Trabalho
Titulo em Portugués:

Titulo em Inglés:

Unidade:
Orientador:
Area de Pesquisa / SubArea:

Agéncia Financiadora:

Framework Computacional para Implementac3o e Andlise de Redes Neurais Quanticas Aplicadas a Classificacdo de Portas Légicas
a computational framework for the implementation and analysis of quantum neural networks applied to logic gate classification
Pedro Calligaris Delbem

Universidade de S3o Paulo

Instituto de Fisica de S3o Carlos

Filippo Giovanni Ghiglieno

Areas Classicas de Fenomenologia e suas Aplicacdes

FUSP - Fundagdo Universidade de S3o Paulo



Framework Computacional para Implementacao e
Analise de Redes Neurais Quanticas Aplicadas a
Classificacao de Portas Logicas

Pedro C. Delbem, Lucca Rodrigues Cunha,
Bernardo Maia Coelho, Rodrigo Silva de Almeida

pedrodelbem@usp.br
Orientador: Prof. Dr. Alexandre Delbem e Prof. Dr. Filippo Ghiglieno

Universidade de Sao Paulo (USP)
25 de Agosto de 2025



Introducao

A drea de aprendizagem de mdquina, e em particular as redes neurais artificiais, revolucionou
inimeros campos da ciéncia e tecnologia. A unidade fundamental dessas redes é o neur6nio
artificial, ou perceptron, um modelo matemaético concebido para imitar o seu andlogo biolégico.
No entanto, j4 em 1969, Minsky e Papert demonstraram que um Unico perceptron € inerentemente
limitado a resolver problemas linearmente separdveis, sendo incapaz de aprender funcdes basicas
como o "OU exclusivo" (XOR) [3]. Esta limitacdo impulsionou o desenvolvimento de redes
com multiplas camadas (deep learning), que, embora poderosas, implicam um elevado custo
computacional.

A computacdo quantica apresenta um paradigma fundamentalmente novo para o processa-
mento de informacd@o. A sua unidade basica, o qubit, difere de um bit classico de forma crucial:
enquanto um bit assume estados discretos de 0 ou 1, um qubit pode existir numa superposicao lin-
ear de ambos os estados simultaneamente. Esta capacidade permite que os algoritmos quanticos
explorem um espaco computacional fundamentalmente diferente.

Neste contexto, as Redes Neurais Quanticas (QNNs) surgem como um campo promissor,
que busca unir o poder da computag¢do quantica com a arquitetura das redes neurais. Uma QNN
codifica informacdes em pardmetros de circuitos quanticos — tipicamente, os angulos de rotacao
de portas quanticas. Uma das vantagens tedricas mais notdveis é¢ que um Unico neurdnio quantico
pode, em principio, resolver problemas nio linearmente separdveis como o XOR, uma tarefa que
requer multiplas camadas no dominio cléssico [1].

Este trabalho apresenta um framework computacional desenvolvido em Python para a imple-
mentacgdo, treinamento e andlise sistemética de arquiteturas de QNNs baseadas em um tinico
neurdnio. Utilizamos a tarefa de classificacdo de portas 16gicas como um problema de benchmark
para avaliar e comparar diferentes estratégias de codificacio de dados e algoritmos de otimizacao.

Métodos e Procedimentos

A metodologia abrange a constru¢cdo de um pipeline experimental, desde a defini¢cdo programaética
do circuito quantico até a andlise de desempenho.

Arquitetura do Neuronio Quantico. O modelo de neur6énio quantico implementado utiliza
um circuito parametrizado que atua sobre um ou mais qubits de entrada e um qubit de saida
para a classificacdo. A computacao € realizada através da aplicacao de portas de rotagdo, cujos
angulos sao os parametros treindveis do modelo, e portas de controle multiplo para gerar a
saida. O framework foi construido sobre a biblioteca Qiskit [2], permitindo simula¢des de alta
performance e a potencial execu¢do em hardware quantico.

