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cardinal number x we will denote by Lim(k) the set of all limit ordinals less than . Given a set X and a
cardinal number k, we will represent the family {A C X : |[A| < x} by [X]=" and the notations [X]<* and
[X]" are defined analogously. If X is a topological space and A C X, then we denote by clx(A) (or simply
cl(A)) the closure of A in X. The Stone-Cech compactification Sw of the discrete countable space w will be
identified with the set of all ultrafilters on w and its remainder w* will be identified with the set of all free
ultrafilters on w. Let f : w — w be a function, the Stone extension of f to fw is the unique continuous
function f : fw — Bw such that f_|w = f. Given two ultrafilters p,q € Bw, we say that p <gpk ¢ if there
exists a function f : w — w such that f (¢) = p. This relation is known as the Rudin-Keisler pre-order on
Bw. We say that two ultrafilters p and ¢ are RK -equivalent if p <px q and ¢ <px p (in symbols, p ~rx q¢'),
they are <gx-comparable if either p <gpgx q or ¢ <rg p and they are <gg-incomparable if they are not
<gx-comparable. Following the paper [9], given a space X, p € w* and a sequence (x,)necw in X, we will
say that z € X is a p-limit of (z,)neN, in symbols ¢ = p — lim x,, if {n € w: z, € W} € p for each
neighborhood W of x and a space X is p-compact if every sequence of points has p-limit. It is well known
that every p-compact space has very nice properties, one of those is that every p-compact space is countably
compact (for more basic properties see [1] and [9]).

For a topological space (X,7), CL(X) denotes the sets of nonempty closed subsets of X and CL(X)
denotes the hyperspace of nonempty closed subsets of X with the Vietoris topology. Remember that the
Vietoris topology has the sets of the form

Ut ={AcCLX):ACU} and U ={A€ CL(X): ANU # 0}
as a subbase, where U is an open subset of X. Given open sets Uy,...,U, of X, we define

<U1,. . .,Un> = {T S CL(X) T e (UlgkgnUk>+
and T € U, for each 1 <k < nj}.

So, the collection
{Uy,...,U,) :neNUy,...,U, €T}

constitutes a base for CL(X). Those notions used and not defined in this article have the meaning given to
them in [5].

0. Introduction

In [8], J. Ginsburg studied the countable compactness in the hyperspace CL(X), and he proved that
CL(X) is p-compact iff X is p-compact for every free ultrafilter p of w (Theorem 2.1). By following this
result and Theorem 2.6 from [9] it is evident that if every power of a space is countably compact, then its
hyperspace is countably compact too. Nevertheless, one of the main problems proposed by Ginsburg in that
article is to characterize the countable compactness of CL(X) by properties on X . This problem is the main
task of this paper. In Remark 3.2 from the same paper Ginsburg asked whether there is any relation between
the countable compactness of X and CL(X). From that remark, J. Cao, T. Nogura and A. Tomita provided
some interesting examples in [2], in particular they showed that there is a countably compact Tychonoff
space X such that X' is countably compact but CL(X) is not countably compact and, by using M A, they
construct a Tychonoff space X such that X¢ is countably compact for every a < 2¢ but CL(X) is not
(Examples 2.6 and 2.9 respectively). In the same paper they ask if 2¢ is the best possible cardinal for the

1 The original definition of <grk-equivalent ask for a bijection in w but it is well known that it is enough to have a 1 to 1 function
f :w — w such that f(p) = g to guarantee that p *rx q.
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power of a countably compact space X to guarantee the countable compactness of CL(X). Following the
previously mentioned results from [8] and [9] this is equivalent to ask if the countable compactness of CL(X)
is equivalent to X being p-compact for some p € w*. In [11], I. Juhdsz and J. E. Vaughan conjecture that
this last assertion is true and proved some partial results in that direction. We claim that such conjecture
is not true in ZFC, of course this last affirmation does not mean that the conjecture from Juhédsz and
Vaughan cannot be also consistent with ZFC. To do this we will use HF D spaces, introduced in [10] by
A. Hajnal and 1. Juhdsz, to construct a consistent example of a space X such that both X* and CL(X)*
are countably compact for every A < 2¢ but X is not p-compact for any p € w*, or equivalently, X2 is not
countably compact. We cite here the equivalent version of HF D space mentioned in that paper.

Definition 0.1. Let X = H£<w1 X¢ be a product of topological spaces. A subspace Z C X is an HF'D space
if for every A € [Z]* there is v < wy such that Alp, o, = {#[}w,[: © € A} isdense in X =[] .., Xe.

In particular, HF D spaces are hereditarily separable and hereditarily collectionwise normal (Theorems
2 and 4 from [10]). We will show that under these two conditions, the countable compactness of a power of
a space is equivalent to the countable compactness of the same power of its hyperspaces. This result is the
key which led us to believe that HF D would be useful to find the desired example.

