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In this article we will construct a consistent space X such that every power smaller 
than 2c of its hyperspace CL(X) is countably compact, but its 2c-power is not 
countably compact. This provides a consistent negative answer to a question from 
I. Juhász and J. E. Vaughan [11]. We also give a consistent negative answer to a 
question from M. Sanchis and A. Tamariz-Mascarúa [13].
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Preliminaries

Every space in this article is a Tychonoff space with more than one point. The letters κ and λ represent 
cardinal numbers and the letters ξ, ζ, θ and similar represent ordinal numbers. With ω we denote the 
first infinite cardinal, ω1 is the first non-countable cardinal and c represents the continuum. For an infinite 
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cardinal number κ we will denote by Lim(κ) the set of all limit ordinals less than κ. Given a set X and a 
cardinal number κ, we will represent the family {A ⊆ X : |A| ≤ κ} by [X]≤κ and the notations [X]<κ and 
[X]κ are defined analogously. If X is a topological space and A ⊆ X, then we denote by clX(A) (or simply 
cl(A)) the closure of A in X. The Stone-Čech compactification βω of the discrete countable space ω will be 
identified with the set of all ultrafilters on ω and its remainder ω∗ will be identified with the set of all free 
ultrafilters on ω. Let f : ω −→ ω be a function, the Stone extension of f to βω is the unique continuous 
function f̄ : βω → βω such that f̄ |ω = f . Given two ultrafilters p, q ∈ βω, we say that p ≤RK q if there 
exists a function f : ω −→ ω such that f̄(q) = p. This relation is known as the Rudin-Keisler pre-order on 
βω. We say that two ultrafilters p and q are RK-equivalent if p ≤RK q and q ≤RK p (in symbols, p ≈RK q1), 
they are ≤RK-comparable if either p ≤RK q or q ≤RK p and they are ≤RK-incomparable if they are not 
≤RK-comparable. Following the paper [9], given a space X, p ∈ ω∗ and a sequence (xn)n∈ω in X, we will 
say that x ∈ X is a p-limit of (xn)n∈N , in symbols x = p − lim xn, if {n ∈ ω : xn ∈ W} ∈ p for each 
neighborhood W of x and a space X is p-compact if every sequence of points has p-limit. It is well known 
that every p-compact space has very nice properties, one of those is that every p-compact space is countably 
compact (for more basic properties see [1] and [9]).

For a topological space (X, T ), CL(X) denotes the sets of nonempty closed subsets of X and CL(X)
denotes the hyperspace of nonempty closed subsets of X with the Vietoris topology. Remember that the 
Vietoris topology has the sets of the form

U+ = {A ∈ CL(X) : A ⊆ U} and U− = {A ∈ CL(X) : A ∩ U �= ∅}

as a subbase, where U is an open subset of X. Given open sets U1,. . . ,Un of X, we define

〈U1, . . . , Un〉 = {T ∈ CL(X) : T ∈ (∪1≤k≤nUk)+

and T ∈ U−
k for each 1 ≤ k ≤ n}.

So, the collection

{〈U1, . . . , Un〉 : n ∈ N, U1, . . . , Un ∈ T }

constitutes a base for CL(X). Those notions used and not defined in this article have the meaning given to 
them in [5].

0. Introduction

In [8], J. Ginsburg studied the countable compactness in the hyperspace CL(X), and he proved that 
CL(X) is p-compact iff X is p-compact for every free ultrafilter p of ω (Theorem 2.1). By following this 
result and Theorem 2.6 from [9] it is evident that if every power of a space is countably compact, then its 
hyperspace is countably compact too. Nevertheless, one of the main problems proposed by Ginsburg in that 
article is to characterize the countable compactness of CL(X) by properties on X. This problem is the main 
task of this paper. In Remark 3.2 from the same paper Ginsburg asked whether there is any relation between 
the countable compactness of Xω and CL(X). From that remark, J. Cao, T. Nogura and A. Tomita provided 
some interesting examples in [2], in particular they showed that there is a countably compact Tychonoff 
space X such that Xt is countably compact but CL(X) is not countably compact and, by using MA, they 
construct a Tychonoff space X such that Xα is countably compact for every α < 2c but CL(X) is not 
(Examples 2.6 and 2.9 respectively). In the same paper they ask if 2c is the best possible cardinal for the 

1 The original definition of ≤RK -equivalent ask for a bijection in ω but it is well known that it is enough to have a 1 to 1 function 
f : ω → ω such that f̄(p) = q to guarantee that p ≈RK q.
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power of a countably compact space X to guarantee the countable compactness of CL(X). Following the 
previously mentioned results from [8] and [9] this is equivalent to ask if the countable compactness of CL(X)
is equivalent to X being p-compact for some p ∈ ω∗. In [11], I. Juhász and J. E. Vaughan conjecture that 
this last assertion is true and proved some partial results in that direction. We claim that such conjecture 
is not true in ZFC, of course this last affirmation does not mean that the conjecture from Juhász and 
Vaughan cannot be also consistent with ZFC. To do this we will use HFD spaces, introduced in [10] by 
A. Hajnal and I. Juhász, to construct a consistent example of a space X such that both Xλ and CL(X)λ
are countably compact for every λ < 2c but X is not p-compact for any p ∈ ω∗, or equivalently, X2c is not 
countably compact. We cite here the equivalent version of HFD space mentioned in that paper.

Definition 0.1. Let X =
∏

ξ<ω1
Xξ be a product of topological spaces. A subspace Z ⊆ X is an HFD space 

if for every A ∈ [Z]ω there is γ < ω1 such that A|[γ,ω1[ = {x|[γ,ω1[ : x ∈ A} is dense in X =
∏

γ≤ξ<ω1
Xξ.

In particular, HFD spaces are hereditarily separable and hereditarily collectionwise normal (Theorems 
2 and 4 from [10]). We will show that under these two conditions, the countable compactness of a power of 
a space is equivalent to the countable compactness of the same power of its hyperspaces. This result is the 
key which led us to believe that HFD would be useful to find the desired example.

