International Journal of Information Security (2025) 24:126
https://doi.org/10.1007/510207-025-01034-y

REGULAR CONTRIBUTION l‘)

Check for
updates

Benchmarking the security protocol and data model (SPDM) for
component authentication

Renan C. A. Alves' - Bruno C. Albertini' - Marcos A. Simplicio Jr.!

Published online: 8 May 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Efforts to secure computing systems via software traditionally focus on operating system and application level remediations.
In contrast, the Security Protocol and Data Model (SPDM) tackles firmware-level security challenges, which are much
harder, if not impossible, to detect with regular protection software. SPDM includes key features such as enabling peripheral
authentication, authenticated hardware measurements retrieval, and secure session establishment. Since SPDM is a relatively
recent proposal, there currently exists a lack of studies evaluating its performance impact on real-world applications. In this
article, we address this dearth by: (1) implementing the protocol on a simple virtual device, and then investigating the overhead
introduced by each SDPM message; and (2) creating an SPDM-capable virtual hard drive and network card, and comparing
the resulting read/write and transmit/receive performance against a regular, unsecured implementation. Our results suggest
that SPDM bootstrap time takes in the order of tens of milliseconds to complete, while the toll of introducing SPDM on
hard drives or network cards is highly dependent on specific workload patterns. For example, for mixed random read/write
operations, the slowdown is negligible in comparison to the baseline unsecured setup. Conversely, for sequential read or write
operations, the data encryption process becomes the bottleneck, reducing the performance indicators by several orders of
magnitude

Keywords Security - Hardware - SPDM - Benchmark

1 Introduction

Modern computing devices are commonly built using sev-
eral components from different manufacturers. This creates
complex supply chains that usually end with an integrator,
responsible for connecting off-the-shelf third-party compo-
nents on an assembly line. After assembly, completed devices
are tested before being shipped to warehouses, eventually
reaching end users’ facilities. Subsequently, the device com-
ponents may undergo additional modifications, e.g. by means
of firmware updates.

At every stage of the supply chain, there is a risk
that malicious entities may inconspicuously tamper with or

X Renan C. A. Alves
renanalves @usp.br

Bruno C. Albertini
balbertini@usp.br

Marcos A. Simplicio Jr.
msimplicio@usp.br

Universidade de Sao Paulo, Sdao Paulo, SP, Brazil

even entirely substitute components [1, 2]. The goals of
such attacks may vary. For example, the attacks may aim
to eavesdrop on sensitive data stored in volatile or non-
volatile memory, or on information passing through video,
audio, or network components. The attacks may also involve
modifying default component behavior to enforce built-in
obsolescence or impose some kind of censorship.

Although such attacks at the hardware/firmware level may
seem to belong to the realm of fiction, the existence of
successful proof-of-concept implementations indicates oth-
erwise. For example, a recently published study describes
a vulnerability in the remote firmware update functional-
ity of a family of printers which allowed arbitrary code to
be injected into the printer firmware [1]. The authors of the
study then developed a self-replicating malware capable of
eavesdropping on data and performing network reconnais-
sance. Another attack, this time targeting an USB firmware,
enabled a device (e.g., a thumb drive) to impersonate a dif-
ferent device type (e.g., a keyboard) [3]. Beyond the halls
of academia, there have also been real-world detections of
firmware tampering attacks. In 2015, for example, hard drives

@ Springer

126 Page 2 of 20

R.C.A. Alves et al.

from various manufacturers had their firmware altered so that
the modified code could be used to retrieve data even from
encrypted partitions [4].

Protecting against such hardware-level tampering attacks
can be a challenging task. This is particularly the case since
the usual protection techniques that operate at the operat-
ing system level (e.g., antivirus software) or techniques that
act at the infrastructure level (e.g., firewalls) are oblivious
to such threats. Aiming to overcome this issue, the Secu-
rity Protocol and Data Model (SPDM) [5] was proposed by
the DMTF (Distributed Management Task Force) in 2019
to address low-level security challenges as the ones previ-
ously described. SPDM’s main goals are to allow components
to authenticate one another, to provide measurements of
their internal state, and to securely exchange session keys.
Firmware measurements enable system components to be
verified, ensuring they have not fallen victim to tampering,
while establishing session keys avoids passive eavesdropping
from malicious components attempting to steal data. Con-
sidering the context of intrusion detection systems (IDS), the
SDPM protocol could be used at the Physics-Based Monitor-
ing level, considering the taxonomy proposed by Armellin et
al. [6]. In addition to passive monitoring capabilities, SPDM
enables active verification of firmware authenticity and mea-
surements validity.

Albeit promising, SPDM is a relatively recent proposal, so
its actual impacts on system performance have not yet been
thoroughly evaluated in the literature. This article aims to
close this gap by measuring the overhead added by SPDM’s
security layer, assessing how it could impact end-users’ expe-
rience and identifying bottlenecks that might be optimized
in the protocol. To the best of our knowledge, this is the
first study to conduct a thorough performance analysis of
the SPDM protocol. Specifically, we quantify the overhead
added by the security layer to measure the impact on end-user
experience using an emulated environment. It is important to
note that we only focus on the performance aspect of the
protocol. Any security-related tasks, such as attempting to
retrieve session keys, forge signatures, or disrupt the proto-
col execution, are out of our scope. For a formal analysis of
the SPDM protocol, we refer the reader to Cremers et al. [7].

The resulting contributions are twofold: (1) we evaluated
the overhead of each individual phase of the SPDM pro-
tocol execution on a simple SPDM-enabled component, a
random number generator (Sect. 5); and (2) we built two vir-
tual SPDM-enabled devices: a hard drive and a network card.
We assessed the impact on userspace-perceived performance
(Sects. 6 and 7). All experiments build upon the virtualization
capabilities of the QEMU emulator to implement our proof-
of-concept devices and run the performance tests. For easy
reproducibility, and also because the SPDM-enabled artifacts
developed as part of this work may be of independent inter-

@ Springer

est, the corresponding source code is publicly available at
https://github.com/rcaalves/spdm-benchmark.

In summary, our results show that SPDM certificate-based
bootstrapping procedure takes around 300 ms. Meanwhile,
using SPDM to secure hard drive application data can greatly
reduce the maximum transfer rate on sequential opera-
tions, but the impact was negligible on randomized mixed
read/write workloads. Similarly, on the secured network card,
the maximum data rate was also greatly reduced; conversely,
transferring small files (<5k B) was ~ 10% less efficient.

The rest of this manuscript is organized as follows. We dis-
cuss related work in Sect. 2. Section 3 summarizes SPDM’s
key aspects. In Sect. 4, we provide an outline of all experi-
ments. In Sect. 5, we study the individual overhead of each
SPDM message, describing also our methods and results.
Section 6 contains the specification and results regarding our
SPDM-enabled hard drive. Next, Sect. 7 describes our exper-
iments concerning the SPDM-enabled network card. Finally,
in Sect. 8, we present our closing remarks.

2 Related work

SPDM is a fairly new standard, so its impacts have not been
thoroughly evaluated in the literature. Nevertheless, since
SPDM’s goal is to secure a system from early boot until
OS runtime, it relates to other approaches that focus on
the pre-OS stages. In particular, SPDM is somewhat similar
to techniques often called “secure boot” or “trusted boot”,
whose goal is to ensure that only legitimate initialization
firmware and bootloaders are executed.

To this end, the literature already includes a number
of studies on secure boot performance. For example, Pro-
fentzas et al. [8] evaluate the overhead of software-based
and hardware-based secure boot on embedded platforms,
namely, Raspberry Pi and BeagleBone. Their study shows
that the secured system presents an increased boot time
ranging from 4 to 36%, depending on the techniques and
algorithms employed.

In a similar fashion, Khalid et al. [9] proposed a trusted
boot architecture for embedded systems based on an inde-
pendent security processor. Their design was implemented
on FPGAs, and their experiments show that their secured
boot process increases boot time by 25%, in reference to a
Linux system customized for their needs.

A study by Yin etal. [10] brought attention to failure-prone
NAND flash chips, commonly used to store bootloaders
in embedded platforms. The authors propose a redundancy
scheme that verifies the integrity of bootloader firmware code
and falls back to an alternative copy in the case of checksum
mismatch. Their experiments show that total boot time is
increased by 65% if the bootloader is intact. In the event of a

Benchmarking the security protocol and data model (SPDM)...

Page3of20 126

checksum mismatch, boot time is increased by 255%, since
the backup code must be copied before being re-verified.

Kumar et al. [11] implemented a secure boot design based
on post-quantum cryptography (PQC). Their main concern
is that PQC algorithms require more computing resources
than classic algorithms, which led them to create a custom
FPGA implementation. Their experiments show that their
implementation of the chosen PQC algorithm is at least 10
and at most 30 times slower than the baseline elliptic curve
algorithm, depending on the level of parallelism.

