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Abstract

Sustainability has become one of the main objectives in all human activities and, in particular, in manufac-
turing environments. In this paper, we consider the flexible job shop scheduling problem with the objective of
minimizing energy consumption. As it is known that a considerable part of the energy consumption occurs
when the machines are on and idle, the addressed problem includes the possibility of turning the machines off
and on between processing operations. To bring the problem closer to the large variety of real-world prob-
lems it encompasses, we include two relevant factors: nonlinear routes and position-based learning effect.
The treated problem is formally described through a mixed integer linear programming model. We propose
constructive heuristics, two types of neighborhoods with which we construct local search schemes and three
metaheuristics, namely, general variable neighborhood search, greedy randomized adaptive search procedure,
and simulated annealing. We conduct a large number of experiments to evaluate the performance of the in-
troduced methods on small-sized and large-sized instances. In the large-sized instances, the general variable
neighborhood search that combines the two neighborhoods into a single method is particularly effective. In
the small-sized instances with known optimal solutions, the greedy randomized adaptive search procedure
finds solutions that, on average, are within 0.22% of the optimal solution.

Keywords: energy-aware scheduling; flexible job shop; nonlinear routes; arbitrary precedence constraints; learning effect;
constructive heuristics; local search; metaheuristics

1. Introduction

The flexible job shop (FJS) is a scheduling problem at the core of manufacturing environments
that is notable for its number of practical applications. The problem is NP-hard because it includes
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the job shop (JS) scheduling problem, known to be NP-hard (Garey et al., 1976), as a particular
case. Because of its relevance and difficulty of solution, a wide variety of heuristic and metaheuris-
tic methods have been developed in the recent literature for its solution, see Dauzère-Pérès et al.
(2024) and Xie et al. (2019). At the same time, due to the large number of real-world problems that
fall within its scope, various practical aspects have been included in its formulation. In this work,
we consider the FJS scheduling problem with nonlinear routes and position-based learning effects.
By learning effect, we mean that the processing times of the operations in the machines depend on
the position that the operations occupy within the machines, that is, we consider a position-based
learning effect. We refer to Gupta and Gupta (1988), Biskup (1999), and Cheng and Wang (2000)
as the first applications of the learning effect idea in scheduling problems. By nonlinear routes, we
refer to the fact that the operations that constitute a job do not have to follow a linear order for
their execution, but their precedence relations are given by an arbitrarily directed acyclic graph. In
particular, this may allow different operations of the same job to be processed in parallel. (See Bir-
gin et al., 2014, for details.) It is worth noting that the inclusion of nonlinear routes in the FJS
makes it possible to tackle the online printing shop (OPS) scheduling problem, a real and challeng-
ing problem in today’s printing industry (Araujo et al., 2024a, 2024b (Birgin et al., 2015; Lunardi
et al., 2020, 2021; Araujo et al., 2024a, 2024b). As described in Lunardi et al. (2020), in the OPS
scheduling problem, orders of products to be manufactured, such as books, brochures, flyers, photo
albums, and many others, are received online. Each type of product has a different production plan,
but they all involve a printing operation. When a significant number of orders is reached, in order to
save raw material (paper), a cutting stock problem is solved to merge the printing operations of the
different orders placed. The orders whose printing operations are combined form a single job. Thus,
the jobs in the OPS scheduling problem, which consist of a heterogeneous set of operations with
arbitrary precedence constraints, are extremely diverse. In the study of the OPS problem carried
out by Lunardi et al. (2020, 2021), several complicating features such as periods of unavailability
of the machines, resumable operations, sequence-dependent setup times, partial overlapping of op-
erations with precedence constraints, release times, and fixed operations were addressed. However,
a complicating factor of this real-world problem was neglected: several operations are performed
by human operators. These tasks include computer-aided layout of materials to be printed, assem-
bling the various parts of a book and collating the covers, handling the cutting tools, packaging the
finished products, and others. These tasks performed by human operators are subject to the learn-
ing effect. Assuming that a human operator learns by repeatedly performing the same operation,
it is reasonable to say that, within certain limits, the ith execution will be faster than the (i − 1)th.
While there are other alternatives, this gives rise to the idea of a learning effect model based on the
position of the operation within the list of operations to be performed by the same operator.

In the present work, we recognize that sustainability has gained paramount importance over the
past few decades, becoming a top global objective. In a simple way, sustainability means meeting the
needs of the present without affecting future generations. Therefore, recent literature has referred
as green scheduling to scheduling problems that take into account workers’ safety (Gong et al.,
2019), well-being of workers (Destouet et al., 2024), machinery preservation (Wu and Sun, 2018),
carbon emissions (Zhu et al., 2020; Li and Chen, 2023), noise emissions and energy consumption,
and/or cost (Gahm et al., 2016), among others. Energy, in particular, has been a focal point in
The 2030 Agenda for Sustainable Development (Assembly, 2015) adopted at the United Nations
Sustainable Development Summit in 2015. For this reason, in the present work, we consider the
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energy-aware goal of minimizing energy consumption. As it is known that a considerable part of
the energy consumption occurs when the machines are on and idle, the problem considered includes
the possibility of turning the machines off and on between processing operations. As most of the
time the energy consumed comes from nonrenewable sources, there is a direct relationship between
energy consumption and carbon emission, which intensifies the warming effect.

The energy consumption scheme in place takes into account the cost of turning machines on and
off, the cost of each machine in processing each operation, the cost of keeping a machine on and
idle, and a cost related to keeping the facility running. It should be noted that the possibility of
switching a machine off and on between the processing of two successive operations is considered
if this results in a lower cost than the cost of keeping the machine on and idle. However, at the
same time that it may be less costly, turning a machine off and on may take longer, increasing the
completion time of one or more jobs. Thus, the objective function of the problem is not regular.
The starting point of this work is the modeling of the problem under consideration with mixed
integer linear programming (MILP). The modeling is twofold. On the one hand, it aims to describe
the problem exactly. On the other hand, it is used to solve small instances of the problem with an
exact solver in order to check the effectiveness of the proposed methods. In the sequel, we develop
a constructive list scheduling heuristic and two different neighborhoods: one based on removing
and reinserting a single operation and another based on removing a single operation, destroying,
reinserting, and reconstructing. On the basis of the neighborhoods, two local search algorithms and
three metaheuristics are developed. The metaheuristics considered are simulating annealing (SA),
greedy randomized adaptive search procedure (GRASP), and generalized variable neighborhood
search (GVNS).

The rest of this work is organized as follows. A literature review is presented in Section 2. In Sec-
tion 3, we formally describe the problem and formulate it as a MILP problem. In Sections 4 and 5,
we introduce a constructive heuristic and two local search strategies, respectively. In Section 6, we
describe the metaheuristics considered. Extensive numerical experiments are presented in Section 7.
Section 8 includes conclusions and directions for future work.

Notation. The symbol e represents the mathematical constant whose value is approximately
2.71828, ln(·) is the natural logarithm, R>0 = {x ∈ R | x > 0}, and Z>0 = {x ∈ Z | x > 0}.

2. Literature review

In the following, we present a literature review of papers dealing with energy consumption in the
FJS environment. It should be noted that, while a few of them take into account a learning effect,
none of them consider nonlinear routes. The design of models for the FJS problem with the mini-
mization of energy consumption has been the subject of a few recent publications. In Mouzon et al.
(2007), it is highlighted that, in scheduling problems, a significant part of the energy consumption
corresponds to nonbottleneck machines that remain on and idle. Based on this premise, Zhang
et al. (2017a, 2017b, 2017c); Meng et al. (2019) propose mathematical models for the FJS schedul-
ing problem, with the objective of minimizing energy consumption and allowing machines to be
turned on and off between processing operations. (A constraint programming model and a minor
modification to the MILP model proposed in Meng et al., 2019, are presented in Ham et al., 2021.)
In Meng et al. (2019) a comparison with the models previously proposed in Zhang et al. (2017a,
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2017b, 2017c) is presented, showing that the model proposed in Meng et al. (2019) is more effec-
tive/efficient when trying to solve small instances with an exact method. The model introduced
in the present work, which uses the same binary variables as model 2.2 proposed by Meng et al.
(2019), is based on the model proposed by Araujo et al. (2024b). The choice for binary variables in-
dicating whether an operation i is attributed to position r of a machine k was driven by the need to
model the learning effect that depends on the position that an operation takes in the machine (the
higher the position the shorter the processing time). When compared to the model in Meng et al.
(2019), it additionally includes the precedence relations between operations of the same job given
by an arbitrary directed acyclic graph (nonlinear routes) and the effect of learning on processing
time. When compared to the model presented by Araujo et al. (2024b), it differs in the objective
function, which implies in considering, for example, the possibility of turning machines off and on
between processing operations. Besides, it is worth mentioning that the presence of the model in the
present work serves to clearly describe the problem under consideration.

In Li et al. (2020), the FJS environment with dual resources and the minimization of energy con-
sumption is considered. The problem is described through a MILP model. For its solution, differ-
ent neighborhoods, a local search, a restarting mechanism, and an optimization method based on
migrating birds are proposed. In Lu et al. (2019), the problem of minimizing the energy consump-
tion combined with the completion time in an FJS environment is considered. As the makespan is
multiplied by the energy consumption per time unit, this component of the objective function cor-
responds to consider energy consumption relative to keeping the plant running. This means that
the objective can be seen as minimizing energy consumption only. For this problem, a water wave
optimization algorithm is considered.

In Lei et al. (2016), the conflict between minimizing energy consumption and balancing between
the working lines is studied. The problem with the two objectives is modeled as a bi-objective prob-
lem and a shuffled frog-leaping algorithm is proposed. Ren et al. (2020) considered an FJS environ-
ment with a particular type of nonlinear routes: some operations are standard operations that must
be processed on machines while others are assembly operations that must be processed on assembly
stations and require a set of operations to be previously completed. The objective of minimizing the
makespan and energy consumption. For this bi-objective problem, a hybrid metaheuristic combin-
ing genetic algorithms with particle swarm optimization is proposed. According to Wu and Sun
(2018), turning machines off and on and controlling the speed at which machines operate are con-
sidered as ways to reduce energy consumption. The considered problem simultaneously optimizes
the makespan, the energy consumption, and the number of times the machines need to be turned
off and on. For this problem, a nondominated sorted genetic algorithm (NSGA-II) that integrates
a green scheduling heuristic is proposed. Gong et al. (2019) considered a multiobjective problem
with five objectives, among them, the total energy cost. In an environment with dynamic electricity
prices, it may be interesting to process operations during the night period, which would increase
the cost of labor. Therefore, another cost considered is the labor cost. The other three objectives
are the maximum load of a machine, the sum of all machines’ load, and the makespan. For this
problem, an NSGA-III method is designed. In Wu et al. (2019), the problem under consideration
is a manufacturing problem of aerospace and military products, in which, due to the long process-
ing cycle of the components, tool wear affects the processing of the work. The problem fits into
an FJS environment and the goal is to simultaneously minimize makespan and energy consump-
tion, taking into consideration the deterioration effect of processing times. The deterioration model
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is time-dependent and the energy consumption model follows a very specific energy consumption
profile for operations that are all cutting operations. For this problem, a bi-objective hybrid pigeon-
inspired optimization and simulated annealing algorithm is developed.