Remark 0.2. In [12] it was studied the analogous problem of pseudocompact products and the hyperspace
CL(X) by using the concept of (k, D)-pseudocompactness, which was also introduced by Garcfa-Ferreira
in [6] and it characterizes pseudocompact powers. In [12] it is proved that if w C X C X is (c,w*)-
pseudocompact, then CL(X) is pseudocompact (this in ZFC). Furthermore if w C X C X and CL(X)
is pseudocompact then X is (k,w*)-pseudocompact for every x < h but there exists an example of such
an X that is not (b,w*)-pseudocompact. As we may see these kinds of concepts are intimately related
and this fact leads us to believe that we are in the right way.? In addition, it is important to say that all
the papers mentioned in this introduction have analogs of the same problems, properties and results for
pseudocompactness too. We decided to omit them because the advances in this paper are related only with
countable compactness and their approaches are different from ours.

A different problem involving p-compactness is to find additional properties to p-pseudcompactness in
order to reach the p-compactness. Some interesting advances on this problem can be found in [13]. In that
article M. Sanchis and A. Tamariz-Mascarta define a ultrapseudocompact® and totally countable compact
space (a-pseudocompact, locally compact, sequentially compact space), which is not p-compact for any
p € w* (see Examples 3.3, 3.4 and 3.5). In the same paper the authors note that none of their examples are
neither normal nor first countable and they observe that, by following Corollary 6.6 and Theorem 6.8 from
[14], every normal finally p-compact space which is p-pseudocompact for at least a p € w* is ultracompact,*
concluding that, by assuming p > wq, every perfectly normal p-pseudocompact space is compact (see last
paragraph from [13, pag. 332]). Finally they established the following question:

Question 0.3. [13, Question 3.6] Is it consistent with ZFC that, for every p € w*, each p-pseudocompact
space satisfying normality (perfect normality, collectonwise normality, normality + countable paracompact-
ness) must be p-compact?

The second target of this paper is to show that our example is also collectionwise normal and ultrapseu-
docompact which shows that the negative of the previous question is consistent with ZF'C' for collectionwise

2 In fact the present work is previous to [12] and our results motivated us to continue working in the pseudocompact version of
the problem. At the end, different circumstances causes that work to be published before its predecessor.

3 A space is ultrapseudocompact if it is p-pseudocompact for every p € w*.

4 A space is ultracompact if it is p-compact for every p € w*.
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normality. By following the next lemma we know that, if our HF'D is dense in a product of compact metric
spaces, then our example must be ulstrapseudocompact, so we will also have a consistent example of a
collectonwise normal and ultrapseudocompact space which is not p-compact for any p € w*.

Lemma 0.4. [7, Theorem 2.6] Let {X; : i € I} be a family of compact metric spaces and let X = [],c; Xi.
Then, every pseudocompact dense subspace of X is ultrapseudocompact.

Our main goal is to construct an H F' D space, by using forcing, which is dense in {0,1}** and then define
a dense subspace Z satisfying that Z* is countably compact for each A < 2¢ (also ultrapseudocompact by
Lemma 0.4), but Z 2" is not countably compact and then, by Theorem 2.6 from [9], such subspace cannot
be p-compact for any p € w*.

In Section 1 we will define the partial order and some useful technical properties. All the required dense
sets of the partial order will be defined in Section 2. Section 3 is devoted to prove that the required HF D
space exists and finally, we will construct the promised example in Section 4.

1. The partial order

We will define a partial order to obtain the consistent example. First we need some previous lemmas:

Lemma 1.1. [/, Lemma 9.1] Let « be a cardinal and let f : o — « be such that f(€) # & for € < a. Then
there are subsets Ag, A1 and As of a such that:

Oé:A()UAlUAQ,
(2) AinA; =0 fori,j <2 andi#j, and
Alﬂf[Az] :(Z)fori§2.

Lemma 1.2. Let X be a set, let pg and p1 two free ultrafilters of w and let hg and hy be both 1 to 1 sequences
in X. Suppose that either one of the following conditions holds:

(1) po =p1 and ho #p, h1, or
(2) po and p1 are non-RK -equivalent ultrafilters.

Then there exists A; € p; for i <2 such that {h;(n) :n € A; and i < 2} are pairwise distinct.

Proof. Without loss of generality we assume that X is countable. First let p € w* and assume that hg %, h1,
this means that {n € w : ho(n) # h1(n)} € p. Since each h; is injective, it is standard to prove that there
are bijective functions A} such that h] =, h,; for each i < 2 and hy(n) # hi(n) for every n € w. Let
f = (h})~' o b} and observe that f : w — w and f(n) # n for every n € w. By Lemma 1.1 there is a
partition B; with j < 3 of w, such that B; N f[B;] = 0 for each j < 3.

Since p is an ultrafilter, there is an unique k& < 3 such that By € p.

Furthermore his are bijective so § = hy[Bg] N kol f[Bk]] = ho[Bi] N A} [Bk]. Now let C; € p such that
hile; = hilo, for each i < 2 and define Ag = Cy N By, and Ay = Cy N By. Then A4; € p for ¢ < 2 and
ho[Ao] N hq[A1] = 0.

Now assume that py and p; are non-RK-equivalent. Since each h; is injective, take bijective functions h/
such that h} =,, h; for each i < 2. Let f = (h{)~! o b} and let ¢ = {f[A] : A € p1}. Observe that ¢; and
p1 are RK-equivalent so, since pg and ¢; are not RK-equivalent, there exists By € pg and By € p; such
that Bo N f[B1] = 0. Therefore, h{[Bo] N A} [B1] = 0. Take C; € p; such that hi|c, = hi|c, for i < 2. Then
A; = B;NC; for i < 2 is as required. O
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Assuming the existence of selective ultrafilters it is possible to improve the last lemma.

