936983

Boletim Técnico da Escola Politécnica da USP Departamento de Engenharia Eletrônica

ISSN 1413-2206 BT/PEE/9721

Avaliação das Características Físico-Químicas e Elétricas de Filmes de SiO₂ Depositados por PECVD a partir da Reação entre O₂ e TEOS

Alvaro Romanelli Cardoso Claus Martin Hasenack

São Paulo - 1997

O presente trabalho é um resumo da tese de doutorado apresentada por Alvaro Romanelli Cardoso, sob orientação do Prof. Dr. Claus Martin Hasenack: "Avaliação das Características Elétricas de Filmes de SiO₂ Obtidos por Deposição Química a Vapor Enriquecida, a partir de Fonte Orgânica TEOS", defendida em 18/03/97, na Escola Politécnica.

A integra da tese encontra-se à disposição com o autor e na Biblioteca de Engenharia de Eletricidade da Escola Politécnica/USP.

Cardoso, Alvaro Romanelli

Avaliação das características físico-químicas e elétricas de filmes de SiO₂ depositados por PECVD a partir da reação entre O₂ e TEOS / A.R. Cardoso, C.M. Hasenack. -- São Paulo : EPUSP, 1997.

16p. -- (Boletim Técnico da Escola Politécnica da USP, Departamento de Engenharia Eletrônica, BT/PEE/9721)

1. Microeletrônica I. Hasenack, Claus Martin II. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Eletrônica III. Título IV. Série
ISSN 1413-2206 CDD 621.381

Avaliação das características físico-químicas e elétricas de filmes de SiO₂ depositados por PECVD a partir da reação entre O₂ e TEOS

Alvaro Romanelli Cardoso e Claus Martin Hasenack

Laboratório de Sistemas Integráveis Escola Politécnica da USP Av.Prof.Luciano Gualberto, Trav. 3, 158 Cidade Universitária, Butantã São Paulo, SP CEP 05508-900

Resumo

Neste trabalho foram caracterizados filmes de SiO₂ obtidos por PECVD (Deposição Química a Vapor Enriquecida por Plasma) a partir da reação de TEOS (Tetraetilortosilicato) com O₂. Foram investigados os efeitos de pressão e fluxo de gases, temperatura do substrato e potência RF (Rádio Freqüência) aplicada ao sistema sobre as características físico-químicas e elétricas dos filmes. As características elétricas e em particular a rigidez dielétrica dos filmes depositados resultaram insatisfatórias, mesmo para aqueles filmes exibindo características físico-químicas consideradas satisfatórias a nível de índice de refração e taxa de corrosão, às de óxido de silício térmico. Análises físico-químicas não forneceram indícios adicionais conclusivos que pudessem explicar esta discrepância. Baseado em resultados de Espectroscopia de Infra-Vermelho, pode-se apenas especular ser a incorporação de carbono no filme, em concentrações próximas às do limite de detecção desta (e das diversas técnicas outras) técnica empregadas, uma possível causa para as características elétricas insatisfatórias dos filmes.

Abstract

This work deals with the deposition and characterization of SiO₂ films obtained by PECVD (Plasma Enhanced Chemical Vapour Deposition) from the reaction between TEOS (Tetraethylorthosilicate) and O₂. The effects of gas flow and pressure, substrate temperature and RF (Radio Frequency) power on electrical, physical and chemical film characteristics were investigated. As an overall result, the electrical characteristics, notably dielectric breakdown characteristics were found to be unsatisfactory even for those films which exhibitted adequate chemical and physical characteristics, as judged from index of refraction and from chemical etching experiments. All chemical and physical characterizations did not reveal conclusive results capable of explaining this discrepancy. Based mainly on Infra-Red Spectroscopy results, one can only speculate about the incorporation of carbon in the film being a possible cause for the detected unsatisfactory electrical characteristics.

1.Introdução

A evolução dos circuitos integrados digitais está necessariamente vinculada à incorporação de um número crescente de dispositivos numa mesma pastilha. Isto é conseguido graças a uma miniaturização também crescente dos dispositivos individuais que perfazem a pastilha.

Devido a este aumento do número dos dispositivos por pastilha, um número também cada vez maior de interconexões entre os diversos dispositivos, além de interconexões de comprimentos também maiores, se fazem necessários. Em consequência disto, a área ocupada por estas interconexões chega a sobrepujar a área total ocupada pelos dispositivos. Como se não bastasse, o tempo de atraso para propagação de um sinal elétrico num sistema de interconexão é proporcional ao produto (ou constante) RC, onde R é a resistência elétrica da linha de condução e C a capacitância apropriada associada. Evidentemente, a fim de manter R o menor possível, deve-se procurar minimizar os comprimentos de linha de interconexão e/ou utilizar materiais com máxima condutividade elétrica. Devido a fatores tais como alta condutividade, facilidade de deposição, tecnologia bem conhecida, o alumínio costuma ser utilizado para tal¹.

Uma solução tecnológica para a necessidade de diminuição do comprimento das linhas de interconexão reside na utilização de vários níveis de interconexão² os quais, evidentemente, devem ser eletricamente isolados entre si através de um dielétrico preferencialmente de baixa constante dielétrica (ε) a fim de minimizar C, de baixa densidade de cargas móveis e fixas, baixa corrente de fuga, boa adesão, sem intera,ões químicas com camadas adjacentes, baixa densidade de defeitos ¹.

Neste sentido, o óxido de silício (SiO_X, com x≈2) vem sendo bastante utilizado. Tipicamente é depositado por técnicas CVD (Chemical Vapor Deposition - Deposição química a Vapor), através da reação de silana (SiH₄) com O₂. Especificamente para o isolamento elétrico de linhas de Al, SiO₂ deve ser depositado a temperaturas não superiores a cerca de 400°C por causa do baixo ponto de fusão do Al, formação de ponto eutético deste com Si e para minimizar tensões mecânicas entre Al e SiO₂. Em função disto, dentre as técnicas CVD, as técnicas APCVD e LPCVD (Atmospheric Pressure CVD - CVD à pressão atmosférica e Low Pressure CVD - CVD a baixa pressão, respectivamente) devem ser descartadas como técnicas de deposição por requererem temperaturas de deposição da ordem de ou superiores a 600°C.

Satisfaz o conjunto de exigências acima mencioando a técnica PECVD (Plasma Enhanced CVD - CVD enriquecido por plasma)^{3,4}. Nesta, além do uso de temperaturas inferiores a 400°C, fornece-se energia adicional através de formação de plasma da mistura gasosa que se pretende fazer reagir a fim de se obter SiO₂.