In Li and Chen (2023), a bi-objective problem in which makespan and carbon emissions are
minimized is considered. The processing times are affected by Dejong’s learning effect (De Jong,
1957), but the carbon emission from the processing of each operation is considered to be fixed and
does not depend on its processing time. Therefore, even if there were a direct relationship between
energy consumption and carbon emissions, minimization of one would not be equivalent to mini-
mization of the other, since energy consumption is related to processing time. For this problem, a
multiobjective sparrow search algorithm is proposed. For an overview of carbon emission as a per-
formance measure in the manufacturing industry, see Laurent et al. (2010). More recently, Gong
et al. (2024) dealt with the simultaneous minimization of makespan and energy consumption in an
FJS environment. In the considered scenario, some operations have a linear route, while others are
independent and have no precedence relationship linking them to any other operation. The calcu-
lation of energy consumption does not take into account the possibility of turning off and on the
machines. The authors proposed an algorithm based on a combination of the Memetic Algorithm
(MA) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II).

3. Problem definition and formulation

The FJS scheduling problem is an extension of the JS scheduling problem. In the JS, there is a
set O of operations and a set F of machines. For each operation i ∈ O, a machine fi ∈ F is given
that must process operation i. The operations are divided into jobs J1, J2, . . . , Jn such that O =
∪n

k=1Jk and Jk1 ∩ Jk2 = ∅ whenever k1 �= k2. The operations of the same job must be executed in a
predefined linear order. The “F” in the FJS stands for “flexible” and refers to the fact that instead
of there being only one machine fi capable of processing operation i, for each operation i there is
a subset of machines Fi ⊆ F that can process it. This feature is known as routing flexibility. The
objective is to allocate each operation to a machine and decide in which order the machine should
execute the operations allocated to it so that the precedences between operations are honored and
some predefined objective is minimized.

The FJS with nonlinear routes is an extension of the FJS scheduling problem. (See Dauzère-Pérès
et al., 2024, §6.1, for a discussion of the different designations given in the literature for this prob-
lem.) The extension consists of relaxing the precedence constraints of the operations of the same
job. Instead of a linear order, the relationships can be given by an arbitrary directed acyclic graph
(DAG). This relaxation corresponds to important practical cases in the modern printing industry.
For example, a job may be to produce a book and the operations may, simplistically, include a lay-
out operation preceding all others, the printing (in parallel and without precedence between them)
of different blocks of sheets, and, finally, gathering all the sheets blocks and gluing them together
with the covers. Clearly, a lot of other real-world problems fit into the same description.

The FJS with nonlinear routes and position-based learning effect adds a further real-world in-
gredient to the problem. In classical scheduling problems, given an operation i ∈ O and a machine
k ∈ Fi, the processing time pik that machine k needs to process operation i is part of the prob-
lem data. However, in the real world, a machine (human operator) learns through the repetitive
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execution of operations. The first time it does something it takes some time, the second time it does
it faster, and so on. That is why we consider in the present work that the actual processing time
is a function that depends on a standard time pik and on the position that operation i occupies in
the list of operations to be executed by machine k. If we call this function ψα, then we say that
the effective processing time of operation i, on machine k, if it occupies the position r in the list of
machine k, is given by ψα(pik, r). In this work, we consider ψα(p, r) = 	p/rα + 1/2
, where α > 0 is
a given learning rate. Adding 1/2 and taking the floor has the purpose of rounding the potentially
noninteger value p/rα.

It now remains to mention the goal to be minimized. In general, the makespan is considered. In
this work, we consider the energy consumption. The data we have for this purpose, related to each
machine k ∈ F , are (a) how much the machine consumes, per unit of time, when it is processing an
operation (named γ proc

k ); (b) how much the machine consumes, per unit of time, when it is on and
idle (named γ idle

k ); (c) how long it takes for the machine to be turned on and what is the consumption
of turning it on (named τ on

k and γ on
k , respectively); (d) how long it takes for the machine to be turned

off and what is the consumption of turning it off (named τ off
k and γ off

k , respectively); and (e) what
is the maximum time the machine can be on and idle (named τ idle

k ). In addition, we also know
the energy cost, per unit of time, of having the plant running (named γ extra). We consider that all
machines start off and must be shut down at the end. Of course, a machine must be turned on
before processing its first operation. The plant should start running the instant the first machine
is turned on and stop running the instant the last machine completes its shutdown process. With
these data, for each machine and each pair of operations that are processed on it consecutively, we
must decide whether the machine should be turned off and on again or whether it should remain on
and idle. Naturally, if the decision is to be turned off and on, there must be, between the completion
of one operation and the start of the next, enough time to turn the machine off and on. An interval
greater than the minimum imposed by the precedence relations between two successive operations
may allow the machine to be turned off and on. This can be advantageous from the point of view
of energy consumption while increasing the completion time of one or more jobs. Therefore, the
objective function considered in this work is nonregular.

In some sense, considering that there is a cost, per unit of time, for having the plant running, one
might think that minimizing energy consumption is nearly the same thing as minimizing makespan.
The following example shows that this is not the case. Let us consider the instance with 16 oper-
ations divided into four jobs whose precedence DAG is shown in Fig. 1. In this instance, we have
O = {1, 2, . . . , 16} and F = {1, 2, . . . , 7}. The Fi sets for i ∈ O and the standard processing times
pik for i ∈ O and k ∈ Fi are represented in Table 1. The data from (a) to (e) specified in the previous
paragraph and describing the machines’ energy consumption are shown in Table 2. The cost per
unit of time to operate the plant is γ extra = 422. We solved this instance by considering two differ-
ent objectives. In one case, we minimized the energy consumption. In the other case, we solved a
problem whose solution is the minimum energy solution among those that minimize the makespan.
The solutions to these two problems are shown in Fig. 2a and 2b, respectively. The optimal so-
lution of the problem corresponding to minimizing energy consumption has energy consumption
E = 200,793 and makespan Cmax = 270. The solution to the second problem has energy consump-
tion E = 200,955 and makespan Cmax = 267, that is, higher consumption and lower makespan.
This clearly shows that the problems are different.
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Fig. 1. DAG represents the precedence relationships of an instance with 16 operations divided into four jobs. The
number of jobs corresponds to the number of connected components of the DAG.

Table 1
Standard processing times and representation of the sets Fi for all i ∈ O of the small illustrative instance with 16 opera-
tions and 7 machines whose precedence relations are given in the DAG of Fig. 1

O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 — 52 155 — — — — — 59 — — 41 — — 189 —
2 185 90 21 142 — — 99 — — — — — — 179 50 —
3 26 86 — — 32 — — 199 — — 159 55 — — — —
4 — — 144 195 — — — — 129 — 30 195 81 132 95 163
5 — 121 65 77 185 — 96 199 65 33 — — — — 91 —
6 126 — — 146 — — — — 84 146 151 188 — 52 — 21
7 144 55 101 125 76 150 197 62 — — 62 177 — 103 — —

Table 2
Data describing the energy consumption of the machines of the small illustrative instance with 16 operations and seven
machines whose precedence relations are given in the DAG of Fig. 1

k γ
proc
k γ idle

k τ on
k γ on

k τ off
k γ off

k τ idle
k

1 87 8 15 750 11 550 162
2 86 5 11 638 14 812 290
3 81 8 19 1653 14 1218 358
4 85 8 15 930 11 682 201
5 93 9 27 2025 13 975 333
6 92 9 28 1960 18 1260 357
7 96 5 19 1672 19 1672 668

We now introduce the mathematical MILP formulation of the FJS scheduling problem with
nonlinear routes and position-based learning effect in order to minimize the energy consumption.
We first define the data of an instance of the problem, most of which were already mentioned.
Subsequently, we describe the decision variables of the model and the model itself.

Instance data:

O set of operations,

© 2025 The Author(s).
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Fig. 2. Graphical representation of optimal solutions to (a) the problem of minimizing energy consumption and (b) the
problem that consists of choosing the solution of minimum energy consumption among the solutions that minimize the

makespan. In the pictures, the triangles represent the process of turning the machines on and off.

F set of machines,
Ok set of operations that can be processed by machine k ∈ F ,
Fi set of machines that can process operation i ∈ O,
Â set of directed arcs in O ×O that represent operations’ precedence constraints (the prece-

dence constraints DAG is given by D = (O, Â)),
pik standard processing time of operation i ∈ O in machine k ∈ Fi,

γ
proc
k energy consumption, per unit of time, of machine k ∈ F when it is processing an operation,
γ idle

k energy consumption, per unit of time, of machine k when it is on and idle,
τ on

k time required to turn on machine k ∈ F ,
γ on

k fixed energy consumption of turning on machine k ∈ F ,
τ off

k time required to turn off machine k ∈ F ,
γ off

k fixed energy consumption of turning off machine k ∈ F ,
τ idle

k time limit for machine k ∈ F to remain on and idle,
γ extra energy consumption, per unit of time, of having the plant running.

Constants pik, γ proc
k , γ idle

k , τ on
k , γ on

k , τ off
k , γ off

k , τ idle
k , and γ extra are assumed to be nonnegative.

Decision variables:

xikr is 1 if operation i ∈ O is the rth operation in the list of operations to be processed by machine
k ∈ Fi and 0 otherwise (here r varies from 1 to |Ok|),

ykr is 1 if machine k ∈ F is turned off and on after processing the operation that is in the rth
position in the list of operations that the machine processes and 0 if the machine remains on
and idle during that period (here r varies from 1 to |Ok| − 1),

si starting time of the processing of operation i ∈ O,
hkr starting time of the processing of the operation that is in the rth position in the list of operations

processed by machine k ∈ F (here r varies from 1 to |Ok|),
© 2025 The Author(s).
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p′i actual processing time of operation i ∈ O (this is an auxiliary variable that simplifies the pre-
sentation of the model),

tidle
kr time that the machine k ∈ F remains idle between operations at positions r and r+ 1 in the

list of operations it processes (here r varies from 1 to |Ok| − 1).