Contrasting with the previous studies, the one by Dasari
and Madipagda [12] is notable for being one of the few works
in the current literature to include an analysis of SPDM.
Specifically, the authors propose an architecture to detect
component tampering in end products, producing a birth
certificate comprising the platform as a whole. They use
SPDM as part of their solution to retrieve firmware hashes
(measurements) from the end product’s individual compo-
nents. However, their solution is based on an older version of
SPDM, which did not yet support session key establishment.
Consequently, their solution does not prevent passive snif-
fers from eavesdropping on sensitive information exchanged
among components. At the same time, and contrary to this
work, there is no evaluation of the impact brought by SPDM
on application-level performance. Velozo et al. [13] explored
the idea of re-purposing TLS fuzzers to analyze the SPDM
protocol. They have selected a fuzzer among the investigated
candidates, but have left the actual SPDM analysis for future
works.

Ferreira et al. implemented a Wireshark dissector with
the goal of facilitating the analysis of flowing SPDM mes-
sages [14]. This tool enables the visualization of SPDM
messages stored in PCAP files.

When considering the particular scenario of protecting
communications from/to hard disks, this current work shares
a relationship with studies covering disk encryption tech-
nologies. Examples include works that focus on the energy
consumption of full disk encryption technologies [15], on the
impact of different cryptographic algorithms [16], or on spe-
cific types of devices [17—19]. There are also more holistic
studies, such as [20], where architectures that include secure
boot and hard drive encryption mechanisms are proposed
(in this particular case, for mobile devices). Like the present
study, such works give insights on how encryption impacts
communications with hard disks, covering similar metrics.
The similarity ends there, though. Since SPDM’s secure ses-
sions are meant to protect in-transit messages, not only the
actual data written to or read from the disk, it cannot be
used as an alternative to disk encryption, since all encrypted
data sent to the disk is decrypted upon reception. Also, if
disk encryption tools are employed together with SPDM, the
protocol remains oblivious to the fact that it is protecting
payloads already in encrypted form.

On the whole, we note that the aforementioned studies
do not tackle the impact of SPDM, and its corresponding
runtime security between components, at the application
level. Therefore, their results are not directly comparable
to the experiments presented herein. Previously, we pre-
sented a preliminary version of the secure hard drive [21]
and the secure network card [22] in demo sessions. Given
the limited publication space of these venues, we offer an
extended examination of the results herein, namely, we have
updated SPDM to version 1.3, provided implementation
details, added new experiments, and expanded the discus-
sion of the results.

3 SPDM

This section summarizes basic concepts and the workflow of
SPDM [5].

SPDM is a standard for secure intercommunication among
hardware components. It follows a requester-responder
paradigm, and focuses on defining a set of useful opera-
tions and message formats that enable mutual authentication
and the establishment of secure channels over an insecure
medium. At the same time, it aims to be agnostic to the phys-
ical medium and the encapsulation approach employed for
conveying those messages.

A subset of SPDM messages is related to core func-
tions, such as device authentication, measurement retrieval,
and secure session establishment. The other messages serve
the purpose of reporting available resources, stating which
optional features are present, negotiating the cryptographic
algorithms to be employed, and maintaining a communica-
tion session as active. Figure 1 gives an overview of the
expected message flow, highlighting which messages are not
mandatory. Since the main messages are evaluated in our
experiments, we briefly describe them in the passages that
follow.

The first pair of messages are GET_VERSION and VER-
SION. They are employed to settle on the SPDM version
to be used. The protocol proceeds only if at least one of
the versions advertised by the responder is supported by the
requester. Next, the requester inquires the responder about
its capabilities, aiming to discover which optional messages
are supported (messages GET_CAPABILITIES and CAPABIL-
ITIES). The last pair of mandatory messages is NEGOTI-
ATE_ALGORITHMS and ALGORITHMS. They are exchanged
so the requester and the responder can agree on the set of
cryptographic algorithms they will use henceforth, through-
out the protocol execution. These mandatory messages are
expected to present low overhead, since they have a slim
payload and their processing does not involve any compute-
intensive operations.

@ Springer

126 Page4of 20

R.C.A.Alves et al.

] GET_VERSION ’Ii‘

e VERSION T
_:“ GET_CAPABILITIES >
L<7cxu>AB|uT|Es;D
. ‘ NEGOTIATE_ALGORITHMS ;
FALGORITHMS;IJ

T
= GET_DIGESTS IL‘

| rsupported |- |
| j< DIGESTS J
! fl(@?eg;ﬂ . T B
by n GET_CERTIFICATE b !
: : J;‘ — CERTIFICATE D \ !
; L CHALLENGE I
L ﬂﬁ‘iPUA,LEE,NE;'%—{“{T'? ,,,,, D il ‘
;]f%y;p;n;d: ”Tr — GET_MEASUREMENTS o 7:
] r‘ _ MEASUREMENTS D X
I it supported ﬁT 77777 KEY_EXCHANGE I

h T
Secure ' 1
Session | (4 Mutual A ti >

Fig.1 SPDM message flow. Adapted from [5]

The next set of messages serves the purpose of retrieving
certificates. The GET_DIGEST/DIGEST message pair enables
the requester to check whether any of the responder certifi-
cates have been previously fetched and cached. If that is not
the case, certificates are retrieved via the GET_CERTIFICATE
/CERTIFICATE message pair. After obtaining the responder’s
certificate, the requester may challenge the responder to
prove that it is the rightful owner of the corresponding pub-
lic/private keys through the CHALLENGE/CHALLENG_AUTH
message pair.

A measurement may represent firmware, software, or con-
figuration data of an endpoint that helps to ensure that it is
not counterfeit. The requester sends GET_MEASUREMENTS
message to request measurements, which is answered by a
MEASUREMENTS message. The requester usually demands the
responder to sign MEASUREMENTS messages, although such
a signature may also be omitted.

The requester can also issue a KEY_EXCHANGE mes-
sage aiming to initiate a secure handshake for establishing
a shared secret key. The responder then answers with a
KEY_EXCHANGE_RSP message. The handshake is finalized
by a FINISH/FINISH_RSP message pair, when the secret key

@ Springer

computed by both endpoints is confirmed and bound to
the corresponding secure session established between them.
Alternatively, if a pre-shared key is used instead of certifi-
cates, the messages above are replaced by their PSK_ counter-
parts, i.e., PSK_KEY_EXCHANGE, PSK_KEY_EXCHANGE_RSP,
PSK_FINISH, and PSK_FINISH_RSP.

After a session is established, the underlying keys can
be updated with the KEY_UPDATE and KEY_UPDATE_ACK
messages. Also, if a session timeout period has been config-
ured, HEARTBEAT/HEARTBEAT_ACK messages can be used
to keep the session alive even in the absence of regu-
lar traffic. Sessions can be terminated by means of the
END_SESSION/END_SESSION_ACK messages.

Finally, exceptions during the protocol execution can
be flagged by ERROR messages, such as INVALIDREQUEST,
Busy, and DECRYPTERROR.

4 Experiment goals

Our goal is to estimate the computational cost of employ-
ing SPDM to provide low-level device authentication and
low-level hardware communication confidentiality. This was
achieved by comparing the performance of SPDM-enabled
devices with their plain counterparts. Some of the experi-
ments are designed to estimate how user-perceived metrics
are affected.

The experiments are divided in three sections, depending
on the type of device that was converted to be SPDM-enabled.
Each section is further divided into subsections containing
implementation details, experimental method, and results.

First, we designed a simple virtual device that generates
random numbers (Sect. 5). We use this device to measure
the cost of each SPDM message individually. The obtained
results can be used to estimate the additional CPU load given
a sequence of SPDM messages.

Next, we analyze the hard drive use case in Sect. 6. Since
hard drive performance is known to be heavily influence by
rotation and seek times, we used different tools to test a vari-
ety of workloads.

Finally, Sect. 7 presents the network card use case. A net-
work card was picked since network cards typically have
no clear performance bottlenecks, unlike hard drives. We
tested the behavior of different workloads, comparing TCP
and UDP protocols in the light of throughput and latency
metrics.

5 SPDM overhead assessment

The goal of this experiment is to assess the overhead intro-
duced by each phase of the SPDM message flow. To this end,
we developed a random number generator (RNG) device that

Benchmarking the security protocol and data model (SPDM)...

Page50f20 126

| QEMU
| Guest OS
IUserspace | Kernel

[SPDM requester] | uio frlver |

v

[SPDM responder virtual hardware]

Fig.2 System architecture

supports two operation modes: 1) secure mode, which uses
SPDM to enable authentication and secure session establish-
ment; and 2) clear-text mode, devoid of any SPDM-related
security capabilities.

5.1 Method

We used a virtualized setup based on the QEMU emulation
software [23]. The virtual machine run by QEMU contains
an instance of our RNG device, which implements an SPDM
responder.

The RNG was designed as a PCI device with a memory-
mapped input/output (MMIO) region to send and receive
SPDM messages, as well as to exchange control informa-
tion. Non-SPDM transactions were used as a baseline for
estimating the overhead introduced by SPDM to this simple
procedure.

We implemented an SPDM requester as a device driver
for our RNG on Linux. This device driver is built upon the
userspace I/0 system (UIO). Figure 2 depicts a schematic
of our setup. Other implementation details are presented in
Appendix A.