Como já dito anteriormente, para a obtenção de SiO₂ faz-se reagir tipicamente SiH₄ com O₂. Disto pode resultar uma cobertura de degrau e preenchimento de trincheiras e de vãos entre linhas de interconexão insatisfatórios⁴, além do que a silana é de elevada periculosidade. Em função disto, vem sendo investigado o uso de TEOS (Tetraetilortosilicato) ao invés da silana^{5,6,7,8,9}. Obtém se com isto melhor cobertura de

degrau^{10,11}, além de se evitar maiores riscos de segurança já que TEOS é não piróforo e não tóxico.

Ocorre, porém, que há relativamente pouca literatura sobre as características elétricas de filmes obtidos por PECVD a partir da reação entre TEOS e O₂. Desta forma, é objetivo deste trabalho avaliar e possivelmente correlacionar características físico-químicas e elétricas de flimes de SiO₂ obtidos por PECVD através da reação de TEOS com O₂, processo este comumente chamado PETEOS,

2.Parte experimental

Neste trabalho empregaram-se como substrato lâminas comerciais de silício tipo p, orientação <100>, resistividade de 10 Ω .cm, 380 μ m de espessura e diâmetro de 75 mm. As deposições de SiO₂ foram realizadas em um equipamento PECVD, através da reação entre TEOS e O₂, variando-se parâmetros de deposição tais como fluxo e pressão de gases, temperatura do substrato, potência RF. O equipamento encontra-se descrito detalhadamente na referência [12].

Todas as lâminas foram submetidas a processo de limpeza imediatamente antes da deposição, que consistia ou da receita RCA¹³ ou em uma imersão de 15 a 30 s em uma solução diluída de HF (10% HF(49%), em volume). Após esta limpeza, a lâmina era introduzida no sistema, cujo ciclo de operação era então iniciado. Todos os reagentes químicos utilizados eram de grau de pureza eletrônico ou melhor.

A espessura e o correspondente índice de refração foram obtidos por elipsometria em 20 pontos distintos de cada amostra, calculando-se os correspondentes valores médios e desvios padrão, que compõem, respectivamente, os pontos e as barras de erro dos gráficos. A taxa de corrosão foi estimada da seguinte maneira: imersão da lâmina em uma solução DLV¹⁴ (6NH₄F(40%) + 1HF(48%)), que apresenta uma taxa de corrosão de 120 nm/minuto a 26°C para óxido de silício térmico, durante um tempo prédeterminado. Após, nova medida da espessura e divisão do valor médio de espessura obtido pelo tempo de corrosão.

Para as caracterizações elétricas foram construídos capacitores MOS (Metal-Óxido-Semicondutor). Para tanto, evaporou-se Al sobre o filme depositado através de uma máscara mecânica originando portas de cerca de 1 mm de diâmetro. Al também foi evaporado sobre as costas das lâminas a fim de promover o contato elétrico no semicondutor, no caso o Si. Eventualmente as amostras foram ainda submetidas a tratamentos térmicos adicionais. Quando este foi o caso, este fato é mencionado explicitamente.

Foram realizadas medidas I-V (corrente-tensão) dos capacitores implementados a fim de promover a ruptura de rigidez dielétrica bem como medidas C-V (capacitânciatensão) a fim de extrair a carga efetiva no óxido (além de outros parâmetros que não serão aqui apresentados).

Quanto à composição dos filmes, Espectroscopia de Retroespalhamento Rutherford (RBS)¹⁵ e de Infra-Vermelho com Transformada de Fourier (FTIR) foram utilizadas. A primeira basicamente para determinação da estequiometria dos filmes e

eventuais contaminantes presentes e a segunda para determinação das ligações químicas, o que também é utilizado para a verificação da presença de contaminantes.

3. Resultados

3.1. Taxa de deposição e índice de refração

A influência do fluxo de O_2 na taxa de deposição encontra-se ilustrada na figura 1. O comportamento registrado é esperado, pois com o aumento do fluxo de O_2 , ter-se-ia maior concentração de radicais (formados por oxidação do TEOS), para reagirem na superfície da amostra (variando-se também o fluxo de TEOS, esperar-se-ia também uma maior variação da taxa de deposição, por causa do aumento da concentração das espécies ativas disponíveis).

Já na figura 2 é ilustrada a influência da pressão na taxa de deposição. Apesar do fluxo dos reagentes ser mantido constante, com o aumento da pressão, o livre caminho médio diminui, podendo significar uma razoável diminuição na taxa de ionização, devido ao maior número de colisões, tornando mais aleatória a distribuição de energia cinética. Entretanto, deve influenciar em maior grau, o aumento na concentração das espécies ativas que podem adsorver na superficie da amostra.

A figura 3, ilustra a influência da altura de eletrodo na taxa de deposição. Devido ao aumento da altura, houve uma diminuição da densidade de potência empregada, que contribuiu para a variação na taxa de deposição, que poderia ser tanto no sentido de aumentá-la quanto diminuí-la, dependendo da intensidade do bombardeamento iônico na amostra. Entretanto, em função da não observação da presença de bainha no plasma, acredita-se num bombardeamento iônico pouco intenso. Portanto, o fator principal deve ser a variação da densidade de plasma, variando a concentração de espécies ativas.

Os gráficos da figura 4 ilustram a influência da temperatura do substrato nas taxas de deposição e índice de refração. O gráfico resultante para a taxa de deposição fornece um indicação de reações controladas por adsorção, em função da diminuição da taxa com o aumento da temperatura, podendo-se observar um comportamento semelhante em outros trabalhos^{16,17}. Parece aceitável que com o aumento de temperatura, haja uma maior eficiência na redistribuição das espécies precursoras adsorvidas na superficie da amostra, o que deve resultar em um filme mais denso e, portanto, resultando numa menor taxa nominal de deposição.

Deve-se notar que com o aumento da temperatura, o valor médio do índice de refração tende ao valor desejado de 1,46 (o mesmo que o do óxido térmico), bem como apresenta menor dispersão.

3.2. Caracterização elétrica

Tendo o índice de refração acima apresentadas para deposições em temperaturas entre 340 e 400°C revelado valores próximas dos de filmes de SiO₂ obtidos por oxidação convencional, passou-se a investigar se as características elétricas corroborariam estes

resultados. É bastante comum ser este índice utilizado como parâmetro de qualidade de filmes depositados de SiO_2 ou até mesmo Si_3N_4 . Assim, foram implementados capacitores MOS em 2 amostras (1 e 2), possuindo em comum dois parâmetros de deposição: a potência de RF e a pressão, que foram mantidas em 350 W e 4 Torr. Ambas as amostras apresentavam índice de refração similar e em torno de 1,46. Para a amostra 1, os fluxos de TEOS e O_2 , a altura do eletrodo e a temperatura foram mantidos em 250 sccm, 10 mm e 400°C, enquanto que para a amostra 2, foram mantidos em 300 sccm, 7 mm e 390 °C. As respectivas espessuras e taxas de deposição resultaram iguais a 1286 Å e 429 Å/min para a amostra 1, e iguais a 930 Å e 930 Å/min para a amostra 2.