The proposed model uses decision variables that determine the position of each operation within
each machine’s list. This is the most natural way to model the problem since it allows to compute
the effective processing time of an operation on a machine, which depends on the position of the
operation in the machine’s list. The model is based on the models presented by Birgin et al. (2014)
and Araujo et al. (2024b), but the entire part related to energy consumption and the decision of
whether a machine should remain on and idle or should be turned off and on between the processing
of two consecutive operations is new. Position-based decision variables for scheduling problems
were initially used by Wagner (1959) and were also considered by Wilson (1989) in the flowshop
scheduling problem.

The proposed MILP model follows:

Minimize
∑
k∈F

⎧⎨
⎩γ proc

k

⎛
⎝∑

i∈Ok

|Ok|∑
r=1

φ(pik, r) xikr

⎞
⎠+

(
γ on

k + γ off
k

)⎛
⎝∑

i∈Ok

xik1 +
|Ok|−1∑

r=1

ykr

⎞
⎠+ γ idle

k

|Ok|−1∑
r=1

tidle
kr

⎫⎬
⎭+ γ extraCmax

(1)

subject to

∑
k∈Fi

|Ok|∑
r=1

xikr = 1, i ∈ O, (2)

∑
i∈Ok

xikr ≤ 1, k ∈ F, r = 1, . . . , |Ok|, (3)

∑
i∈Ok

xi,k,r+1 ≤
∑
i∈Ok

xikr, k ∈ F, r = 1, . . . , |Ok| − 1, (4)

p′i =
∑
k∈Fi

|Ok|∑
r=1

φ(pik, r)xikr, i ∈ O, (5)

si + p′i ≤ s j, (i, j) ∈ Â, (6)

si + p′i −
(
2− xikr − xj,k,r+1

)
M ≤ s j, i �= j ∈ O, k ∈ Fi ∩ F j,

r = 1, . . . , |Ok| − 1,
(7)

hkr ≤ si +M(1− xikr), i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (8)

si −M(1− xikr) ≤ hkr, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (9)
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hk,r+1 −
⎛
⎝hkr +

∑
i∈Ok

φ(pik, r)xikr

⎞
⎠−Mykr ≤ tidle

kr , k ∈ F, r = 1, . . . , |Ok| − 1, (10)

tidle
kr ≤ τ idle

k (1− ykr), k ∈ F, r = 1, . . . , |Ok| − 1, (11)

tidle
kr ≥ 0, k ∈ F, r = 1, . . . , |Ok| − 1, (12)

hk,r+1 −
⎛
⎝hkr +

∑
i∈Ok

φ(pik, r)xikr

⎞
⎠+M(1− ykr) ≥ τ off

k + τ on
k , k ∈ F, r = 1, . . . , |Ok| − 1,

(13)

hkr +
⎛
⎝∑

i∈Ok

φ(pik, r)xikr

⎞
⎠+ τ off

k

∑
i∈Ok

xikr ≤ Cmax, k ∈ F, r = 1, . . . , |Ok|, (14)

hkr ≥ τ on
k

∑
i∈Ok

xikr, k ∈ F, r = 1, (15)

si ≥ 0, i ∈ O, (16)

xikr ∈ {0, 1}, i ∈ O, k ∈ Fi, r = 1, . . . , |Ok|, (17)

ykr ∈ {0, 1}, k ∈ F, r = 1, . . . , |Ok| − 1. (18)

The objective function (1) represents the minimization of energy consumption. The objective
function is composed of the sum of two terms. The first term is the sum of all machines, while the
second term refers to the energy consumption related to keeping the plant running. The latter cost
is simply the product of the energy consumption per unit of time multiplied by the time elapsed
from the moment the first machine is turned on to the moment the last machine is turned off. The
machines’ term sums, for each machine, the energy consumption associated with turning it on and
off, the energy consumption associated with processing operations, and the energy consumption of
the periods when it is on and idle. The consumption associated with turning a machine on and off is
the consumption of turning it on and off once multiplied by the number of times the machine must
be turned on and off. The consumption associated with processing operations is the product of the
consumption per unit of time multiplied by the time the machine spends processing operations.
This time is influenced by the learning effect. The idle time of the machine corresponds to the sum
of the intervals between the processing of consecutive operations in which it was decided not to
turn off the machine.

Constraints (2) define that each operation must be processed by exactly one machine and occupy
only one position. Constraints (3) impose that a machine position can only be associated with at
most one operation. Constraints (4) say that a machine position can only be occupied by an opera-
tion if all previous positions are also occupied. Constraints (5) define the actual processing time of
each operation, taking into account the learning effect, in order to simplify the presentation of the
model. Constraints (6) enforce that the precedence constraints between operations in the DAG be
respected. Constraints (7) state that, if both operations i and j are assigned to the same machine k
and operation i precedes operation j, i, and j do not overlap. Constraints (8) and (9) associate the
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two types of variables that refer to the start time of operations. Variable si refers to the start time of
operation i. Variable hkr refers to the start time of the rth operation of machine k. If xikr = 1, then
these two variables must coincide. Constraints (10) say that, if between two operations processed
consecutively on the same machine, the machine remains on and idle, then the variable defining the
idle time must be not smaller than the difference between the completion time of the first operation
and the starting time of the second operation. Constraints (11) and (12) say that, if between two
operations processed consecutively on the same machine, the machine is turned off and on, then
the variable defining the idle time in between these two operations must be zero. When a machine
remains on and idle between processing two consecutive operations, constraints (11) state that the
machine’s idle time cannot exceed its given upper limit. Constraints (13) ensure that if machine k
is turned off and on after processing the rth operation, then there is sufficient time to do so before
starting the processing of the operation at position r+ 1. Constraints (14) state that the makespan
be greater than or equal to the completion time of each operation plus the machine (processing the
operation) shutdown time. Combining these constraints with the minimization of (1), Cmax is set to
be the instant at which the last machine shuts down. (Note the abuse of notation here, as this is not
the usual definition of makespan). Constraints (15) say that before the processing of the first op-
eration of each machine, there must be enough time to turn on the machine. Constraints (16)–(18)
refer to the domain of the decision variables.

In the model, M is a sufficiently large number. In practice, the value of M may be different in each
constraint. In (7), M needs to be an upper bound on the completion time of any operation in an
optimal solution. In (8) and (9), M needs to be an upper bound on the starting time of any operation
in an optimal solution. In (10), M needs to be an upper bound on the interval between any pair
of consecutive operations in any machine, in an optimal solution. In (13), we can have an Mk for
each k and Mk can be equal to τ off

k + τ on
k . In (7)–(10), all necessary bounds are upper bounded by

an upper bound on the optimal makespan, which can be given by �1 =
∑

i∈O maxk∈Fi{pik}.
As mentioned above, for every machine k ∈ F and every position r ∈ {1, . . . , |Ok| − 1}, the con-

straints (10) say that, if machine k remains on and idle between the operations processed in position
r and r+ 1, then the variable tidle

kr must be greater than or equal to the difference between the com-
pletion time of the rth operation and the starting time of the operation at position r+ 1. However,
this variable appears multiplied by the positive constant γ idle

k in the objective function in a mini-
mization problem. Therefore, in an optimal solution, the constraint must be active. Thus, the valid
constraints

hk,r+1 −
⎛
⎝hkr +

∑
i∈Ok

φ(pik, r)xikr

⎞
⎠ ≥ tidle

kr , k ∈ F, r = 1, . . . , |Ok| − 1, (19)

that force the equality to hold and reduce the feasible region of the model by cutting off nonoptimal
feasible solutions.
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As a curiosity, the optimal solution illustrated in Fig. 2b, which corresponds to calculating a so-
lution with minimum energy consumption from among the solutions that minimize the makespan,
was calculated by substituting (1) with the objective function given by

Minimize �2 Cmax +
⎡
⎣∑

k∈F

⎧⎨
⎩γ proc

k

⎛
⎝∑

i∈Ok

|Ok|∑
r=1

φ(pik, r) xikr

⎞
⎠+

(
γ on

k + γ off
k

)⎛
⎝∑

i∈Ok

xik1 +
|Ok|−1∑

r=1

ykr

⎞
⎠+ γ idle

k

|Ok|−1∑
r=1

tidle
kr

⎫⎬
⎭+ γ extraCmax

⎤
⎦.

(20)

The objective function (20) corresponds to summing (1) with Cmax multiplied by �2, where �2 is an
upper bound on the optimal value of the energy consumption. Since all the quantities involved in
an instance definition are integers, the optimal value of the makespan is an integer value. Since Cmax

appears multiplied by �2, reducing Cmax by a single unit is more advantageous than any possible
reduction related to energy consumption. For that reason, the minimization of (20) results in an
optimal makespan solution. The term in (20) that coincides with (1) has the role of, from among
optimal makespan solutions, finding one that minimizes energy consumption.

4. Constructive heuristic

In this section, we describe a greedy constructive heuristic (GCH) that schedules one operation per
iteration until a feasible solution is constructed. The proposed heuristic is of the list scheduling
type. This means that a measure related to the insertion of a new operation in the partial solution
built so far is defined. The measure of all the operations that can be scheduled is calculated, and
the operation that optimizes that measure is chosen to be included in the partial solution. As the
measure is related to energy consumption, the selected operation is not necessarily programmed to
start as soon as possible. For this reason, the constructed schedule is not necessarily semiactive. (As
all the methods considered in the present work use this constructive heuristic in one way or another,
this property of the constructed solutions is inherent to all of them). The method continues until all
operations have been scheduled. In the present work, the measure is related to energy consumption.
Heuristics of this type have already been successfully employed in the FJS environment; see, for
example, Birgin et al. (2014, 2015).

The heuristic builds two types of structures: (a) structures that represent the instance and will
later be used by other methods and (b) structures that represent the constructed solution. Both
types of structure contain redundancies, which serve to simplify the description of the heuristic and
other methods later described. The structures representing the instance are

• A directed acyclic graph G = (V,A). The set of vertices V is formed by the set of operations O
and two fictitious operations s and t. The set of edges A is formed by all edges in Â, edges that
exit from s to every operation i that has no precedents (i.e., i such that (·, i) �∈ Â) and edges that
exit from every operation i with no successors (i.e., i such that (i, ·) �∈ Â) to t.
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Algorithm 1. Greedy constructive heuristic.