Remark 0.2. In [12] it was studied the analogous problem of pseudocompact products and the hyperspace 
CL(X) by using the concept of (κ,D)-pseudocompactness, which was also introduced by García-Ferreira 
in [6] and it characterizes pseudocompact powers. In [12] it is proved that if ω ⊆ X ⊆ βX is (c, ω∗)
pseudocompact, then CL(X) is pseudocompact (this in ZFC). Furthermore if ω ⊆ X ⊆ βX and CL(X)
is pseudocompact then X is (κ, ω∗)-pseudocompact for every κ < h but there exists an example of such 
an X that is not (b, ω∗)-pseudocompact. As we may see these kinds of concepts are intimately related 
and this fact leads us to believe that we are in the right way.2 In addition, it is important to say that all 
the papers mentioned in this introduction have analogs of the same problems, properties and results for 
pseudocompactness too. We decided to omit them because the advances in this paper are related only with 
countable compactness and their approaches are different from ours.

A different problem involving p-compactness is to find additional properties to p-pseudcompactness in 
order to reach the p-compactness. Some interesting advances on this problem can be found in [13]. In that 
article M. Sanchis and A. Tamariz-Mascarúa define a ultrapseudocompact3 and totally countable compact 
space (α-pseudocompact, locally compact, sequentially compact space), which is not p-compact for any 
p ∈ ω∗ (see Examples 3.3, 3.4 and 3.5). In the same paper the authors note that none of their examples are 
neither normal nor first countable and they observe that, by following Corollary 6.6 and Theorem 6.8 from 
[14], every normal finally p-compact space which is p-pseudocompact for at least a p ∈ ω∗ is ultracompact,4
concluding that, by assuming p > ω1, every perfectly normal p-pseudocompact space is compact (see last 
paragraph from [13, pag. 332]). Finally they established the following question:

Question 0.3. [13, Question 3.6] Is it consistent with ZFC that, for every p ∈ ω∗, each p-pseudocompact 
space satisfying normality (perfect normality, collectonwise normality, normality + countable paracompact
ness) must be p-compact?

The second target of this paper is to show that our example is also collectionwise normal and ultrapseu
docompact which shows that the negative of the previous question is consistent with ZFC for collectionwise 

2 In fact the present work is previous to [12] and our results motivated us to continue working in the pseudocompact version of 
the problem. At the end, different circumstances causes that work to be published before its predecessor.
3 A space is ultrapseudocompact if it is p-pseudocompact for every p ∈ ω∗.
4 A space is ultracompact if it is p-compact for every p ∈ ω∗.
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normality. By following the next lemma we know that, if our HFD is dense in a product of compact metric 
spaces, then our example must be ulstrapseudocompact, so we will also have a consistent example of a 
collectonwise normal and ultrapseudocompact space which is not p-compact for any p ∈ ω∗.

Lemma 0.4. [7, Theorem 2.6] Let {Xi : i ∈ I} be a family of compact metric spaces and let X =
∏

i∈I Xi. 
Then, every pseudocompact dense subspace of X is ultrapseudocompact.

Our main goal is to construct an HFD space, by using forcing, which is dense in {0, 1}ω1 and then define 
a dense subspace Z satisfying that Zλ is countably compact for each λ < 2c (also ultrapseudocompact by 
Lemma 0.4), but Z2c is not countably compact and then, by Theorem 2.6 from [9], such subspace cannot 
be p-compact for any p ∈ ω∗.

In Section 1 we will define the partial order and some useful technical properties. All the required dense 
sets of the partial order will be defined in Section 2. Section 3 is devoted to prove that the required HFD

space exists and finally, we will construct the promised example in Section 4.

1. The partial order

We will define a partial order to obtain the consistent example. First we need some previous lemmas:

Lemma 1.1. [4, Lemma 9.1] Let α be a cardinal and let f : α → α be such that f(ξ) �= ξ for ξ < α. Then 
there are subsets A0, A1 and A2 of α such that:

(1) α = A0 ∪A1 ∪A2,
(2) Ai ∩Aj = ∅ for i, j ≤ 2 and i �= j, and
(3) Ai ∩ f [Ai] = ∅ for i ≤ 2.

Lemma 1.2. Let X be a set, let p0 and p1 two free ultrafilters of ω and let h0 and h1 be both 1 to 1 sequences 
in X. Suppose that either one of the following conditions holds:

(1) p0 = p1 and h0 �≡p0 h1, or
(2) p0 and p1 are non-RK-equivalent ultrafilters.

Then there exists Ai ∈ pi for i < 2 such that {hi(n) : n ∈ Ai and i < 2} are pairwise distinct.

Proof. Without loss of generality we assume that X is countable. First let p ∈ ω∗ and assume that h0 �≡p h1, 
this means that {n ∈ ω : h0(n) �= h1(n)} ∈ p. Since each hi is injective, it is standard to prove that there 
are bijective functions h′

i such that h′
i ≡p hi for each i < 2 and h′

0(n) �= h′
1(n) for every n ∈ ω. Let 

f = (h′
0)−1 ◦ h′

1 and observe that f : ω → ω and f(n) �= n for every n ∈ ω. By Lemma 1.1 there is a 
partition Bj with j < 3 of ω, such that Bj ∩ f [Bj ] = ∅ for each j < 3.

Since p is an ultrafilter, there is an unique k < 3 such that Bk ∈ p.
Furthermore h′

is are bijective so ∅ = h′
0[Bk] ∩ h′

0[f [Bk]] = h′
0[Bk] ∩ h′

1[Bk]. Now let Ci ∈ p such that 
h′
i|Ci

= hi|Ci
for each i < 2 and define A0 = C0 ∩ Bk and A1 = C1 ∩ Bk. Then Ai ∈ p for i < 2 and 

h0[A0] ∩ h1[A1] = ∅.
Now assume that p0 and p1 are non-RK-equivalent. Since each hi is injective, take bijective functions h′

i

such that h′
i ≡pi

hi for each i < 2. Let f = (h′
0)−1 ◦ h′

1 and let q1 = {f [A] : A ∈ p1}. Observe that q1 and 
p1 are RK-equivalent so, since p0 and q1 are not RK-equivalent, there exists B0 ∈ p0 and B1 ∈ p1 such 
that B0 ∩ f [B1] = ∅. Therefore, h′

0[B0] ∩ h′
1[B1] = ∅. Take Ci ∈ pi such that h′

i|Ci
= hi|Ci

for i < 2. Then 
Ai = Bi ∩ Ci for i < 2 is as required. �
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Assuming the existence of selective ultrafilters it is possible to improve the last lemma.