As primeiras medidas foram realizadas na amostra 1. Na figura 5 é mostrada uma das curvas C-V/AF (típica) e os respectivos parâmetros extraídos a partir desta.

De imediato, nota-se o elevado valor da carga efetiva, em função de uma alta tensão de banda plana (em módulo), representando do ponto de vista elétrico, um óxido de qualidade pobre, o que foi confirmado para outros capacitores (da mesma lâmina assim como de outras). Assim, espera-se um comportamento diverso do desejado também para as curvas C-V de baixa frequência, o que foi confirmado por medidas adicionais (resultados não mostrados).

Em seguida, a lâmina foi recozida (sinterizada) à pressão atmosférica e a 420°C por 25 min em ambiente de Ar (3 l/min), para posterior obtenção de novas curvas C-V. Na figura 6, estão plotadas nos mesmos eixos, duas curvas de alta freqüência, uma obtida antes e outra depois do recozimento (para o mesmo capacitor). Pode-se observar que ocorre tanto o deslocamento, como uma deformação da curva, esta última indicando também haver uma alta densidade de estados de interface.

Ainda com respeito à amostra 1, também foram obtidas curvas I-V, a fim de verificar-se a rigidez dielétrica do óxido. Os resultados não foram considerados bons, com o aparecimento de várias instabilidades (carga/descarga ou possivelmente rupturas do tipo "self-healing"), onde durante ou após o ensaio, podia-se observar visualmente a formação de inúmeras erupções na superficie do Al (porta). Por causa da espessura do óxido, em alguns capacitores não foi possível atingir-se a ruptura definitiva, conforme ilustrado na figura 7, onde foi possível obter-se pelo menos duas vezes a curva I-V. Simplesmente, ao obtê-la pela primeira vez e causando as rupturas do tipo "self-healing", na realidade estamos melhorando o capacitor, pois este tipo de ruptura não mais ocorre na segunda medida.

Posteriormente, a amostra 1 foi clivada, sendo novamente recozido um de seus cacos, mas desta vez em ambiente de Ar+10%H₂ (4 l/min) a 420°C por 25 min, com o objetivo de avaliar se haveria alguma melhora na qualidade do óxido. Não houve nenhuma mudança significativa no comportamento das curvas C-V e I-V, tampouco nada significativo a nivel de carga efetiva no óxido. A título de comparação, são mostrados na tabela 1, os valores médios obtidos para cada caso.

Tabela 1 Valores médios para a carga efetiva e campo de ruptura no SiO₂. Todos os recozimentos efetuados a 420°C por 25 min.

Descrição	Q _{efetiva} no SiO ₂ (cm ⁻²)	Campo de Ruptura (MV/cm) 3.2		
sem recozer	1.51×10^{11}			
recozida em Ar	1.40×10^{11}	4.1		
recozida em Ar+10%H ₂	1.37×10^{11}	3.8		

Na lâmina 2 também foram implementados capacitores com porta de Al (por evaporação, resultando numa espessura de 3000 Å), mas com a diferença de que a amostra foi, antes da metalização, submetida a um processo de densificação do óxido depositado (1100 °C por 2 min em ambiente de Ar a 3 l/min). Posteriormente, medidas I-V revelaram que todos os capacitores, sem exceção, apresentavam-se em curto-circuito. Em consequência, medidas C-V foram infrutíferas. A lâmina ainda foi clivada, sendo realizados recozimentos semelhantes aos realizados com a lâmina 1, não se conseguindo verificar alterações de nenhuma espécie.

Não esperávamos que pudessem resultar características elétricas muito pobres, para uma lâmina que recebeu um tratamento térmico visando a densificação do óxido. É bem verdade, que as condições de deposição entre as lâminas 1 e 2 são diferentes, mas nada que a grosso modo possa justificar estes resultados. De qualquer modo, no próximo item são mostrados os resultados das medidas de outros parâmetros para estas amostras, tentando-se desta forma compreender o que ocorreu.

3.3. Taxa de corrosão

Com o objetivo de se avaliar qualitativamente os filmes depositados quanto à sua densidade, cinco amostras foram submetidas a corrosões úmidas, podendo-se comparar sua taxa de corrosão com a dos óxidos térmicos, bem como com os correspondentes índices de refração. Quanto menor for essa taxa, em princípio espera-se que a densidade do filme seja maior, apesar de haver alguns casos reportados na literatura¹⁸, demonstrando isto nem sempre ser válido.

Na figura 8 tem-se um gráfico que mostra a correlação entre índice de refração e taxa de corrosão (as barras de erro indicam o desvio padrão), incluindo os da amostra 2 já densificada. Note que à medida que se tem uma maior taxa de corrosão, o índice de refração afasta-se do valor característico para um óxido térmico, não apenas em valor absoluto, bem como em dispersão pela superficie da amostra. Na figura 9, faz-se uma breve comparação entre as taxas de corrosão, em função do tipo de óxido, sendo que a taxa de corrosão para o óxido térmico indicado no gráfico, é um valor esperado (1200 Å/min) e válido para 26°C (naturalmente, manteve-se esta temperatura por ocasião da corrosão).

Por meio da figura 9, observa-se que a taxa de corrosão do óxido densificado praticamente iguala-se à do óxido térmico. Na figura 8, pode-se notar que também para o índice de refração, o melhor resultado é o do óxido densificado (amostra 2), pois

obtivemos o valor de 1,46. Assim, sob os pontos de vista químico e fisico, o óxido densificado apresentou-se o mais semelhante ao térmico. Mas, conforme já visto, justamente este óxido apresentou as piores características elétricas: curto elétrico.

3.3. Composição do filme

Em função da condição paradoxal entre características elétricas e físico-químicas do filme densificado, torna-se imprescindível a busca de informações a respeito da composição do filme, que possam justificar as aparentes contradições. Uma possibilidade seria a incorporação de carbono no filme, uma vez que o mesmo é obtido através da reação de um composto orgânico (TEOS) com oxigênio. Claro que a incorporação de H também não pode em princípio ser descartada como contribuindo para as características elétricas inaceitáveis obtidas.

