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Abstract. In this paper we present the analytical study of the magnetohydrodynamic

(MHD) flow through a rectangular duct driven by the pressure gradient and under the

action of the transverse magnetic field. Motivated by various MHD applications in which

hydrodynamic slip naturally occur, we prescribe the slipping boundary condition on the

upper boundary which contains irregularities as well. Depending on the period of the

boundary roughness, we derive three different limit problems by using rigorous analysis

in the appropriate functional setting. This approach also enables us to determine the

relative contribution of the MHD effect and the slip itself in the governing coupled system

satisfied by the velocity and induced magnetic field.

1. Introduction. The magnetohydrodynamic (MHD) effects naturally appear in nu-

merous industrial and biological applications such as MHD pumps, generators, cooling

devices in nuclear fusion reactors, blood flow measurement tools, accelerators, etc. The

increasing number of those devices has motivated the researchers to try to generalize the

available hydrodynamic solutions to include the MHD effects for electrically conducting

liquids. Due to the strong coupling of the equations of fluid dynamics and electromag-

netism, the corresponding MHD equations have been mainly treated by different nu-

merical methods, while analytical solutions are available mostly for some special (ideal)

geometries of the problem region and under simple boundary conditions (see e.g. [13]).
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2 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

The increasing number of MHD applications where the duct flow under the action of a

transverse magnetic field naturally appear motivated the researchers to try to generalize

the available hydrodynamic solutions. The pioneering results in this field are due to

Hunt [16,17] in which the analytical solutions have been provided for laminar motion in

two settings: (i) non-conducting walls parallel to the applied magnetic field and perfectly

conducting walls perpendicular to the field, and (ii) perfectly conducting walls parallel

to the imposed magnetic field and non-conducting walls perpendicular to the field. In

view of the practical applications, the latter setting seems to be of more interest but

it is more challenging from the analytical point of view due to the appearance of the

boundary layers (see [17]). We would also like to mention the paper by Sezgin [30] where

the analytical solution has been proposed by reducing the problem to the solution of

a Fredholm integral equation of the second kind, which he solved numerically. Bluck

and Wolfendale [7] proposed the analytical solution to the laminar flow in an array of

partially conducting ducts of arbitrary wall thickness and indicated the limitations of

the thin-wall approximations developed by Hunt. Interesting numerical results on the

subject can be found in [6, 8, 14, 31, 33, 34].

In this paper we study a steady-state flow through a rectangular duct driven by the

pressure gradient along a duct. The fluid is taken as viscous, incompressible and having

uniform electrical conductivity. A uniform magnetic field of the constant intensity is

applied perpendicular to the duct. We suppose that no secondary flow is produced, so

there is no variation of the fluid movement and induced magnetic field in the duct axis

z-direction, but they are subjected to change on the cross-section of the duct which is

a region in the xy–plane. Since, in the practice, the boundaries almost always contain

various small irregularities (rugosities, dents, etc.), we assume that the upper boundary

of the cross-section of the duct is not perfectly smooth. Namely, we consider the following

open set as our domain:

Ωε =
{
(x, y) ∈ R

2 : −c < x < c, −1 < y < 1 + ε ψ(x)G
( x

εα

)}
, 0 < ε � 1. (1.1)

Here we set the roughness on the upper boundary by a 1-periodic smooth function G.

α ≥ 0 is a parameter which establishes the order of the roughness and ψ is a C∞-

function with compact support in (−c, c) which places the perturbation (see Fig. 1.1

as an example). Notice that, when ε goes to zero, the perturbed domain Ωε uniformly

converges to Ω = (−c, c)× (−1, 1).

In MHD applications such as heat exchangers, where the fluid is interacted with the

solid wall, a good wettability is to be expected at the liquid-solid interface. In this

case, it is reasonable to prescribe the no-slip (zero) boundary condition for the velocity.