In our experiments, the interaction between the RNG
device and its device driver was conducted following five
steps: 1) SPDM library initialization; 2) SPDM connection,
comprising version, capabilities, and algorithms negotiation;
3) SPDM authentication, including digest, certificate, and
challenge messages; 4) measurement retrieval; and 5) appli-
cation phase.

We analyzed the measurement messages in two ways: 1)
retrieving each measurement individually; and 2) retrieving
all of them at once. In the first scenario, the requester first
inquires about the total number of measurements the respon-
der holds before retrieving each one individually, while
requiring a signature only for the last one. In either scenario,
the responder was configured to hold 5 different measure-
ments, following the DMTF measurement block specifica-
tion (SPDM specification v1.3.0 [5], Section 10.11.1.1). Each
block contains 128 bytes of dummy data.

Table 1 1ibspdm parameters

Parameter Value
SPDM protocol version 1.3
1libspdm version 3.2.0
1ibspdm build options x64, release

MbedTLS
RSAPSS_3072
ECC_NIST_P384

Underlying crypto library
Requester signature algorithm

Responder signature algorithm

Measurement hash algorithm SHA384

DHE algorithm SECP_384_R1
AEAD algorithm AES_256_GCM
Key scheduling algorithm As defined by SDPM
Mutual authentication enabled

The application phase is also divided into five steps: 1)
the endpoints agree on a shared key; 2) a heartbeat message
is transmitted; 3) the session key is updated; 4) the requester
asks for a random number from the responder; and 5) the
session is concluded. The session establishment process was
tested both in the pre-shared key (PSK) and in the certificate-
based settings.

We used the kernel’s performance event infrastructure API
to extract performance indicators (perf) [24], allowing us
to assess the cost of each message individually. We focused
on two metrics provided by the per £ API: number of cycles,
and total CPU time. CPU time provides a tangible sense of
how long a task takes to finish. However, it depends on the
underlying hardware. The number of cycles, on the other
hand, is a more generic metric in comparison with CPU clock
time measurements, although it remains platform dependent.
Furthermore, we configured per £ to exclude from the count
any event that occurs in kernel space, at the hypervisor, or at
the guest machine (for responder only).

SPDM functionality was provided by the 1ibspdm open
source library [25]. Compile-time and execution-time param-
eters used in the experiment are listed in Table 1.

As the emulation environment, we used QEMU ver-
sion 4.1 [23]. A QEMU virtual machine is specified by
command-line options: hard drives, CPU, network cards,
along with other options. The parameters used in the experi-
ments are listed in Appendix A. The guest operating system
was obtained from Buildroot! version 2020.02.9, which con-
tains Linux Kernel version 4.19.

The host system ran a Linux-based system on an Intel
17-10700KF processor, with 3800 MHz clock, 8 Cores,
16 logical processors, and 32 GB of RAM. Although real-
world devices running the SPDM protocol are likely to
have lower processing power, the results obtained should

I Available at https://buildroot.org/.

@ Springer

126 Page 6 of 20

R.C.A. Alves et al.

be proportionally valid and, hence, useful for our compar-
ison purposes. More precisely, running SPDM on a slower
CPU following a similar architecture is expected to result in
a similar number of cycles. Conversely, the measured exe-
cution time should increase proportionally on slower CPUs
in both SPDM and non-SPDM scenarios. Ideally, the CPU
clock should be constant while performing benchmarks.
Hence, aiming to approach this ideal scenario, the following
options were disabled in the machine BIOS configuration
menu: turbo boost, speed step, speed shift, hyper-threading,
and CPU C states. In spite of disabling these options, our
results still displayed varying clock frequencies. In particu-
lar, requester-side operations require waiting for the requester
to respond leading to lower clock frequencies, while long
CPU-intensive operations tend to present higher clock fre-
quencies.

Each of the execution steps was performed 100 times,
aiming to obtain statistical confidence. The graphs shown
in Sects. 5.2 and 5.3 present the average along with 95%
confidence intervals.

5.2 Results: requester

Requester results are presented in Fig. 3, for both cycle count
and execution time. As expected, most of the overhead was
due to messages related to the authentication process.

Figure 3 shows that the most time-consuming messages
are GetCertificate, KeyExchange, and Finish,
taking respectively 16.4, 24.9 and 8.9 ms, or 16.8, 62.1 and
29.4 million cycles on average. The GetCertificate
procedure is expected to be slow since 1) it may require
several messages to complete, and 2) by the end of it,
the retrieved certificate must be verified for correctness,
which requires a few time-consuming signature verifications.
KeyExchange and Finish, in turn, involve the genera-
tion of a symmetric key pair by means of a Diffie-Hellman
key exchange, which is computationally expensive.

On the other hand, the usage of Pre-Shared Keys (PSK)
considerably reduces the burden of establishing session keys.
The precise difference is that KeyExchangePSK takes only
1.2 ms (7.0 x 10° cycles), which is only a fraction of the
24.9 ms (6.2 x 107 cycles) observed in its asymmetric coun-
terpart. Also, if the ultimate goal is to establish a secure
session, using a PSK setting allows components to forego
GetCertificate and Challenge messages, further
speeding up the key establishment process.

Other time-consuming messages are GetMeasurements
and Challenge, both of which have an execution time of
around 3 ms. Interestingly, we noticed that retrieving mea-
surements all at once is faster than retrieving measurements
one by one. Specifically, the time taken in the former case is
3.1 ms, against 5.2 ms in the latter. This represents a time gain
of 40%, while the number of cycles is reduced by 46%. This

@ Springer

discrepancy stems from the additional overhead of exchang-
ing several short messages instead of a single one.

Each of the other messages takes from 260 ps up to 1.4 ms
on average, depending on their underlying complexity, so
they are unlikely to become bottlenecks in practice. In
particular, the three most basic messages (GetVersion,
GetCapabilities, and NegotiateAlgorithms)
take 1.1 ms combined to execute (3.2E + 05 cycles). Con-
versely, we notice that the task of loading the certificate from
the disk can take a significant amount of time: 37.3 ms, or
1.3 x 103 cycles, on average.

Once a secure session is established, we were able to
retrieve a random number from the SPDM-enabled RNG
device in 464 us (1.5 x 10° cycles). Conversely, in our
SPDM-free baseline execution the same operation took 74
s (5.9 x 10% cycles) on average. This means that SPDM led
to a 5.2-fold increase in terms of time, or a 24-fold increase in
number of cycles. This result is unsurprising, though, when
we take into account the remarkable simplicity of the device
evaluated in our tests. Our simple RNG was designed to be
extremely fast, so even cryptographic operations which are
quite lightweight in absolute numbers, such as symmetric
encryption, become comparatively expensive in the grand
total of each test.

5.3 Results: responder

Figure 4 shows the metrics extracted from the Responder. As
shown by this figure, KeyExchange is the most expensive
message to process, taking 109 ms, or 4.1 x 108 cycles. As
expected, though, adopting a PSK setting reduces the session
key establishment overhead from 124 ms to only 408 s or
1.3 x 10 cycles.

The responder handles GetCertificate messages
faster than the requester. The reason behind this behavior is
that most of the cryptographic processing of
GetCertificateremains at the requester. At the respon-
der, GetCertificate takes only 144 us, or 4.9 x 10°
cycles.

Similarly to the requester, GetMeasurements and
Challenge are nearly tied as the second most time-
consuming operations at the responder, taking approximately
250 million cycles or 67.5 ms. Once again, retrieving mea-
surements all at once was faster than retrieving one by one,
however, the obtained values are statistically equal.

The responder was fast at loading certificates from the
disk, taking only 3.8 ms or 1.3 x 107 cycles (compared to
37.3 ms at the requester). The discrepancy between respon-
der and requester is caused essentially by our configuration,
where each party uses a different signature algorithm. More
precisely, the responder uses a signature algorithm based on
elliptic curves, which takes less time to verify than the RSA-
based signatures generated by the requester.

Benchmarking the security protocol and data model (SPDM)... Page70f20 126
Fig.3 Requester execution time
and number of cycles 108 -
= 107
7 = —
2 10 = @
L — =
3 - f
° 10 =
pS - 106 5
£ = g
Z 10° - i
104 = 105
Fig.4 Responder execution | IE
time and number of cycles 3 = 10°
8 =
10°g -
- E 107 _
5108 E £
S 3 -5
> — [}
S 100 4 E10° £
[S) E = b
= 3 — g
o — el
LE) 10° g B 5 5
RS- EY g
10 S
E 104
10° =

5 & o & \ e «
FFTF L FD LSS Q("{_ Q""l- N
FE X T P SN & oQb K& &S R
N 3 2 (% > 123
a7 L 8 & &"é’*{& EE el &l 7 &"’Q &
O ¢ @7 D7 (Ond AN M ARSI S
(I & P & < &
N0) X0 N7 N
S @ S & &
& &7 & S &
S qég’o K
$
&

Processing a random number request without SPDM took
the responder 2.1 us, or 499 cycles. Adding the SDPM layer
increases this cost to 38.1 us, or 1.1 x 103 cycles. The pro-
cessing of any other messages took from 18 to 107 us (or
5.4 x 10* to 3.3 x 107 cycles), adding a moderate amount of
overhead to the protocol.