Apesar da presença de H nos filmes ser detrimental, não impede que, mesmo assim, sejam obtidos filmes com boas características elétricas, não havendo como compará-las às da amostra 2 (que são péssimas). Portanto, não se pode descartar a possibilidade de que a presença de C nos filmes seja a responsável por suas péssimas características elétricas.

3.3.1. Análise por RBS

Dentro do conjunto de amostras disponíveis, separou-se inicialmente uma ao acaso, submetendo-a a uma análise por RBS. Os parâmetros de deposição foram os seguintes: fluxos de O₂ e TEOS de 200 e 100 sccm, respectivamente, pressão de 4 Torr, temperatura de 375 °C, potência de RF de 350 W, altura do eletrodo de 10 mm e tempo de deposição de 120 s.

No espectro ilustrado na figura 10, pode-se notar o patamar relativo ao oxigênio no filmes, de silício no filme e o degrau de vido ao silício do substrato. Fora estes elementos, nenhum outro (contaminante) pode ser detetado. A amostra possui uma espessura média de 2762 Å.

A proporção de deposição de oxigênio/silício extraída do espectro resultou em aproximadamente 3/2, indicando excesso de silício no filme depositado. O índice de refração para esta amostra foi de 1,815 (com um desvio padrão de 0,323), o que em princípio é um indicativo de excesso de silício num filme de SiO₂, estando qualitativamente de acordo com a proporção obtida por RBS.

Posteriormente, foram extraídos mais espectros para mais quatro amostras (novas corridas), depositadas sob variadas condições, fixando-se apenas o fluxo de TEOS (40 sccm) e a altura do eletrodo (15 mm). As faixas de variação para os demais parâmetros foram: fluxo de O₂ de 50 a 115 sccm, pressão de 2,3 a 4 Torr, temperatura de 250 a 360°C, potência de RF de 250 a 450 W e tempo de deposição de 10 a 13 s. As espessuras dos filmes depositados, resultaram na faixa de 422 a 817 Å.

Dos espectros (não apresentados neste trabalho), obtiveram-se as proporções entre O_2 e Si, que variaram desde 1,7/1 até 2,3/1. O aspecto geral de todos os espectros (incluindo o da figura 10) é o mesmo, isto é, não apresentando qualquer indicação da

presença de carbono no filme ou quaisquer outros elementos que não Si ou O. Todos este filmes apresentaram características elétricas piores do que as mostradas na figura 7.

3.3.2. Análise por FTIR

Dessas últimas quatro amostras também foram extraídos espectros FTIR, naturalmente objetivando-se a busca da presença de contaminantes (especulativamente o carbono) no filme. Os espectros resultantes possuem o mesmo aspecto, revelando a presença apenas de ligações do tipo Si-O e Si-OH, conforme ilustra a figura 11. Nenhuma destas amostras fora submetida a qualquer tratamento térmico de densificação.

Na tabela 2, ilustram-se os números de onda correspondentes às ligações químicas de interesse na análise de filmes de SiO_2 por $FTIR^{19,20}$. As ligações que envolvem carbono, foram obtidas do trabalho de Sawada²⁰, sendo detectadas em filmes de SiO_2 depositados por "PECVD em pressão atmosférica", utilizando apenas o reagente TEOS (ou seja, sem o fluxo de O_2). Nos casos em que o O_2 também participara do processo, não foram detectados picos no espectro FTIR relativos ao C.

Tabela 2 Números de onda ν correspondentes a picos de espectros FTIR e respectivas ligações químicas para o estudo de filmes SiO_2 .

Γ	ligação	Si-O	Si-O	Si-C	Si-H, Si-OH	Si-OH	Si-O	C=O	О-Н	О-Н
	v (cm ⁻¹)	450	805	880	885	940	1070	1730	3380	3620

4. Discussão e Conclusões

A deposição de filmes de SiO₂ através da técnica PECVD sem dúvida é de elevado interesse para a indústria de microeletrônica pelas várias razões sucintamente expostas na introdução deste trabalho. Em especial, o uso de TEOS ao invés de silana, associado à técnica PECVD, configurava elemento promissor no sentido de se poder obter camadas isolantes com boa isolação elétrica, boa cobertura de degrau e baixa temperatura de deposição.

Apesar dos filmes assim obtidos apresentarem, sob determinadas condições de processo características físico-químicas semelhantes às de óxido de silício térmico, tido como material de referência de boa qualidade, observamos neste trabalho que as características elétricas dos filmes depositados deixavam bastante a desejar. Isto foi especialmente verdade para aqueles filmes depositados que sofreram processo de densificação: neste caso, o óxido perdera completamente suas características de isolação elétrica. Isto significa que os filmes obtidos não apresentam um mínimo de estabilidade requerida para sua utilização em circuitos integrados. Se uma mudança estrutural nestes filmes ocasionou este efeito, esta não foi e não é detetável pelas técnicas utilizadas neste trabalho.

Sabe-se, porém, que os filmes contém H como contaminante (figura 11). Porém, desde que não presente em concentração excessiva, este é esperado ser benéfico por ter

a capacidade de passivar ligações químicas pendentes. Outro contaminante presente é o grupo OH. Porém, não conseguimos imaginar qualquer meio através do qual este grupo possa causar a transformação do óxido isolante em condutor. Por fim, em sendo a fonte de Si uma molécula orgânica, especula-se que carbono seja de fato o causador dos efeitos observados. Sob tratamentos térmicos este poderia vir a ser convertido em precipitados de grafite embebidos no óxido, de forma a explicar a elevada condutividade elétrica do óxido após tratamento térmico de densificação. Reanalisando-se o espectro FTIR da figura 11, pode-se, agora, tentar interpretar a pequena oscilação em 1730 cm⁻¹ como sendo efetivamente devido a uma incorporação de carbono no filme, na forma C=O (vide tabela 2). Porém, o oscilação apresenta uma intensidade extremamente próxima da do ruído de fundo, impossibilitando afirmar-se ser ela efetivamente devido a carbono no filme. Além do que as próprias lâminas de silício apresentam contaminação de carbono da ordem de ou inferior a 0,1 ppm (dados do fabricante).

Finalmente, mostrou-se ainda neste trabalho não existir uma correlação direta entre as características fisico-químicas extraídas (índice de refração, taxa de deposição, texa de corrosão, contaminantes, estequiometria) e as características elétricas, evidenciando serem as técnicas de caracterização elétricas extremamente mais sensíveis e, portanto, mais aptas a detetarem problemas nos filmes depositados do que qualquer uma das técnicas de caracterização fisico-química utilizada.

