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Abstract Starting from an equation for causal propagator describing Dirac particles inter-
acting with electromagnetic fields and weakly interacting with matter fields, we derive a path
integral representation for the propagator. An effective gauge invariant action, which appears
in the representation, is interpreted as a pseudoclassical action for the Dirac particles. Quan-
tization of the action is nontrivial due to its gauge invariant nature as well as due to ordering
problems that arise in course of a realization of commutation relations in a Hilbert space.
The Dirac equation in the background under consideration appears as a quantum equation
of motion in the constructed quantum mechanics, justifying, thus, the interpretation of the
action. The path-integral representation allows one to calculate effectively the propagator
and with its help emerging quantum currents. Studying these currents one may detect effects
similar to the chiral magnetic effect. Pseudoclassical equations of motion in the nonrelativis-
tic limit generalize nontrivially the Pauli quantum mechanics with external electromagnetic
field.

1 Introduction

Construction of classical and pseudoclassical (models with Grassmann variables that describe
spinning degrees of freedom) models of relativistic particles as well as their quantization (the
first quantization) attracts attention already for a long time due to various reasons. First, the
interest in such models was initiated by the close relationship with problems in string theory
and gravity, but now it is clear that it is an important problem itself whether there exist
classical model for any relativistic particle whose quantization reproduces, in a sense, the
corresponding field theory, or one particle sector in the corresponding quantum field theory.
One of the basic, in the above-mentioned set of models, is the pseudoclassical model of a
Fermi particle with spin 1/2, proposed first in the works [1–3], investigated and quantized
in many works, see for example [4–16]. A generalization of the pseudoclassical action of
a spinning particle with an anomalous magnetic momentum was given in Refs. [17,18].
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A noncommutative version of Berezin–Marinov action is constructed in Ref. [19]. In Refs.
[20,21], a pseudoclassical model whose quantization reproduces the quantum theory of Weyl
particles was proposed. Here, a pseudoclassical model of relativistic spin-one particle, both
massive and massless with an action, with a Chern–Simons term was considered as well.
Quantum mechanics constructed for the massive case proves to be equivalent to the Proca
theory and for massless case to the Maxwell theory. Pseudoclassical model for a massive Dirac
particle in 2+1 dimensions was constructed in Ref. [22] and then extended for arbitrary even-
and odd-dimensional cases in Refs. [23–28]. Pseudoclassical actions of spinning particles in
a non-Abelian background and in a torsion field are proposed in Refs. [29,30], respectively.

At the first glance, the construction of pseudoclassical actions and the corresponding pseu-
doclassical mechanics of relativistic particles has no direct physical applications, due to the
difficulties of physical interpretations of the related pseudoclassical trajectories in spaces
of Grassmannian variables. However, such physical quantities as propagators of relativistic
particles can be represented in the form of functional integrals with kernels including such
actions, see e.g., Refs. [12,27]. The path integral representations often serve as an efficient
method for calculating such propagators, see e.g., [31–33]. Moreover, path integral represen-
tations of propagators underlie the so-called worldline technique in sting theory and QFT,
see e.g., [34,35] and references there.

In this respect, one should mention that there exist works [36,37] in which models of
relativistic particles with only Bosonic variables are constructed and a quantization of which
also leads to quantum mechanics of particles with spin. On the one hand, the Bose nature of
trajectories in such models makes the use of these trajectories for describing physical effects
clearer, but on the other hand, the structure of such models, as a rule, is technically more
complicated than the structure of pseudoclassical models, and the construction of functional
integrals with the corresponding to the model actions is still an open task. Nevertheless,
relatively recently [38], it was shown that Bose trajectories of a classical model describing
massless charged chiral fermions in an external magnetic field can alternatively be used to
calculate the chiral magnetic effect.1

All this once again emphasizes the importance of studying classical and pseudoclassical
models of chiral particles interacting with various external background fields.