Lemma 1.3. Let X be a set, let {p, : n € w} be a family of selective ultrafilters and let {h, : n € w} be a
family of sequences in X such that:

(i) |kt (z)] 4s finite for every x € X and n € w;

(it) V n, m € w, either p,, = pym or p, and p,, are RK-incomparable;

(i30) Y n, m € w, if n # m and p, = pm, then hy, Zp, I,

Then for each n € w, there exists A,, € py, such that hy,|a, is 1 to 1 for every n € w and the sets of the
Jamily {{hn (k) : k € A,} :n € w} are pairwise disjoint.

Proof. First observe that all the p,’s are selective ultrafilters so, for every n € w there is A}, € p,, such that

hnlax is injective. Now fix, for every pair of different natural numbers n and m, sets A7 € p, and A7, € py,
such that A" C A¥, A C A% and

{hn(k) : k€ A™} O {h(k) 1k € AT} = 0.

This is possible because of Lemma 1.2 and the fact that two RK-incomparable ultrafilters are non-RK-
equivalent. Since each p, is selective, we have that for every n € w there is A], € p,, such that A, C A%,
|Al\ AT < w for every m # n. Note that

{hn(k) : k€ AL} N {hm(k) : k € AL} is finite .
Set F™* for every pair with m < n such that
{ho(k) k€ ALY {hm(k) ke A} C{hn(k): k€ F"}.

Define A, = A}, \ (U;<,, F). Of course A, € p,, and {hy,(k) : k € A} N {him(k) : k € Ay} = 0 for every
pair of distinct n, m € w. O

Remark 1.4. The previous lemma looks short in its promise to be an improvement of Lemma 1.2 (because we
ask for a set of RK-incomparable ultrafilters and this is a stronger request than being non-RK-equivalent).
In fact every selective ultrafilter is <gpg-minimal so, two selective ultrafilters which are RK-comparable
must be RK-equivalent. Therefore Lemma 1.3 keeps the promise intact.

Now we will establish the initial conditions, notation and the partial order. Let x = 2“* and assume C'H,
B < k and 27 < k for every cardinal 8 < k. Let {L} U {Ly : @ < s} be a partition of the set Lim(x)
such that each set has cardinality k. Let {g¢ : £ € Lim(x)} be an enumeration of functions from w into x
satisfying the following:

® ge(n) < ¢ for each £ € Lim(k) and n € w, and

o {ge: £ € L} is an enumeration of all 1 to 1 functions from w into &, for each a < k.

Fix a family of k-many RK-incomparable selective ultrafilters which exist by C'H (this is a direct
consequence of Lemma 5.1 and Theorem 6.1 from [3]). Split and enumerate such family as follows
{Pa : @ < K} U{gn : n < w}. Finally, for each o < &, let K, C L, be a set such that for each 1 to
1 function g : w — « there exists a unique £ € K, such that g =, g¢. Note that for every a < &,
|a]“ < k. Since « is regular, K, is bounded in .

Consider the set:

U={(y1,5T):y<w,l€x]s:]— 2 and T € [[1]*]"}.
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Observe that U has cardinality x. To be short we will use the letters u, v and similar to refer the
elements of U and for a given u € U we will write ~,, I, s, and T; to denote the coordinates of
except when we specify something different. For each u € U, A € T, and each basic open set U of 27+,
let Bay = {8 € A: s,(8) € U}. Finally denote by 7, the family of all such B4 y’s, where A € T, and
U C 27+, that are infinite. Note that the set B4 y depends on u but we decided to omit it to simplify the
notation since it becomes clear by establishing 7, or in the choice of A and U. We are ready to define our
partial order.

Definition 1.5. Let P be the set of all u € U satisfying the following conditions:

(1) gg(n) € I, for each 8 € I, N Lim(k) and every n € w,
(2) po-lim su(gg(n)) = 5,(€) for each a < k such that K, N1, # 0 and every £ € K, NI,

Then for two given u, v € P, we will say that v < u if:
(l) Yo = Yu, Ly 2 I, and T, D Ty,
(1) 59(&)]y., = su(§) for each & € I, and
(i11) the set {s,(8)|[(yu,re[ : B € Ba,u\F} is dense in 2072 [ for each B4 iy € T, and each finite F C Ba .

To end this section let us prove some properties of (P, <).
Lemma 1.6. (P, <) is transitive.