5. Referências bibliográficas

- 1. RAMKUMAR, K. e GHOSH, S.K.; Aluminum Based Multilevel Metallizations in VLSI/ULSICs, in Handbook of Multilevel Metallization for Integrated Circuits, WILSON, S. R.Wilson, TRACY, C. J. Tracy e FREEMAN, J. L. Jr., Editores., Noyes Publications, Park Ridge, New Jersey, USA, capítulo 3, págs. 97 a 201, 1993.
- 2. Handbook of Multilevel Metallization for Integrated Circuits, WILSON, S. R.Wilson, TRACY, C. J. Tracy e FREEMAN, J. L. Jr., Editores., Noyes Publications, Park Ridge, New Jersey, USA, 1993.
- 3. COULSEN, A.R. e TAUBER, R.N.; Silicon processing for the VLSSI Era. Vol.1, S.Wolff e R.N.Tauber, editors, pág. 171, Lattice Press, Sunset Beach, CA (1987).
- 4. HILLS, G.W., HARRUS, A.S. e THOMA, M.J., Solid State Technol., Vol.33, pág. 127 (1990).
- 5. ULISH, W., LIPPMANN, T. e KASSING, R., Thin Solid Films, Vol.174, pág. 57 (1989).
- 6. PAI, C.S. e CHARY, C.-P., J.Appl.Phys, Vol 68, pág. 793 (1990).
- 7. PAI, C.S., MINER, J.F. e FOO, P.D., J. Electrochem. Soc., Vol 139, pág. 850 (1992).
- 8. RAY, S.K., MAITI, C.K., LAHIRI, S.K. e CHAKRABARTI, N.B., J.Vac.Sci. Technol, Vol. B10, pág. 1139 (1992).
- 9. TOCHITANI, G., SHIMOZUMA, M. e TAGASHIRA, H., J.Vac.Sci. Technol, vol.A11, 400 (1993).

ď

- 10. BECKER, F.S., PAWLIK, D., ANZINGER, H. e SPITZER, A., J. Vac. Sci. Technol, Vol. B5, pág. 1555 (1987).
- 11. MAGNELLA, C.G., INGWERSEN, T., FLECH, E.; A comparison of planarization properties of TEOS and SiH₄ PECVD oxide. V-MIC Conference Proceedings, pág. 366, 1988.
- 12. MORIMOTO, N.I.; Desenvolvimento de um sistema multicâmara integrado para deposição e recozimento de filmes de SiO₂; Tese de doutorado, Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Eletrônica, 135 págs., 1995.
- 13. KERN, W. e PUOTINEN, D.A., RCA Rev, Vol.31, p.187-205, 1070.
- 14. Manual de receitas químicas para microeletrônica, publicação interna do LSI contendo as soluções comumente utilizadas no Laboratório de Sistemas Integráveis.
- 15. CHU, W.K., MAYER, J.W. e NICOLET, M.A.; Backscattering spectrometry; New York, Academic Press, 1978.
- 16. CHIN, B. L. and VEN, E. P.; Plasma TEOS Process for Interlayer Dielectric Applications; Solid State Technology; abril 1988, pág. 119.
- 17. PATRICK, W. J. et al.; Plasma Enhanced Chemical Vapor Deposition of Silicon Dioxide Films using Tetraethoxysilane and Oxigen: Characterization and Properties of Films; J. Electrochem. Soc.; Vol. 139, n° 9, setembro. 1992, pág. 2604.
- 18. ADAMS, A. C. et al.; Characterization of Plasma-Deposited Silicon Dioxide; J. Electrochem. Soc.; Vol. 128, no 7, julho 1981, pág. 1545.
- 19. ADAMS, A. C.; Plasma deposition of inorganic films. Solid State Technology, p.135-9, Apr. 1983.
- 20. SAWADA, Y.; OGAWA, S.; KOGOMA, M.; Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge. Journal of Physics D, Vol. 28, n° 8, pág. 1661-9, Aug. 1995.

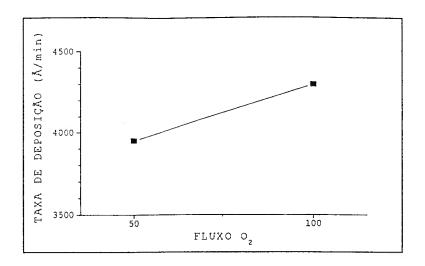


Figura 1 Dependência da taxa de deposição com fluxo de O₂ (fluxo de TEOS=25 sccm, pressão=4 Torr, temperatura=380°C, distanciamento do eletrodo=10 mm, potência de RF=350 W e tempo de deposição= 1 min).

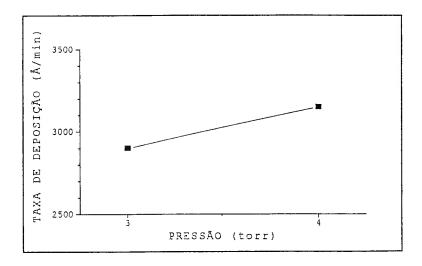


Figura 2 Dependência da taxa de deposição com a pressão (fluxos de O₂ e TEOS=50 e 25 sccm, temperatura=380 °C, distanciamento do eletrodo= 15 mm, potência de RF=350 W e tempo de deposição= 1 min).

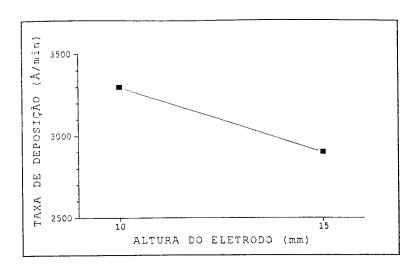


Figura 3 Dependência da taxa de deposição com a altura do eletrodo (fluxos de O_2 e TEOS=50 e 25 sccm, pressão=3 Torr, temperatura=380°C, potência de RF=350 W e tempo de deposição= 1 min).

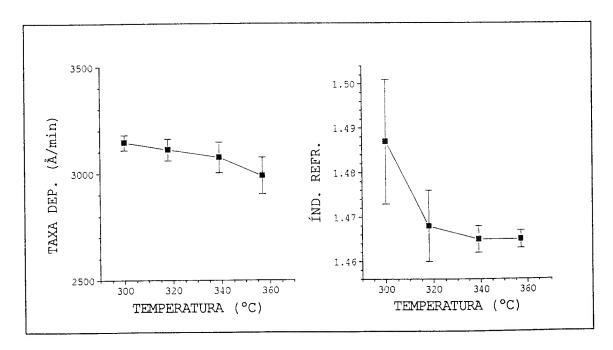


Figura 4 Dependência da taxa de deposição e índice de refração com a temperatura de deposição (fluxos de O₂ e TEOS=50 e 31 sccm, pressão=3 Torr, distanciamento do eletrodo=15 mm, potência de RF=350 W e tempo de deposição= 1 min).