Lemma 1.3. Let X be a set, let {pn : n ∈ ω} be a family of selective ultrafilters and let {hn : n ∈ ω} be a 
family of sequences in X such that:

(i) |h−1
n (x)| is finite for every x ∈ X and n ∈ ω;

(ii) ∀ n, m ∈ ω, either pn = pm or pn and pm are RK-incomparable;
(iii) ∀ n, m ∈ ω, if n �= m and pn = pm, then hn �≡pn

hm.
Then for each n ∈ ω, there exists An ∈ pn such that hn|An

is 1 to 1 for every n ∈ ω and the sets of the 
family 

{
{hn(k) : k ∈ An} : n ∈ ω

}
are pairwise disjoint.

Proof. First observe that all the pn’s are selective ultrafilters so, for every n ∈ ω there is A∗
n ∈ pn such that 

hn|A∗
n

is injective. Now fix, for every pair of different natural numbers n and m, sets Am
n ∈ pn and An

m ∈ pm
such that Am

n ⊆ A∗
n, An

m ⊆ A∗
m and

{hn(k) : k ∈ Am
n } ∩ {hm(k) : k ∈ An

m} = ∅.

This is possible because of Lemma 1.2 and the fact that two RK-incomparable ultrafilters are non-RK
equivalent. Since each pn is selective, we have that for every n ∈ ω there is A′

n ∈ pn such that A′
n ⊆ A∗

n, 
|A′

n \Am
n | < ω for every m �= n. Note that

{hn(k) : k ∈ A′
n} ∩ {hm(k) : k ∈ A′

m} is finite .

Set Fm
n for every pair with m < n such that

{hn(k) : k ∈ A′
n} ∩ {hm(k) : k ∈ A′

m} ⊆ {hn(k) : k ∈ Fm
n }.

Define An = A′
n \

(⋃
i<n F

i
n

)
. Of course An ∈ pn and {hn(k) : k ∈ An}∩ {hm(k) : k ∈ Am} = ∅ for every 

pair of distinct n, m ∈ ω. �
Remark 1.4. The previous lemma looks short in its promise to be an improvement of Lemma 1.2 (because we 
ask for a set of RK-incomparable ultrafilters and this is a stronger request than being non-RK-equivalent). 
In fact every selective ultrafilter is ≤RK-minimal so, two selective ultrafilters which are RK-comparable 
must be RK-equivalent. Therefore Lemma 1.3 keeps the promise intact.

Now we will establish the initial conditions, notation and the partial order. Let κ = 2ω1 and assume CH, 
βω < κ and 2β ≤ κ for every cardinal β < κ. Let {L} ∪ {Lα : α < κ} be a partition of the set Lim(κ)
such that each set has cardinality κ. Let {gξ : ξ ∈ Lim(κ)} be an enumeration of functions from ω into κ
satisfying the following:

• gξ(n) < ξ for each ξ ∈ Lim(κ) and n ∈ ω, and
• {gξ : ξ ∈ Lα} is an enumeration of all 1 to 1 functions from ω into κ, for each α < κ.
Fix a family of κ-many RK-incomparable selective ultrafilters which exist by CH (this is a direct 

consequence of Lemma 5.1 and Theorem 6.1 from [3]). Split and enumerate such family as follows 
{pα : α < κ} ∪ {qn : n < ω}. Finally, for each α < κ, let Kα ⊆ Lα be a set such that for each 1 to 
1 function g : ω −→ α there exists a unique ξ ∈ Kα such that g ≡pα

gξ. Note that for every α < κ, 
|α|ω < κ. Since κ is regular, Kα is bounded in κ.

Consider the set:

U =
{
〈γ, I, s, T 〉 : γ < ω1, I ∈ [κ]ω, s : I −→ 2γ and T ∈

[
[I]ω

]ω}
.
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Observe that U has cardinality κ. To be short we will use the letters u, v and similar to refer the 
elements of U and for a given u ∈ U we will write γu, Iu, su and Tu to denote the coordinates of u
except when we specify something different. For each u ∈ U , A ∈ Tu and each basic open set U of 2γu , 
let BA,U = {β ∈ A : su(β) ∈ U}. Finally denote by Tu the family of all such BA,U ’s, where A ∈ Tu and 
U ⊆ 2γu , that are infinite. Note that the set BA,U depends on u but we decided to omit it to simplify the 
notation since it becomes clear by establishing Tu or in the choice of A and U . We are ready to define our 
partial order.

Definition 1.5. Let P be the set of all u ∈ U satisfying the following conditions:

(1) gβ(n) ∈ Iu for each β ∈ Iu ∩ Lim(κ) and every n ∈ ω,
(2) pα-lim su

(
gξ(n)

)
= su(ξ) for each α < κ such that Kα ∩ Iu �= ∅ and every ξ ∈ Kα ∩ Iu

Then for two given u, v ∈ P , we will say that v ≤ u if:
(i) γv ≥ γu, Iv ⊇ Iu and Tv ⊇ Tu,
(ii) sv(ξ)|γu

= su(ξ) for each ξ ∈ Iu, and
(iii) the set {sv(β)|[γu,γv[ : β ∈ BA,U \F} is dense in 2[γu,γv[ for each BA,U ∈ Tu and each finite F ⊆ BA,U .

To end this section let us prove some properties of (P ,≤).

Lemma 1.6. (P ,≤) is transitive.

Proof. Suppose that u2 < u1 and u1 < u0. Clearly γu2 ≥ γu0 , Iu2 ⊇ Iu0 , Tu2 ⊇ Tu0 and su2(ξ)|γu0
= su0(ξ)

for each ξ ∈ Iu0 , so items (i) and (ii) from Definition 1.5 are satisfied for u2 and u0. Hence it suffices to show 
that {su2(β)|[γu0 ,γu2 [ : β ∈ BA,U \ F} is dense in 2[γu0 ,γu2 [ for each BA,U ∈ Tu0 and each finite F ⊆ BA,U . 
Let W be a basic open set in 2[γu0 ,γu2 [, then there exists Wi basic open set of 2[γui