Although many experimental studies support the no-slip condition, in some applications

such as microfluidic devices or even fusion reactors with liquid metal flows in contact

with ceramics, the slip in the MHD flow is likely to occur (see [11,28] and the references

therein). The slip length is defined as the distance between the liquid and the solid

surface where the extrapolated fluid flow velocity vanishes, leading to a mixed (Robin-

type) boundary condition for the velocity. Thus, in the present paper, our aim is to

rigorously study the MHD flow in the domain Ωε by taking into account the presence of

slip on the oscillating part of the boundary.
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EFFECTS OF BOUNDARY ROUGHNESS ON THE MHD DUCT FLOW 3

Fig. 1.1. Cross section of the duct with rough upper boundary

The paper is organized as follows. In Section 2, we formulate the problem given

by the (coupled) MHD equations and the corresponding boundary conditions for the

velocity and the induced magnetic field. For the sake of the reader’s convenience, we

also summarize the main results by providing the derived limit systems describing the

effective flow. In Section 3, we first discuss the well-posedness of the governing system

(see Section 3.1) and then provide some technical results focusing on the ones regarding

the extension operators which are crucial for the analysis in the sequel (see Section 3.2).

Section 4 represents the main part of this paper containing the proofs of the results

on the asymptotic behavior of the flow, as ε → 0. Depending on the order of the

boundary roughness α, we rigorously derive three different limit problems in Ω. Namely,

for α ∈ [0, 1) (weak regime, i.e. slightly corrugated boundary), we obtain the effective

system in the same form as the starting one, with no roughness-induced effects observed

in the slip condition (see Theorem 4.1). In the same theorem, we prove the result for

α = 1, i.e. in the resonant case where the orders of the amplitude and the period of the

boundary roughness are equal. This turns out to be the critical regime since the effective

condition on the upper boundary is corrected by the reaction coefficient term confirming

that the boundary roughness is affecting the flow. We also resolve the remaining case

α > 1 (large boundary roughness). Assuming for simplicity ψ nonnegative in (−c, c) and

satisfying ψ(−c) = ψ(c) = 0, we deduce the limit problem endowed with homogeneous

Dirichlet boundary conditions on y = 1 (see Theorem 4.2). It should be emphasized that

the undertaken approach based on the extension operators allows us to elegantly handle

the MHD duct flow with perfectly conducting walls parallel to the imposed magnetic

field and non-conducting walls perpendicular to the field. This setting cannot be treated

by direct approach via Taylor series (as we did in [19, 24]) since the no-slip boundary
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4 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

conditions at x = −c, c cannot be satisfied. Last but not least, in Section 5, using the

analysis in the appropriate functional setting we also discuss how the slip itself (i.e. its

order of magnitude) influence on the effective behavior of the MHD flow in a simple

rectangular duct (without boundary distortion). By doing that, we can determine the

relative contribution of the MHD effect and the slipping condition, motivated by the

discussion from [32].

To finish the Introduction, let us provide more bibliographic remarks on the subject.

Although one can find many papers on the MHD duct flows throughout the literature, the

analytical results on the influence of the slip hydrodynamic condition on such flows are

very sparse throughout the literature. We already mentioned the paper by Smolentsev

[32] in which he considered the MHD flow in a simple rectangular channel with non-

conducting walls. Rivero and Cuevas [29] investigated the effect of the slip length on the

flow rate in MHD micropumps. They observed that the solution of the MHD flow cannot

be derived analytically if the slip condition is prescribed on the entire boundary. The

effects of small boundary perturbation (α = 0, Ψ ≡ 1) on the MHD duct flow have been

studied analytically in [19,24] using the asymptotic expansion technique employed earlier

for the different regimes of the fluid flow (see e.g. [20–23]). In the present paper, we allow

different orders between the amplitude and the period of the boundary roughness which

forces us to completely change the approach and employ mathematical tools developed

in [2,3,12,25,26]. To conclude, we believe that the provided rigorous results could prove

useful for the engineering practice, in particular with regards to numerical simulations

of the MHD problems which are affected by the wall irregularities and allow slippage as

well.