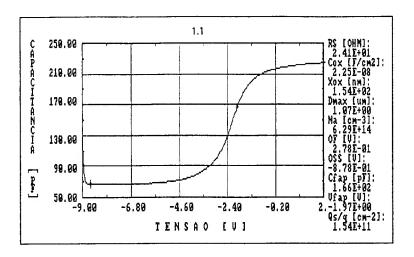


Figura 5 Curva C-V de alta frequência (1MHz) de um capacitor da amostra 1, sem recozimento de sinterização.

Figura 6 Comparação entre curvas C-V de alta frequência para o mesmo capacitor, com e sem sinterização.

ſ

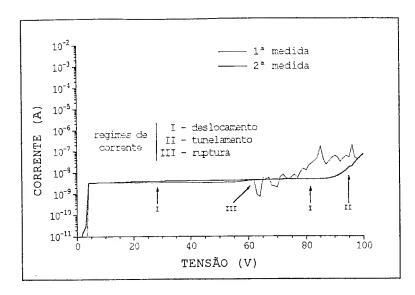


Figura 7 Curvas I-V correspondentes a duas medidas consecutivas em um capacitor.

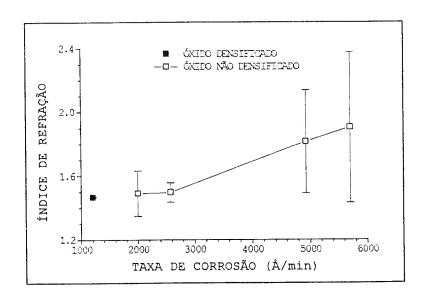


Figura 8 Correlação entre índice de refração e taxa de corrosão de SiO₂ depositado para uma amostra densificada (1100°C por 2 min em ambiente de Ar a 3 1/min) e quatro não densificadas.

1

(1

1

0

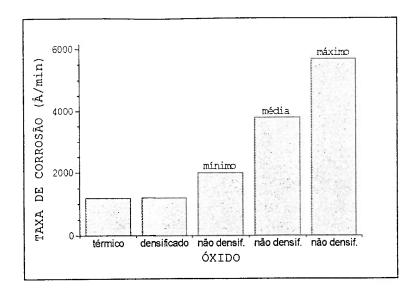


Figura 9 Comparação da taxa de corrosão entre SiO₂ térmico e depositado, com e sem densificação (1100°C por 2 min em ambiente de Ar a 3 l/min).

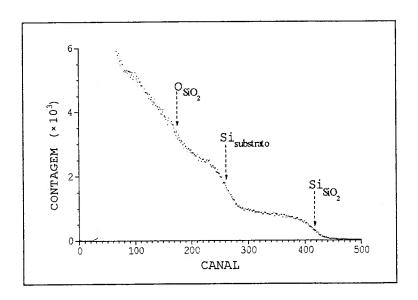


Figura 10 Espectro RBS da típico de SiO₂ depositado (incidência normal com energia de 1,3 MeV).

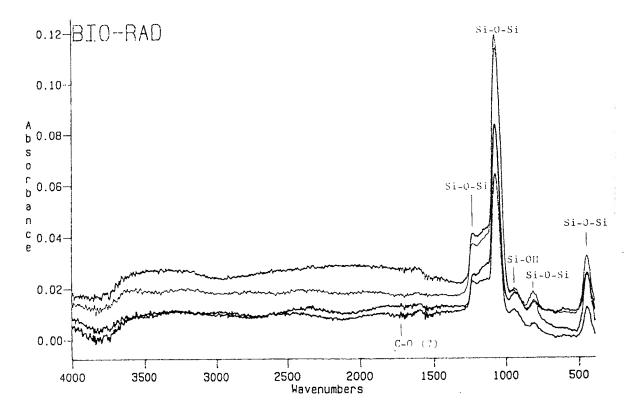


Figura 11 Espectro de infravermelho típico para as amostras deste trabalho.

```
BT/PEE/9301 - Oscilador a HEMT - 10 GHz - FÁTIMA S. CORRERA, EDMAR CAMARGO
BT/PEE/9302 - Representação Senoidal da Voz através dos Polos do Filtro Preditor - MARCELO B. JOAQUIM, NORMONDS
BT/PEE/9303 - Blindagens por Grades Condutoras; Cálculo do Campo Próximo - LUIZ CEZAR TRINTINALIA, ANTONIO
ROBERTO PANICALI
```

BT/PEE/9304 - Sistema de Otimização e Controle de Produção em Minas de Pequeno e Médio Porte - TSEN CHUNG KANG, VITOR MARQUES PINTO LEITE

BT/PEE/9401 - Determinação das Frases de Aplicação Forense para o projeto NESPER e Tese de Mestrado IME/94, com Base em Estudos Fonéticos - MARCONI DOS REIS BEZERRA, EUVALDO F. CABRAL JUNIOR

BT/PEE/9402 - Implementação e Teste de uma Rede Neural Artificial do Tipo KSON (Kohonen Self-Organizing Network) com

Entradas Bidimensionais - MARCELO YASSUNORI MATUDA, EUVALDO F. CABRAL JR.

BT/PEE/9403 - Transformada de Walsh e Haar Aplicadas no Processamento de Voz - ALEXANDRE AUGUSTO OTTATI
NOGUEIRA, THIAGO ANTONIO GRANDI DE TOLOSA, EUVALDO F. CABRAL JÚNIOR

BT/PEE/9404 - Aplicação de Redes Neurais ao Problema de Reconhecimento de Padrões por um Sonar Ativo - ALEXANDRE RIBEIRO MORRONE, CRISTINA COELHO DE ABREU, EDUARDO KOITI KIUKAWA, EUVALDO F. CABRAL JR.

BT/PEE/9405 - Tudo que se Precisa Saber sobre a Prática da FFT - Transformada Rápida de Fourier (Inclui Software) -ROGÉRIO CASAGRANDE, EUVALDO F. CABRAL JR.

BT/PEE/9406 - A Survey on Speech Enhancement Techniques of Interest to Speaker Recognition - CELSO S. KURASHIMA, EUVALDO F. CABRAL JR.