,γui+1 [ for i ∈ {0, 1}, such 
that W = W0 × W1. Fix BA,U ∈ Tu0 and F ∈ [BA,U ]<ω, then {su1(β)|[γu0 ,γu1 [ : β ∈ BA,U \ F} is dense 
in 2[γu0 ,γu1 [ because u1 ≤ u0. Also BA,U ⊆ A ∈ Iu0 ⊆ Iu1 , since su2(β)|[γu0 ,γu1 [ = su1(β)|[γu0 ,γu1 [ for each 
β ∈ BA,U , {su2(β)|[γu0 ,γu1 [ : β ∈ BA,U \F} is dense in 2[γu0 ,γu1 [. Thus {su2(β)|[γu0 ,γu1 [ : β ∈ BA,U \F}∩W0
is infinite. Even more, U ⊆ 2γu0 and W0 is a basic open set of 2[γu0 ,γu1 [, so U ×W0 is an open set of 2γu1 , 
then BA,U×W0 ∈ Tu1 . By u2 ≤ u1, {su2(β)|[γu1 ,γu2 [ : β ∈ BA,U×W0 \ F} is dense in 2[γu1 ,γu2 [. Thus 
{su2(β)|[γu1 ,γu2 [ : β ∈ BA,U×W0 \ F} ∩W1 is infinite. If β ∈ BA,U×W0 \ F and su2(β)|[γu1 ,γu2 [ ∈ W1, then 
β ∈ BA,U \ F , su2(β)|[γu0 ,γu1 [ ∈ W0 and su2(β)|[γu1 ,γu2 [ ∈ W1, so su2(β)|[γu0 ,γu2 [ ∈ W . Therefore the set 
{su2(β)|[γu0 ,γu2 [ : β ∈ BA,U \ F} ∩W is infinite and we are done. �
Lemma 1.7. (P ,≤) is ω2-cc.

Proof. Let {uα : α < ω2} be a family of elements of P . To simplify we will replace uα for α to enumerate 
suα

, Iuα
and so on.

There is γ < ω1 and J ∈ [ω2]ω2 such that γα = γ for all α ∈ J . As ωω
1 = ω1, by the Δ-system Lemma, 

there are R ⊆ κ and J ′ ∈ [J ]w2 such that Iα∩ Iβ = R for each α, β ∈ J ′ distinct. Since |γ| ≤ ω and |R| ≤ ω, 
there are at most (2ω)ω = ωω

1 = ω1 functions from R to 2γ , so there exist J ′′ ∈ [J ′]w2 and t : R −→ 2γ such 
that sα|R = t for every α ∈ J ′′. Picking any two distinct elements α, β ∈ J ′′, set I = Iα ∪ Iβ , s = sα ∪ sβ
and T = Tα ∪ Tβ . It is clear that 〈γ, I, s, T 〉 ∈ P and since γ = γα = γβ , it follows that 〈γ, I, s, T 〉 is below 
uα and uβ . �
Lemma 1.8. (P ,≤) is ω1-closed.

Proof. The proof is standard and uses the fact that the support of a basic open set is finite. �
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2. Dense sets

Let us define the dense sets of P that we will use. The next lemma will be useful for that.

Lemma 2.1. Let u ∈ P and let A ∈ [κ]≤ω. Then there is v ∈ P such that v ≤ u and A ⊆ Iv.

Proof. Take u ∈ P , γ = γu and T = Tu. Choose a countable subset I of κ such that: 
(i) Iu ∪A ⊆ I and 
(ii) {gξ(n) : n ∈ ω} ⊆ I for all ξ ∈ I ∩ Lim(κ). 

This is possible because A is countable.

Now we will use induction to define a function s : I → {0, 1}γ . Let ξ ∈ I the least ordinal for which 
s(ξ) has not been defined. If ξ ∈ Iu, then define s(ξ) = su(ξ). Suppose that ξ ∈ (I \ Iu) ∩ Kα for some 
α < κ. Since s(η) is already defined for every η ∈ I ∩ [0, ξ) we have that s(gξ(n)) is defined for each n ∈ ω

because of condition (ii) and the fact that gξ(n) < ξ for all n ∈ ω. As {0, 1}γ is compact, there exists the 
pα-limit of the set {su(gξ(n)) : n ∈ ω}. Then define s(ξ) = pα − lim s(gξ(n)). Otherwise choose s(ξ) ∈ 2γ
arbitrarily. Thus, function s satisfies that s|Iu = su. Finally let v = 〈γ, I, s, T 〉. Clearly v ∈ P and v ≤ u

since γu = γv. �
Lemma 2.2. The set Dβ = {u ∈ P : β ∈ Iu} is dense in P for each β < κ.

Proof. This lemma follows directly from Lemma 2.1 �
Lemma 2.3. The set EA = {u ∈ P : A ∈ Tu} is dense for each A ∈ [κ]ω.

Proof. Fix v ∈ P . By Lemma 2.1, there is w ∈ P such that w ≤ v and A ⊆ Iw. Let γ = γw, I = Iw, s = sw
and T = Tw ∪ {A}. Therefore 〈γ, I, s, T 〉 ∈ P and 〈γ, I, s, T 〉 ≤ v. �
Notation 2.4. For the following lemmas we will use the next notation. If ξ ∈ Lim(κ), then denote by α(ξ)
the ordinal α such that ξ ∈ Lα.

Lemma 2.5. Let F ∈ [κ]<ω, let I be a countable subset of κ which satisfies condition (1) from Definition 1.5
and let J = I ∩ (

⋃
β<κ Kβ). Then for every family {Ak : k ∈ ω} of infinite subsets of I and every function 

f : F −→ 2 there exist a family of sets {Bξ ∈ pα(ξ) : ξ ∈ J} and a function h : F ∪ I −→ 2 such that f ⊆ h, 
h−1[{i}]∩Ak is infinite for every i < 2 and k ∈ ω; and {n ∈ ω : h

(
gξ(n)

)
= h(ξ)} contains a cofinite subset 

of Bξ for each ξ ∈ J .