2. Setting of the problem and main result. Statement of the problem. As

described in the Introduction, we study the steady-state flow of an incompressible con-

ducting fluid governed by a pressure gradient along a duct, under an applied transverse

magnetic field. We suppose that no secondary flow is produced and that there are no

variations of the fluid movement and induced magnetic field along the duct (in the z-

direction). As a consequence, all physical quantities (except pressure) are independent

of z and the velocity and the induced magnetic field have only z-components which are

subjected to change on the cross-section of the duct (in xy–plane). Finally, we assume

that the induced magnetic field due to the motion of the fluid does not disturb the ap-

plied magnetic field so the latter can be taken as the constant field of flux density in

y-direction. In view of that, starting from the steady-state Navier-Stokes system coupled

with Maxwell’s equations we arrive at the following (non-dimensional) system describing

the MHD duct flow (see e.g. [7, 16] for details):

∂2uε

∂x2
+

∂2uε

∂y2
+M

∂Hε

∂y
+ 1 = f ε, in Ωε , (2.1)

∂2Hε

∂x2
+

∂2Hε

∂y2
+M

∂uε

∂y
= gε, in Ωε . (2.2)

In the above system, the unknowns are the fluid velocity uε and the induced magnetic

field Hε. Note that we have one non-dimensional parameter M (Hartmann number [15])
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EFFECTS OF BOUNDARY ROUGHNESS ON THE MHD DUCT FLOW 5

appearing in the governing equations which depends on the flux density, fluid viscosity

and conductivity. The functions f ε and gε are given in the system (2.1)–(2.2) representing

the external body and magnetic force applied to the cross-section.

Let us impose the boundary conditions following the guidelines from the Introduction:

uε + β
duε

dnε
= 0, Hε = 0, for y = 1 + ε ψ(x)G

( x

εα

)
, (2.3)

uε = 0, Hε = 0, for y = −1 , (2.4)

uε = 0,
∂Hε

∂x
= 0, for x = −c, c . (2.5)

We prescribe a slip boundary condition on the upper rough wall, which, in the case

of a unidirectional flow, reduce to (2.3)1. Here β = Ls

a denotes the dimensionless slip

length with a being the characteristic value related to the domain’s width and Ls the

(dimensional) slip coefficient. The lower wall (y = −1) and the side walls (x = −c, c)

are assumed to have no-slip. The boundary conditions for the induced magnetic field

describe the situation with perfectly conducting walls parallel to the imposed magnetic

field and non-conducting walls perpendicular to the field. As mentioned above, this

setting seems to be more interesting from the practical point of view (see [17]) and also

more challenging from the mathematical point of view since we cannot use the approach

from [19,24] anymore.

Summary of the different asymptotic regimes. The main goal of this paper

is to investigate the effective behavior of the flow described by (2.1)–(2.5), as ε → 0.

In summary (see Theorems 4.1 and 4.2), we establish the following asymptotic regimes

depending on the order of the boundary roughness α:

• Critical regime (α = 1) and weak regime (α ∈ [0, 1))

The limit systems read as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2 + ∂2u

∂y2 +M ∂H
∂y + 1 = f, in Ω ,

∂2H
∂x2 + ∂2H

∂y2 +M ∂u
∂y = g, in Ω ,

γ u+ β du
dn = 0, H = 0, for y = 1 ,

u = 0, H = 0, for y = −1 ,

u = 0, ∂H
∂x = 0, for x = −c, c ,

(2.6)

where the boundary coefficient γ is given by

γ(x) =

⎧⎪⎨
⎪⎩
∫ 1

0

√
1 + ψ(x)2G′(y)2dy if α = 1,

1 if α ∈ [0, 1).

(2.7)
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6 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

• Large-roughness regime (α > 1)

The limit system takes the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2 + ∂2u

∂y2 +M ∂H
∂y + 1 = f, in Ω ,

∂2H
∂x2 + ∂2H

∂y2 +M ∂u
∂y = g, in Ω ,

u = 0, H = 0, for y = 1 ,

u = 0, H = 0, for y = −1 ,

u = 0, ∂H
∂x = 0, for x = −c, c .

(2.8)

3. Preliminary results. In this section, we first discuss the well-posedness of the

system (2.1)–(2.5). Next, we introduce some technical results needed for the analysis in

the sequel. Among them, we focus on the existence of extension operators associated to

our domain perturbation problem.