Input: O, F , p, Â
Output: G = (V,A), Q, s, p′, E , Cmax

Function: GCH(O, F , p, Â, G, Q, s, p′, E , Cmax)
1 A← Â ∪ {(s, j) | (·, j) �∈ Â} ∪ {(i, t) | (i, ·) �∈ Â}, V := O ∪ {s, t}, G := (V,A)
2 Qk is an empty list for all k ∈ F , E ← 0, Cmax ← 0, �← ∅
3 PartialGCH(O, F , p, G, �, Q, s, p′, E , Cmax)

• Given the directed graph G = (V,A), we assume that the sets
←−N i(G) ⊂ V and

−→N i(G) ⊂ V with
the immediate predecessors and successors of any node i ∈ V , respectively, are provided.

• We also assume that, for each i ∈ V , the sets
−→R i(G) and

←−R i(G) with the nodes that can be reached
from i and the nodes from which i can be reached in the graph G, respectively, are also available.

The structures that represent the constructed feasible solution are

• For each machine k ∈ F , a list Qk = ik
1, ik

2, . . . i
k
|Qk| representing the operations attributed to ma-

chine k and their order.
• For a given set of machine lists Q = {Qk}k∈F , we assume that a set of edges AM (Q), known as the

set of machine edges, with edges that go from each operation in Qk to the operation following it
in Qk, for all k ∈ F , is available.

• For a given set of machine lists Q = {Qk}k∈F and i ∈ O, the information fi(Q) representing the
machine to which operation i is assigned is assumed to be available at constant cost.

• For each operation i ∈ O, information si and p′i indicating its starting time and its effective pro-
cessing time, respectively.

• The E and Cmax values of the energy consumption and the makespan of the constructured solu-
tion, respectively.

In the description of the parameters of the heuristic, and of the methods that will follow, the
set of lists Qk for all k ∈ F is denoted by Q. The same abuse of notation occurs with all other
parameters and structures. When the set of machines F appears as a parameter, it also includes the
sets Fi for all i ∈ O.

At each iteration, the heuristic begins by determining the set of operations C that corresponds
to the operations whose predecessors have already been scheduled. That is, the set of operations
that could be scheduled in that iteration. For each operation i ∈ C and each machine k ∈ Fi, the
heuristic determines the most economical starting time, considering the options of (i) turning the
machine off and on or (ii) leaving the machine on and idle before processing i. The option in which
operation i is the first operation of machine k is also considered separately when an empty machine
k ∈ Fi exists. From among these possibilities and from among all possible pairs of operation ma-
chines, the heuristic chooses the option that represents the lowest energy consumption and sched-
ules it. Scheduling involves updating the aforementioned structures. The heuristic terminates when
all operations have been scheduled. The heuristic is described in Algorithms 1 and 2. Algorithm 1
constructs a partial solution with zero scheduled operations and calls Algorithm 2 which receives
a partially constructed solution and completes it. In Algorithm 2, the set � represents the set of
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Algorithm 2. Completes a partial solution with the greedy constructive heuristic.

Input: O, F , p, G = (V,A), �, Q, s, p′, E , Cmax

Output: Q, s, p′, E , Cmax

Function: PartialGCH(O, F , p, G, �, Q, s, p′, E , Cmax)
1 C ← ∅

2 for v ∈ O \� do
3 if

←−
N v(G) ⊆ � then C ← C ∪ {v}

4 for k ∈ F do
5 rmach

k ← 0
6 if |Qk| �= 0 then
7 Let v be the last operation of Qk then, rmach

k ← sv + p′v

8 while C �= ∅ do
9 �̃←+∞

10 for v ∈ C do

11 μ← max
{

s j + p′j | j ∈
←−
N v(G)

}

12 for k ∈ Fv do
13 ρ ← ψα (pv,k, |Qk| + 1)
14 if |Qk| = 0 then
15 ζ ← max

{
rmach

k + ton
k , μ

}
16 �← γ

proc
k ρ + γ extra

(
ζ + ρ + toff

k −Cmax
)
+
+ γ off

k + γ
on
k

17 else
18 ζ1 ← max

{
rmach

k , μ
}

19 �1 ← γ
proc
k ρ + γ extra

(
ζ1 + ρ + toff

k −Cmax
)
+
+ γ iddle

k (ζ1 − (si|Qk |
+ p′i|Qk |

)), where Qk = i1, . . . , i|Qk|

20 ζ2 ← max
{
rmach

k + toff
k + ton

k , μ
}

21 �2 ← γ
proc
k ρ + γ extra

(
ζ2 + ρ + toff

k −Cmax
)
+
+ γ off

k + γ
on
k

22 if �1 ≤ �2 then ζ , �← ζ1, �1 else ζ , �← ζ2, �2

23 if (�, ζ ) < (�̃, ζ̃ ) then ṽ, k̃, ζ̃ , ρ̃, �̃← v, k, ζ , ρ, �

24 Qk̃ ← Qk̃ ⊕ ṽ, sṽ := ζ̃ , p′ṽ := ρ̃, E ← E + �̃, Cmax ← max{Cmax, sṽ + p′ṽ + toff
k̃
}

25 C ← C \ {ṽ}, rmach
k̃
← sṽ + p′ṽ, �← � ∪ {ṽ}

26 for j ∈
−→
N ṽ(G) do

27 if
←−
N j (G) ⊆ � then

28 C ← C ∪ { j}

operations already scheduled. The heuristic is presented in this form because Algorithm 2 will soon
be used, in the context of a local search, to complete partially constructed solutions.

In Algorithm 2, the calculation of the initial set C corresponds to lines 1–3. Lines 4–7 calculate
the instant when each machine is free. The main loop, from lines 8–27 is executed as long as there
are unscheduled operations. Within the loop, each operation i ∈ C and each machine k ∈ Fi are
considered. To schedule an operation i on a machine k ∈ Fi, there can be one or two alternatives.
The alternative is only one if the machine is empty. In this case, the energy consumption is asso-
ciated with turning on the machine, processing the operation and turning off the machine. If the
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Fig. 3. Example of a non-semi-active solution computed by the constructive heuristic CGH. The graphic (a) shows the
partial solution constructed after two iterations. The graphics (b) and (c) show options 1 and 2 in iteration 3.

scheduling of that operation increases the makespan of the existing partial solution, there is the
extra cost of keeping the plant running longer. This is the calculation made in lines 15 and 16. The
alternatives are two when machine k already has operations allocated to it. The two options are to
keep the machine on and idle before processing operation i or to turn it off when the previous op-
eration is completed and turn it on before processing operation i. These two options correspond to
the calculations in lines 18–19 and 20–21, respectively. When there are two options, line 22 chooses
the better of the two. Line 23 compares the best option for the pair (i, k) with the best of all the
pairs already considered, saving the best of them. When the best pair is determined, the solution
structures are updated in line 24 and in lines 25–27 the set C is updated. In Algorithm 2 and here-
after, the expression (·)+ means max(0, ·), while the expression L⊕ 	, where L is a list and 	 is an
element, corresponds to add 	 to the end of L.

Consider a minimalist example with two machines and three operations. Assume that operation 2
must precede operation 3, that is, F = {1, 2}, O = {1, 2, 3}, Â = {(2, 3)}. (Note that the precedence
constraints are linear). Assume that operations 1 and 3 can only be processed by machine 1 and
operation 2 can only be processed by machine 2, that is, F1 = F3 = {1}, F2 = {2}, O1 = {1, 3},
O2 = {2}. For the processing times, let us consider p11 = p31 = 10 and p22 = 20. To simplify the
example, let us assume that there is no learning effect. Assume that both machines take 6 units
of time to turn on and 6 units of time to turn off, that is, τ on

k = τ off
k = 6 for k = 1, 2. The GCH

heuristic starts with an empty solution and C = {1, 2}. Since operation 1 has a shorter processing
time, operation 1 is assigned to machine 1. Since it takes 6 time units to turn on the machine,
operation 1 is scheduled to start at time 6. In the next iteration, we have C = {2} (operation 3
does not have all its predecessors scheduled yet). Then, operation 2 is assigned to machine 2 and
scheduled to start processing at time 6. Figure 3a shows the partial solution with operations 1 and 2
already scheduled. At iteration 3, we have C = {3}. Operation 3 can only be assigned to machine 1.
But here we have 2 options (shown in Fig. 3b and 3c, respectively):

Option 1: Schedule operation 3 to start at time 26. In this case, machine 1 would be idle between
the end of the processing of operation 1 at instant 16 and instant 26. Since this is not
enough time to turn the machine off and on, this option incurs an energy cost of 10γ idle

1 .
In addition to that, this scheduling of operation 3 increases the makespan by 10 time
units, at an additional cost of 10γ extra.
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Option 2: Schedule operation 3 to start at instant 28. By delaying the start of operation 3 by 2
time units, we construct a non-semi-active schedule. This delay allows machine 1 to be
turned off and on between the end of the processing of operation 1 and the start of the
processing of operation 3, with an associated cost of γ off

1 + γ on
1 . Still, this scheduling

increases the makespan by 12 time units, incurring an additional cost of 12γ extra.

If the instance data is such that γ off
1 + γ on

1 + 12γ extra < 10γ idle
1 + 10γ extra, then the heuristic chooses

option 2. Otherwise, it chooses option 1.

5. Local search strategies

In this section, we present two different local search strategies. Both generate neighbors by removing
and reinserting an operation in the current solution, but the ways of removing and reinserting the
operation are different. In the first local search, the neighborhood, called SRRN (single-operation
removal and reinsertion neighborhood), is based on a move that removes and reinserts a single op-
eration v ∈ O at a location where no cycle is formed. In the second local search, the neighborhood,
called SRDRRN (single-operation removal, destruction, reinsertion, and reconstruction neighbor-
hood), is based on a move such that if a v ∈ O operation is removed, then all its successors are also
removed. Then, if v is reinserted in the place of another operation w, w and all successor operations
of w are removed. The partially “destroyed” solution then needs to be reconstructed with the GCH
constructive heuristic.