Proof. Split each Ak in two infinite sets Ai
k with i < 2 and fix a 1 to 1 enumeration σi

k of Ai
k for each i < 2

and k ∈ ω. Relabel the previously fixed set of ultrafilters {qn : n < ω} as {qik : k ∈ ω and i < 2} and recall 
that the ultrafilters of the set

Z = {pα : Kα ∩ I �= ∅} ∪ {qik : k ∈ ω and i < 2}

were chosen to be selective and pairwise RK-incomparable since the beginning. Since |Z| = ω we can find, 
by Lemma 1.3, sets Bξ ∈ pα(ξ) for each ξ ∈ J and sets Ci

k ∈ qik for each k ∈ ω and i < 2 such that the 
elements of

{{gξ(n) : n ∈ Bξ} : ξ ∈ J} ∪ {{σi
k(n) : n ∈ Ci

k} : k ∈ ω, i < 2} ∪ {F}
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are pairwise disjoint. We will define the function h : F ∪ I → 2 in four disjoint parts of the domain. 
• Let h(ξ) = f(ξ) for every ξ ∈ F , 
• let h(ξ) = i for every ξ ∈ {σi

k(n) : k ∈ ω, i < 2 and n ∈ Ci
k}, 

• enumerate the set {gξ(n) : ξ ∈ J and n ∈ Bξ} by {am : m ∈ ω}, using induction define h(am) = h(ξ)
when n ∈ Bξ, where am = gξ(n) and ξ ∈ F ∪ {σi

k(n) : k ∈ ω, i < 2 and n ∈ Ci
k} ∪ {aj : j < m}, and define 

h(an) = 0 otherwise; and 
• define h(ξ) = 0 otherwise.

It is clear that the function h is well defined and satisfies f ⊆ h. Also, by the definition of h, the set 
{n ∈ ω : h

(
gξ(n)

)
= h(ξ)} contains a cofinite subset of Bξ for each ξ ∈ J . Finally, since σi

k is 1 to 1, Ci
k ∈ qik

and {σi
k(n) : n ∈ Ci

k} ⊆ h−1[{i}] ∩Ak then h−1[{i}] ∩Ak is infinite for each k ∈ ω and i < 2. �
Lemma 2.6. For every u ∈ P and every pair η, ζ ∈ Iu, there exists w ≤ u such that γw = γu + 1 and 
sw(η)(γu) �= sw(ζ)(γu).

Proof. Let γ = γu + 1, I = Iu, J = I ∩
(⋃

β<κ Kβ

)
, T = Tu and let f : {η, ζ} → 2 be a function 

such that f(η) �= f(ζ). Applying the previous lemma to {η, ζ}, I, Tu and f , there is a family of sets 
{Bξ ∈ pα(ξ) : ξ ∈ J} and a function h : I → 2 such that f ⊆ h, h−1[{i}]∩BA,U is infinite for each BA,U ∈ Tu
and {n ∈ ω : h

(
gξ(n)

)
= h(ξ)} contains a cofinite subset of Bξ for each ξ ∈ J . Set s(ξ) = su(ξ)	(h(ξ)).

Claim. 〈γ, I, s, T 〉 ∈ P and 〈γ, I, s, T 〉 < u.

Proof of Claim. Items (1), (3), (i), (ii) and (iii) from Definition 1.5 follows directly from our selection of 
〈γ, I, s, T 〉. By item (2) observe that for each ξ ∈ J ,

pα(ξ) − lim s
(
gξ(n)

)
= pα(ξ) − lim 

(
su
(
gξ(n)

)	(h
(
gξ(n)

)
)
)

=

pα(ξ) − lim su
(
gξ(n)

)	(
pα(ξ) − lim h

(
gξ(n)

))
= su(ξ)	(h(ξ)) = s(ξ),

where the equality between the lines holds because {n ∈ ω : h
(
gξ(n)

)
= h(ξ)} ∈ pα(ξ) and the fact that 

for every free ultrafilter p ∈ ω∗ and every sequence in a topological product, the p-limit of the sequence is 
exactly the point whose coordinates are the p-limits of the projection of the sequence in each coordinate. �
Lemma 2.7. The set Fδ,θ0,θ1 =

{u ∈ P : γu > δ, θi ∈ Iu, su(θ0)(α) �= su(θ1)(α) for some δ < α < γu}

is dense for every pair {θ0, θ1} ∈ [κ]2 and every δ < ω1.

Proof. Pick v and note that by Lemma 2.1, we may assume without loss of generality, that θ0, θ1 ∈ Iv. 
Since δ < ω1 and P is ω1-closed we have by Lemma 2.6 that there is u ∈ Fδ,θ0,θ1 with u < v and such that 
u satisfies all the required conditions. �

Let u ∈ P . From now to the end we will denote the set 
⋃

α<κ(Kα ∩ Iu) by Ku.

Lemma 2.8. For each β, ζ ∈ L let Gβ,ζ be the set of elements u ∈ P satisfying: 
(i) [β, β + ω[∪[ζ, ζ + ω[⊆ Iu, and 
(ii) there is α < γu such that su(β+n)(α) = 1− su(ζ +n)(α) for every n ∈ ω. Then Gβ,ζ is dense for every 
pair β, ζ ∈ L.
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Proof. Let u ∈ P , by Lemma 2.1 there is v < w such that [β, β + ω[∪[ζ, ζ + ω[⊆ Iv. Let {Ak : k ∈ ω} be an 
enumeration of Tv, split each Ak in two sets Ai

k and let σi
k : ω → Ai

k be a bijection for each i < 2. Define, 
for each ξ ∈ Kv, the function g̃ξ : ω → κ by:

g̃ξ(n) =
{
gξ(n) when gξ(n) / ∈ [β, β + ω[,
ζ + m when gξ(n) = β + m

and similarly, define the functions σ̃i
k : ω → Ai

k for every k ∈ ω and i ∈ {0, 1} as:

σ̃i
k(n) =

{
σi
k(n) when σi

k(n) / ∈ [β, β + ω[,
ζ + m when σi

k(n) = β + m.

Note that gξ’s and σi
k’s are 1-1, therefore, g̃ξ’s and σ̃i

k’s are finite to one. By Lemma 1.3, there are sets 
Bξ ∈ pα(ξ) for each ξ ∈ Kv and sets Ci

k ∈ qik for each k ∈ ω and i ∈ {0, 1} such that g̃ξ|Bξ
is 1-1 for each 

ξ ∈ Kw and σ̃i
k|Ci

k
is 1-1 for each k ∈ ω and i < 2 and

{{g̃ξ(n) : n ∈ Bξ} : ξ ∈ Kv} ∪ {{σ̃i
k(n) : n ∈ Ci

k} : k ∈ ω, i < 2}

are pairwise disjoint. Then

Õ =
{
g̃ξ(n) : ξ ∈ Kv and n ∈ Bξ

}
∪ {σ̃i

k(n) : k ∈ ω, i < 2 and n ∈ Ci
k}

are pairwise distinct.
Let

O =
{
gξ(n) : ξ ∈ Kv and n ∈ Bξ

}
∪ {σi

k(n) : k ∈ ω, i < 2 and n ∈ Ci
k}.