Proof. Suppose that us < uy and uy < ug. Clearly Yu, > Yug, Tus 2 Lugs Tuy 2 Tup a0d 84, (§)[4,, = Suo (§)
for each £ € I,,,, so items (7) and (¢7) from Definition 1.5 are satisfied for ug and ug. Hence it suffices to show
that {s, (,6’)|[%0ﬁu2[ : € Bay\ F}is dense in 2001l for each B,y € Ty, and each finite F' C By y.
Let W be a basic open set in 207u0-7u2[, then there exists W; basic open set of 207u Vi1l for j € {0,1}, such
that W = Wy x Wi. Fix Bay € Ty, and F € [Ba,y|<¥, then {s,, (5) Yug Yuy [ B € Bau \ F} is dense
in 207071 [ because uy < ug. Also Bay C A € I, C I, since s, () g vy [ = Sur (B)| (g va, | fOT €ach
B € Baw, {502l ey |+ 8 € Baw\F} is dense in 200901, Thus {5, ()], * B € B\ F}N Vo
is infinite. Even more, U C 27%0 and W is a basic open set of 20071l so U x Wy is an open set of 271,
then Bauxw, € Tu,- By vz < ua, {Suz(ﬁ)hvulﬁw[ : B € Bauxw, \ F'} is dense in 20w vua [ Thus
{8us (B)|(yay vun[ © B € Bauxw, \ F} N Wi is infinite. If 3 € By uxw, \ F and sy, (8)|1,, ~u,[ € Wi, then
B € Bau \ I, suy(B)liyug v, | € Wo and su, (B)|1y., vuyl € Wis 50 Suy (B)l[yug vy | € W Therefore the set
{8us (B) | (rug vup [ * B € Baw \ F} NW is infinite and we are done. O

Lemma 1.7. (P, <) is wa-ce.

Proof. Let {u, : o < wa} be a family of elements of P. To simplify we will replace u, for a to enumerate
Sug s 1u, and so on.

There is v < wy and J € [wz]“? such that vy, = 7 for all & € J. As w{ = wq, by the A-system Lemma,
there are R C x and J' € [J]"2 such that I, NIz = R for each a, 5 € J' distinct. Since |y| < w and |R| < w,
there are at most (2)* = w{ = w; functions from R to 27, so there exist J” € [J']*? and ¢ : R — 27 such
that so|R =t for every o € J”. Picking any two distinct elements o, 8 € J”, set I = I, UIg, s = sq U sg
and T =T, UTg. It is clear that (v,1I,s,T) € P and since v = v, = 3, it follows that (y,I,s,T) is below
Uq and ug. O

Lemma 1.8. (P, <) is wy-closed.

Proof. The proof is standard and uses the fact that the support of a basic open set is finite. O
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2. Dense sets

Let us define the dense sets of P that we will use. The next lemma will be useful for that.
Lemma 2.1. Let u € P and let A € [k]S%. Then there is v € P such that v <u and A C I,.

Proof. Take u € P, v =+, and T = T,,. Choose a countable subset I of x such that:
(¢) I, UAC I and
(1) {ge(n) : n € w} C I for all £ € I N Lim(k).

This is possible because A is countable.

Now we will use induction to define a function s : I — {0,1}7. Let £ € I the least ordinal for which
s(€) has not been defined. If ¢ € I,,, then define s(§) = s,(§). Suppose that £ € (I'\ I,) N K, for some
a < k. Since s(n) is already defined for every n € I N[0,£) we have that s(ge(n)) is defined for each n € w
because of condition (i7) and the fact that g¢(n) < £ for all n € w. As {0,1}” is compact, there exists the
Po-limit of the set {s,(ge(n)) : n € w}. Then define s(§) = po — lim s(ge(n)). Otherwise choose s(§) € 27
arbitrarily. Thus, function s satisfies that s|;, = s,. Finally let v = (v,1,s,T). Clearly v € P and v < u
since vy, = Yy, O

Lemma 2.2. The set Dg ={u € P : g € I,} is dense in P for each f < k.
Proof. This lemma follows directly from Lemma 2.1 O
Lemma 2.3. The set E4 ={ue€P: A€ T,} is dense for each A € [K]“.

Proof. Fix v € P. By Lemma 2.1, there is w € P such that w <vand A C I,,. Let v = vy, I = Iy, § = Sy
and T' =T, U{A}. Therefore (v,I,s,T) € P and (v,I,s,T) <wv. O

Notation 2.4. For the following lemmas we will use the next notation. If £ € Lim(x), then denote by «(§)
the ordinal « such that ¢ € L,,.

Lemma 2.5. Let F' € [x|<%, let I be a countable subset of k which satisfies condition (1) from Definition 1.5
and let J =10 (Ug., Kp). Then for every family {Ay : k € w} of infinite subsets of I and every function
[ F' — 2 there exist a family of sets { B¢ € pae) : € € J} and a function h : FUI — 2 such that f C h,
h={i}| N Ay, is infinite for every i <2 and k € w; and {n € w : h(ge(n)) = h(§)} contains a cofinite subset
of Be for each & € J.