In Refs. [41,42], on the basis of the standard model, an effective relativistic-wave equation
describing Dirac particles interacting with electromagnetic and matter fields was considered.
The equation reads:

{
[i∂ν − q Aν(x)] γ ν − m − γμ

[
Vμ
R (x)PR + Vμ

L (x)PL
]}

Ψ (x) = 0, (1)

where q and m are particle charge and mass, respectively, Aν(x) are potentials of an external
electromagnetic field, Vμ

L ,R are effective potentials of the electroweak interaction with a

background matter (of left and right electrons respectively), PL ,R = (1 ∓ γ 5)/2 are the
chiral projectors, γ μ, μ = 0, 1, 2, 3, γ 5 = iγ 0γ 1γ 2γ 3, are Dirac gamma-matrices,2 and
Ψ (x) are four-component Dirac bispinor. By analogy with the behavior of chiral particles in
external electromagnetic fields, one can hope for an appearance of anomalous currents due
to the interaction with some specific structures of the matter. Technically, the study of such
currents may be carried out by analogy either with the Vilenkin method [40] based on an
analysis of specific solutions of Eq. (1), or on an approach used in work [38], where the key

1 Chiral magnetic effect is the generation of an electric current along an external magnetic field induced by
chirality imbalance, see e.g., [39]. Apparently, the first theoretical description of the effect belongs to Velenkin
[40].
2 [γ μ, γ ν ]+ = 2ημν, ημνηνγ = δμγ , ημν = diag(1, −1,−1,−1), [A, B]± = AB ± BA.
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role was played by a classical action and classical trajectories associated with chiral particles.
In this regard, in the present study, we focus our attention on a possibility constructing a
path-integral representation for the causal propagator of particles under consideration and
with its help to derive a pseudoclassical action for these particles. We believe that a further
analysis of both the propagator and the action may be useful in finding the above-mentioned
anomalous currents, and, thus, may represent a new possibility in studying the chiral effect
due a combination of electromagnetic and electroweak interactions.

In the present article, starting from an equation for causal propagator describing Dirac
particles interacting with electromagnetic fields and weakly interacting with matter fields,
we derive a path-integral representation for this propagator. An effective gauge-invariant
action, which appears in the representation, is interpreted as a pseudoclassical action for
the Dirac particles. Quantization of the action is nontrivial due to its gauge invariant nature
as well as due to ordering problems that arise in course of a realization of commutation
relations in a Hilbert space. The Dirac equation in the background under consideration appears
as a quantum equation of motion in the constructed quantum mechanics, justifying, thus,
the interpretation of the action. The path-integral representation allows one to calculate
effectively the propagator and therefore emerging quantum currents, in the same manner
as done in Refs. [31–33] in the case of Dirac particle in a magnetic field. Pseudoclassical
equations of motion in the nonrelativistic limit generalize nontrivially the Pauli quantum
mechanics with external electromagnetic field.

2 Causal propagator of a Dirac particle interacting with electromagnetic field and
electroweakly interacting with matter fields

2.1 Defining equations

To begin with, let us rewrite Eq. (1) as follows:
{
γ ν

[
P̂ν − iγ 5Kν(x)

]
− m

}
Ψ (x) = 0, (2)

where

P̂ν = i∂ν − Aν, Aν(x) = q Aν(x) + Vν(x),

Vμ(x) = 1

2

[
Vμ
L (x) + Vμ

R (x)
]
,

Kμ(x) = 1

2

[
Vμ
R (x) − Vμ

L (x)
]
.

(3)

Then, using the identity
3!γ ργ 5 = iηραεαβμνγ

βγ μγ ν, (4)

where εαβμν is a completely antisymmetric tensor with the normalization ε0123 = 1, we can
represent Eq. (2) to the following form:

[
P̂νγ

ν − m − i

3!K
α(x)εαβμνγ

βγ μγ ν

]
Ψ (x) = 0. (5)

The corresponding causal Green function Sc(x, y) (the propagator) transformed by γ 5 matrix,
S̃c(x, y) = Sc(x, y)γ 5 satisfies the inhomogeneous equation

[
P̂ν�

ν − m�4 − i

3!K
α(x)εαβμν�

β�μ�ν

]
S̃c(x, y) = δ(4)(x − y), (6)

123
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where five matrices �n , n = (μ, 4), �μ = γ 5γ μ, �4 = γ 5 are introduced. These matrices
form a 5-dimensional representation of the Clifford algebra,

[
�n, �m]

+ = 2ηnm, ηnm = diag(1,−1,−1,−1,−1).