Estratégias de Codificacao de Dados. Duas abordagens para codificar os dados de entrada no
estado quantico foram implementadas e analisadas através de modulos de software dedicados:

* Codificacdo na Fase: Os valores de entrada bindrios {0, 1} sdo mapeados para {+1, —1}
e usados para modular os dngulos de rotagdo de portas quanticas (e.g., Rz (6, - x1),
Rx (0 - x5)). A informacio é, portanto, armazenada na fase relativa do estado quantico.

* Codificacao na Amplituda: Nesta abordagem, o estado inicial dos qubits de entrada é
preparado para corresponder ao vetor de entrada (ex: |01) para a entrada (0, 1)). Portas
de rotagdo com angulos treindveis (6;) sdo entdo aplicadas a cada qubit. A classificagdo



é realizada por uma porta de controle multiplo (MCX) que atua sobre um qubit ancilla.
Cada vetor de entrada € avaliado numa execucdo de circuito separada.

Framework de Treinamento e Otimizacdo. O processo de treinamento, gerido pela classe
principal do framework, visa otimizar os pardmetros #; do circuito para minimizar uma funcio de
custo. A func¢do de custo € definida como o erro entre a probabilidade de medicao do estado de
saida desejado e o valor esperado pela porta l6gica, promediado sobre todas as entradas possiveis.
Um ficheiro de configuragdo define os hiperparametros de cada experimento, incluindo as
portas 16gicas (XOR, AND, etc.), as codificaces e os métodos de treino. Para os resultados aqui
apresentados, foi utilizado o método de busca exaustiva em grade (cg-exhaustive_search)
para garantir uma exploracdo completa do espago de parametros.

O critério de convergéncia € definido de forma rigorosa: para garantir que o erro para cada
combinac¢do de entrada individual seja inferior a 0.5 (assegurando uma classificagc@o correta na
maioria das vezes), a tolerdncia para o erro médio total (F,.,;) deve ser estritamente menor
que 0.5/2", onde n é o ndimero de qubits de entrada. Para os experimentos com n = 2, esta
tolerancia foi, portanto, definida como 0.125 ou 12.5%.

Resultados

Os experimentos foram executados através de um notebook computacional que gerencia a
execugdo paralela das simulagdes para cada combinacdo de parametros definida. Os dados de
convergéncia foram salvos e posteriormente processados por um script de visualizagdo para gerar
as andlises gréficas.

A Figura 1 apresenta um heatmap que resume o desempenho comparativo das duas cod-
ificacoes, exibindo a média de iteracOes necessdrias para atingir a convergéncia (erro abaixo
da tolerancia de 12.5%). A analise quantitativa revela que a codificacdo de fase foi, em geral,
mais eficiente para problemas ndo lineares como XOR e XNOR. Em contraste, a codificagdo de
amplitude que nao apresentou convergéncia para nenhuma da portas 16gicas.

As curvas de convergéncia, que detalham a evolugdo do erro ao longo das iteragdes, corrobo-
ram estes achados. Observou-se que, para neurdnios simples apenas a codificac@o na fase foi
capaz de aprender alguma porta l6gica e apenas as lineramente ndo separaveis, em contraposicao
ao resultado de redes neurais cldssicas.

Conclusoes

Este trabalho demonstrou o desenvolvimento de um framework computacional versatil para a
prototipagem e avaliagdo de Redes Neurais Quanticas. A plataforma permitiu uma comparacao
sistemdtica entre diferentes arquiteturas de codificacdo de dados, confirmando a capacidade de
um tnico neurdnio quantico de resolver problemas nao linearmente separdveis, em conformidade
com achados prévios na literatura [1].

Os resultados indicam que a escolha da estratégia de codificagdao é um fator determinante
na eficiéncia do treinamento, com diferentes codificacdes sendo mais adequadas para classes
distintas de problemas. O framework estabelecido serve como uma base sélida para trabalhos
futuros, que podem incluir a expansio para arquiteturas com multiplos neur6nios, a exploracao
de codificagdes mais complexas e a avaliacdo do impacto do ruido em processadores quanticos
reais.