3.1. Existence of solution. In order to show the existence and uniqueness of the so-

lution for each ε ≥ 0, we consider the following bilinear form aε : Hε × Hε �→ R set

by

aε((u,H), (ϕ, φ)) =

∫
Ωε

{∇u∇ϕ+∇H∇φ−M (ϕ∂yH + φ∂yu)} dydx.

Here, Hε is the Hilbert space

Hε =
{
(ϕ, φ) ∈ H1(Ωε)×H1(Ωε) : ϕ = 0 on Γs ∪ Γl and φ = 0 on Γε ∪ Γl

}
,

where Γs is the side part of ∂Ωε, Γl its lower part and Γε is the upper boundary. More

precisely,

Γs = {(−c, y) ∈ R
2 : y ∈ (−1, 1)} ∪ {(c, y) ∈ R

2 : y ∈ (−1, 1)}
Γl = {(x,−1) ∈ R

2 : x ∈ (−c, c)} and

Γε =
{
(x, y) ∈ R

2 : x ∈ (−c, c) and y = 1 + εψ(x)G
( x

εα

)}
.

Also, we set

Γ = Γ0 = {(x, 1) ∈ R
2 : x ∈ (−c, c)}.

Remark 1. Since we are using Dirichlet boundary conditions, we can set the following

norm to Hε:

‖(ϕ, φ)‖Hε
=

√∫
Ωε

{|∇ϕ|2 + |∇φ|2} dxdy

which is given by the inner product (u,H) · (ϕ, φ) =
∫
Ωε{∇u∇ϕ+∇H∇φ}dxdy. Notice

that this norm is well defined since it holds the Poincaré’s inequality in Ωε. Namely, we

Licensed to Universidade de Sao Paulo. Prepared on Fri May 30 12:46:15 EDT 2025 for download from IP 143.107.45.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



EFFECTS OF BOUNDARY ROUGHNESS ON THE MHD DUCT FLOW 7

have ∫
Ωε

u(x, y)2dxdy =

∫
Ωε

(u(x, y)− u(x,−1))2 dxdy

≤
∫
Ωε

(∫ y

−1

∂u

∂y
(x, s)ds

)2

dxdy

≤ 2

∫
Ωε

(
∂u

∂y
(x, s)

)2

(2 + εψ(x)G(x/εα)) dsdx

≤ 2
(
2 + ε‖ψ‖L∞(−c,c)‖G‖L∞(R)

)
‖∇u‖2L2(Ωε).

Hence, there exists a constant CP > 0 independent of ε ∈ [0, 1] such that

‖u‖L2(Ωε) ≤ CP ‖∇u‖L2(Ωε).

Remark 2. It is not difficult to deduce that aε set a continuous and uniformly coercive

bilinear form for any ε varying in [0, 1]. Indeed, we can combine Hölder and Cauchy-

Schwarz inequalities to obtain

|aε((u,H), (ϕ, φ))| ≤ (1 +M)‖(u,H)‖H1(Ωε)×H1(Ωε)‖(ϕ, φ)‖H1(Ωε)×H1(Ωε).

Also, for any (u,H) ∈ Hε, we may integrate by part one of the terms multiplied by M

and use the given boundary conditions to get

aε((u,H), (u,H)) =

∫
Ωε

{
|∇u|2 + |∇H|2 −M

(
u div

(
0

H

)
+H∂yu

)}
dxdy

=

∫
Ωε

{
|∇u|2 + |∇H|2 +M (H∂yu−H∂yu)

}
−M

∫
∂Ωε

uH nε
2 dS

=

∫
Ωε

{
|∇u|2 + |∇H|2

}
dxdy

= ‖(u,H)‖2Hε
.