2.2 Path integral representation for the propagator

We note that in fact, the propagator has lower spinor indices (S̃c(x, y) = S̃c
αβ(x, y)) that are

omitted in Eq. (6). In contrast with Schwinger work [43], we represent only the spatial part
of the propagator as a matrix element of an operator S̃c

αβ :

S̃c
αβ(x, y) = 〈x |S̃c

αβ |y〉.
Here, |x〉—are eigenvectors of some coordinate operators X̂μ, whereas P̂μ are the corre-
sponding operators of momenta, all these quantities satisfy the relations:

X̂μ|x〉 = xμ|x〉, 〈x |y〉 = δ4(x − y),
∫

|x〉〈x | dx = I,
[
P̂μ, X̂ν

]

− = −iδν
μ, P̂μ|p〉 = pμ|p〉, 〈p|p′〉 = δ4(p − p′),

∫
|p〉〈p| dp = I, 〈x |P̂μ|y〉 = −i∂μδ4(x − y), 〈x |p〉 = (2π)−2eipx .

Equation (6) implies the following representation for the operator S̃c
αβ :

S̃c = Â−1, Â = Π̂ν�
ν − m�4 − i

3!K
αεαβμν�

β�μ�ν,

K̂ α = K α(X̂), Π̂μ = −P̂μ − Aμ(X̂),
[
Π̂μ, Π̂ν

]

− = −iFμν(X̂), Fμν = ∂μAν − ∂βAν . (7)

Here and in what follows, the lower spinor indices are omitted again.
Through the use of identity (4) and transformation propagator with γ 5 matrix, we have

ensured that the operator Â is represented by terms that contain an odd number of �-matrices
only. Now, one can consider the operator Â as a pure Fermi operator, if one treats �-matrices
as Fermi operators. In general case, an inverse operator to a Fermi operator can be presented
by means of an integral over a super-proper time (λ, χ) of an exponential with an even
exponent [12]. In the case under consideration, such a representation reads:

Â−1 =
∫ ∞

0
dλ

∫
ei(λ( Â2+iε)+χ Â) dχ,

where the pair (λ, χ) is the super-proper time with λ being Grassmann even variable and χ

being a Grassmann odd variable that anticommute with � matrices and therefore with Â by
the definition, and

Â2 = Π̂2 − m2 − i

2
Fαβ�α�β − K̂ 2 + ∂μ K̂

μ�0�1�2�3

+ i

2
εαβμν[Π̂α, K̂β ]+�μ�ν , ∂μ K̂

μ = [
∂μK

μ (x)
]
x→X̂ .

Thus, we obtain:

S̃c =
∫ ∞

0
dλ

∫
e−i ˆH (λ,χ) dχ,

123
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Ĥ (λ, χ) = λ

{
m2 − Π̂2 + i

2
Fαβ�α�β + K̂ 2

− i

2
[Π̂α, K̂β ]+εαβμν�μ�ν − ∂μ K̂

μ�0�1�2�3
}

+
(

Π̂ν�
ν − m�4 − i

3! K̂
αεαβμν�

β�μ�ν

)
χ,

and

S̃c(xout, xin) =
∫ ∞

0
dλ

∫
〈xout|e−i ˆH (λ,χ)|xin〉 dχ. (8)

Now, one can represent the matrix element entering in the right-hand side of Eq. (8) as a
path integral following a universal (suitable for a wide class of operators, in particular, for the
operator Ĥ (λ, χ)) discretization procedure technique represented in detail in Refs. [12,27].
The result reads:

S̃c(xout, xin) = exp

(
i�n ∂l

∂θn

) ∫ ∞

0
dλ0

∫
DxD pDλDπ

×
∫

dχ0

∫
DχDν

∫

ψ(0)+ψ(1)=θ

Dψ

× exp

{
i
∫ 1

0
λ

(
P2 − m2 + 2iFαβψαψβ − K 2

− 4iεαβμνPαKβψμψν + 16∂μK
μψ0ψ1ψ2ψ3)

+ 2i

(
Pαψα − mψ4 + 2i

3
K αεαβμνψ

βψμψν

)
χ

− iψnψ̇
n + pẋ + πλ̇ + νχ̇dτ + ψn(1)ψn(0)

}∣∣
θ=0 . (9)

Here, x(τ ), p(τ ), λ(τ), π(τ) are even and χ(τ), ν(τ), ψn(τ ) are odd trajectories, obeying
the boundary conditions x(0) = xin, x(1) = xout, λ(0) = λ0, χ(0) = χ0, and Pν =
−pν − Aν(x) .