Let Q, s, p′, E , and Cmax be the data of the current solution. In the first strategy, the neighborhood
is constructed by considering one at a time, the operations v ∈ O. For each operation, the operation
is removed from the machine to which it is assigned, that is, from the machine fv(Q). Let Q̂ be the
set of machine lists representing the current solution with operation v removed. Then, an attempt
is made to reinsert this same operation in all possible positions of all machines k ∈ Fv, that is, in all
machines that can process operation v. Let Q̂k = h1, . . . , h|Q̂k| be the list of operations of a machine

k in which we are trying to reinsert v. The possible positions are r = 1, . . . , |Q̂k| + 1. For all possible
values of r, we need to verify if the insertion is possible. What must be verified is if the insertion
does not generate a cycle in the directed graph representing the solution. A cycle will be generated
if any operation among h1, . . . , hr−1 is reachable from v in the directed graph (V,A ∪ AM (Q̂)). The
set of operations reachable from v in this directed graph is given by

−→R v((V,A ∪ AM (Q̂))). Then,
if {h1, . . . , hr−1} ∩ −→R v((V,A ∪ AM (Q̂))) �= ∅, then the insertion of v in the rth position of machine
k will generate a cycle in the directed graph and that directed graph will not represent a feasible
solution. Another way to form a cycle is when any of the operations that would remain after v
reaches v, that is, when {hr+1, . . . , h|Q̂k|} ∩

←−R v((V,A ∪ AM (Q̂))) �= ∅. Putting the two conditions
together, the condition for v to be inserted at position r of the machine k is

{h1, . . . , hr−1} ∩ −→R v((V,A ∪ AM (Q̂))) = ∅ and {hr+1, . . . , h|Q̂k|} ∩
←−R v((V,A ∪ AM (Q̂))) = ∅.

Let Q be the set of lists representing the current solution with the operation v removed and rein-
serted at position r of machine k. The processing time of v is given by ψα(pv,k, r). The processing
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Algorithm 3. Given a current approximation of a solution, returns the best neighbor of a neighborhood based on remov-
ing and reinserting a single operation.

Input: O, F , p, G = (V,A), Q, s, p′, E , Cmax

Output: Q, s, p′, E , Cmax

Function: SRRN(O, F , p, G, Q, s, p′, E , Cmax)
1 Ẽ ←+∞

2 for v ∈ O do
3 Q̂, ŝ, p̂′, Ê, Ĉmax ← Q, s, p′,E,Cmax

4 Let η = fv(Q̂) be the machine to which v is assigned and 
 the position of v in Q̂η, i.e., Q̂ = j1, . . . j|Q̂η | and j
 = v

5 for λ = 
+ 1, . . . , |Q̂η| do p̂′jλ ← ψα (pjλ,η, λ− 1)

6 Remove v from Q̂η

7 for k ∈ Fv do
8 Let Q̂k = h1, . . . , h|Q̂k|

9 for r ∈ {1, . . . , |Q̂k| + 1} do
10 if {h1, . . . , hr−1} ∩

−→
R v(V,A ∪ AM (Q̂)) = ∅ and {hr, . . . , h|Q̂k|

} ∩
←−
R v(V,A ∪ AM (Q̂)) = ∅ then

11 Q, s, p′,E,Cmax ← Q̂, ŝ, p̂′, Ê, Ĉmax

12 Reinsert(O, F , p, G, v, k, r, Q, s, p′, E , Cmax)
13 if E < Ẽ then Q̃, s̃, p̃′, Ẽ, C̃max ← Q, s, p′,E,Cmax

14 if Ẽ < E then Q, s, p′,E,Cmax ← Q̃, s̃, p̃′, Ẽ, C̃max

time of its successors in the list Qk needs to be recalculated since those operations are now one
position further in the list and we are dealing with a position-based learning effect. With the alloca-
tions of operations to machines all defined and the processing times of all operations also defined,
it is necessary to recalculate the starting time of each operation, the energy consumption, and the
makespan of the newly constructed solution. This recalculation must be done from scratch by con-
sidering each operation in a topological order of the directed acyclic graph (V,A ∪ AM (Q)). In
addition, it must be decided, for each operation, whether before processing it the machine would
remain on and idle or whether it would be turned off and on again. (If the operation is the first
one of the machine, the machine must be simply turned on.) The construction of the whole neigh-
borhood, including the choice of the best neighbor, is described in Algorithm 3. Algorithm 3 uses
Algorithm 4 to do the reinsertion and recalculation of the structures defining the neighbor, its en-
ergy consumption, and its makespan.

Let Q, s, p′, E , and Cmax be the data of the current solution. The neighborhood of the second
strategy is also constructed by removing each operation and reinserting it at every possible position
of each machine. The difference is that, when an operation v is removed, all operations reachable
from v in the directed graph (V,A ∪ AM (Q)) are removed as well. Let us call Q the set of machine
lists representing the current solution with v and all operations in

−→R v((V,A ∪ AM (Q))) removed.
When the operation is reinserted at position r of a machine k ∈ Fv, there are two possibilities.
If r = |Qk| + 1, then, since the position is empty, there is nothing else to be removed. Otherwise, if
Qk = i1, . . . , i|Qk|, then ir and all operations reachable from ir in the directed graph (V,A ∪ AM (Q)),
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Algorithm 4. Constructs the neighbor of the current approximation of a solution that is obtained by reinserting the
removed operation v at the rth position of machine k.

Input: O, F , p, G = (V,A), v, k, r, Q, s, p′, E , Cmax

Output: Q, s, p′, E , Cmax

Function: Reinsert(O, F , p, G, v, k, r, Q, s, p′, E , Cmax)
1 Let Qk = i1, . . . , i|Qk|

2 for λ ∈ {r, . . . , |Qk|} do p′iλ ← ψα (piλ,k, λ+ 1)

3 Insert v in Qk at position r, p′v ← ψα (pv,k, r)

4 for u ∈ V do du ← |
←−
N u(G+v = (V,A ∪ AM (Q)))|

5 U ←
−→
N s(G), E ← 0, Cmax ← 0

6 while U �= ∅ do
7 Select a vertex u from U , let η = fu(Q) and U ← U \ {u}

8 μ← max
{

s j + p′j | j ∈
←−
N u(G+v = (V,A ∪ AM (Q)))

}

9 if (·, u) /∈ AM (Q) then
10 su ← max

{
ton
η , μ

}
11 �← γ proc

η p′u + γ
extra

(
su + p′u + toff

η −Cmax
)
+
+ γ off

η + γ
on
η

12 else
13 Let w be such that (w, u) ∈ AM (Q)
14 ζ1 ← max

{
sw + p′w, μ

}
15 �1 ← γ proc

η p′u + γ
extra

(
ζ1 + p′u + toff

η −Cmax
)
+
+ γ iddle

η (ζ1 − (sw + p′w))

16 ζ2 ← max
{
sw + p′w + toff

η + ton
η , μ

}
17 �2 ← γ proc

η p′u + γ
extra

(
ζ2 + p′u + toff

η −Cmax
)
+
+ γ off

η + γ
on
η

18 if �1 ≤ �2 then su, �← ζ1, �1 else su, �← ζ2, �2

19 E ← E + �

20 Cmax ← max
{
Cmax, su + p′u + toff

η

}

21 for w ∈
−→
N u(G+v = (V,A ∪ AM (Q))) do

22 dw ← dw − 1
23 if dw = 0 and w �= t then U ← U ∪ {w}

that is, all operations in
−→R ir ((V,A ∪ AM (Q))), must be removed. These two mass removals are what

is called “destruction.” In order that the insertion of v in the rth position of machine k generates
a feasible solution, we cannot, in the removal of ir and the nodes it reaches, remove any operation
that reaches v. Otherwise, v would not be ready to be reinserted because it would have unscheduled
precedents. Therefore, the condition for v to be inserted in the rth position of machine k is given by

r = |Qk| + 1 or
(
{ir} ∪ −→R ir ((V,A ∪ AM (Q)))

)
∩←−R v((V,A ∪ AM (Q))) = ∅. (21)

This condition is equivalent to

r = |Qk| + 1 or ir �∈ ←−R v((V,A ∪ AM (Q))). (22)
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The equivalence between (21) and (22) holds because if the intersection at (21) is empty then
ir �∈ ←−R v((V,A ∪ AM (Q))) and if ir does not reach v then no operation reachable by ir can reach v.
Otherwise, by transitivity, ir would reach v. If condition (22) is satisfied, v is reinserted. Its pro-
cessing time is calculated, taking into consideration the learning effect, and it is decided as it was
done before, what should be done with the machine (between leaving it on and idle or turning it
off and on) to minimize energy consumption. This generates a partial solution that is then com-
pleted with the constructive heuristic of Algorithm 2. This is the phase called “reconstruction.”
Algorithm 5 describes the generation of all neighbors of the current solution, including the choice
of the best of them. Algorithm 5 makes use of Algorithm 6 for the two destructions that precede
the reconstruction.

Algorithm 7 describes the local search that, using exclusively one of the two neighborhoods,
iterates until it finds a solution that is better than all its neighbors. Algorithm 7 already receives as
input an initial feasible solution represented by Q, s, p′, E , Cmax, and the instance data represented
by O, F , p, G. For this reason, when the local search is used as a stand-alone method, we assume
that before making a call to the local search, a call to the constructive heuristic GCH (Algorithm 1)
is made giving as input the data O, F , p, Â of the instance to which the local search is to be
applied. This call to GCH returns the graph G representing the instance and a feasible solution
represented by Q, s, p′, E , Cmax. For this reason, from now on, we name the method that consists of
calculating an initial solution using the constructive heuristic GCH and applying the local search
with the SRRN neighborhood as GCH-LS-SRRN. This method corresponds to the combination
of Algorithms 1–4 and 7. Analogously, we call GCH-LS-SRDRR the method using the local search
with the SRDRR neighborhood, which corresponds to the combination of Algorithms 1, 2, and
5–7.

6. Metaheuristics

In this section, we describe the three metaheuristics considered, namely, greedy randomized adap-
tive search procedure (GRASP), SA, and GVNS.