Remark 3. As a consequence of the previous remarks, from Lax-Milgram Theorem

we obtain that, for any M non-negative and β positive, and for any f ε and gε ∈ L2(Ωε),

there exists a unique solution (uε, Hε) ∈ Hε of the system (2.1)–(2.2) satisfying the

boundary conditions (2.3)–(2.5). More precisely,

aε((u
ε, Hε), (ϕ, φ))+β−1

∫
Γε

uεϕdS =

∫
Ωε

{1− f ε}ϕdxdy−
∫
Ωε

gε φ dxdy, ∀(ϕ, φ) ∈ Hε.

(3.1)

Finally, we observe that, under appropriate conditions on the forcing terms f ε and gε,

the solutions are uniformly bounded.

Proposition 3.1. Let us assume f ε, gε ∈ L2(Ωε) uniformly bounded in ε. Then, the

family of solutions (uε, Hε) ∈ Hε is also uniformly bounded in ε.
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8 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

Proof. Let us take the solutions (uε, Hε) ∈ Hε given by Remark 3. Then, by Remark

2, we have

‖(uε, Hε)‖2Hε
≤ aε((u

ε, Hε), (uε, Hε)) + β−1

∫
Γε

uε2dS

≤ ‖1− f ε‖L2(Ωε)‖uε‖L2(Ωε) + ‖gε‖L2(Ωε)‖Hε‖L2(Ωε) (3.2)

≤ CP max{‖1− f ε‖L2(Ωε), ‖gε‖L2(Ωε)}
(
‖∇uε‖L2(Ωε) + ‖∇Hε‖L2(Ωε)

)
.

Consequently, the family of solutions are uniformly bounded in Hε. �
Remark 4. Notice that the proof of Proposition 3.1 also yields

β−1

∫
Γε

uε2dS ≤ CP max{‖1− f ε‖L2(Ωε), ‖gε‖L2(Ωε)}
(
‖∇uε‖L2(Ωε) + ‖∇Hε‖L2(Ωε)

)
.

Hence, ‖uε‖L2(Γε) is uniformly bounded in ε as well.

3.2. Extension operators. In order to pass to limit in the solutions, we need to in-

troduce an appropriate functional setting. It should be observed that the perturbed

open sets Ωε vary with respect to ε, and, thus, we need a method to compare families

of functions posed in different domains to obtain the effective equations when ε goes to

zero.

Here we will compare the solutions in two different manners. If the parameter α

introduced in (1.1) (the order of the boundary roughness) is less than or equal to one,

we will extend all the solutions from Ωε into a fixed bounded open rectangle U ⊂ R
2

satisfying Ωε ⊂ U for all ε ∈ [0, 1]. We set U = (−c, c)× (−1, a) with a ≥ 1 given by

a = max

{
1, max

(x,y)∈[−c,c]×R

1 + ψ(x)G(y)

}
. (3.3)

On the other hand, if α > 1, we will extend the solutions a fixed domain K ⊂ Ω into Ωε.

For the case α ∈ [0, 1], we will work in according to [2,25,26]. If α > 1, we need to change

approach and follow [3,12] (see also [18]). This is necessary because we are allowing large

roughness on the boundary which is performed when α > 1. In this case, it does not

exist an available extension operator from Ωε into R
2 whose embedding constants of the

Sobolev inequalities are uniformly bounded for ε ∈ [0, 1].

We have the following result regarding the extension operators:

Proposition 3.2. Let Ωε be the family of domains given by (1.1) and U = (−c, c) ×
(−1, a) ⊂ R

2 with a given by (3.3). Then, Ωε ⊂ U for all ε ∈ [0, 1], and,

(i) if α ∈ [0, 1], there exists a family of extension operators Pε : L2(Ωε) �→ L2(U)

satisfying

‖Pεu
ε‖L2(U) ≤ C0‖uε‖L2(Ωε) and ‖Pεu

ε‖H1(U) ≤ C1‖uε‖H1(Ωε)

for some positive constants C0 and C1 independent of ε.