The representation (9) can be considered as a Hamiltonian form of the path integral for
the propagator. Integrating it over the momenta p, we obtain a Lagrangian path integral
representation for the propagator:

S̃c(xout, xin) = exp

(
i�n ∂l

∂θn

) ∫ ∞

0
de0

∫

e0

M (e)De
∫

dχ0

×
∫

χ0

Dχ

∫ xout

xin

Dx
∫

Dπ

∫
Dν

∫

ψ(0)+ψ(1)=θ

Dψ

× exp

{
i
∫ 1

0

[
− ẋ2

2e
− e

2

(
M2 − 2iFαβψαψβ

)

− ẋα (Aα − dα) + i

(
ẋαψα

e
− mψ4 − 2

3
ψαdα

)
χ

− iψnψ̇
n + π ė + νχ̇

]
dτ + ψn(1)ψn(0)

}∣∣
θ=0 , (10)

where

M2 = m2 + K 2 − 16∂μK
μψ0ψ1ψ2ψ3,

dμ = −2iεμναβK
νψαψβ,

123
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and the measure M (e) reads:

M (e) =
∫

D p exp

[
i

2

∫ 1

0
ep2 d τ

]
.

3 Pseudoclassical action of Dirac particle interacting with electromagnetic field and
electroweakly interacting with matter fields

3.1 Derivation of the action

The integral over the time τ in the exponential expression (10) can be understood as an
effective, nondegenerate Lagrangian action. It has two different parts. The first part, which
consists of two terms with derivatives ė and χ̇ , can be understood as a gauge fixing term SGF,

SGF =
∫ 1

0
(π ė + νχ̇) dτ,

that corresponds to the gauge conditions ė = χ̇ = 0. The second part may be treated as a
gauge invariant action

S =
∫ 1

0

[
− ẋ2

2e
− e

2

(
M2 − 2iFαβψαψβ

) − ẋα (Aα − dα)

+ i

(
ẋαψα

e
− mψ4 − 2

3
ψαdα

)
χ − iψnψ̇

n
]

dτ (11)

of the Dirac particle interacting with electromagnetic field and electroweakly interacting with
the matter fields. The derived action is a generalization of Berezin–Marinov action [1] to the
background under consideration. It is easy to check that this action is invariant under the
gauge transformations (a time reparameterization)

δxα = ẋαξ , δe = d

dτ
(eξ) , δχ = d

dτ
(χξ) , δψn = ψ̇nξ

with an even parameter ξ .
Lagrangian equations of motion corresponding to action (11) have the following form:

δS

δe
= 1

e2

(
ẋ2

2
− i ẋαψαχ

)
− 1

2

(
M2 − 2iFαβψαψβ

) = 0,

δr S

δχ
= ẋαψα

e
− mψ4 − 2

3
ψαdα = 0,

δr S

δψ4 = −2iψ̇4 + imχ = 0,

δr S

δψα
= 2iψ̇α + 2e

(
iFβαψβ + 2

3
∂σ K

σ εβμναψβψμψν

)

+ 2idαχ − i
ẋα

e
χ − 4iεμνβα ẋ

μK νψβ = 0,

δS

δxα
= d

dτ

(
ẋα − iψαχ

e
+ Aα − dα

)
+ ieFμν,αψμψν

+ 8e(∂α∂μK
μ)ψ0ψ1ψ2ψ3 − ẋμ(∂αAμ)

+ ẋμ(∂αdμ) − eKμ(∂αKμ) + 2i

3
χψμ(∂αdμ) = 0 . (12)

123
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3.2 Quantization of the action