Proof. Split each Ay, in two infinite sets A% with i < 2 and fix a 1 to 1 enumeration o, of A% for each i < 2

and k € w. Relabel the previously fixed set of ultrafilters {q,, : n < w} as {q} : k € w and i < 2} and recall
that the ultrafilters of the set

Z={ps: KaNI#0}U{q: kcwandi<?2}
were chosen to be selective and pairwise RK-incomparable since the beginning. Since | Z| = w we can find,

by Lemma 1.3, sets B¢ € pq(¢) for each £ € J and sets Ci € q! for each k € w and i < 2 such that the
elements of

{{ge(n): n€Bey: (€ JYUu{{oh(n):neCl}: kew,i< 2y U{F}
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are pairwise disjoint. We will define the function h : FF U I — 2 in four disjoint parts of the domain.
o Let h(§) = f(€) for every € € F,
e let h(¢) =i for every £ € {oi(n): k€w,i<2andn e C}},
e enumerate the set {ge¢(n) : £ € J and n € B¢} by {anm : m € w}, using induction define h(a,,) = h(§)
when n € Bg, where a,, = g¢(n) and £ € FU{oL(n): k€w,i<2andn € Cj}U{a;: j <m}, and define
h(ay) = 0 otherwise; and
o define h(§) = 0 otherwise.

It is clear that the function h is well defined and satisfies f C h. Also, by the definition of h, the set
{n €w: h(ge(n)) = h(§)} contains a cofinite subset of Be for each £ € J. Finally, since o}, is 1 to 1, C}. € ¢},
and {ot(n):n € CL} C h= [{i}] N Ay then h=1[{i}] N Ay is infinite for each k € w and i < 2. O

Lemma 2.6. For every u € P and every pair n, ( € I, there exists w < w such that v, = vy, + 1 and

Suw (1) (Yu) # Sw(C)(Vu)-

Proof. Let v = y, + 1, [ = I, J = I 0 (Us., Kp), T = T, and let f : {n,¢} — 2 be a function
such that f(n) # f(¢). Applying the previous lemma to {n,(}, I, 7, and f, there is a family of sets
{Be € pae) : € € J} and a function h : T — 2 such that f C h, h=[{i}]N B4y is infinite for each By vy € Ty,
and {n € w: h(ge(n)) = h(€)} contains a cofinite subset of Be for each & € J. Set s(£) = s,(£) ™ (h(€)).

Claim. (y,1,s,T) € P and (y,1,s,T) < u.

Proof of Claim. Items (1), (3), (i), (4¢) and (i4i) from Definition 1.5 follows directly from our selection of
(v,1,s,T). By item (2) observe that for each & € J,

Pate) — lim 5(9¢(n)) = pae) — lim (s.(9c(m))~ (h(ge(n)) ) =

Page) = lim su(ge(n)) ™ (Pae) — lim h(ge(n))) = su (&)™ (h(€)) = 5(6),

where the equality between the lines holds because {n € w : h(ge(n)) = h(£)} € pa(e) and the fact that
for every free ultrafilter p € w* and every sequence in a topological product, the p-limit of the sequence is
exactly the point whose coordinates are the p-limits of the projection of the sequence in each coordinate. O

Lemma 2.7. The set F50,.0, =
{ueP:~,>06,0; €l su(00)(c) # syu(61)(c) for some § < a < 7y}

is dense for every pair {6p,01} € [k]? and every § < wy.
Proof. Pick v and note that by Lemma 2.1, we may assume without loss of generality, that 6y,0; € I,.
Since § < w; and P is w;-closed we have by Lemma 2.6 that there is u € F5,,,9, with u < v and such that
u satisfies all the required conditions. 0O

Let u € P. From now to the end we will denote the set (J, ., (Ko N 1.) by K.
Lemma 2.8. For each 3, € L let Gg ¢ be the set of elements u € P satisfying:

(i) [8, B + w[U[C, ¢ + w[C Ly, and
(13) there is o < 7y, such that s, (B+n)(a) = 1—s,(¢+n)(a) for everyn € w. Then Ga ¢ is dense for every

pair 3, € L.



Y.F. Ortiz-Castillo, A.H. Tomita / Topology and its Applications 371 (2025) 109463 9

Proof. Let u € P, by Lemma 2.1 there is v < w such that [8, 5 + w[U[(,( + w[C [,. Let {Aj : k € w} be an
enumeration of 7, split each Ay, in two sets A% and let o} : w — A} be a bijection for each i < 2. Define,
for each ¢ € K, the function g : w — & by:

. ge(n)  when ge(n) ¢ [B, 5 + wl,
Je(n) =
¢(+m when ge(n) =5+m
and similarly, define the functions & : w — A} for every k € w and i € {0,1} as:
=i oi(n)  when o (n) & (8,5 + wl,
1(n) = ;
¢(+m when o(n) =8+ m.
Note that g¢’s and ob’s are 1-1, therefore, g¢'s and 6%’s are finite to one. By Lemma 1.3, there are sets

Be € pae) for each € € K, and sets C}, € ¢}, for each k € w and i € {0,1} such that ge|p, is 1-1 for each
¢ € K, and 5}, cj is 1-1 for each k € w and ¢ < 2 and

{{ge(n) : n € Be}: € € K,y U{{6i(n): neCil: kew, i<?2}
are pairwise disjoint. Then
O:{gg(n) :{€Ky,andn € B} U{G)(n): k€w,i<2andne CL}

are pairwise distinct.
Let

O={ge(n): € K, and n € B¢} U{o},(n): k €w,i<2andn € CpL}.

We claim that [{8 4+ m,{+m}NO| <1 for every m < w.