GRASP (Feo and Resende, 1995) is described in Algorithm 8 and follows the basic scheme. It
starts by initializing the incumbent with the solution given by the GCH constructive heuristic (Al-
gorithms 1 and 2). It then iterates by constructing an initial solution with a randomized version
of the GCH constructive heuristic and performing a local search starting from the constructed
initial solution. The local search corresponds to Algorithm 7 and can use either the SRRN neigh-
borhood (Algorithms 3 and 4) or the SRDRR neighborhood (Algorithms 5 and 6), resulting in
two versions of GRASP that we call GRASP-LS-SRRN and GRASP-LS-SRDRR, respectively.
It remains to explain the randomization of the constructive heuristic GCH. The GCH heuristic
schedules one operation per iteration until all operations are scheduled. At each iteration, it checks
which operations can be scheduled (because all their precedents are already scheduled). This set
of operations is called C ⊆ O. For each operation v ∈ C and for each machine k ∈ Fv, it checks
the best possible schedule and selects the pair (v, k) with the lowest energy consumption. In the
randomized version, all (v, k) pairs with their respective energy consumption are stored in a list of
candidates L and one pair is drawn from among those max{1, 	α|L|
} pairs with the lowest energy
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Algorithm 5. Given a current approximation of a solution, returns the best neighbor of a neighborhood based on remov-
ing a single operation, destroying, reinserting, and reconstructing.

Input: O, F , p, G = (V,A), Q, s, p′, E , Cmax

Output: Q, s, p′, E , Cmax

Function: SRDRR(O, F , p, G, Q, s, p′, E , Cmax)
1 Ẽ ←∞

2 for v ∈ O do
3 Q, s, p′,E,Cmax ← Q, s, p′,E,Cmax

4 �← O \ (
−→
R v((V,A ∪ AM (Q))) ∪ {v})

5 Unschedule(O, F , p, G, v, Q, s, p′, E , Cmax)

6 μ← max{s j + p′j | j ∈
←−
N v((V,A ∪ AM (Q)))}

7 for k ∈ Fv, r ∈ {1, . . . , |Qk| + 1} do
8 Let Qk = i1, . . . , i|Qk|

9 if r = |Qk| + 1 or ir �∈
←−
R v((V,A ∪ AM (Q))) then

10 Q̂, ŝ, p̂′, Ê, Ĉmax ← Q, s, p′,E,Cmax

11 if r �= |Q̂k| + 1 then
12 �̂← � \ (

−→
R ir ((V,A ∪ AM (Q̂)) ∪ {ir})

13 Unschedule(O, F , p, G, ir, Q̂, ŝ, p̂′, Ê , Ĉmax)

14 ρ ← ψα (pv,k, r)
15 if |Q̂k| = 0 then
16 ζ ← max

{
ton
k , μ

}

17 �← γ
proc
k ρ + γ extra

(
ζ + ρ + toff

k − Ĉmax

)
+
+ γ off

k + γ
on
k

18 else

19 ζ1 ← max
{

ŝir−1 + p̂′ir−1
, μ

}

20 �1 ← γ
proc
k ρ + γ extra

(
ζ1 + ρ + toff

k − Ĉmax

)
+
+ γ iddle

k (ζ1 − (sir−1 + p′ir−1
))

21 ζ2 ← max
{

ŝir−1 + p̂′ir−1
+ toff

k + ton
k , μ

}

22 �2 ← γ
proc
k ρ + γ extra

(
ζ2 + ρ + toff

k − Ĉmax

)
+
+ γ off

k + γ
on
k

23 if (�1, ζ1) ≤ (�2, ζ2) then ζ , �← ζ1, �1 else ζ , �← ζ2, �2

24 Q̂k ← Q̂k ⊕ v, ŝv := ζ , p̂′v := ρ, Ê ← Ê + �, Ĉmax ← max{Ĉmax, ŝv + p̂′v + toff
k }

25 �̂← �̂ ∪ {v}

26 PartialGCH(O, F , p, G, �̂, Q̂, ŝ, p̂′, Ê , Ĉmax)
27 if Ê < Ẽ then Q̃, s̃, p̃′, Ẽ, C̃max ← Q̂, ŝ, p̂′, Ê, Ĉmax

28 if Ẽ < E then Q, s, p′,E,Cmax ← Q̃, s̃, p̃′, Ẽ, C̃max

consumption. The drawn pair is scheduled in that iteration. This randomization actually affects the
PartialGCH routine described in Algorithm 2. We call RandomizedPartialGCH the randomized
version of PartialGCH and call RandomizedGCH the GCH routine (Algorithm 1) that uses Ran-
domizedPartialGCH instead of PartialGCH. The parameter α ∈ [0, 1] ⊂ R is the only parameter
of GRASP.
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Algorithm 6. Unschedule operation v and all its successors in (V,A ∪ AM (Q))

Input: O, F , p, G = (V,A), v, Q, s, p′, E , Cmax

Output: Q, s, p′, E , Cmax

Function: Unschedule(O, F , p, G, v, Q, s, p′, E , Cmax)
1 Let W = w1, . . . ,w|V | be a topological order of the operations in V \ {s, t} according to the directed graph

(V,B ∪ BM (Q)), where B = {( j, i) | (i, j) ∈ A} and BM (Q) = {( j, i) | (i, j) ∈ AM (Q)}. Let v = w
.
2 for u = w1, . . . ,w
 do
3 if u ∈

−→
R v((V,A ∪ AM (Q))) ∪ {v} then

4 Let η = fu(Q). Delete u from Qη and E ← E − γ proc
η p′u.

5 if |Qη| = 0 then E ← E − γ on
η + γ

off
η

6 else E ← E −min
{
γ on
η + γ

off
η , γ

idle
η (su − (si|Qη |

+ p′i|Qη |
))

}
, where Qη = i1, . . . , i|Qη |

7 if su + p′u + toff
η = Cmax then

8 C′max ← 0
9 for k ∈ F such that |Qk| > 0 do

10 C′max ← max
{
C′max, si|Qk |

+ p′i|Qk |
+ toff

k

}
, where Qk = i1, . . . , i|Qk|

11 E ← E − γ extra(Cmax −C′max)
12 Cmax ← C′max

Algorithm 7. Local search strategy based on the single reinsertion neighborhood.

Input: O, F , p, G

Output: Q, s, p′, E , Cmax

Function: LocalSearch(O, F , p, G, Q, s, p′, E , Cmax)
1 do
2 Q, s, p′,E,Cmax ← Q, s, p′,E,Cmax

3 SRRN(O, F , p, G, Q, s, p′, E , Cmax) (or SRDRR(O, F , p, G, Q, s, p′, E , Cmax))
4 �E ← E − E

5 if �E > 0 then
6 Q, s, p′,E,Cmax ← Q, s, p′,E,Cmax

7 while �E > 0

SA (Kirkpatrick et al., 1983) is described in Algorithm 10 and also follows its basic scheme.
Each iteration consists of constructing a perturbation of the current solution, which is accepted or
not with the usual test that depends on the current temperature. The temperature starts at t0 ∈ R>0,
goes to t f ≤ t0 and is updated at every jmax ∈ Z>0 iterations by multiplying it by δ ∈ (0, 1) ⊂ R. The
perturbation of the current solution is performed by the Shake routine. We consider two versions
of the Shake routine, one based on the SRRN neighborhood and another based on the SRDRR
neighborhood. In the SRRN neighborhood, each operation-machine pair (v, k) with v ∈ O and
k ∈ Fv is considered. The operation v is removed from the machine to which it was assigned and
reinserted in the positions r = 1, . . . , |Qk| + 1 of the list Qk of machine k that do not generate
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Algorithm 8. Greedy randomized adaptive search procedure

Input: O, F , p, Â, α
Output: Q
, s
, p′
, E 
, C


max
Function: GRASP(O, F , p, Â, α, Q
, s
, p′
, E 
, C


max)
1 GCH(O, F , p, Â, G, Q
, s
, p′
, E 
, C


max)
2 while the stopping criterion is not satisfied do
3 RandomizedGCH(O, F , p, G, α, Q, s, p′, E , Cmax)
4 LocalSearch(O, F , p, G, Q, s, p′, E , Cmax)
5 if E < E 
 then
6 Q
, s
, p′
,E 
,C


max ← Q, s, p′,E,Cmax

cycles, that is, that correspond to feasible solutions. Of all possible combinations of v, k, and r, the
one with the lowest energy consumption is chosen. The Shake based on the SRRN neighborhood
consists of drawing an operation v ∈ O and then drawing a machine k ∈ Fv. For that pair, the posi-
tions r = 1, . . . , |Qk| + 1 corresponding to a feasible solution are determined and, among these, one
is drawn at random. Let E be the energy of the current solution and E (v, k, r) be the energy of the
reinsertion of operation v at the rth position of machine k. The first triple that satisfies the accep-
tance criterion E (v, k, r) ≤ E (1+ ε), where ε ∈ R>0 is a given parameter, is accepted. The number
of draws is limited to

∑|O|
i=1 |Fvi | ≤ |O||F |, where vi is the ith drawn operation. If no triple satisfies

the acceptance criterion, the routine returns the current solution. The Shake routine was developed
in this way to be used also in the context of other metaheuristics. In the particular case of SA, the
acceptance criterion is an intrinsic part of the metaheuristic. Thus, we consider ε = +∞ and the
first triple drawn is returned. The Shake based on the SRDRR neighborhood follows exactly the
same idea. The only difference is that after the destruction, to introduce more randomness into the
process, the partial solutions are reconstructed with the RandomizedPartialGCH routine instead
of the PartialGCH routine. We call the SA using the Shake routine based on the SRRN neighbor-
hood of SA-SRRN and the SA using the Shake routine based on the SRDRR neighborhood of
SA-SRDRR. In addition to the aforementioned parameters t0, t f , δ, and jmax, the SA-SRRN has
the parameter ε for the Shake while the SA-SRDRR has the parameters ε and α for the Shake.

In fact, t0 is not a parameter of the SA. Let E > 0 be the energy consumption of the current solu-
tion and E be the energy consumption of a candidate solution. The candidate solution is accepted
as the new current solution if e−�E/t ≥ ρ, where�E = (E − E )/E and ρ ∈ [0, 1] is a random num-
ber. If E ≤ E , then �E ≤ 0, −�E/t ≥ 0 for all t > 0 and e−�E/t ≥ 1 ≥ ρ for any ρ ∈ [0, 1]. This
means that if the candidate solution is better than or equal to the current solution, then it will
meet the acceptance criterion. If E > E then �E > 0 and the acceptance criterion is satisfied if
�E ≤ −t ln(ρ ). As a result, candidate solutions E satisfying�E = (E − E )/E ≤ θ , that is, that are
up to 100% θ worse than the current solution E , will satisfy the acceptance test if t is such that θ ≤
−t ln(ρ ), where ρ ∈ [0, 1] is a random number. To satisfy this with probability ν, all that is needed is
that t = −θ/ ln(ν ). For this reason, we choose to consider the relative difference �E = (E − E )/E
instead of the absolute difference �E = E − E in the SA implementation. Moreover, the choice of
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Algorithm 9. Simulated Annealing

t0 is given by t0 = −θ/ ln(ν ), where θ ∈ R>0 and ν ∈ (0, 1) ⊂ R are dimensionless parameters to be
determined; see Johnson et al. (1989) for ways to select the initial temperature in SA (Algorithm 9).