(ii) In particular, for any α ≥ 0, there exist Pη : L2(Kη) �→ L2(Ωε) such that

‖Pηu‖L2(Ωε) ≤ C0‖u‖L2(Kη) and ‖Pηu‖H1(Ωε) ≤ C1‖u‖H1(Kη)

for positive constants C0 and C1 independent of ε whereKη = (−c, c)×(−1, 1−η)

for η ≥ 0.
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EFFECTS OF BOUNDARY ROUGHNESS ON THE MHD DUCT FLOW 9

Proof. The proof of the item (i) can be found in [2, 4]. Item (ii) refers to the combi-

nation between the extension operator from a fixed Lipschitz domain Kη into the whole

space (see for instance [27]) and the restriction operator from of the whole space to

Ωε. �
Next, we state two technical results needed to pass to the limit on functions defined

on the rough boundary Γε. The first one is related to the case α ∈ [0, 1], the second one

for α > 1.

Lemma 3.1. Let ϕε ∈ H1(U) be a sequence with ϕε ⇀ ϕ weakly in H1(U). Then, if

α ∈ [0, 1], ∫
Γε

ϕε dS →
∫
Γ

γ ϕ dS as ε → 0

where γ ∈ L∞(−c, c) and is given by

γ(x) =

⎧⎪⎨
⎪⎩
∫ 1

0

√
1 + ψ(x)

2
G′(y)

2
dy if α = 1,

1 as α ∈ [0, 1).

(3.4)

Proof. First, let us observe that∫
Γε

ϕε dS =

∫ c

−c

ϕε(x, 1+εψ(x)G(x/εα))

√
1 + (εψ′(x)G(x/εα) + ε1−αψ(x)G′(x/εα))

2
dx.

Now, since ϕε weakly converges to ϕ in H1(U), ϕε(x, 1 + εψ(x)G(x/εα)) strongly con-

verges to ϕ(x, 1) in L2(−c, c). Also, we have, (see e.g. [1, Lemma 2.3]), that√
1 + (εψ′(x)G(x/εα) + ε1−αψ(x)G′(x/εα))

2
⇀ γ(x) weakly∗ in L∞(−c, c).

Thus,
∫
Γε ϕ

ε dS →
∫
Γ
ϕdS proving the result. We also refer the reader to [2, Proposition

5.1]. �

Lemma 3.2. Assume α > 1 and ψ > 0 in (−c, c) with ψ(−c) = ψ(c) = 0. Then, for each

t > 0,

Ot =

{
x ∈ (−c, c) :

∣∣∣∣
√
1 + (εψ′(x)G(x/εα) + ε1−αψ(x)G′(x/εα))2

∣∣∣∣ ≤ t

}
satisfies that its 1-dimensional measure goes to zero as ε → 0.

Proof. First, we observe that the result is equivalent to

Φ(ε) =

∫ c

−c

1 +
(
εψ′(x)G(x/εα) + ε1−αψ(x)G′(x/εα)

)2
dx → ∞ as ε → 0. (3.5)

Thus, to prove the lemma, it is enough to confirm the assertion (3.5). Notice

Φ(ε) =

∫ c

−c

{
1 + ε (ψ′(x)G(x/εα)

2

+ε2(1−α)
(
2εαψ′(x)ψ(x)G′(x/ε)G(x/ε) + (ψ(x)G′(x/εα))

2
)}

dx.

Hence, as ψ and G ∈ W 1,∞(−c, c), to prove (3.5) we need to show that

lim
ε→0+

∫ c

−c

(ψ(x)G′(x/εα))
2
dx > 0.
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10 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

Indeed, from [5, Lemma 4.2], since G′ is also 1-periodic, we have that

lim
ε→0+

∫ c

−c

(ψ(x)G′(x/εα))
2
dx =

∫ c

−c

ψ(x)2
∫ 1

0

G′(y)
2
dydx > 0

which finishes the proof. �

4. Main results. In this section we derive the limit system of our perturbed problem

(2.1)–(2.5) describing the effective flow. As stated before, the asymptotic behavior of the

flow strongly depends on the order of the boundary roughness set by α ≥ 0. We first

assume α ∈ [0, 1] which covers both the resonant case (α = 1) and the case of slightly

corrugated boundary (α ∈ [0, 1)).