We claim that |{β + m, ζ + m} ∩O| ≤ 1 for every m < ω. 
In fact, if that was not the case, we would have |{β + m, ζ + m} ∩ O| = 2 for some m < ω then there 
would be two different elements in O that correspond to the same element in O∗ and this contradicts the 
fact that the indexed elements of O∗ are pairwise distinct. Fix a function j0 : ω → [β, β + ω[∪[ζ, ζ + ω[
such that j0(m) ∈ {β +m, ζ +m} \O for each m ∈ ω. We note that here is important that the elements in 
[β, β + ω[∪[ζ, ζ + ω[ are not assigned to be pα-limits and thus they can be dealt at the end.

We will extend v to u so that γu = γv + 1, Iu = Iv and Tu = Tv. We will define a new coordinate.
Enumerate Iv \ ran j0 as {am : m ∈ ω} faithfully. Define inductively 

• let h(am) = i if am ∈ {σi
k(n) : k ∈ ω, i < 2 and n ∈ Ci

k}, 
• let h(am) = h(ξ) if am = gξ(n) for some ξ ∈ Kv, n ∈ Bξ and there exists l < m with al = ξ, and 
• let h(am) = 0 otherwise.

Define j1 : ω → [β, β + ω[∪[ζ, ζ + ω[ such that j1(m) is the unique element of {β +m, ζ +m} \ {j0(m)}. 
Note that h(j1(m)) is already defined for each m ∈ ω. Extend h to Iv so that h(j0(m)) = 1− h(j1(m)). Let 
su : Iu → 2γv+1 so that su(μ)(α) = sv(μ)(α) for each μ ∈ Iv and α < γv and su(μ)(γv) = h(μ) for each 
μ ∈ Iv.

Finally let u = 〈γv + 1, Iv, su, Tv〉. It is evident from the definition of h that su(β +m)(γv) = 1− su(ζ +
m)(γv) for each m < ω with γv < γu. To show that u ∈ P and u ≤ v just follow the same proof of 
Lemma 2.6, so u ∈ Gβ,ζ . Therefore Gβ,ζ is dense. �
Lemma 2.9. The set

Hθ,α,x = {u ∈ P : β > θ for some β ∈ Iu, α ≤ γu and su(β)|α = x},

is dense for every θ < κ, α < ω1 and x ∈ 2α.



10 Y.F. Ortiz-Castillo, A.H. Tomita / Topology and its Applications 371 (2025) 109463 

Proof. Pick w ∈ P , by Lemmas 1.8 and 2.6 there is v ≤ w such that γv > α. Choose β ∈ κ \ Iv a successor 
ordinal such that β > θ and choose y ∈ 2γv such that x ⊆ y. Set γu = γv, Iu = Iv ∪ {β}, Tu = Tv and let 
su : Iu → 2γu such that su(ξ) = sv(ξ) for ξ ∈ Iv and su(β) = y. Since β / ∈ L, we have Ku = Kv and as 
γu = γv, it is not difficult to check that u ∈ P and u ≤ v. So, u ∈ Hθ,α,x which is dense. �
3. The HFD space

In this section we will show that, in the generic extension of P , there exists a nice HFD space as we 
require.

Theorem 3.1. Assume CH, 2ω1 = κ be regular, and αω < κ and 2α ≤ κ for every cardinal α < κ. Then in 
the generic extension of P , there exists an HFD space X = {xμ : μ < κ} such that:

(1) X is dense in {0, 1}ω1 ;
(2) for every λ, ζ < κ, every Y ⊆ X and every sequence in Y λ there is ζ < η < κ such that the sequence 

has pα-limit in (Y ∪ {xξ : ξ ∈ Kα})λ for every α ≥ η; and
(3) for each ultrafilter p and each θ < η < κ there exists β ∈ L such that β ≥ η and the p-limit of the 

sequence {xβ+n : n ∈ ω} does not exist or is not an element of {xμ : μ < θ}.

Furthermore, in the extension, αω < κ and 2α ≤ κ for every cardinal α < κ.

Proof. Let G be a P -generic filter, then G intersects all the dense sets that we previously defined: Dβ with 
β < κ, EA with A ∈ [κ]ω, Fδ,θ0,θ1 with {θ0, θ1} ∈ [κ]2 and δ < ω1, Gβ,ζ with β, ζ ∈ L, and Hθ,α,x with 
θ < κ, α < ω1 and x ∈ 2α. In the extension, CH holds, 2ω1 = κ and the ground model ultrafilters (selective 
ultrafilters) are still ultrafilters (selective ultrafilters). In the extension, there are no new countable sets, 
therefore, αω is the same cardinal as before smaller than κ, hence it is smaller than κ in the extension, 
since cardinals are preserved. Since P is ω2-cc, the number of nice names for a subset of a cardinal λ < κ

is |(κω1)λ| ≤ κ. Therefore, 2λ ≤ κ in the extension.
Denote as xμ the function 

⋃
u∈G,μ∈Iu

su(μ). Observe that every β < κ is in some Iu with u ∈ G due to 
Lemma 2.2. By the dense sets from Lemma 2.7, one can see that xμ ∈ {0, 1}ω1 and all the elements in the 
set X = {xμ : μ < κ} are pairwise distinct.

To see that X is HFD take a countable infinite subset A of κ. The forcing does not add new countable 
sets, thus A is in the ground model. By Lemma 2.3, there exists u ∈ G such that A ∈ Tu. Let U be a basic 
open set in {0, 1}[γu,ω1[ let δ < ω1 be greater than the support of U . By density and genericity of G, there 
exists w ∈ G such that w < u and γw > δ. Observe that A = BA,{0,1}γu ∈ Tu and then, by item (iii) from 
Definition 1.5 we obtain that {sw(μ)|[γu,γw[ : μ ∈ A} is dense in {0, 1}[γu,γw[. So

{μ ∈ A : xμ|[γu,ω1[ ∈ U} = {μ ∈ A : sw(μ)|[γu,γw[ ∈ π[γu,γw[[U ]}

which is infinite. Then X has the HFD property.
By Lemma 2.9 we have that for each x ∈ {0, 1}α for some α < ω1, there exists β such that xβ ⊇ x. In 

particular, it follows that X is dense in {0, 1}ω1 and (1) holds.
To show (2) let λ, ζ < κ, Y ⊆ X and let {yμ : μ < λ} be a family of sequences in Y . Then there exists 

η′ < κ such that

{yμ(n) : μ < λ and n ∈ ω} ⊆ {xξ : ξ < η′}.