Best Method Performance by Encoding (2 Inputs)

(Budget: 100 Iterations)

AND

NAND

NOR

Logic Gate

OR

Best Average Convergence lteration

XNOR

U
amplitude

Encoding Type

Figure 1: Heatmap comparando o nimero médio de iteragdes para convergéncia entre as
codificacdes de Fase e Amplitude para diferentes portas l6gicas. Valores menores (tons mais
escuros) indicam melhor desempenho. A imagem € uma representacao ilustrativa dos resultados.

Declaraciao de Conflito de Interesses: Os autores declaram nao haver conflito de interesses.

Agradecimentos: Os autores agradecem ao Centro de Inteligéncia Artificial (C4AI-USP),
pelo apoio da Fundagdo de Amparo a Pesquisa do Estado de Sao Paulo (FUSP, processo n°
2019/07665-4), da IBM Corporation, do Centro de Ciéncias Matematicas Aplicadas a Industria
(CeMEALI, FAPESP, processo n° 2013/07375-0) e do Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico (CNPq).

References

[1] 1.V. Grossu, "Single qubit neural quantum circuit for solving Exclusive-OR", MethodsX, vol.
8, p. 101573, 2021.

[2] A. Astaw, L. Bello, Y. Ben-Haim et al., "Learn quantum computation using Qiskit", 2020.
[Online]. Disponivel em: http://community.giskit.org/textbook.

[3] M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational Geometry", MIT
Press, Cambridge, 1969.



A Computational Framework for the
Implementation and Analysis of Quantum Neural
Networks Applied to Logic Gate Classification

Pedro C. Delbem, Lucca Rodrigues Cunha,
Bernardo Maia Coelho, Rodrigo Silva de Almeida

pedrodelbem@usp.br
Supervisor: Prof. Dr. Alexandre Delbem and Prof. Dr. Filippo Ghiglieno

University of Sao Paulo (USP)
August 25, 2025



Objectives

The field of machine learning, and particularly artificial neural networks, has revolutionized
numerous fields of science and technology. The fundamental unit of these networks is the
artificial neuron, or perceptron, a mathematical model designed to mimic its biological analogue.
However, as early as 1969, Minsky and Papert demonstrated that a single perceptron is inherently
limited to solving linearly separable problems, being incapable of learning basic functions
such as the "exclusive OR" (XOR) [3]. This limitation drove the development of multi-layered
networks (deep learning), which, although powerful, entail a high computational cost.

Quantum computing presents a fundamentally new paradigm for information processing. Its
basic unit, the qubit, differs crucially from a classical bit: while a bit assumes discrete states of
0 or 1, a qubit can exist in a linear superposition of both states simultaneously. This capability
allows quantum algorithms to explore a fundamentally different computational space.

In this context, Quantum Neural Networks (QNNs) emerge as a promising field that seeks
to merge the power of quantum computing with the architecture of neural networks. A QNN
encodes information into the parameters of quantum circuits—typically, the rotation angles of
quantum gates. One of the most notable theoretical advantages is that a single quantum neuron
can, in principle, solve non-linearly separable problems like XOR, a task that requires multiple
layers in the classical domain [1].

This work presents a computational framework developed in Python for the implementation,
training, and systematic analysis of QNN architectures based on a single neuron. We use the
task of classifying logic gates as a benchmark problem to evaluate and compare different data
encoding strategies and optimization algorithms.

Materials and Methods

The methodology covers the construction of an experimental pipeline, from the programmatic
definition of the quantum circuit to the performance analysis.

Quantum Neuron Architecture. The implemented quantum neuron model uses a parameter-
ized circuit that acts on one or more input qubits and one output qubit for classification. The
computation is performed by applying rotation gates, whose angles are the trainable parameters
of the model, and multi-control gates to generate the output. The framework was built on the
Qiskit library [2], enabling high-performance simulations and the potential for execution on
quantum hardware.

Data Encoding Strategies. Two approaches to encode input data into the quantum state were
implemented and analyzed through dedicated software modules:

» Phase Encoding: The binary input values {0, 1} are mapped to {+1, —1} and used to
modulate the rotation angles of quantum gates (e.g., Rz(0; - x1), Rx(02 - x2)). The
information is therefore stored in the relative phase of the quantum state.