In fact, if that was not the case, we would have |{f + m,{ + m} N O| = 2 for some m < w then there
would be two different elements in O that correspond to the same element in O* and this contradicts the
fact that the indexed elements of O* are pairwise distinct. Fix a function jy : w — [3,8 + w|U[(,( + w]
such that jo(m) € {8+ m,{+m} \ O for each m € w. We note that here is important that the elements in
(8, 8 + w[U[¢, ¢ + w] are not assigned to be p,-limits and thus they can be dealt at the end.

We will extend v to u so that v, =, + 1, I, = I, and T,, = T;,,. We will define a new coordinate.

Enumerate I,, \ ran jo as {anm, : m € w} faithfully. Define inductively
o let h(ay,) =iif ay € {oi(n): k €w,i<2andn € CL},

o let h(am) = h(§) if am = ge(n) for some ¢ € K,,, n € Be and there exists | < m with a; = ¢, and
e let h(a,,) = 0 otherwise.

Define j1 : w — [B, 8+ w[U[(, ¢ + w[ such that j;(m) is the unique element of {8+ m,{+m}\ {jo(m)}.
Note that h(j1(m)) is already defined for each m € w. Extend h to I, so that h(jo(m)) =1 —h(j1(m)). Let
sy @ L, — 271 5o that s, (u)(a) = s,(p)(a) for each p € I, and o < 7, and s,(u)(7) = h(n) for each
wE I,.

Finally let u = (v, + 1, I, Su, Ty). It is evident from the definition of h that s,(8+m)(v,) =1 — s, (¢ +
m)(7y,) for each m < w with 74, < 7,. To show that u € P and u < v just follow the same proof of
Lemma 2.6, so v € Gg ¢. Therefore Gg ¢ is dense. O

Lemma 2.9. The set
Hoar={ucP: B3>0 for some B € L, a <, and $,(B)|a =z},

is dense for every 8 < K, a < w1 and x € 2¢.
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Proof. Pick w € P, by Lemmas 1.8 and 2.6 there is v < w such that 7, > «a. Choose 5 € k \ I,, a successor
ordinal such that § > 6 and choose y € 27 such that « C y. Set v, = v, L, = I, U{B}, T, = T, and let
Sy @ I, = 27 such that s,(§) = s,(§) for € € I, and s,(8) = y. Since 8 ¢ L, we have K,, = K, and as
Yu = Vv, it is not difficult to check that v € P and u < v. So, u € Hg,q,» which is dense. O

3. The HF'D space

In this section we will show that, in the generic extension of P, there exists a nice HF'D space as we
require.

Theorem 3.1. Assume CH, 2“1 = k be regular, and o < k and 2* < k for every cardinal o < k. Then in
the generic extension of P, there exists an HF'D space X = {x, : p < k} such that:

(1) X is dense in {0,1}*1;

(2) for every \,¢ < K, every Y C X and every sequence in Y there is ( < 1 < k such that the sequence
has po-limit in (Y U{xe : £ € Ko})» for every a > n; and

(3) for each wultrafilter p and each 0 < 1 < k there exists f € L such that B > n and the p-limit of the
sequence {Tgqn : N € w} does not exist or is not an element of {x, : p < 6}.

Furthermore, in the extension, a* < k and 2% < k for every cardinal a < k.

Proof. Let G be a P-generic filter, then G intersects all the dense sets that we previously defined: Dg with
B < Kk, E4 with A € [K]*, Fsg,.0, With {00,601} € [k]? and § < w1, G ¢ with 3, € L, and Hg q,, with
0 < kK, @ <wi and z € 2°. In the extension, CH holds, 2** = k and the ground model ultrafilters (selective
ultrafilters) are still ultrafilters (selective ultrafilters). In the extension, there are no new countable sets,
therefore, o is the same cardinal as before smaller than k, hence it is smaller than k in the extension,
since cardinals are preserved. Since P is ws-cc, the number of nice names for a subset of a cardinal A < k
is |(k“1)*| < k. Therefore, 2* < & in the extension.

Denote as x, the function U, cq e, Su(nt). Observe that every 8 < x is in some I, with u € G due to
Lemma 2.2. By the dense sets from Lemma 2.7, one can see that =, € {0,1}** and all the elements in the
set X = {x, : p < Kk} are pairwise distinct.

To see that X is HFD take a countable infinite subset A of k. The forcing does not add new countable
sets, thus A is in the ground model. By Lemma 2.3, there exists u € G such that A € T,. Let U be a basic
open set in {0, 1}[7“*“1[ let 6 < wy be greater than the support of U. By density and genericity of G, there
exists w € G such that w < u and 7, > ¢. Observe that A = B4 10,137 € Ty and then, by item (44i) from
Definition 1.5 we obtain that {s.(t)|[y, ,[: # € A} is dense in {0, 1}rewl 8o

{:u €A: xuh’vu,wl[ € U} = {;“ eA: Sw(ﬂ)h'yu,'yw[ € 7T['yu,,'yw[[UH

which is infinite. Then X has the HFD property.

By Lemma 2.9 we have that for each « € {0,1}* for some @ < wy, there exists § such that zg 2 z. In
particular, it follows that X is dense in {0,1}** and (1) holds.