Consider the first ordinal β0 such that Kβ ∩ (ζ+1) = ∅ for every β ≥ β0 and let η = max{ζ, η′, β0}. Observe 
that for each μ < λ, the family {{n ∈ ω : yμ(n) = x} : x ∈ yμ[ω]} is a partition for ω, thus for every selective 
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ultrafilter p, the sequence yμ must be p-equivalent to a constant or an injective sequence. In particular, for 
every α > η and every μ < λ, yμ is pα-equivalent to a constant sequence or an 1 to 1 sequence (because pα is 
still selective in the extension). It is clear that in the first case, the sequence yμ has a pα-limit in Y . Suppose 
that yμ is pα-equivalent to an 1 to 1 function. Since yμ ⊆ {xξ : ξ < η′}, we have by α > max{η′, β0} and 
Lemma 2.2 that there are ξ ∈ Kα and w ∈ G such that ξ ∈ Iw and {n ∈ ω : yμ(n) = xgξ(n)} ∈ pα, where 
gξ(n) ∈ Iw for every n ∈ ω because of (1) from Definition 1.5. Since ξ > ζ we obtain by the definition of 
the x′

μs and item (2) from Definition 1.5 that xξ is the pα-limit of yμ.
Finally, for (3) let p be an ultrafilter. If for every θ < κ there exists β ∈ L such that β > θ and the 

sequence {xβ+n : n ∈ ω} has no p-limit in {xμ : μ < κ}, so we are done.
Suppose then that for a given θ < κ the sequence {xβ+n : n ∈ ω} has p-limit in {xμ : μ < κ} for every 

β ∈ L with θ < β < κ. In this case we claim that for every β, ζ ∈ L with θ < β < ζ < κ, the sequences 
{xβ+n : n ∈ ω} and {xζ+n : n ∈ ω} have different p-limits. Otherwise suppose that there are β, ζ ∈ L such 
that θ < β < ζ < κ and {xβ+n : n ∈ ω} and {xζ+n : n ∈ ω} have xη as p-limit. By Lemma 2.8, it follows 
that there exists α < ω1 such that xβ+n(α) = 1−xζ+n(α) for each n ∈ ω. Since the sequences have p-limits, 
it follows that their coordinates have p-limits. Therefore xη(α) = p-limit {xβ+n(α) : n ∈ ω} = p-limit 
1−{xζ+n(α) : n ∈ ω} = 1−xη(α), which is a contradiction. Therefore the set of p-limits of {xβ+n : n ∈ ω}
for β > θ are pairwise distinct and (3) holds. �
4. The main example

In this last section we will consider an HFD space X as Theorem 3.1 to define our main example. Let 
begin setting the theorems that will guarantee that such example will be ultrapseudocompact and each of 
its powers under 2c is countably compact. First it is necessary to define the (κ,D)-compactness, a property 
introduced in [6] by S. García-Ferreira. This property is weaker but close enough to p-compactness (of course 
stronger than countable compactness) and characterize the spaces whose κ-powers are countably compact 
for every cardinal κ.

Definition 4.1. [6, Definition 3.1] Let ∅ �= D ⊆ ω∗ and let 1 ≤ κ be a cardinal number. A space X is said to 
be (κ,D)-compact if for every set {(xξ

n)n<ω : ξ < γ} of γ-many sequences, for γ ≤ κ, of points of X, there 
are p ∈ D and xξ ∈ X, for each ξ < γ, such that xξ = p− lim xξ

n for each ξ < γ.

Theorem 4.2. [6, Theorem 3.2] Let 1 ≤ κ be a cardinal and let X be a space. Then Xκ is countably compact 
iff there is D ⊆ ω∗ such that X is (κ,D)-compact.

Now we will provide conditions for a space in order to guarantee that every power under 2c of its 
hyperspace of closed sets is countably compact.

Theorem 4.3. Let Z be a normal space such that hd(Z) ≤ c and suppose that λ is a cardinal for which 
c ≤ λ ≤ 2c. Then Zλ is countably compact iff CL(Z)λ is countably compact.

Proof. Of course the countable compactness of CL(Z)λ implies that Zλ has such property. Suppose that Zλ

is countably compact. By Theorem 4.2, it is enough to prove that for every family of at most λ sequences 
of CL(Z), there is a free ultrafilter p ∈ ω∗ such that every sequence in that family has p-limit. So let 
{(Bξ

n)n∈ω : ξ < λ} be a family of sequences of CL(Z). For every ξ < λ and n ∈ ω fix Dξ
n a dense subset of 

Bξ
n in Z with cardinality less or equal than the continuum. Consider in Z the family Aξ of all sequences 

in {(xξ
n)n∈ω : xξ

n ∈ Dξ
n} for each ξ < λ. Let A =

⋃
ξ<λ Aξ and note that |A| ≤ λ because |Aξ| ≤ c

for every ξ < λ. Then by Theorem 4.2, there is p ∈ ω∗ such that every sequence in A has p-limit. Let 
Eξ = {p− lim xξ

n : (xξ
n)n∈ω ∈ Aξ}. We claim that cl(Eξ) = p− lim Bξ

n in CL(Z) for every ξ < λ. In fact, fix 
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ξ < λ and let U1, . . . , Uk be open sets of Z such that cl(Eξ) ∈ U = 〈U0, . . . , Um〉. Since Z is normal, there 
is an open set W such that

cl(Eξ) ⊆ W ⊆ cl(W ) ⊆
⋃
i≤m

Ui.

Since Eξ ⊆ W , it is standard to show that {n ∈ ω : Dξ
n ⊆ W} ∈ p, so {n ∈ ω : Bξ

n ⊆ cl(W )} ∈ p. Then 
{n ∈ ω : Bξ

n ⊆
⋃

i≤m Ui} ∈ p. Finally for each k ≤ m there is xk ∈ Eξ ∩ Uk. As xk is the p-limit of a 
sequence in Aξ, we have that {n ∈ ω : Dξ

n ∩ Uk �= ∅} ∈ p for each k ≤ m. Since Dξ
n is dense in Bξ

n for each 
n ∈ ω,

{n ∈ ω : Dξ
n ∩ Uk �= ∅} = {n ∈ ω : Bξ

n ∩ Uk �= ∅}

and we obtain that {n ∈ ω : Bξ
n ∩ Uk �= ∅} ∈ p for each k ≤ m. Thus

{n ∈ ω : Bξ
n ∈ U} =

{n ∈ ω : Bξ
n ⊆

⋃
i≤m

Ui} ∩
( ⋂
k≤m

{n ∈ ω : Bξ
n ∩ Uk �= ∅}

)
∈ p.