* Amplitude Encoding: In this approach, the initial state of the input qubits is prepared
to correspond to the input vector (e.g., |01) for the input (0, 1)). Rotation gates with
trainable angles (6;) are then applied to each qubit. The classification is performed by a
multi-controlled X (MCX) gate acting on an ancillary qubit. Each input vector is evaluated
in a separate circuit execution.



Training and Optimization Framework. The training process, managed by the framework’s
main class, aims to optimize the circuit parameters ¢; to minimize a cost function. The cost
function is defined as the error between the measurement probability of the desired output state
and the value expected by the logic gate, averaged over all possible inputs. A configuration
file defines the hyperparameters for each experiment, including the logic gates (XOR, AND,
etc.), encodings, and training methods. For the results presented here, the exhaustive grid
search method (cg—exhaustive_search) was used to ensure a complete exploration of the
parameter space. The convergence criterion is strictly defined: to ensure that the error for each
individual input combination is less than 0.5 (ensuring correct classification most of the time),
the tolerance for the total average error (F, ) must be strictly less than 0.5/2", where 7 is the
number of input qubits. For the experiments with n = 2, this tolerance was therefore set to 0.125
or 12.5%.

Results

The experiments were executed via a computational notebook that managed the parallel execution
of simulations for each defined parameter combination. The convergence data was saved and
subsequently processed by a visualization script to generate the graphical analyses.

Figure 1 presents a heatmap summarizing the comparative performance of the two encodings,
displaying the average number of iterations required to reach convergence (error below the 12.5%
tolerance). The quantitative analysis reveals that phase encoding was generally more efficient for
non-linear problems like XOR and XNOR. In contrast, amplitude encoding did not converge for
any of the logic gates. The convergence curves, which detail the error evolution over iterations,
corroborate these findings. It was observed that for simple neurons, only phase encoding was
able to learn any logic gate, and only the non-linearly separable ones, in contrast to the results
from classical neural networks.

Conclusions

This work demonstrated the development of a versatile computational framework for the pro-
totyping and evaluation of Quantum Neural Networks. The platform allowed for a systematic
comparison between different data encoding architectures, confirming the ability of a single
quantum neuron to solve non-linearly separable problems, in accordance with previous findings
in the literature [1].

The results indicate that the choice of encoding strategy is a determining factor in training
efficiency, with different encodings being more suitable for distinct classes of problems. The
established framework serves as a solid foundation for future work, which may include expanding
to multi-neuron architectures, exploring more complex encodings, and evaluating the impact of
noise on real quantum processors.

Conflict of Interest Statement: The authors declare no conflict of interest.

Acknowledgements: The authors of this work would like to thank the Center for Artificial
Intelligence (C4AI-USP), the support from the Sdo Paulo Research Foundation (FAPESP grant
n°® 2019/07665-4), from the IBM Corporation, the Center for Mathematical Sciences Applied do
Industry (CeMEAI, FAPESP grant n® 2013/07375-0), and the National Council for Scientific
and Technological Development (CNPq).



Best Method Performance by Encoding (2 Inputs)

(Budget: 100 Iterations)

AND

NAND

NOR

Logic Gate

OR

Best Average Convergence lteration

XNOR

U
amplitude

Encoding Type

Figure 1: Heatmap comparing the average number of iterations to convergence between the
Phase and Amplitude encodings for different logic gates. Lower values (darker tones) indicate
better performance. The image is an illustrative representation of the results.

References

[1] L. V. Grossu, "Single qubit neural quantum circuit for solving Exclusive-OR", MethodsX, vol.
8, p. 101573, 2021.

[2] A. Asfaw, L. Bello, Y. Ben-Haim et al., "Learn quantum computation using Qiskit", 2020.
[Online]. Available: http://community.giskit.org/textbook.

[3] M. Minsky and S. Papert, "Perceptrons: An Introduction to Computational Geometry", MIT
Press, Cambridge, 1969.