6 Hard drive use case

This experiment was designed to assess the impact SPDM
poses on system performance from a user perspective.
Among the possible peripherals typically found in comput-
ing systems, we chose to secure the communication between
CPU and hard drive, both due to this component’s importance
and to the availability of tools for conducting such perfor-
mance tests. Specifically, we compared an SPDM-equipped

@ Springer

126 Page 80f20

R.C.A.Alves et al.

hard drive against an unsecured one under various workloads,
considering boot time, read speed, and write speed as metrics.

6.1 Implementation details

Due to the lack of off-the-shelf SPDM-enabled hardware,
we once again resorted to emulation. We used QEMU as the
emulation software, since it is equipped with a variety of open
source virtual devices, including hard drives. After evaluat-
ing the available options, we chose to work with the Virt IO
hard drive. Both Linux driver and virtual hard disk were mod-
ified to incorporate SPDM security functionalities, provided
by 1ibspdm (using the same parameters listed in Sect. 5.1).
Implementation details are described in Appendix B.

6.2 Method

In our experiments, we used a few widely employed tools
and benchmarking utilities to assess hard drive performance:
aaz, hdparm3, ioping4, bonnie++>, £i0°. These tools
and their configuration are further detailed in Appendix D.
All tests were executed on a separately attached hard drive.
Once again, the following CPU attributes were disabled at
the machine BIOS configuration menu: turbo boost, speed
step, speed shift, hyper threading, and CPU C states. For each
tool, two batches of experiments were executed: 1) a baseline
setting, with the unmodified device and driver; and 2) an
SPDM-enabled setting, with our modified implementations.

6.3 Experimental results

This section presents and discusses the results obtained from
each of the benchmark tools used.

6.3.1 dd

This is a commonplace utility found on Unix-like operating
systems. Its primary use is to transfer raw data from a source
to a destination.

We tested writing 2GB of data to the disk according to two
approaches: in small blocks of 4KB each, or in 512MB-long
blocks.

Figure 5 shows the results obtained from the dd com-
mand. This experiment assesses the speed of writing data
sequentially, which reduces the number of seek operations
executed during the test. Hence, besides providing insights

2 https://man7.org/linux/man-pages/man1/dd.1.html
3 https://sourceforge.net/projects/hdparm/

4 https://github.com/koct9i/ioping

5 https://doc.coker.com.au/projects/bonnie/

6 https://fio.readthedocs.io

@ Springer

B NO SPDM
s WITH SPDM

160000 H

140000 A

120000 A

100000 -

80000

data rate [KB/s]

60000

40000

20000

O =
small blocks

big blocks

Fig.5 Measuring data rate of an SPDM-enabled hard disk: dd

into SPDM’s impact on disk writing speed when such work-
loads are prevalent, these results also serve as a baseline for
scenarios where random disk accesses are more common.

In general, writing small blocks tends to be slightly slower
than writing large blocks, which was observed in our results
(&~ 1% slower without SPDM, ~ 5% slower otherwise). How-
ever, in both cases, SPDM caused a =~ 82% slowdown in
writing speed.

6.3.2 hdparm

The hdparm tool provides an indication of sequential
data read speed, disregarding filesystem overhead. Without
SPDM, the average read speed observed was 3.8 GB/s, fairly
close to the nominal 6 GB/s speed of the hard drive, con-
sidering the virtualization overhead. However, introducing
SPDM drastically decreases the value indicated by hdparm
to 20 kB/s, translating to a 99.5% speed degradation.

6.3.3 ioping

This is a tool for monitoring disk latency. Figure 6 shows read
and write latency results according to ioping. Focusing
on average results only, the introduction of SPDM reduced
the reading and writing latency by 20% and 14%, respec-
tively. However, the obtained confidence intervals in both
cases were very large, making it difficult to draw statistically
relevant conclusions with this tool. All in all, these results hint
that latency was not affected by the introduction of SPDM.

6.3.4 bonnie++

This is a purpose-built benchmarking toolkit for hard drives.
The results (Fig. 7) indicate a large loss of performance when
SPDM is introduced. The tests performed by this tool consist
of reading and writing 200 MB files to the disk until amount-
ing 2GB. The performance proportion is somewhat similar

Benchmarking the security protocol and data model (SPDM)...

Page90f20 126

30000 -

B NO SPDM
s WITH SPDM

25000 1

20000

15000

latency [us]

10000

5000 A

read latency

write latency

Fig.6 Measuring latency of an SPDM-enabled hard disk: ioping

le6
N NO SPDM
= WITH SPDM
w
= 1.5
2
L
o
o 1.0
3
©
o
0:5 4
0.04 ___
read speed write speed

Fig.7 Measuring disk datarate: Bonnie++

to the one obtained by the dd writing test, but spread across
multiple files. However, the numbers show a deeper perfor-
mance chasm than what was observed with dd: the writing
speed drops from 108 to 13 MB/s (an 88.1% reduction). The
loss of reading performance is even more significant: from
2.2 GB/s to only 17 MB/s. It makes sense that both read-
ing and writing speeds drop by the same order of magnitude
since the system’s bottleneck is the same in both tests — the
processing cost of encrypting/decrypting every transaction.

6.3.5 fio

This is a highly customizable benchmarking tool for hard
drives that aims to create workloads as close as possible to
the desired test case.

Results from the £io tool are presented in Fig. §, where
the unit of measure is input/output operations per second
(iops). The sequential tests (i.e., those labeled ‘sequential
read’ and ‘sequential write’) consider large blocks while
requesting disk synchronization sparsely. In this case, the

s NO SPDM
s WITH SPDM

104 4—

1033

107

operations per second [iops]

101 4= - -
random random random sequential sequential
read rw rw read write
read write

Fig.8 Measuring transaction rate of an SPDM-enabled hard disk: fio

pattern observed is similar to the ones obtained with dd and
bonnie++: there is a significant loss of performance, with
the number of iops in the SPDM-enabled disk being less than
1% of the baseline value.

The performance degradation becomes less prominent
when randomness is introduced. For these tests, the block
size was set to 4kB, and a request to synchronize data was
sent after every operation. When performing random read-
only tests, the performance drops to 18.2% of the baseline
value. Mixing randomized reading and random writing oper-
ations (in Fig. 8, label “random rw read” refers to the read
speed, and label “random rw write” refers to the write speed)
yields virtually the same level of iops; introducing SPDM
causes a reduction of approximately 0.5% in both cases, but
the standard deviation width prevents us from attesting sta-
tistical difference. We conjecture that the reason behind this
trend is the bottleneck shifting from the cryptographic oper-
ations to the physical magnetic disk operations, namely the
frequent seek operations to address the random request loca-
tions.

6.3.6 Boot time

During OS initialization, the SPDM-enabled HD driver per-
forms all SPDM bootstrapping procedures, including loading
certificates and establishing a symmetric key. Our test shows
that these procedures increase OS boot time by 205ms (1.06 s
to 1.265 s), which resonates with the results presented in
Sect. 5.

6.3.7 Summary

In summary, the results show that bulk operations are greatly
affected by securing the hard drive’s low-level communi-

@ Springer

126 Page 10 0f 20

R.C.A.Alves et al.

cations with SPDM. However, disk access patterns that mix
small read and write operations performed nearly at the same
speed when compared to a plain baseline.

7 Network card use case

The experiment introduced in this section aims to assess the
impact of SDPM on another device class: network cards.
Although throughput and latency are still the main metrics
of interest, workload and impact on user experience are fun-
damentally different in these scenarios compared to the hard
drive study presented in Sect. 6. The influence of SDPM
is studied by comparing the outcome of benchmark tools
between an SPDM-equipped card and its original counter-
part. Implementation details are described in Appendix C.

7.1 Method

Alltests were executed on a QEMU virtual machine equipped
with an E1000 network card.

We used two benchmarking utilities to assess networking
performance: iperf 37, and netperfd. A more detailed
description of these tools is provided in Appendix E. Addi-
tionally, we set up web servers within both the host and the
guest to check how long it takes to retrieve files of different
sizes. For each case, two batches of experiments were exe-
cuted: 1) a baseline setting, with the unmodified device and
driver; and 2) an SPDM-enabled setting, with our modified
implementation.

7.2 Results

This section presents and discusses the metric values obtained
by each of the benchmark methods, with the goal of charac-
terizing the impact introduced by SPDM. The graphs are
labeled from the guest machine point of view, that is, “send"
means packets were sent from the guest machine to the host
machine, whereas “receive” means packets were sent from
the host machine to the guest machine.

7.2.1 iperf3

Throughput, one of the main network metrics, is shown
in Fig. 9. As may be expected, introducing SPDM causes
an overall reduction in throughput, since every packet is
encrypted at a low level. This throughput reduction ranged
from 23% (UDP receive) to 84% (TCP send).