Therefore cl(Eξ) = p− lim Bξ
n and this ends the proof. �

We are ready to define our main example:

Example 4.4. Assume all the conditions from Theorem 3.1 and let X be an HFD space which satisfies 
(1) − (3) from the same theorem. Then there exists a collectionwise normal, ultrapseudocompact space 
Z ⊆ X such that hd(Z) = ω, Zλ is countably compact for every cardinal λ < κ but Z is not p-compact for 
any p ∈ ω∗.

Proof. Consider all definitions and notations from the previous sections. Fix a countable dense subset D
of X, which is possible because every HFD space is hereditarily separable. Since X is dense in {0, 1}ω1 , it 
follows that D is dense in {0, 1}ω1 . Enumerate the family

{S : S is a sequence of Xλ for some λ < κ}

as {Sξ : ξ < κ} in such a way that {Sξ(n) : n ∈ ω} ⊆ {xμ : μ < ξ}λξ for every ξ < κ, where λξ denote the 
cardinal under κ for which Sξ is a sequence in Xλξ . This enumeration is possible since 2λ ≤ κ for each λ < κ. 
For each ξ < κ, set {yξ(β, n) : β < λξ and n ∈ ω} the family of sequences in X so that yξ(β, n) = Sξ(n)(β)
for every β < λξ and n ∈ ω. Also enumerate all free ultrafilters as {rδ : 0 < δ < κ}.

By transfinite recursion we will define, for each η < κ, Bη and Cη disjoint subsets of κ of cardinality 
smaller than κ such that:

(1) B0 = ρ0 and C0 = ∅, where ρ0 is the first ordinal such that D ⊆ {xμ : μ < ρ0},
(2)

⋃
η<α Bη ⊆ Bα and 

⋃
η<α Cη ⊆ Cα for every α < κ,

(3) for every α < κ, either {xρ : ρ ∈
⋃

η<α Bη}λ is countably compact for every λ < κ or Sξ(α) has an 
accumulation point in {xρ : ρ ∈ Bα}λξ(α) where ξ(α) is the first ordinal for which Sξ(α) is contained in 
{xρ : ρ ∈

⋃
η<α Bη}λξ(α) and Sξ(α) does not have an accumulation point in {xρ : ρ ∈

⋃
η<α Bη}λξ(α) , 

and
(4) for every 0 < α < κ there is a sequence σ : ω → Bα such that either the rα-lim of (xσ(n))n∈ω does not 

exist in X, or the index of the rα-lim of (xσ(n))n∈ω belongs to Cα (i.e. ζ ∈ Cα where xζ = rα−lim xσ(n)).
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Let B0 and C0 be defined by (1).

Suppose that Bη and Cη are defined satisfying (1) − (4) for each η < α. Let B′
α =

⋃
η<α Bη and 

C ′
α =

⋃
η<α Cη. If {xρ : ρ ∈

⋃
η<α B′

α}λ is countably compact for every λ < κ, then let B∗
α = B′

α, otherwise 
let ξ(α) the first ordinal such that Sξ(α) is a sequence in {xρ : ρ ∈

⋃
η<α B′

α}λξ(α) and Sξ(α) does not have 
an accumulation point in {xρ : ρ ∈

⋃
η<α B′

α}λξ(α) . By item (2) from Theorem 3.1, there is θ ∈ L such 
that min({θ} ∪Kθ) > sup(B′

α ∪ C ′
α) and Sξ(α) has pθ-lim in ({xξ : ξ ∈ B′

α ∪Kθ})λξ(α) . Set B∗
α = B′

α ∪Kθ

in this case. Now by item (3) from Theorem 3.1, there exist ζ ∈ L \
(
sup(B∗

α ∪ C ′
α) + 1

)
such that, the 

rα-limit of {xζ+n : n ∈ ω} either does not exist in X or is not an element of {xμ : μ < sup(B∗
α ∪ C ′

α)}. 
Let Bα = B∗

α ∪ [ζ, ζ + ω[ and Cα = C ′
α in the case that {xζ+n : n ∈ ω} does not have rα-limit in X and 

otherwise let xχ = rα − lim xζ+n, Bα = B∗
α ∪ ([ζ, ζ + ω[\{χ}) and Cα = C ′

α ∪ {χ}. It is clear that Bα and 
Cα satisfy all the requirements.

We claim that Z = {xξ : ξ ∈
⋃

α<κ Bα} is a space as required. Note that Z is collectionwise normal and 
hereditarily separable because it is a subspace of the HFD space X. Now suppose by contradiction that not 
every power under κ of Z is countably compact and let ξ < κ be the first ordinal such that Sξ does not have 
an accumulation point in Zλξ and let α < κ be the first ordinal such that Sξ(β)(n) ∈ {xρ : ρ ∈

⋃
η<α Bη}

for each n ∈ ω and β < λξ. Then by item (3) we know that Sξ has an accumulation point in {xρ : ρ ∈
Bα}λξ ⊆ Zλξ a contradiction. So Zλ is countably compact for every λ < κ.

In particular Z is pseudocompact and dense in {0, 1}ω1 , hence by Lemma 0.4, Z is ultrapseudocompact. 
Finally by item (4) we know that for every p ∈ ω∗ there is a sequence in Z which does not have p-limit 
in Z. �

Some natural questions that are related to our example are:

Question 4.5. Is there consistently a topological group or a homogeneous space X such that CL(X) is 
countably compact, but X is not p-compact for any ultrafilter p?

Question 4.6. Is there consistently a space X such CL(X) is countably compact, but Xc is not countably 
compact?

Question 4.7. Is there some model where X is p-compact for some p ∈ ω∗ provided CL(X) is countably 
compact?

Two more questions related with p-compactness and p-pseudocompactness.

Question 4.8. Is there some model where every p-pseudocompact normal space is p-compact?

Question 4.9. Let f : X → Y be a perfect onto function where Y is p-pseudocompact. Is X p-pseudocompact?
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