One can quantize the action (11) to confirm its above given interpretation. For this, we first
carry out a Hamiltonian analysis of the corresponding pseudoclassical theory following Refs.
[16,44] . Since the action (11) is gauge invariant, there are constraint (in particular, first class
constraints) in the Hamiltonian formulation. Introducing canonical momenta pα, Pe, Pχ , Pn
to the coordinates xa, e, χ, ψn , respectively,

pα = ∂L

∂ ẋα
= −1

e
(ẋα − iψαχ) − q Aα + dα ,

Pe = ∂L

∂ ė
= 0, Pχ = ∂r L

∂χ̇
= 0, Pn = ∂r L

∂ψ̇n
= −iψn ,

we see that primary constraints Φ(1) = 0 are:

Φ
(1)
1 = Pχ = 0, Φ

(1)
2 = Pe = 0, Φ

(1)
3n = Pn + iψn = 0, (13)

and the Hamiltonian H reads:

H = − e

2

(
P2 + 2Pαd

α + 2iFαβψαψβ − M2)

+ iχ

(
Pαψα − mψ5 + 1

3
ψαdα

)
.

Conditions of the conservation of the primary constraints in time allow us to find secondary
constraints Φ(2) = 0:

Φ
(2)
1 = Pαψα − mψ4 + 1

3
ψαdα = 0, (14)

Φ
(2)
2 = P2 + 2Pαd

α + 2iFαβψαψβ − M2 = 0. (15)

There are no other connections in the theory. One can see that the Hamiltonian H appears to
be proportional to constraints, as one can expect in the case of a reparameterization-invariant
theory [45].

One can go over from the initial set of constraints to the equivalent one (Φ(1) = 0, T1,2 =
0), where:

T1,2 = Φ
(2)
1,2 + i

2

(
∂rΦ

(2)
1,2/∂ψn

)
Φ

(1)
3n . (16)

The new set of constraints can be explicitly divided in a set of first-class constraints, which

is
(
Φ

(1)
1,2 = 0, T1,2 = 0

)
and in a set of second-class constraints, which is Φ

(1)
3n = 0.

On this stage, we are able to perform an operator quantization. To this end, we perform
only a partial gauge fixing, by imposing the supplementary gauge conditions ΦG

1,2 = 0 to the

primary first-class constraints Φ
(1)
1,2 = 0 ,

ΦG
1 = χ, ΦG

2 = e − 1/m .

Thus, on this stage we reduced our Hamiltonian theory to one with the first-class constraints

T1,2 = 0 and the second-class constraints ϕ = 0, ϕ =
(
Φ

(1)
1,2, ΦG

)
. Generalizing the Dirac

quantization method for systems with first-class constraints [44], we believe that commutation
relations between operators are calculated according to Dirac brackets with respect to the
second-class constraints ϕ = 0 only. At the same time second-class constraints operators

123
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must be equal zero. The operators T̂1,2 corresponding to the first-class constraints T1,2 = 0
are not zero, but define restrictions on physical state vectors, they annulate the physical states.

The second-class constraints ϕ = 0 have a special form [16], one can use it for direct
eliminating of the variables e, Pe, χ, and Pχ , from the consideration. In this case, the Dirac
brackets with respect to the constraints ϕ for the variables x, p and ψn are reduced to ones
with respect to the constraints Φ

(1)
3n and can be easily calculated. The only nonvanishing Dirac

brackets of this kind are:

{
xα, pβ

}
D(Φ

(1)
3n )

= δα
β ,

{
ψn, ψm}

D(Φ
(1)
3n )

= i

2
ηnm .