Next to throughput, delay is another key network perfor-
mance indicator, shown in Figure 10. The iper£3 tool only

7 https://iperf.fr
8 https://github.com/HewlettPackard/netperf

@ Springer

ol mmm NOSPDM

W WITH SPDM

5004

4001

Throughput [Mbps]
N w
o =]
IS) o

fury

o

o
L

TCP TCP ubDP UDP

receive send receive send

Fig.9 Measuring network throughput: iper£f3

BN NO SPDM
s WITH SPDM

3000 |

2B e

2000 +

500 fr———t—

Round trip time [us]
=
o
o
o

5004

TCP send

TCP receive

Fig. 10 Measuring round trip time: iperf3

records this metric for TCP tests. Again, the SPDM-secured
system performs worse, increasing the round trip time from
83 us to nearly 385 us for traffic flowing from the VM to
the host (TCP send). Although it is nearly a 5x increase, it
is imperative to remember that both server and client are
running on the same machine. Therefore, many common
delay sources are not factored into the measurement, such as
propagation delay and queuing delay on routers. Considering
typical delay over the internet is in the order of milliseconds,
one could argue that extra 0.3 ms would negligibly impact
most applications.

Traffic in the reverse direction presented a larger delay:
1.2 ms without SPDM increasing to nearly 3 ms on the
secured version. The extra 1.8 ms is still tolerable in most
applications, although it could impact delay-sensitive appli-
cations, for example, applications requiring haptic feedback.

The jitter metric (delay variation) is collected by iper£f3
only for UDP tests (Fig. 11). The results indicate that intro-
ducing SPDM tends to increase the jitter (between 1.3x and

Benchmarking the security protocol and data model (SPDM)...

Page 110f20 126

B NO SPDM
s WITH SPDM

1004

-

o
L
:

Jitter [ms]

102 EEEE |

UDP send

UDP receive

Fig. 11 Measuring network jitter: iper£3

1.8x), although the wide confidence intervals prevent us from
drawing any definitive conclusions.

Another metric collected only for UDP traffic is loss rate
(since UDP is a best effort protocol, whereas TCP provides
reliability). Considering the UDP send scenario, there were
no packets lost. However, during the UDP receive sce-
nario, massive losses were recorded: approximately 98%.

These loss rate results are linked to the CPU usage. On
UDP send, the transmission rate is bound by the guest
machine’s speed, which is slower than that of the server,
resulting in all packets being processed accordingly. How-
ever, in the UDP receive scenario, the host machine
transmits packets as fast as it can, completely overwhelm-
ing the guest machine.

According to iperf3, considering UDP traffic, the
packet sender achieves nearly 100% CPU usage, since it
continuously sends UDP packets as fast as it can; whereas
the receiver presented CPU usage between 4% and 20%.
Curiously, in the UDP send scenario, the packet receiver
displays a higher CPU usage without SPDM since it pro-
cesses more packets (as indicated by throughput in Fig. 9).

The SDPM overhead dominates the guest machine’s CPU
usage inbothboth TCP sendand TCP receive,increas-
ing to nearly 100% and 60%, respectively. On the host
machine, the CPU is not a bottleneck, with the larger number
of processed packets leading to a higher CPU usage in the
scenario without SPDM.

7.2.2 netperf

The throughput results obtained from netperf are displayed
in Figs. 12 and 13. The first set of results represents a greedy
sender benchmark, measured in MB/s: one of the endpoints
sends as much traffic as it can. Thus, the overhead introduced
by SPDM is detrimental to performance, presenting between

mmm NO SPDM

12001 s WITH SPDM

1000 ~

800

B0

Throughput [Mbps]

4004

200 -

TCP TCP UDP
receive send send

Fig. 12 Measuring throughput [MBps]: netperf

= NO SPDM
8000 === WITH SPDM

Transactions per second

UDP send|recv

TCP send|recv

Fig. 13 Measuring throughput [T/s]: netperf

83% (TCP receive) and a 92-fold (UDP send) smaller maxi-
mum datarate, similar to what was observed with iperf3.
In the second set of results, the benchmark executes syn-
chronous request/response transactions, one at a time. In
addition, the transactions payload consists of only 1 byte
of dummy data. These two characteristics combine to reduce
the strain on the CPU since less data is transmitted (and thus
encrypted). The results show that, under these conditions, the
overhead introduced by securing the messages at hardware
level is barely noticeable (less than 1.1% degradation).

In short, the latency metric yields proportional results in
comparison to throughput: the observed delay is a few times
larger with SPDM (6x to 12x), except for the transaction-
based test cases. Nonetheless, the largest delay measured
was approximately 5 ms, which is acceptable for most appli-
cations (Fig. 14).

The CPU load on the guest machine is nearly 100% in
TCP send and UDP send scenarios (greedy tests), regardless
of the presence of SPDM. In the TCP receive scenario, using
SPDM caused the CPU load to increase by 81%, while the

@ Springer

126 Page 12 of 20

R.C.A.Alves et al.

6000
= NO SPDM
W= WITH SPDM
5000 -
4000 -
I
=
> 3000
%)
[=
]
5 2000
1000 +
0+ b | b |
TCP TCP TCP uDP uDP
receive send send|recv send send|recv

Fig. 14 Measuring network latency: netperf

increment in transaction-based scenarios was approximately
36%.

The CPU usage of the host machine did not seem to
be greatly impacted by SPDM. Although the tests with
SPDM tended to present higher CPU utilization, this was
not observed in every scenario.

7.2.3 Download from web server

Lastly, the results from the file download test are shown in
Fig. 15, containing the average data rate.

For files ranging from 5kB to 500kB, the performance
gap between the secured and unsecured implementations
increased steadily. This trend can be explained by the pres-
ence of overheads other than the hardware level SPDM
encryption that are proportionally large, such as TCP win-
dowing, interrupt handling, disk I/O operations, and OS
packet queue management.

For files larger than 500kB onward, the difference sta-
bilizes: the secured version takes around 5 times longer to
complete the download (& 80% lower throughput). The
SPDM-secured implementation peaks at 10.5 MB/s, while
the original implementation peaks at 60.5 MB/s.

7.3 Summary

Adding SPDM to the network card and encrypting all
application-related payloads can severely reduce the max-
imum achievable throughput. Nonetheless, for use cases that
are not throughput-intensive presented manageable perfor-
mance losses. A comprehensive list of all numerical results
is in Appendix F. We speculate that, in future SPDM imple-
mentations, dedicated cryptographic hardware may reduce
the performance strain imposed by the additional security
layer.

@ Springer

8 Final remarks

The Security Protocol and Data Model (SPDM) aims at
providing standardized ways for component (mutual) authen-
tication, firmware integrity check, and secure communication
establishment.

Although these functionalities are important for increas-
ing the security of modern computing systems, they are
expected to cause tradeoff performance penalties. Our goal in
this paper is to assess the magnitude of SPDM’s performance
impact.

In general, our results show that the overhead introduced
by the most time-consuming SPDM message is 109 ms
(409 million cycles), while the fastest messages take only
a few microseconds. According to our experiments, the typ-
ical SPDM bootstrap takes approximately 300 ms to run,
considering both requester and responder typical operations.

Regarding the hard drive benchmarks, we note that the
specific workload greatly influences the final outcomes. On
sequential read or write operations, data encryption becomes
the bottleneck, and heavily affects performance (e.g., reading
speed dropped from 2.1 to 17 MB/s in one run of the bench-
mark). That is not the case, however, for workloads that are
mainly comprised of random read and write operations scat-
tered throughout the disk. For such workloads, we found no
significant performance differences between the secured sys-
tem and the baseline system. The bottleneck then becomes
the physical movement of disk heads and switching between
reading and writing modes.

Lastly, the experiments on the SPDM-secured network
card revealed that the maximum throughput can be severely
reduced, the worst case being a reduction from & 1300 to
~ 130 MB/s of UDP traffic. However, this performance loss
was partially due to the reduced processing power of the guest
machine. This result highlights that the processing imposed
by the additional security layer is especially burdensome to
embedded systems. Other experiments showed that, if only
small amounts of data are transmitted, the performance drop
remains contained (1%, at most).

In future work, we intend to further explore the perfor-
mance impacts of deploying SPDM on modern systems.
This includes conducting experiments on physical hardware
platforms instead of using emulation software, which can
be achieved by, for example, implementing SPDM-enabled
devices on FPGAs.

Appendix ARandom number generator (RNG)
implementation details

As discussed in the main document, the RNG device was
implemented as a memory-mapped PCI device. After ini-
tializing, the RNG waits until the device driver writes a

Benchmarking the security protocol and data model (SPDM)...

Page 130f20 126

Fig. 15 File download test: data
rate 70.0
60.0 H No SPDM
= SPDM
T 50.0
a8
S 400
Q
§ 30.0
o
c 200
[a)
10.0
oo e lim
5k 10k 50k ' 100k ' 500k ' 1M 5M 10M | 50M ' 100M
File size [bytes]

request message to a chosen address in the MMIO region,
and then indicates that the message is ready by writing to
a control register. The message can only be read after the
device driver writes to the control register indicating it is
ready. After reading and processing the message, the RNG
device sends an interrupt signal to announce that the response
can be read from the MMIO region. Some of the memory
region addresses are destined for non-SPDM transactions,
from which the baseline results for retrieving a random num-
ber outside of an SPDM secure session were extracted.