BT/PEE/9407 - Identificação de Pulsos Decádicos em Linhas Telefônicas - ANTONIO P. TIMOSZCZUK, MÁRCIO A. MATHIAS, EUVALDO F. CABRAL JR.

BT/PEE/9408 - Implementação e Teste de Filtros do Tipo Adaptativo e "Notch" para a Remoção de Interferência de 60 Hz em Sinais de Eletrocardiograma - FLÁVIO ANTÔNIO MENEGOLÁ, JOSÉ AUGUSTO DE MATTÓS, JOSÉ GOMES G. FILHO, SIDNEY SILVA VIANA, EUVALDO F. CABRAL JR.

BT/PEE/9409 - Compressão de Sinais de Voz utilizando Transformadas de Karhunen-Loève, Fourier e Hadamard - IVAN LUIS VIEIRA, LUIZ FERNANDO STEIN WETZEL, EUVALDO F. CABRAL JR.

BT/PEE/9410 - "Ray Tracing" Paralelo - EDUARDO TOLEDO SANTOS, JOÃO ANTONIO ZUFFO

BT/PEE/9411 - Implementação de uma Ferramenta Posicionador para "Gate-Arrays" Tipo Mar de Portas - JORGE W. PERLAZA PRADO, WILHELMUS A. M. VAN NOIJE

BT/PEE/9412 - Tudo que se Precisa Saber Sobre a Teoria da FFT - Transformada Rápida de Fourier - FÁBIO LUÍS ROMÃO, REINALDO SILVEIRA, ROGÉRIO CASAGRANDE, EUVALDO CABRAL JR.

BT/PEE/9413 - Análise do Ruído Sonoro em uma Sala de Aquisição de Amostras de Som com Microcomputador - FÁBIO LUÍS ROMÃO, REINALDO SILVEIRA, EUVALDO CABRAL JR.

BT/PEE/9414 - Cor: Aspectos Relevantes para Visualização de Dados - SÍLVIA DELGADO OLABARRIAGA

BT/PEE/9415 - Projeto de Filtros Digitais IIR com Fase Aproximadamente Linear Utilizando Redução de Ordem - IVAN F. J. RODRIGUES, MAX GERKEN

BT/PEE/9416 - GERAFILTRO: Sistema para Projeto Automático de Filtros Digitais "IIR" (da especificação em alto nível ao leiaute do "ASIC") - RICARDO PIRES, JOSÉ VIEIRA DO VALE NETO

BT/PEE/9417 - Rédes Neurais Artificiais Aplicadas à Identificação de Pulsos Decádicos em Linhas Telefônicas - ANTONIO P. TIMOSZCZUK, EUVALDO F. CABRAL JR.

BT/PEE/9501 - Estudo Comparativo de Métodos de Cálculo da Frequência Fundamental - MARCOS COSTA HUNOLD, EUVALDO F. CABRAL JR.

BT/PEE/9502 - Combinando Técnicas de Redes Neurais Artificiais e Informações de Excitação no Reconhecimento Automático do Locutor - ANDRÉ BORDIN MAGNI, EUVALDO F. CABRAL JR.

BT/PEE/9503 - Utilização de Redes Neurais Artificiais para Detecção e Identificação de Falhas em Circuitos - MÁRCIO YUKIO TERUYA, ROBERTO AMILTON BERNARDES SÓRIA, EUVALDO CABRAL JR.

BT/PEE/9504 - Uso de Redes Neurais Artificiais no Reconhecimento de Locutores no Domínio Temporal - BENEDITO JOSÉ BARRETO FONSECA JÚNIOR, EUVALDO CABRAL JÚNIOR

BT/PEE/9505 - Projeto de Filtros Passivos e Ativos em Técnicas de Circuitos Integrados de Microondas - DAVID VIVEIROS JÚNIOR. DENISE CONSONNI

BT/PEE/9506 - Uma Análise de Clustering para as Frases de Projeto NESPER - RONALDO OLIVEIRA MESSINA, EUVALDO F. CABRAL JR.

BT/PEE/9507 - Controle com Estrutura Variável e Modos Deslizantes - Um Estudo para Aplicação em Controle Carga-frequência da Geração - JOSE PAULO F. GARCIA, JOCELYN FREITAS BENNATON

BT/PEE/9508 - Recuperação das Margens de Ganho e de Fase para Sistemas de Fase Não Mínima por Realimentação da Saída - MARCO H. TERRA, VITOR M. P. LEITE

BT/PEE/9509 - Sistema de Inspeção Óptica de Dispositivos Bi-Dimensionais - CASIMIRO DE ALMEIDA BARRETO, PEDRO LUÍS PRÓSPERO SANCHEZ

T/PEE/9510 - Sistema de Partículas Uma Poderosa Técnica de Animação em Computação Gráfica - RENATO CURTO RODRIGUES, JOÃO ANTÔNIO ZUFFO

BT/PEE/9511- Efeito de Ruídos em Sinais de Voz Visualizados em Trajetórias Neurais de Kohonen - CELSO S. KURASHIMA, EUVALDO F. CABRAL JR.

BT/PEE/9601 - "Um Reconhecedor de Sinais Sonoros Utilizando LVQ" - ALEXANDRE TORNICE, EUVALDO CABRAL JR. BT/PEE/9602 - "Coleção Artificial Neural Networks: Uma Visão Geral dos Sistemas Neurais Artificais de Stephen Grossberg" -CHIU HSIUNG HUANG

BT/PEE/9603 - "Reactively-Sputtered TIN Formation Using a RF Magnetron System"- SÉRGIO PAULO AMARAL OSÓRIO, LUIZ SÉRGIO ZASNICOFF

BT/PEE/9604 - Aspectos em Tradução de Linguagens Naturais Através de Redes Neurais Artificiais - CARLOS EDUARDO DANTAS DE MENEZES, EUVALDÓ F. CABRAL JR.

BT/PEE/9605 - Implementação de Blocos Passa-Tudo Utilizando Realimentação de Erro - SÉRGIO JOSÉ CARNEIRO LEÃO, MAX GERKEN

BT/PEE/9606 - Coleção SANN group Redes Neurais Artificiais: A Rede Neural de Sakoe - ANDRÉ BORDIN MAGNI, EUVALDO F. CABRAL JR.

BT/PEE/9607 - Coleção SANN group Redes Neurais Artificiais: A Rede Neural de Steinbuch - ROBERTO AMILTON BERNARDES SÓRIA, EUVALDO F. CABRAL JR.