The GVNS (Hansen et al., 2018) is described in Algorithm 10 and corresponds exactly to Hansen
et al. (2018, Alg. 8, p. 64). It is a generalized version of Variable Neighborhood Search (VNS) be-
cause it uses different neighborhoods in both Shake and local search. In classic VNS, different
neighborhoods are used to generate initial points from which a local search (which always uses the
same type of neighborhood) is launched. In GVNS, local searches with different neighborhoods
are also considered. In the considered implementation, we have jmax = 2, j = 1 corresponds to
the Shake based on the SRRN neighborhood and j = 2 corresponds to the Shake based on the
SRDRR neighborhood. Similarly, kmax = 2 and, with k = 1, the NeighborhoodSearch routine cor-
responds to the SRRN routine, while, with k = 2, the NeighborhoodSearch routine corresponds to
the SRDRR routine.

7. Numerical experiments

In this section, we present numerical experiments to evaluate the introduced local searches and
the considered metaheuristics. In Section 7.1, we compare the local searches using the two intro-
duced neighborhood variants. In Section 7.2, we calibrate the parameters of the metaheuristics and
compare their performance. In Section 7.3, we consider the best performing metaheuristics and
compare the quality of the solutions they achieve with an exact solver as a reference.

The local search and the metaheuristics were implemented in C++ programming language. The
code was compiled using g++ 10.2.1. The experiments were carried out in an Intel i9-12900K (12th
generation) processor operating at 5.200 GHz and 128 GB of RAM.
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Algorithm 10. General variable neighborhood search

In the experiments of Sections 7.1 and 7.2, we consider the 50 large-sized instances of the FJS
with nonlinear routes introduced in Birgin et al. (2014). To the instances, we must add the data
related to energy consumption. For each instance, following Wu et al. (2019), we draw, with discrete
uniform distribution γ extra ∈ [100, 2500] and γ proc

k ∈ [80, 100], γ idle
k ∈ [5, 20], τ on

k ∈ [10, 30], γ on
k ∈

[50, 90], τ off
k ∈ [10, 20], and γ off

k ∈ [50, 90] for all k ∈ F . For each machine k ∈ F , we set τ idle
k =

max{τ on
k + τ off

k , 	(γ on
k + γ off

k )/γ idle
k 
}. This means that a machine is not allowed to be idle for a

longer time than is necessary to turn the machine off and on if this time consumes more than is
consumed by turning the machine off and on. This is a condition naturally satisfied by an optimal
solution, but this constraint helps in solving the model by an exact method. Following Araujo
et al. (2024a, 2024b), we consider learning rates α ∈ {0.1, 0.2, 0.3}, totaling 150 instances. Details
of instance characteristics can be found in (Birgin et al., 2024, Table S1). It is worth noting that the
largest instance has almost 74,000 binary variables and almost 4 million constraints. The instances
and solutions found are available at http://www.ime.usp.br/∼egbirgin/ for future reference.

7.1. Experiments with the local search strategies

In this section, we show the results of applying the local searches GCH-LS-SRRN and GCH-LS-
SRDRR to the considered 150 large-sized instances. Details of the results obtained by applying
each method to each instance can be found in (Birgin et al., 2024, Table S2). Table 3 shows a
summary of the results. In the table, we show the average energy consumption of the solutions
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Table 3
Summary of the results obtained by applying the constructive heuristic GCH and the local searches GCH-LS-SRRN and
GCH-LS-SRDRR to the 50 large-sized instances based on the instances introduced in Birgin et al. (2014), with learning
rates α ∈ {0.1, 0.2, 0.3}
Instances GCH GCH-LS-SRRN GCH-LS-SRDRR

Type α E #wins gap(%) E #it T ime #wins gap(%) E #it T ime

DA 0.1 1,245,668.07 6 −6.21 1,157,385.23 20.23 849.92 24 −9.69 1,109,529.97 7.43 2,272.45
0.2 1,043,387.03 6 −4.49 996,649.17 17.10 723.87 24 −8.29 950,481.00 6.60 2,045.01
0.3 906,801.00 3 −4.65 864,704.50 15.27 540.29 27 −9.63 818,844.27 6.77 2,027.10

Y 0.1 1,622,068.05 6 −4.30 1,553,797.40 20.35 8,745.91 14 −9.11 1,487,848.90 6.35 6,333.98
0.2 1,436,712.65 3 −4.97 1,370,043.95 20.60 9,280.43 17 −9.38 1,315,247.10 6.05 4,791.40
0.3 1,280,518.20 2 −4.70 1,222,768.95 20.40 8,266.10 18 −9.25 1,174,502.65 6.95 7,043.83

All 26 −4.93 124 −9.22

found by the GCH constructive heuristic and, for each of the two local searches, the average energy
consumption of the solutions found, the average number of iterations, and the average CPU time
in milliseconds. The number of best solutions found and the average gap to the solution found by
the GCH constructive heuristic is also displayed. GCH spends, on average, 0.37 milliseconds per
instance and in no instance it takes more than 2 milliseconds.

It is clear that GCH-LS-SRRN iterations (search in a neighborhood) are cheaper than GCH-
LS-SRDRR iterations. At the same time, GCH-LS-SRRN is expected to do more iterations than
GCH-LS-SRDRR. Experiments confirm that the former does, on average, about three times as
many iterations as the latter. Yet, in DA-type instances, GCH-LS-SRRN takes three times less time
than the latter, suggesting that the iterations of GCH-LS-SRRN are an order of magnitude faster.
The same is not confirmed for Y-type instances. In those instances, the ratio between the num-
ber of iterations of the two local searches remains the same, but GCH-LS-SRDRR takes less time
than LS-SRNN. The explanation for this is the level of flexibility and routes’ nonlinearity of the
two instance types. Instances of type disassemble assemble (DA) have higher flexibility levels than
instances of type Y and that justifies that generating all neighbors of a solution is more expen-
sive. Overall, GCH-LS-SRRN improves the initial solution constructed by the GCH constructive
heuristic by 4.93% while GCH-LS-SRDRR improves by 9.22%. GCH-LS-SRDRR is also superior
to GCH-LS-SRRN in a number of best solutions found. The CPU times used by the two local
searches show that instances with more than 100 operations might be challenging. The application
of local searches, which use the best neighbor technique and at each iteration inspect the complete
neighborhood of the current solution, is slightly demanding from a computational cost point of
view. Which of the two local searches, or their neighborhoods, will be better when embedded in the
context of a metaheuristic is something to be analyzed in the next section.

7.2. Experiments with the metaheuristics

In this section, we present results of applying GRASP-LS-SRRN, GRASP-LS-SRDRR, SA-
SRRN, SA-SRDRR, and GVNS to the 150 large-sized instances. We calibrated the five
methods using the irace package (López-Ibáñez et al., 2016). Let � = {0.1, 0.2, . . . , 0.5}
© 2025 The Author(s).
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Fig. 4. This figure shows the average energy of the solutions found by each method as a function of CPU time. The
average is calculated over the total of 150 large-sized instances. In the graphic on the left, the average considers, for each
instance, the minimum over the 10 runs. In the graphic at the right, the average considers, for each instance, the average

of the 10 runs.

and � = {0, 0.05, 0.10, . . . , 0.95, 0.99}. For the two versions of GRASP, we considered
α ∈ �. For the GVNS, we considered α ∈ � and ε ∈ �. For the two versions of the SA,
we considered α ∈ �, t0 = −θ/ ln(ν ) with θ ∈ � and ν ∈ �, t f ∈ {1, 10−1, 10−2, . . . , 10−5},
δ ∈ {0.80, 0.85, 0.90, 0.95, 0.99, 0.999}, and jmax ∈ {1, 10, 20, . . . , 100}. We ran irace with
maxExperiments = 2,000 and all its other default parameters. We used 30 instances for train-
ing and 30 instances for testing (10 for each learning factor value α ∈ {0.1, 0.2, 0.3}). These
instances were generated with the generator introduced in Birgin et al. (2014), with the same
parameters that were used in Birgin et al. (2014) to generate the large-sized instances. Energy
consumption data was also added as described at the beginning of Section 7. In this parameter
calibration phase, we used a CPU time limit of 5 minutes as the stopping criterion for the five
methods. As all the considered methods have random components, we ran each instance 10
times. As a result, we selected α = 0.2 for the two versions of the GRASP, α = 0.1 and ε = 0.60
for GVNS, θ = 0.25, ν = 0.30, t f = 10−3, δ = 0.90 and jmax = 50 for SA-SRRN, and α = 0.50,
θ = 0.10, ν = 0.40, t f = 10−2, δ = 0.95 and jmax = 50 for SA-SRDRR.