We implemented the SPDM requester as a device driver
for our RNG device on Linux. This device driver is built upon
the userspace I/0O system (UIO).

For better reproducibility, the QEMU command-line
options used in the experiment are listed below:

e —enable-kvm: enables KVM (Kernel-based Virtual
Machine), which enhances virtual machine performance.
Needed so the guest kernel’s performance event infras-
tructure is granted access to hardware counters;

e —cpu gemub4,pmu=on: selects the emulated CPU
model and enables Performance Monitoring Unit (PMU),
needed to access performance counters;

e -device spdm: attaches an SPDM RNG device to the
virtual machine;

e -kernel bzImage: selects the kernel booted by the
virtual machine. We used Linux Kernel version 4.19 from
Buildroot;

e -drive file=rootfs.ext2,if=ide, format=raw:
indicates the root file system used in the VM, using IDE
interface, and raw format. We used the root file system
from Buildroot;

® -append "console=ttyS0 rootwait root=/dev/
sda": kernel command-line options. Sets the default

console output, waits until root device is ready, and sets
the root file system partition.

e -m 1024: sets the amount of RAM at the virtual
machine, in megabytes,

Appendix B Hard driveimplementation details

The guest operating system is a custom Buildroot-based
Linux distribution® Its kernel contains anative virtio_blk
driver, compatible with QEMU’s virtio_blk hard disk.
Both Linux driver and virtual hard disk were modified
to incorporate SPDM security functionalities, provided by
libspdm.

In short, the interaction between the kernel driver and the
virtual device is as follows: 1) the operating system sends
read/write requests'? to the driver queue (queue_request
function); 2) the request is executed and transferred from
the guest virtual machine’s kernel space to the virtual
disk’s request handler, triggering the handle_request
function; 3) the request is forwarded to the host’s disk;
4) QEMU receives the request results from the host OS
(rw_complete callback function); 5) QEMU forwards
the results to the virtio_blk driver, activating the
request_done function; 6) the guest kernel is informed
that the I/O operation is complete. The diagram in Fig. 16
illustrates these aforementioned steps.

The aforementioned interaction was adapted to follow the
SPDM workflow.

In the adaptation, the driver fills the role of the SPDM
requester, while the hard drive takes the role of SPDM respon-
der. Requester and responder are required to bootstrap the

9 Available at https:/buildroot.org/.

10 There are other kinds of operations, but we focus on reading and
writing for illustrative purposes.

@ Springer

126 Page 14 of 20

R.C.A.Alves et al.

Fig.16 virtio_blk driver
and virtual hardware interaction:

1) Guest operating system
request, 2) Driver request to

Guest kernel

virtual hardware, 3) Request

forwarded to host, 4) Request
result at virtual hardware, 5)

| Virtio driver

Request result at driver, 6)

Request finished probe()

| queue_request()

QEMU
Virtual disk
realize()
3 -
. 2' handle_request() B e b
Host's
Disk

J request_done()

..... rw_complete() o | EEE CEEE

o e

SPDM protocol before heading into the application phase, in
which read/write requests are encrypted.

The virtio_blk hard drive initializes internal SPDM
variables and loads certificates during the virtual machine
initialization (in the realize function). After calling this
function, the hard drive is ready to process incoming SPDM
messages.

The kernel driver performs a similar initialization when
anew virtio_blk device is detected, using the probe
function. At that point, not only are local variables initial-
ized, but the whole SPDM bootstrap procedure also occurs.
As a result, all SPDM messages, from GET_VERSION to
KEY_EXCHANGE, are exchanged at that time. All SPDM mes-
sages are encoded similarly to regular read/write requests, but
using a special operation code. By the end of probe func-
tion, driver and hard disk obtain a symmetric key they can
use for encrypting application data.

Incoming write requests are now encrypted as part of
the queue_request function in the kernel driver, and
decrypted at the handle_request function when it
reaches the virtual disk. Analogously, a read request is
encrypted after the data is retrieved from the host by means
of the rw_complete function (on QEMU), and decrypted
by the kernel driver as part of the request_done function.

Appendix C Network card implementation
details

The experiments were conducted on a QEMU emulated
environment. From the available virtual network card imple-
mentations, we chose to work with the E1000 card, since its
implementation strikes a good balance between functionality,
simplicity, and documentation availability. By default, our
custom Buildroot-based Linux distribution contains a com-

@ Springer

patible device driver. Both the driver and virtual device were
modified to incorporate SPDM functionalities.

In brief, the guest OS sends packets as follows: 1) on
the kernel driver, a packet is queued for transmission by
the means of the e1000_xmit_frame function; 2) on
QEMU, the start_xmit function is eventually triggered,
which uses process_tx_desc auxiliary function to read
the DM A-mapped transmission queue; 3) next, xmit_seg,
e1000_send_packet, and gemu_send_packet
functions are called in sequence, until 4) the packet is sent to
be processed by the host’s kernel.

Figure 17 illustrates these steps.

The packet reception process follows a different path:
1) when a packet destined to the guest arrives, the host
OS forwards the packet to QEMU, eventually triggering the
e1000_receive function; 2) nextthe e1000_receive
_iov auxiliary function is used to queue incoming packets
in the specific data structures; 3) the guest kernel polls the
device for packets by the means of e1000_clean function;
4)el1000_clean_rx_irgtranslates packets into internal
data structures; 5) finally, functionse1000_receive_skb
and napi_gro_receive send the packets to the guest’s
kernel networking stack.

Figure 18 illustrates this process.

In terms of the adaptation to the SPDM protocol, the driver
becomes the SPDM requester, whereas the E1000 virtual card
becomes the responder!!. Both counterparts have to boot-
strap the SPDM protocol before heading into the application
phase, in which packets are encrypted between the two end-
points.

Regarding the E1000 network card, internal SPDM vari-
ables are loaded during the virtual machine initialization (in
the pci_el000_realize function). After this point, the
virtual device is ready to start processing SPDM messages.

! The modifications are incompatible two optimizations, namely TCP
Segmentation Offload and Scatter-Gather, which had to be disabled.

Benchmarking the security protocol and data model (SPDM)...

Page 150f20 126

Fig. 17 Sending packets on an
emulated E1000 network card

QEMU

Guest kernel

Virtual 1000

| €1000 driver

I realize() I

Network
V' start_xmit() I Interface
5 probe() 2 1 9 i
I process_tx_desc() |< E
I-|> e1000_xmit_frame() | 3
>| xmit_seg() I ‘
¥ '
| e1000_send_packet()l‘- H
4 ’
[qemu_send_packet()}-.-- L - HOSt S
Kernel
Fig. 18 Receiving packets on an
emulated E1000 network card QEMU
Guest kernel Virtual e1000
| €1000 driver ‘ realize() Network
I probe() | Interface
=11 I - Pending g i
| e1000_clean() (111" packets 2
e1000_clean_rx_irq() 3 .
- 4: | e1000_receive_iov()| H
#=+{ e1000_receive_skb() v 1
5|:5 2 .
=>I napi_gro_receive() iun] €1000_receive() - .| | Host's
1 Kernel

At the guest OS, the kernel driver initializes basic SPDM-
related data during the driver initialization (e1000_open),
while the SPDM bootstrap procedure starts when a new
interface is created (e1000_probe). SPDM messages are
encoded into modified socket buffer structures similarly to
regular packets, but using a special marker. By the end of
e1000_probe function, a symmetric key is established,
which can be used for encrypting application data.

Packets from the guest OS to the network are encrypted
at the e1000_xmit_frame function, to be decrypted in
QEMU by the virtual device at the process_tx_desc
function. Similarly, packets from the network to the vir-
tual machine are encrypted at the e1000_receive_iov
function (on QEMU), and decrypted by the kernel driver
withinthe e1000_clean_rx_irgfunction. Like the hard
drive experiments, both kernel and QEMU are linked with
libspdm library to provide SPDM functionality.

Appendix D Hard drive benchmark tools

We used widely employed tools and benchmarking utilities
to assess hard drive performance: dd, hdparm, ioping,
bonnie++, and fio.

Some of these tools provide built-in statistical data. The
others were run multiple times and had their outcomes sum-
marized manually by the research team. The usage, metrics
provided, and output processing for the five tools employed
are described in what follows.

The following QEMU command line parameters were
used:

e —enable-kvm: enables KVM (Kernel-based Virtual
Machine), which enhances virtual machine performance;

e —cpu gemub4: for selecting the emulated CPU model;

e -kernel bzImage: selects the kernel booted by the
virtual machine. We used Linux Kernel version 4.19 from
Buildroot;

e -drive file=rootfs.ext2,if=ide, format=raw:
indicates the root file system used in the VM, using IDE

@ Springer

126 Page 16 of 20

R.C.A. Alves et al.

interface, and raw format. We used the root file system
from Buildroot;

® -append "console=ttyS0 rootwait root=/dev
/sda": kernel command-line options. Sets the default
console output, waits until root device is ready, and sets
the root file system partition;

e —m 1024: virtual machine RAM, in megabytes;

e -drive file=benchmarkdisk,if=virtio, format
=raw: appends a virtio-based additional hard drive,
which is the target of our experiments.