BT/PEE/9608 - Desenvolvimento de uma Estrutura de Duplo Nível de Metal para a Confecção de Interconexões em Circuitos Integrados - JOSÉ AUGUSTO DE ALENCAR PEREIRA, LUIZ CARLOS MOLINA TORRES

BT/PEE/9609 - Determinação de Parâmetros de Processo para Fotomáscara "Balzers" Utilizando Gerador de Padrões -JORGE SEKI, MEGUMI SAITO

BT/PEE/9610 - Um Ambiente para Desenvolvimento de Sistemas Distribuídos - PEDRO F. ROSA, JOÃO A. ZUFFO BT/PEE/9611 - Interpretações Teóricas do Funcionamento Cerebelar: Uma Revisão - MARCUS FRAGA VIEIRA, ANDRÉ FÁBIO

BT/PEE/9612 - Marcapasso Cardíaco Temporário Microcontrolado de Demanda e Baixo Consumo - FLAVIO ANTONIO MENEGOLA, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES

BT/PEE/9613 - Um Sistema de Planejamento de Ação Baseado em Casos para uma Célula Flexível de Manufatura - RICARDO LUÍS DE FREITAS, MÁRCIO RILLO

BT/PEE/9614 - Aplicações do Boundary-Scan para o Teste de Módulos Multichip - ROBERTO C. COSSI JR., JOSÉ ROBERTO DE A. AMAZONAS

BT/PEE/9615 - A 2.488 Gb/s GaAs 1:4/1:16 Demultiplexer IC with Skip Circuit for Sonet STS-12/48 Systems - TAUFIK ABRÃO, FATIMA S. CORRERA

BT/PEE/9616 - Uma Contribuição para a Construção de Algoritmos em Projetos de Redes - ALLAN DE SOUZA, JOSÉ ROBERTO CASTILHO PIQUEIRA

BT/PEE/9617 - Análise Crítica dos Métodos de Medição do Intervalo QT do Eletrocardiograma - SÍDNEY DA SILVA VIANA, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES

BT/PEE/9618 - Deposição e Caracterização de Filmes de SiO₂ Crescidos pela Técnica de PECVD a Baixa Temperatura -MARCO ALAYO CHÁVEZ, INÉS PEREYRA

BT/PEE/9619 - PARSTOOL: Uma Ferramenta de Auxílio à Simulação de Sistemas Paralelos - LI KUAN CHING, LIRIA MATSUMOTO SATO

BT/PEE/9620 - Análise de um Método de Otimização por Malha no Treinamento de Robôs - OLÍMPIO MURILO CAPELI, JOSÉ CARLOS T. B. MORAES, SADAO ISOTANI

BT/PEE/9701 - Identification of Unstable Mechanical Systems - ROBERTO MOURA SALES, ANSELMO BITTAR, MICHAEL PORSCH, LAÉRCIO LUCCHESI

BT/PEE/9702 - Analysis of the Subthreshold Slope Transition Region in SOI nMOSFET - VICTOR SONNENBERG, JOÃO ANTONIO MARTINÓ

BT/PEE/9703 - Introduction of the SOI MOSFET Dimensions in the High-Temperature Leakage Drain Current Model -MARCELO BELLODI, JOÃO ANTONIO MARTINO, DENIS FLANDRE

BT/PEE/9704 - Controle de Largura de Banda Dinâmica para Transmissões Multicast para Redes de Alta Velocidade - SANG SOON LEE, SERGIO TAKEO KOFUJI

BT/PEE/9705 - Uma Modificação Proposta para o Controle Preditivo Generalizado com Filtro de Kalman - JAIME QUINTERO R., OSWALDO L. V. COSTA

BT/PEE/9706 - Aplicações de Redes Neurais em Previsões Financeiras - OLÍMPIO MURILO CAPELI, EUVALDO F. CABRAL

BT/PEE/9707 - Sistema Microcontrolado, Multicanal e Portátil para Estimulação Neuromuscular Funcional - ROGÉRIO QUIARIM ZARZA, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES

BT/PEE/9708 - Requisitos para o Mapeamento Tecnológico em Projetos de Microeletrônica - LUCIANO DE OLIVEIRA CORRÊA DE BRITO, JOSÉ ROBERTO DE ALMEIDA AMAZONAS

BT/PEE/9709 - Sistemas PRMA com Dados Acoplados - JOSÉ AUGUSTO DE LIMA, PAUL JEAN ETIENNE JESZENSKY BT/PEE/9710 - Algoritmos Genéticos (AG's) para a Otimização de Controladores Nebulosos - JULIO CESAR CEBALLOS AYA, OSWALDO L. V. COSTA

BT/PEE/9711 - Um Estudo Sobre a Redução de Ruídos em Sinais Caóticos - ERNANE JOSÉ XAVIER COSTA, EUVALDO F. CABRAL JR.

BT/PEE/9712 - Geradores não Lineares de Sequência para uso em Sistemas Spread Spectrum - ANGEL ANTONIO GONZALEZ MARTINEZ, PAUL JEAN ETIENNE JESZENSZKY

BT/PEE/9713 - Modelamento Físico do Sistema Heteroestrutura - Metal - CECÍLIA WETTERLE RODRIGUES, MEGUMI SAITO BT/PEE/9714 - Tensões Induzidas em Linhas Aéreas por Descargas Atmosféricas Indiretas - Modelagem e Aplicação ao Cálculo de Interrupções - ALEXANDRE PIANTINI, JORGE M. JANISZEWSKI

BT/PEE/9715 - RECMAP - Uma Ferramenta para Otimização em Síntese de Alto Nível Baseada em Reconhecimento Funcional e Mapeamento de Componentes - ANDRÉ GERHARD, JOSÉ VIEIRA DO VALE NETO

BT/PEE/9716 - Estudo da Sinterização de Contatos Al/Ti por Recozimento Térmico Rápido Visando a Aplicação em Circuitos Integrados - ANGELO EDUARDO BATTISTINI MARQUES, ROGÉRIO FURLAN

BT/PEE/9717 - Mixed H₂/H- Control of Discrete-Time Markovian Jump Linear Systems - OSWALDO L. V. COSTA, RICARDO P.

T/

BT/PEE/9718 - Aluminium Etching with CCI₄-N₂ Plasmas - ANGELA MAKIE MAKAZAWA, PATRICK VERDONCK BT/PEE/9719 - O Uso de Resistes Amplificados Quimicamente e de Sililação em Litrografia por Feixe de Elétrons - ANTONIO C. SEABRA, PATRICK B. VERDONCK

BT/PEE/9720 - Implementação de um Simulador de um Circuito Neuro-Medular que Atua no Controle da Força Motora - LUIZ JURANDIR SIMÕES DE ARAÚJO, ANDRÉ FÁBIO KOHN