𝑑
≤

∏
𝜇

[∏
𝑐

𝑍
𝜇

Λ,𝑐

]1/𝑑
,

where 𝑍
𝜇

Λ,𝑐
is the partition function of a one-dimensional chain which we shall now

define.
For a fixed spacetime direction 𝜇 = 0, 1, . . . , (𝑑 − 1), we index each sequence of

𝐿𝑑−1 points (lattice sites) in the 𝑥𝜇 = 1 hyperplane by 𝑐. 𝑍 𝜇

Λ,𝑐
of a chain with 𝐿

sites parallel to the 𝜇 direction, starting at 𝑥𝜇 = 1 denotes the partition function
and ending at 𝑥𝜇 = 𝐿. The couplings in the chain 𝑐 are denoted by 𝜅2

𝑐 𝑗
. For

the generic chain 𝑐, we denote the 𝐿 sites by 1, 2, . . . , 𝐿 and the 𝐿 − 1 bound
coupling parameters by 𝜅2

1𝜇, 𝜅2𝜇2, . . . ,𝜅2
(𝐿−1)𝜇, suppressing the 𝑐 dependence. The

field variables are denoted by 𝜙1, 𝜙2, . . . , 𝜙𝐿 . Having done this, we now write

𝑍
𝜇
𝑐 =

(
𝑓 ,

∏
𝑗=1,..., (𝐿−1)

𝑇 (𝜅2
𝑐 𝑗
, 𝜇) 𝑓

)
𝐿2 (R)

.

The product is the composition of integral operators 𝑇 (𝜅2
𝑐 𝑗
, 𝜇) with the operator

kernel 𝐾 (𝜙, 𝜙′, 𝜅2
𝑐 𝑗
) given by (𝛽 ∈ R)

𝐾 (𝜙, 𝜙′, 𝛽) = 1
√

2𝜋
exp

(
−1

4
𝜙2
)

exp (𝑑𝛽𝜙𝜙′) exp
(
−1

4
(𝜙′)2

)
,

and 𝑓 (𝜙) = (2𝜋)−1/4𝑒−𝜙2/4. Thus,

𝑍
𝜇
𝑐 ≤ ∥ 𝑓 ∥2

∏
𝑗=1,..., (𝐿−1)

∥𝑇 (𝜅2
𝑐 𝑗
, 𝜇)∥,
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and
𝑍Λ ≤

∏
𝜇

{∏
𝑐

[
∥ 𝑓 ∥2

∏
𝑗=1,..., (𝐿−1)

∥𝑇 (𝜅2
𝑐 𝑗
, 𝜇)∥

]}1/𝑑

= ∥ 𝑓 ∥2𝐿𝑑−1 ∏
𝑏

∥𝑇 (𝜅2
𝑐 𝑗
, 𝜇)∥1/𝑑 ,

where we have indexed the 𝑑 (𝐿 − 1)𝐿𝑑−1 bonds of the lattice Λ by 𝑏.
This is our factorized bound! If all the couplings are equal, say 𝜅2

𝑏
= 𝜅2 for any

bond 𝑏, the product over the bonds is ∥𝑇 (𝜅2)∥ (𝐿−1)𝐿𝑑−1 and

𝑍Λ ≤ 𝑒2𝐿𝑑−1 ln ∥ 𝑓 ∥ exp
[
𝐿𝑑−1(𝐿 − 1) ln ∥𝑇 (𝜅2)∥

]
≡ 𝑒𝑐𝑢𝐿𝑑

.

Of course, here,
𝑐𝑢 =

2
𝐿

ln ∥ 𝑓 ∥ + (1 − 𝐿−1) ln ∥𝑇 (𝜅2)∥,

which is our upper stability bound.
We obtain a convenient bound for ∥𝑇 (𝜅2)∥ using a Holmgren bound ∥𝑇 (𝜅2)∥𝐻

for the norm (see e.g. [13] and Chapter 4 of [64]). We have

∥𝑇 (𝜅2)∥ ≤ ∥𝐾 ∥𝐻 = sup𝜙

[∫
𝑅

𝐾 (𝜙, 𝜙′, 𝜅2) 𝑑𝜙′
]

= sup𝜙

[√
2 exp

(
1
4
(1 − 4𝑑2𝜅4)𝜙2

)]
=
√

2, 𝜅2 ≤ (1/2𝑑).

Since ∥ 𝑓 ∥ = 1, the thermodynamic limit 𝑓 (𝑎) of the finite lattice model free
energy 𝑓 (Λ, 𝑎) satisfies

𝑓 (𝑎) = lim
𝐿𝑑↗∞

ln 𝑍Λ
𝐿𝑑

≤ 1
2

ln 2, 𝜅2 ≤ (1/2𝑑).

The bound is independent of the coupling parameters.
Alternatively, for an upper bound on 𝑍𝑐, we set the maximum 𝜅 condition,

𝑑𝜅2 = 1/2, in 𝑍𝑐. For free b.c., we evaluate 𝑍𝑐 by successive integration. The result
is expressed in the following lemma.

Lemma C1 . We have

𝑍𝑐 =

𝐿−1∏
𝑗=1

1√︁
1 − 𝑏 𝑗

, (C2)

where the 𝑏 𝑗 satisfy the recursion relation

𝑏 𝑗+1 =
1

4(1 − 𝑏 𝑗)
, 𝑏1 =

1
4
.



378 P. A. FARIA DA VEIGA and M. O’CARROLL

The solution to this recursion is

𝑏 𝑗 =
𝑗

2( 𝑗 + 1) ,

so that we have

𝑍𝑐 =

𝐿−1∏
𝑗=1

√︄
2( 𝑗 + 1)
𝑗 + 2

=
2(𝐿−1)/2
√
𝐿 + 1

. (C3)

Proof : By induction, we obtain the 𝑏 𝑗 recursion. To solve the recursion, we note
that 𝑏∗ = 1/2 is a fixed point and pass to the variable 𝑐 𝑗 where 𝑏 𝑗 = 𝑏

∗ + 𝑐 𝑗 . The
recursion for 𝑐𝑛 is

𝑐𝑛+1 =
𝑐𝑛

1 − 2𝑐𝑛
, 𝑐1 = −1

4
,

or
1
𝑐𝑛+1

=
1
𝑐𝑛

− 2.

Telescoping (1/𝑐𝑛+1) gives

1
𝑐𝑛

=
1
𝑐1

+
𝑛−1∑︁
𝑘=1

[
1
𝑐𝑘+1

− 1
𝑐𝑘

]
=

1
𝑐1

+
𝑛−1∑︁
𝑘=1

(−2) = 1
𝑐1

− 2(𝑛 − 1).

or
𝑐𝑛 = − 1

2(𝑛 + 1) .

so that 𝑏𝑛 =
𝑛

2(𝑛 + 1) , and 1 − 𝑏𝑛 =
𝑛 + 2

2(𝑛 + 1) .
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