D.1 dd (from BusyBox v1.31.1)

This is a commonplace utility found on Unix-like operating
systems. Its primary use is to transfer raw data from one
destination to another.

In our experiments, we used dd to test write speed. Specif-
ically, we read data from /dev/zero, which is a fast source
of dummy data, and wrote it to a file on the target disk.

We tested writing 2 gigabytes of data to the disk accord-
ing to two approaches: in small blocks of 4KB each, or in
512MB-long blocks. In all cases, we enforced that the data
was physically written on the device before the commands
returned with the conv=£fsync command line option. The
write speed is calculated by the quotient between the total
amount of data written and the time it takes to complete the
operation. We used the t ime command to measure the exe-
cution time with dd. For each block size, the results hereby
presented correspond to the average of 10 repetitions of the
writing procedure.

D.2 hdparm (from BusyBox v1.31.1)

This command line tool is also commonly found in Linux
systems. Besides using it to set and read hard drive parame-
ters, we also explored its —t option switch, which provides
buffered reading speed estimates. The tests with this tool
were run a total of 10 times.

D.3 ioping v0.9

This is a tool for monitoring disk latency. It works similarly
to the well-known tool from the network domain ping, i.e.,
by sending short requests to the disk and measuring how long
they take to be fulfilled. We used the default parameters while
testing both reading and writing latency, executing a total of
10 pings for each operation.

D.4 bonnie++ v1.04

This is a purpose-built benchmarking toolkit for hard drives.
It automatically performs write, rewrite, and read tests. The

@ Springer

metrics extracted from this tool were read and write speed
measured in kB/s. The main command line options employed
were:

e —x 10 runs the benchmark 10 times;

e -s 2Gspecifies total amount of read/write data to 2 giga-
bytes;

e —n 0 disables the file creation test, which is of little
interest to our scenario because this test relates mostly to
the file system;

e —f skips per-character tests, since our goal was to test
HD behavior similar to common system usage;

e -Db specifies unbuffered writes,

e -Duses the O_DIRECT flag, which attempts to perform
requests synchronously.

D.5 fio v3.23

This is a highly customizable benchmarking tool for hard
drives. Its main goal is to enable the creation of a workload as
close as possible to the desired test case. Among the large set
of metrics provided by this tool, we focused on I/O operations
per second (iops). The main command line options used were:

e —-size=<gize> sets the portion of the disk that will
be used to perform the tests. We used 2 GB in all exper-
iments,

e —-10_ size=<size>total amountof datausedineach
I/O transaction. We used 5 GB in all experiments,

e —-rw=<option> the type of I/O pattern. Common
values are read (sequential reads), write (sequential
writes), randread (random reads), and randrw (ran-
dom reads and writes mixed),

e —-blocksize=<size> the size of each individual
operation. We used 1024 KB for sequential operation
patterns and 4 KB for random operation patterns,

e —-fsync=<n> issues a synchronization command at
every <n> writes. We configured <n> to 10,000 for
sequential operation patterns and 1 for random operation
patterns.

The aforementioned set of command line options yields
four different tests performed with the £ 1o tool: 1) sequential
reads with 1024 KB blocks; 2) sequential writes with 1024
KB blocks; 3) randomized reads with 4 KB blocks; and 4)
randomized mixed reads and writes with 4 KB blocks.

D.6 boot time

Contrary to the other metrics hereby evaluated, we did not use
any specialized tool to measure system boot time. Instead,
we modified the guest’s initialization scripts to log the sys-

Benchmarking the security protocol and data model (SPDM)...

Page 170f20 126

tem uptime as the last step of the initialization process. The
system uptime was obtained from reading /proc/uptime,
a file that counts the seconds elapsed from the moment the
kernel takes control of the CPU, yielding a precision of hun-
dredths of a second. We collected a total of 15 boot times.

Appendix E Network card benchmark tools

All tests were executed on a QEMU virtual machine
equipped with a E1000 network card. The following
parameters were added to the QEMU command line to
add the network card: ~-device e1000,netdev=net0
-netdev user,id=net0,hostfwd=tcp::5555-
: 80.

We used two benchmarking utilities to assess networking
performance: iper£3, and netperf. Additionally, we set
up web servers within the host and within the guest to check
how long it takes to retrieve files of different sizes. Some
of the tools used provide statistical data. Those that do not
provide statistical data were run multiple times before having
their outcomes summarized manually by the research team.

The usage, metrics provided, and output processing for the
tools employed are described in the following subsections.

E.1iperf3

This tool measures network throughput by sending data from
a client to a server or vice versa. It is also instrumented to
collect other metrics, such as CPU usage, packet loss rate, and
jitter, depending on the selected protocol and flow direction.

The main iperf£3 server (executed in the host machine)
command line options are:

e —s starts a server
e -1 0 disables periodic reports
e -J selects JSON output

While command line options used at the client (executed
in the guest machine) are:

e —C <ip> starts a client connection to iperf3 server
running at target IP address

-1 0 disables periodic reports

-J selects JSON output

—udp uses UDP rather than TCP

-R reverses the direction of a test, so that the server sends
data to the client

e -t <n> test length in seconds

The combination of protocols (TCP/UDP) and flow direc-
tion (client to server and server to client) yields four tests.
The default test length is 10 seconds, however we decided

to increase it to 60 seconds to reduce the weight of tran-
sient behavior. Since iperf3 does not provide statistical
data, each test was executed 10 times to calculate confidence
intervals.

The metrics of interest are throughput, round trip time
(RTT), and CPU utilization (both at the server and at the
client). This tool also provides jitter and percentage of lost
packages, but only for UDP tests.

E.2 netperf

This is another networking benchmark tool. Its functionality
is similar to iperf3, but it is a completely separate imple-
mentation, with different command line options.

On a default Ubuntu installation, the netperf server
(netserve binary) is automatically started along with the OS
initialization process. No additional configuration is needed.

The netperf client ran at the guest virtual machine. It
has several command line options, we chose to work with the
following subset:

e —c -C measures CPU usage at client and server

-I 95,5 calculates 95% confidence intervals, while

specifying a 5% confidence interval width is desired

-7 keeps additional timing statistics

-H <ip> connects to netserver at the target IP address

-t omni sets test type to ’omni’

— separator from global options to test specific options

-d <dir> sets test direction (send, receive, or rr)

-T <proto> sets protocol type. We will focus on UDP

and TCP

e -0 "<cl>,<c2>,.
ing the output columns

. " sets output format to CSV, list-

Appendix F Numeric values

Table 2 summarizes all numeric values obtained in all per-
formed experiments with the hard drive, while Table 3
summarizes all numeric values obtained in all experiments
with the network card.

@ Springer

126 Page 18 of 20

R.C.A.Alves et al.

Table 2 Hard drive benchmarks numeric results

With SPDM Without SPDM
Measurement Average Standard deviation Average Standard deviation
dd small blocks [B/s] 2.59E+04 145 1.51E+05 1.31E+04
dd big blocks [B/s] 2.71E+04 60 1.52E+05 1.03E+04
ioping read latency [us] 866 335 1.08E+03 2.49E+03
ioping write latency [us] 1.58E+04 7,677 1.84E+04 1.11E+04
hdparm read speed [kB/s] 2.07E+04 145 3.83E+06 1.03E+06
bonnie++ read speed [kB/s] 1.75E+04 50 2.24E+06 2.43E+04
bonnie++ write speed [kB/s] 1.28E+04 50 1.08E+05 6.57E+03
fio sequential read [iops] 19.9 1.0 5.94E+03 249
fio sequential write [iops] 17.5 0.9 1.99E+03 1.41E+03
fio random read [iops] 3.94E+03 354 2.16E+04 192
fio random rw read [iops] 22.5 8.7 22.6 8.7
fio random rw write [iops] 22.5 2.7 22.6 2.6
Table 3 Network card benchmark numeric results

With SPDM Without SPDM

Measurement Average Standard deviation Average Standard deviation
iperf3: tcp receive throughput [Mbps] 89.17 0.13 509.4 2.1
iperf3: tcp receive rtt [us] 2,965 80 1,197 564
iperf3: tcp receive guest CPU utilization [%] 60.05 0.21 31.0 0.2
iperf3: tcp receive host CPU utilization [%] 0.161 0.003 0.64 0.01
iperf3: tcp send throughput [Mbps] 89.94 0.19 578.2 2.6
iperf3: tcp send rtt [us] 385 24 82.9 2.6
iperf3: tcp send guest CPU utilization [%] 99.66 0.05 38.5 2.2
iperf3: tcp send host CPU utilization [%] 39 04 15.8 4.9
iperf3: udp receive throughput [Mbps] 73.8 6.4 95.5 3.0
iperf3: udp receive jitter [ms] 34 1.3 1.9 1.2
iperf3: udp receive lost packets [%] 98.68 0.11 98.39 0.07
iperf3: udp receive guest CPU utilization [%] 10.06 0.88 393 0.14
iperf3: udp receive host CPU utilization [%] 98.72 0.03 98.72 0.04
iperf3: udp send throughput [Mbps] 89.68 0.22 513.1 5.8
iperf3: udp send jitter [ms] 0.0118 0.0080 0.0089 0.0013
iperf3: udp send lost packets [%] 0.0 0.0 0.0 0.0
iperf3: udp send guest CPU utilization [%] 99.69 0.04 99.66 0.03
iperf3: udp send host CPU utilization [%] 3.82 0.03 20.58 0.17
netperf: TCP Send throughput [Mbps] 86.83 0.74 616.0 1.1
netperf: TCP Send guest CPU utilization [%] 100.00 0.00 97.35 0.55
netperf: TCP Send host CPU utilization [%] 14.6 6.0 252 4.9
netperf: TCP Send latency [us] 1,509 271 209 306
netperf: TCP Receive throughput [Mbps] 88.5 1.1 510.41 0.28
netperf: TCP Receive guest CPU utilization [%] 79.7 4.8 44.1 5.4
netperf: TCP Receive host CPU utilization [%] 15.9 2.2 17.3 1.9
netperf: TCP Receive latency [us] 785 696 135 74
netperf: TCP SendIRecv throughput [Trans/s] 7,304.76 0.48 7,383.88 0.63

@ Springer

Benchmarking the security protocol and data model (SPDM)...