Details of the results obtained by applying each method to each instance can be found in Birgin
et al. (2024, Tables S3–S5). Table 4 shows a summary of the results. In the table, we show the
average energy consumption when considering the average of the 10 runs per method/instance, the
average energy consumption when considering the lowest value of the 10 runs per method/instance,
the average CPU time (in seconds) considering for each pair method/instance the time of the run
that found the lowest energy consumption. The number of best solutions found and the average
gap to the solution found by the GCH constructive heuristic are also displayed. Out of the
total of 150 instances, each of the methods GRASP-LS-SRRN, GRASP-LS-SRDRR, GVNS,
SA-LS-SRRN, and SA-LS-SRDRR found the best solution in 38, 52, 64, 0, and 2 instances each.
Each of the methods improved the initial solution given by the GCH constructive heuristic by
12.43%, 11.51%, 11.92%, 2.97%, and 10.59%, respectively. Figure 4 shows the evolution of the
energy consumption of the solutions constructed by each of the methods as a function of time. To
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Table 4
Summary of the results obtained by applying the metaheuristics GRASP-LS-SRRN, GRASP-LS-SRDRR, GVNS, SA-
LS-SRRN, and SA-LS-SRDRR to the 50 large-sized instances based on the instances introduced in Birgin et al. (2014),
with learning rates α ∈ {0.1, 0.2, 0.3}
Instances GRASP-LS-SRRN GRASP-LS-SRDRR

Type α #wins gap(%) E Emin T ime #wins gap(%) E Emin T ime

DA 0.1 7 −12.71 1,089,544.74 1,077,181.30 275.11 6 −11.84 1,095,389.50 1,087,000.47 205.18
0.2 7 −11.40 935,288.63 924,574.67 276.96 6 −10.31 945,413.83 936,549.37 202.52
0.3 8 −11.89 809,016.94 800,324.43 305.50 5 −10.89 815,644.53 809,252.77 163.57

Y 0.1 4 −13.34 1,445,083.76 1,427,460.25 310.04 11 −12.61 1,457,253.89 1,450,942.15 200.66
0.2 4 −13.01 1,283,622.88 1,269,477.20 276.27 12 −12.15 1,297,485.71 1,291,717.60 212.16
0.3 8 −12.85 1,143,387.66 1,131,684.50 265.87 12 −11.98 1,155,404.40 1,151,201.50 209.29

All 38 −12.43 52 −11.51

Instances GVNS

Type α #wins gap(%) E Emin T ime

DA 0.1 18 −13.13 1,080,904.47 1,062,464.40 24.58
0.2 17 −11.43 924,694.28 917,809.47 26.61
0.3 16 −11.81 802,414.55 796,975.97 26.12

Y 0.1 6 −12.23 1,447,009.73 1,434,069.70 46.56
0.2 4 −11.38 1,289,193.43 1,281,924.55 42.25
0.3 3 −11.20 1,147,983.68 1,143,420.50 41.35

All 64 −11.92

Instances SA-LS-SRRN SA-LS-SRDRR

Type α #wins gap(%) E Emin T ime #wins gap(%) E Emin T ime

DA 0.1 0 −4.25 1,233,066.26 1,184,646.63 22.90 0 −11.61 1,107,158.51 1,089,523.03 190.43
0.2 0 −2.96 1,037,538.97 1,011,472.83 16.49 1 −10.04 953,753.95 938,522.93 188.95
0.3 0 −3.75 900,615.48 878,058.83 19.98 1 −10.53 826,519.04 812,194.93 163.53

Y 0.1 0 −1.63 1,610,423.48 1,599,004.00 2.19 0 −10.88 1,501,692.65 1,477,110.30 133.30
0.2 0 −2.38 1,425,396.49 1,406,635.35 4.79 0 −10.45 1,338,861.23 1,312,209.35 107.78
0.3 0 −1.84 1,274,202.92 1,258,199.90 4.74 0 −9.83 1,197,182.75 1,176,760.10 128.27

All 0 −2.97 2 −10.59

strengthen the comparison between methods, we used the Wilcoxon test (Wilcoxon, 1945) for each
pair of methods, with a significance level of ᾱ = 0.05 to accept or reject the null hypothesis that
“the samples of the two methods come from the same distribution” or, equivalently, “the difference
between the samples of the two methods follows a symmetric distribution around zero.” Table 5
shows the results. This shows that GVNS and GRASP-LS-SRRN are equivalent. Furthermore,
both are better than all other methods that are different from each other. GRASP-LS-SRDRR is
the third best method, followed by SA-LS-SRDRR and finally SA-LS-SRRN.

Figure 4 shows that the comparison between the methods in the previous paragraph is valid
when considering a CPU time limit of 5 minutes. For lower CPU time limits, the ranking between
the methods, in terms of average power consumption, may vary. When we compare the two versions
of GRASP using local searches with neighborhoods SRRN and SRDRR, we observe that (i) for
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Table 5
Details of the Wilcoxon test comparing each pair of methods, when applied to the large-sized instances, to accept or reject
the null hypothesis “the difference between the two methods follows a symmetrical distribution around zero”

Comparison R+ R− p-value

GRASP-LS-SRRN versus GRASP-LS-SRDRR 7,588 3,734 0.0003
GRASP-LS-SRRN versus GVNS 5,361 5,964 0.5716
GRASP-LS-SRRN versus SA-LS-SRRN 11,325 0 0.0000
GRASP-LS-SRRN versus SA-LS-SRDRR 11,275 50 0.0000
GRASP-LS-SRDRR versus GVNS 4,329 6,996 0.0124
GRASP-LS-SRDRR versus SA-LS-SRRN 11,325 0 0.0000
GRASP-LS-SRDRR versus SA-LS-SRDRR 10,540 785 0.0000
GVNS versus SA-LS-SRRN 11,325 0 0.0000
GVNS versus SA-LS-SRDRR 9,667 1,658 0.0000
SA-LS-SRRN versus SA-LS-SRDRR 0 11,324 0.0000

small time budgets, they behave similarly; (ii) for intermediate values of time budget, the intensity
of neighborhood SRDRR leads to better solutions on average; and (iii) for larger time budgets,
neighborhood SRRN, which is cheaper, allows the method to make a higher diversification by
performing more local searches of different initial solutions and that leads, in the end, to better
solutions, on average. On the other hand, GVNS seems to make better use of the combination of the
two existing neighborhoods and outperforms, when evaluating the average energy consumption, the
two versions of GRASP. The SA, with either of the two neighborhoods, which does not use a local
search strategy, does not present a competitive performance when compared to the other methods.

7.3. Comparison with solutions from an exact solution method

In this section, we consider the two best performing metaheuristics (GVNS and GRASP-LS-
SRRN) and analyze their performance by considering solutions computed with an exact method.
For these experiments, we considered the 50 large-sized instances from the previous section, plus
60 small-sized instances introduced in Araujo et al. (2024b), for which we included the energy con-
sumption data in exactly the same way as for the large-sized instances (see the description at the
beginning of Section 7). For details on the characteristics of small-sized instances, see Birgin et al.
(2024, Table S12). Since in this experiment, we will also consider learning rates α ∈ {0.1, 0.2, 0.3};
we will have a total of 150 large-sized instances plus 180 small-sized instances.

Models were solved using IBM ILOG CPLEX Optimization Studio version 22.1, using default
parameters, with concert library and C++. The code was compiled using g++ 10.2.1. We pro-
vided as the initial solution the solution was calculated with the GCH constructive heuristic (Algo-
rithm 1). A solution is reported as optimal by CPLEX when

Absolute gap = Best feasible solution− Best lower bound ≤ εabs (23)
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or

Relative gap = |Best feasible solution− Best lower bound|
10−10 + |Best feasible solution| ≤ εrel, (24)

where, by default, εabs = 10−6 and εrel = 10−4, and “best feasible solution” means the smallest value
of the objective function related to a feasible solution generated by the method. Since the optimal
value of the objective function of the instances considered in this paper is always an integer, we
chose εabs = 1− 10−6 and εrel = 0. Choosing εrel = 0 avoids premature stops in a solution that may
not be optimal. The choice εabs = 1− 10−6 allows stopping early when a relative gap of less than 1
clearly indicates that the optimal solution has already been found. A CPU time limit of 1 hour
was set. All other CPLEX parameters were used with their default values. Details of the solutions
found by the exact method are available in Birgin et al. (2024, Tables S6– S8 and S13–S15). Out of
the 150 large-sized instances, CPLEX was able to find a single provably optimal solution. As for the
small-sized instances, despite their relatively small size, CPLEX was able to find a provably optimal
solution in only 137 out of 180 instances.

Details of the solutions found by the GVNS and GRASP-LS-SRRN metaheuristics when ap-
plied to the small-sized instances are available in Birgin et al. (2024, Tables S16–S18). The heuristics
were used with the parameters calibrated for the large-sized instances. That is, they were not recal-
ibrated. Since these are random component methods, each method was applied 10 times to each
instance. When comparing the solutions found by the metaheuristics with the solutions found by
CPLEX, we consider (a) the mean of the 10 runs and (b) the minimum of the 10 runs. In each case,
we calculate the relative gap with respect to the solution found by CPLEX. Let us first consider
case (b).

If we consider just the 137 small-sized instances in which CPLEX found a provably optimal solu-
tion, GVNS finds solutions that are, on average, 2.02% away from the optimal solution, while this
number is 0.22% for GRASP-LS-SRRN. If we consider all 180 small-sized instances, these values
are 2.16% and 0.02%, respectively. In the only large-sized instance in which CPLEX found a proven
optimal solution, the GVNS and GRASP-LS-SRRN metaheuristics found a solution with a gap of
3.98% and 0.09%, respectively. Considering all 150 large-sized instances, the GVNS and GRASP-
LS-SRRN metaheuristics found solutions with average gaps of −8.70% and −9.32%, respectively.
When we consider case (a), that is, the average of the 10 runs for each method/instance, these same
four values for the small-sized instances are 2.16%, 0.24%, 2.29%, and 0.04%, respectively, while
they are 4.50%, 0.09%, −8.00%, and −8.42% for the large-sized instances, that is, little significant
variation. The most relevant data from these experiments is that GRASP-LS-SRRN finds solu-
tions at, on average, 0.22% of the 137 known optima and, when we include the 43 instances with
nonguaranteed known optima, the average gap is 0.02%.

8. Concluding remarks

In this work, we considered the flexible jobshop environment with two special features: nonlin-
ear routes (or precedences between operations of the same job given by an arbitrarily directed
acyclic graph) and the learning effect on the processing time. In alignment with contemporary
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sustainability concerns, we considered the minimization of energy consumption. We formulated
the problem as a MILP problem. We proposed a constructive heuristic, two neighborhoods, and
three metaheuristics. We conducted comprehensive experiments to demonstrate the efficacy of
the studied methods. The GVNS that uses the two neighborhoods concomitantly was the most
effective in the large-sized instances. In the small-sized instances, the GRASP with the removing-
and-reinserting neighborhood was the most effective. It found solutions that are, on average, 0.22%
of the known optimal solutions.

In future work, we intend to consider the FJS environments with nonlinear routes and, instead of
energy consumption, the total energy cost. This means considering energy costs that vary over time,
including the consideration of peak times and seasonal tariffs or electricity tariffs by time of use.
(See Shen et al., 2023, and references therein for details.) Another possibility that brings the problem
under consideration closer to reality is to consider that a machine can operate at different speeds
and that its energy consumption depends on its speed. (See Wu and Sun, 2018.) Alternative learning
models to the one considered in the present work as well as deterioration models, are reviewed
by Pei et al. (2022). Analyzing the different learning models as well as including the influence of
deterioration in the context of the studied problem are possible tasks for future work.
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