To show (2) let A\, < K, Y C X and let {y, : © < A} be a family of sequences in Y. Then there exists
1’ < k such that

{yp(n): p<Xandnew} C{ze: <}

Consider the first ordinal 8y such that KzN(¢+1) = 0 for every 3 > [y and let n = max{¢,n’, Bo}. Observe
that for each 1 < A, the family {{n € w: y,(n) =z} : © € y,[w]} is a partition for w, thus for every selective
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ultrafilter p, the sequence y,, must be p-equivalent to a constant or an injective sequence. In particular, for
every a > 1 and every p < A, y,, is po-equivalent to a constant sequence or an 1 to 1 sequence (because pq is
still selective in the extension). It is clear that in the first case, the sequence y,, has a p,-limit in Y. Suppose
that y,, is pa-equivalent to an 1 to 1 function. Since y,, C {z¢ : £ < 1}, we have by o > maxz{n’, B} and
Lemma 2.2 that there are £ € K, and w € G such that { € I, and {n € w: y,(n) = 24, (n)} € Pa, Where
g¢(n) € I, for every n € w because of (1) from Definition 1.5. Since { > ¢ we obtain by the definition of
the 2,5 and item (2) from Definition 1.5 that z¢ is the p,-limit of y,,.

Finally, for (3) let p be an ultrafilter. If for every # < k there exists € L such that § > 6 and the
sequence {Tg4, : 7 € w} has no p-limit in {z, : 4 < K}, so we are done.

Suppose then that for a given 6 <  the sequence {34y : n € w} has p-limit in {z, : p < k} for every
B € L with 8 < 8 < k. In this case we claim that for every 3, ( € L with 8 < 8 < ( < k, the sequences
{zg4n : n € w} and {x¢yn : n € w} have different p-limits. Otherwise suppose that there are 3, ( € L such
that § < 8 < ¢ < k and {zg4n : 7 € w} and {x¢4y, : n € w} have z, as p-limit. By Lemma 2.8, it follows
that there exists o < wq such that xgyp, () =1 —xz¢4pn(a) for each n € w. Since the sequences have p-limits,
it follows that their coordinates have p-limits. Therefore z, (o) = p-limit {zg4n(a) : n € w} = p-limit
1—{z¢qn(a) : n € w} =1—2,(a), which is a contradiction. Therefore the set of p-limits of {5y : n € w}
for § > 6 are pairwise distinct and (3) holds. O

4. The main example

In this last section we will consider an HF'D space X as Theorem 3.1 to define our main example. Let
begin setting the theorems that will guarantee that such example will be ultrapseudocompact and each of
its powers under 2° is countably compact. First it is necessary to define the (k, D)-compactness, a property
introduced in [6] by S. Garcia-Ferreira. This property is weaker but close enough to p-compactness (of course
stronger than countable compactness) and characterize the spaces whose k-powers are countably compact
for every cardinal k.

Definition 4.1. [6, Definition 3.1] Let ) # D C w* and let 1 < k be a cardinal number. A space X is said to
be (k, D)-compact if for every set {(25)n<w : € < v} of y-many sequences, for v < k, of points of X, there
are p € D and z¢ € X, for each & < 7, such that z¢ = p — lim 2§, for each & < 7.

Theorem 4.2. [6, Theorem 3.2] Let 1 < k be a cardinal and let X be a space. Then X" is countably compact
iff there is D C w* such that X is (k,D)-compact.

Now we will provide conditions for a space in order to guarantee that every power under 2¢ of its
hyperspace of closed sets is countably compact.

Theorem 4.3. Let Z be a normal space such that hd(Z) < ¢ and suppose that \ is a cardinal for which
¢ < A< 2% Then Z* is countably compact iff CL(Z)> is countably compact.

Proof. Of course the countable compactness of CL(Z)” implies that Z* has such property. Suppose that Z*
is countably compact. By Theorem 4.2, it is enough to prove that for every family of at most A sequences
of CL(Z), there is a free ultrafilter p € w* such that every sequence in that family has p-limit. So let
{(B)new : € < A} be a family of sequences of CL(Z). For every ¢ < A and n € w fix D$ a dense subset of
BS in Z with cardinality less or equal than the continuum. Consider in Z the family Ag of all sequences
in {(28)new @ 25 € DS} for each ¢ < . Let A = Ug<r A and note that [A| < X because |A¢| < ¢
for every £ < A. Then by Theorem 4.2, there is p € w* such that every sequence in A has p-limit. Let
Ee = {p—1lim 28 : (28)necw € A¢}. We claim that cl(E¢) = p—lim BS in CL(Z) for every ¢ < . In fact, fix
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& < Xandlet Uy,...,Ug be open sets of Z such that cl(E¢) € U = (Uy,...,Up). Since Z is normal, there
is an open set W such that

c(Eg) CW CaW)c | U

i<m

Since E¢ C W, it is standard to show that {n € w : D§ C W} € p, so {n € w: B§ C cl(W)} € p. Then
{n€w: B C U;<m Ui} € p. Finally for each k& < m there is x;, € E¢ N Uy. As xy is the p-limit of a
sequence in Ag, we have that {n € w: D5 N Uy # 0} € p for each k < m. Since D5, is dense in B for each
n € w,

{new:DENUL # 0} ={ncw:BSNU; # 0}
and we obtain that {n € w: BS N Uy # 0} € p for each k < m. Thus

{new:BSeU} =
{nGw:BfLQ UUi}ﬁ( ﬂ{nGw:BfLﬂUk#(ﬁ})Ep.

i<m kE<m
Therefore cl(E¢) = p — lim BS and this ends the proof. 0O
We are ready to define our main example:

Example 4.4. Assume all the conditions from Theorem 3.1 and let X be an HFD space which satisfies
(1) — (3) from the same theorem. Then there exists a collectionwise normal, ultrapseudocompact space
Z C X such that hd(Z) = w, Z* is countably compact for every cardinal A <  but Z is not p-compact for
any p € w*.