Page 190f20 126

Table 3 continued

With SPDM Without SPDM
Measurement Average Standard deviation Average Standard deviation
netperf: TCP SendIRecv guest CPU utilization [%] 69.0 4.8 50.1 2.3
netperf: TCP SendIRecv host CPU utilization [%] 18.6 29 16.2 34
netperf: TCP SendIRecv latency [us] 136 104 135 120
netperf: UDP Send throughput [Mbps] 105.3 1.5 1,312.4 2.5
netperf: UDP Send guest CPU utilization [%] 100.0 0.0 100.0 0.0
netperf: UDP Send host CPU utilization [%] 15.5 4.6 15.1 4.7
netperf: UDP Send latency [us] 4,970 745 395 193
netperf: UDP SendIRecv throughput [Trans/s] 7,296.57 0.45 7,349.50 0.50
netperf: UDP SendlRecv guest CPU utilization [%] 67.4 3.8 49.9 5.0
netperf: UDP SendlRecv host CPU utilization [%] 18.8 3.8 16.4 32
netperf: UDP SendIRecv latency [us] 136 70 135 107

Acknowledgements The authors thank Luca Beraldo Basilio, Luca
Bevilacqua Previato Roja, and Marcos de Souza Boger for providing
an early draft of the SPDM-enabled network card code.

Author Contributions R.C.A.A. executed the experiments, generated
the graphs, and wrote the main manuscript text. M.A.S.Jr. and B.C.A.
idealized the paper and participated in experiment design. All authors
reviewed the manuscript.

Funding The authors would like to thank Hewlett Packard Enterprise
for supporting this project. This project was partially funded by Fun-
dagdo de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP grant
2020/09850-0), Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico (CNPq grant 304643/2020-3), and Fundagdo Coordenagdo
de Aperfeicoamento de Pessoal de Nivel Superior (CAPES Finance
Code 001).

Availability of data and materials Any data can be made available
upon request. Code used in the research is freely available on github
(https://github.com/rcaalves/spdm-benchmark).

Declarations

Conflict of interests The authors have no relevant financial or non-
financial interests to disclose.

Ethical approval Not applicable.

References

1. Cui, A., Costello, M., Stolfo, S.J.: When firmware modifications
attack: a case study of embedded exploitation. In: Network and
Distributed System Security Symposium (NDSS’13), p. 13. The
Internet Society, San Diego, California (2013)

2. Brown, D., Walker, T., III., Blanco, J., Ives, R., Ngo, H., Shey, J.,
Rakvic, R.: Detecting firmware modification on solid state drives
via current draw analysis. Comput. Secur. 102, 102149 (2021)

3. Choi, B.-C., Lee, S.-H., Na, J.-C., Lee, J.-H.: Secure firmware vali-
dation and update for consumer devices in home networking. [IEEE
Trans. Consum. Electron. 62(1), 39—44 (2016). https://doi.org/10.
1109/TCE.2016.7448561

10.

11.

12.

13.

14.

. Menn, J.: NSA Can Hide Spyware in Hard-Disk Firmware. https://

www.vox.com/2015/2/17/11559082/nsa-can-hide-spyware-in-
hard-disk-firmware. Accessed 16 Dec 2021 (2015)

. DMTF: DSP0274: Security protocol and data model (SPDM)

specification, v.1.3.0. Technical report, Distributed Manage-
ment Task Force (Jun 2023). www.dmtf.org/sites/default/files/
standards/documents/DSP0274_1.3.0.pdf

. Armellin, A., Caviglia, R., Gaggero, G., Marchese, M.: A frame-

work for the deployment of cybersecurity monitoring tools in
the industrial environment. IT Professional 26(4), 62-70 (2024).
https://doi.org/10.1109/MITP.2024.3396356

. Cremers, C., Dax, A., Naska, A.: Formal analysis of SPDM: Secu-

rity protocol and data model version 1.2. In: 32nd USENIX Security
Symposium (USENIX Security 23), pp. 6611-6628 (2023)

. Profentzas, C., Giines, M., Nikolakopoulos, Y., Landsiedel, O.,

Almgren, M.: Performance of secure boot in embedded systems.
In: 15th DCOSS, pp. 198-204 (2019). https://doi.org/10.1109/
DCOSS.2019.00054

. Khalid, O., Rolfes, C., Ibing, A.: On implementing trusted boot for

embedded systems. In: 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 75-80 (2013).
https://doi.org/10.1109/HST.2013.6581569

Yin, H., Dai, H., Jia, Z.: Verification-based multi-backup firmware
architecture, an assurance of trusted boot process for the embed-
ded systems. In: 2011 IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, pp.
1188-1195 (2011). https://doi.org/10.1109/TrustCom.2011.160
Kumar, V.B.Y., Gupta, N., Chattopadhyay, A., Kasper, M., Krauf3,
C., Niederhagen, R.: Post-quantum secure boot. In: 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), pp.
1582-1585 (2020). https://doi.org/10.23919/DATE48585.2020.
9116252

Dasari, S., Madipadga, V.: Aegis: A framework to detect compro-
mised components in the supply chain of information technology
infrastructure. In: IWBIS, pp. 159-164 (2020). https://doi.org/10.
1109/IWBIS50925.2020.9255660

Velozo, F., Ferreira, T., Pacheco, E., Alves, R., Jr., M.S., Alber-
tini, B., Batista, D.: Fuzzing para o protocolo TLS: Estado da
arte e comparagdo de fuzzers existentes. In: XXIII SBSeg, pp.
303-308. SBC, Porto Alegre, RS, Brasil (2023). https://doi.org/
10.5753/sbseg_estendido.2023.235133

Ferreira, T.D., Freitas, O.F., Alves, R.C.A., Albertini, B.C.,
Jr., MLA.S., Batista, D.M.: SPDM-WiD: Uma ferramenta para

@ Springer

126 Page 20 of 20

R.C.A.Alves et al.

15.

16.

17.

18.

19.

20.

21.

inspecdo de pacotes do security protocol data model (SPDM). In:
XLII SBRC, p. 8. SBC, Porto Alegre, RS, Brasil (2024)
Fujimoto, A., Peterson, P., Reiher, P.: Comparing the power of full
disk encryption alternatives. In: 2012 International Green Comput-
ing Conference (IGCC), pp. 1-6 (2012). IEEE

Broz, M., Patocka, M., Matyas, V.: Practical cryptographic data
integrity protection with full disk encryption. In: IFIP International
Conference on ICT Systems Security and Privacy Protection, pp.
79-93 (2018). Springer

Petschick, M.: Full disk encryption on unmanaged flash devices.
Master’s thesis, Technische Universitit Berlin, Germany (2011)
Bosen, B.: Full drive encryption with Samsung solid state drives.
Technical report, Trusted Strategies LLC (2010)

Bosen, B.: FDE performance comparison - hardware versus soft-
ware full drive encryption. Technical report, Trusted Strategies
LLC (2010)

Mayrhofer, R.: An architecture for secure mobile devices. Secur.
Commun. Netw. 8(10), 1958-1970 (2015). https://doi.org/10.
1002/sec.1028

Alves, R.C.A., Albertini, B.C., Simplicio, M.A.: Securing hard
drives with the security protocol and data model (spdm). In: 2022
IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 446-447 (2022). https://doi.org/10.1109/ISVLSI54635.2022.
00099

@ Springer

22.

23.

24.

25.

Alves, R.C.A., Jr., M.A.S., Albertini, B.C.: Adapting a network
card and a hard drive to SPDM. GLOBECOM 2022 - 2022 IEEE
Global Communications Conference (2022)

QEMU: QEMU - A generic and open source machine emulator
and virtualizer. https://www.qemu.org/

Kukunas, J.: Chapter 8 - perf. In: Power and Performance, pp. 137-
165. Morgan Kaufmann, Boston (2015). https://doi.org/10.1016/
B978-0-12-800726-6.00008-2

DMTF: libspdm is a sample implementation that follows the DMTF
SPDM specification. https://github.com/DMTF/libspdm/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