They define commutation (anticommutation) relations for the operators x̂, p̂ and ψ̂n that
correspond to the variables x, p and ψn , respectively,

[
x̂α, p̂β

]
− = i

{
xα, pβ

}
D(Φ

(1)
3n )

= iδα
β ,

[
ψ̂n, ψ̂m

]

+ = i
{
ψn, ψm}

D(Φ
(1)
3n )

= −1

2
ηnm . (17)

Besides, the following operator equations hold true:

Φ̂
(1)
3n = P̂n + iψ̂n = 0. (18)

Operators that satisfy commutation relations (17) and Eq. (18) have to be realized in a
Fock space. As such a space, we chose a space of four columns Ψ (x) (bispinors) that depend
on xα . At the same time, we chose x̂α to be operators of multiplication by xα , and

p̂α = −i∂α, ψ̂α = i

2
γ 5γ α, ψ̂4 = i

2
γ 5 . (19)

The first-class constraints T̂1,2 as operators have to annihilate physical vectors T̂1,2Ψ (x) =
0. One can easily verify that in virtue of Eqs. (19), (16) and (18), these conditions are reduced
to following ones:

T̂1,2Ψ (x) = 0 �⇒
{

Φ̂
(2)
1 Ψ (x) = 0

Φ̂
(2)
1 Ψ (x) = 0

, (20)

where Φ̂
(2)
1,2 are operators, which correspond to classical functions from Eqs. (14) and (15).

There is no ambiguity in the construction of the operator Φ̂
(2)
1 . Thus, taking into account the

above realizations of the commutation relations, we see that the first equation Φ̂
(2)
1 Ψ (x) = 0

reproduces the Dirac equation (5),

Φ̂
(2)
1 Ψ (x) = 0 �⇒

[
P̂νγ

ν − m − i

3!K
α(x)εαβμνγ

βγ μγ ν

]
Ψ (x) = 0. (21)

As to the construction of the operator Φ̂
(2)
2 , according to the classical function Φ

(2)
2 from

Eq. (15), we meet here an ordering problem since, in the general case, the function Φ
(2)
2

contains terms with products of the momenta and some functions of the coordinates. For
such terms we choose the symmetrized (Weyl) form of the corresponding operators, which,
in particular, provides the hermicity of the operator Φ̂

(2)
2 . At the same time, one can see

that such a correspondence rule provides the consistency of the two equations (20). Indeed,

in this case, it turns out that Φ̂
(2)
2 =

(
Φ̂

(2)
1

)2
, such that second equation (20) appears to

be a consequence of first equation (20), and therefore is equivalent to Dirac equation (21).

123
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Thus, we see that the presented above operator quantization of action (11) reproduces the
quantum theory of spinning particle interacting with electromagnetic fields and electroweakly
interacting with matter fields. This fact justifies the above interpretation form of the action.

3.3 Nonrelativistic limit

Let us consider equations (12) in the nonrelativistic (low-energy) limit. To simplify the
analysis, we chose the gauge conditions χ = 0 and e = 1/m that had appeared in the above
Hamiltonian formulation. Following Berezin and Marinov [1], we realize σ -matrices as as
σk = 2i εk jlψ

lψ j , such that

ψ jψ l = i

4
εk jlσk , ψ̇ jψ l = i

4
εk jl σ̇k .

In the limit under consideration, we have:

ψ0 ≈ 0 , ẋ0 ≈ 1 , ẋ i ≈ υi = dxi

dx0 .

Using standard expressions for stress tensor components, see definition (7),

F0i = −Ẽi = ∂0Ai − ∂iA0 , Fi j = εi jk H̃
k, H̃ k = 1

2
εki jFi j

in Eq. (12) and disregarding terms of higher orders in external fields, we obtain:

mυ̇ = Ẽ + 1

c

[
υ × H̃

]
− ∇ (σK) − 1

c

d

dt
(σK0)

+ 1

c
(υσ )∇K0, (22)

σ̇ =
[

2

�

(
�

2mc
H̃ + K − K0

υ

c

)
× σ

]
,

where

Ẽi = qEi − (∂0Vi − ∂i V0) , H̃ k = qHk + 1

2
εki j

(
∂i V j − ∂ j Vi

)
,

where Ei and Hi are three-dimensional components of the electric field and magnetic fields,
respectively.

We note that in the absence of the potentials Vμ
L ,R of the electroweak interaction (Vμ =

Kμ = 0, see Eq. (3)) with a background matter, the low-energy limit equations coincide with
ones that could be obtained from the Pauli equation. In this regard, it would be interesting to
derive an analogue of the Pauli equation in the background under consideration and compare
its low-energy limit with equations (22).
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