Proof. Consider all definitions and notations from the previous sections. Fix a countable dense subset D
of X, which is possible because every HF D space is hereditarily separable. Since X is dense in {0, 1}, it
follows that D is dense in {0,1}**. Enumerate the family

{S: S is a sequence of X* for some \ < k}

as {S¢ : € < k} in such a way that {Se(n) : n € w} C {z, : p < £} for every € < k, where A\¢ denote the
cardinal under x for which S¢ is a sequence in X A¢ . This enumeration is possible since 2X < k for each \ < k.
For each £ < k, set {ye(8,n) : B < A¢ and n € w} the family of sequences in X so that y¢(8,n) = S¢(n)(5)
for every 8 < A\¢ and n € w. Also enumerate all free ultrafilters as {r; : 0 <0 < x}.

By transfinite recursion we will define, for each n < x, B, and C,, disjoint subsets of x of cardinality
smaller than x such that:

(1) By = po and Cy = 0, where py is the first ordinal such that D C {z, : p < po},

(2) Uy<a By € Ba and U, ., Cy C Cq for every a <k,

(3) for every o < &, either {z, : p € U, , By,}* is countably compact for every A\ < k or S¢(,) has an
accumulation point in {z, : p € By} where £(a) is the first ordinal for which S¢(,) is contained in
{zp 0 p €Uy <a By}?e@ and Sg(q) does not have an accumulation point in {z, : p € Un<a B, e,
and

(4) for every 0 < o < & there is a sequence 0 : w — B, such that either the rq-lim of (2,(,))nen does not
exist in X, or the index of the ro-lim of (24 (n))new belongs to Cy, (i.e. ( € Oy where z¢ = 1o —1im Z4(y,))-
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Let By and Cy be defined by (1).

Suppose that B, and C, are defined satisfying (1) — (4) for each n < «a. Let B, = U, ., By and
Co=Upca Cn- Uz, pelU, <0 B! }* is countably compact for every A < , then let BY = B/ , otherwise
let {(c) the first ordinal such that S¢(,) is a sequence in {z, : p € U, -, B/}« and Sg(4) does not have
an accumulation point in {z, : p € U, -, B! }*¢ . By item (2) from Theorem 3.1, there is § € L such
that min({0} U Ky) > sup(B}, U C}) and S¢(q) has pp-lim in ({z¢ : £ € B, U Ky}) (). Set B, = B/, UKy
in this case. Now by item (3) from Theorem 3.1, there exist ¢ € L\ (sup(B; U C,) + 1) such that, the
ro-limit of {z¢4y 1 n € w} either does not exist in X or is not an element of {x, : u < sup(B} UC,)}.
Let By, = B U[(,( +w[ and C, = C/, in the case that {zcy, : n € w} does not have ry-limit in X and
otherwise let xy = ro — lim x¢ypn, Ba = B U ([(,( +w[\{x}) and Cy = C}, U {x}. It is clear that B, and
C, satisfy all the requirements.

We claim that Z = {z¢: £ € U o\
hereditarily separable because it is a subspace of the HFD space X. Now suppose by contradiction that not

B, } is a space as required. Note that Z is collectionwise normal and

every power under x of Z is countably compact and let £ < x be the first ordinal such that S¢ does not have
an accumulation point in Z*¢ and let a < k be the first ordinal such that Se(8)(n) € {z,: p € Uy<a Bnt
for each n € w and B < A¢. Then by item (3) we know that S has an accumulation point in {z, : p €
B, }¢ C Z*¢ a contradiction. So Z* is countably compact for every A < k.

In particular Z is pseudocompact and dense in {0, 1}*?, hence by Lemma 0.4, Z is ultrapseudocompact.
Finally by item (4) we know that for every p € w* there is a sequence in Z which does not have p-limit
inZ. O

Some natural questions that are related to our example are:

Question 4.5. Is there consistently a topological group or a homogeneous space X such that CL(X) is
countably compact, but X is not p-compact for any ultrafilter p?

Question 4.6. Is there consistently a space X such CL(X) is countably compact, but X¢ is not countably
compact?

Question 4.7. Is there some model where X is p-compact for some p € w* provided CL(X) is countably
compact?

Two more questions related with p-compactness and p-pseudocompactness.
Question 4.8. Is there some model where every p-pseudocompact normal space is p-compact?

Question 4.9. Let f : X — Y be a perfect onto function where Y is p-pseudocompact. Is X p-pseudocompact?
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