4.1. The case α ∈ [0, 1].

Theorem 4.1. Let (uε, Hε) ∈ Hε be the solution of (2.1)–(2.5) for some α ∈ [0, 1] and

for all ε ∈ [0, 1] with the forcing terms f ε and gε ∈ L2(U) satisfying

f ε ⇀ f and gε ⇀ g weakly in L2(U)

for some f and g ∈ L2(U). Then, there exists (u,H) ∈ H0 such that

‖uε − u‖H1(Ωε∩Ω) + ‖Hε −H‖H1(Ωε∩Ω) → 0 as ε → 0.

Moreover, (u,H) ∈ H0 is the unique solution of the MHD system

∂2u

∂x2
+

∂2u

∂y2
+M

∂H

∂y
+ 1 = f, in Ω , (4.1)

∂2H

∂x2
+

∂2H

∂y2
+M

∂u

∂y
= g, in Ω (4.2)

endowed with the following boundary conditions

γ u+ β
du

dn
= 0, H = 0, for y = 1 , (4.3)

u = 0, H = 0, for y = −1 , (4.4)

u = 0,
∂H

∂x
= 0, for x = −c, c (4.5)

where the boundary coefficient γ ∈ L∞(−c, c) is given by (3.4).

Proof. From Proposition 3.1, it follows that the solutions (uε, Hε) ∈ Hε are uniformly

bounded. Hence, their extensions (Pεu
ε, PεH

ε) are also uniformly bounded in H1(U) ×
H1(U) by Proposition 3.2. Thus, we can extract a convergent subsequence, still denoted

by (uε, Hε), such that

(uε, Hε) ⇀ (u,H) weakly in H1(U)×H1(U) and

(uε, Hε) → (u,H) strongly in L2(U)× L2(U).
(4.6)

Also, from the convergence conditions on f ε and gε, we have for any measurable set

A ⊂ U that

‖f ε − f‖A and ‖gε − g‖A → 0, as ε → 0. (4.7)
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EFFECTS OF BOUNDARY ROUGHNESS ON THE MHD DUCT FLOW 11

Now, let us characterize (u,H). To accomplish that, we will pass to the limit in (3.1).

Let η > 0, Kη = (−c, c)×(−1, 1−η) ⊂ Ω and εη > 0 such that Kη ⊂ Ωε for all ε ∈ [0, εη].

Next, let us rewrite (3.1) as∫
Kη

{∇uε∇ϕ+∇Hε∇φ−M (ϕ∂yH
ε + φ∂yu

ε)} dydx+ β−1

∫
Γε

uεϕdS

+

∫
Ωε\Kη

{∇uε∇ϕ+∇Hε∇φ−M (ϕ∂yH
ε + φ∂yu

ε)} dydx

=

∫
Kη

{1− f ε}ϕdxdy −
∫
Kη

gε φ dxdy +

∫
Ωε\Kη

{1− f ε}ϕdxdy −
∫
Ωε\Kη

gε φ dxdy.

Notice that |Ωε \Kη| → 0 as (η, ε) → (0, 0). Consequently, since f ε, gε, ∇uε and ∇Hε

are uniformly bounded in L2(Ωε), the integrals on Ωε\Kη go to zero when (η, ε) → (0, 0).

Thus, from (4.6), (4.7) and Lemma 3.1, we obtain that

a0((u,H), (ϕ, φ)) + β−1

∫
Γ

γ uϕ dS =

∫
Ω

{1− f}ϕdxdy −
∫
Ω

g φ dxdy (4.8)

for all ϕ, φ ∈ H1(U) satisfying the boundary conditions (4.4)–(4.5) with φ = 0 on y = 1.

Since (4.8) is well posed, (u,H) ∈ H0 is the unique solution of the limit system, and then,

the sequence (uε, Hε) ∈ Hε weakly converges. Finally, let us prove its strong convergence.

For that, we use the semi-continuity of the norm. We have

‖(u,H)‖2H0
≤ lim inf

ε∈[0,1]
‖(uε, Hε)‖2Hε

≤ lim sup
ε∈[0,1]

‖(uε, Hε)‖2Hε

≤ lim sup
ε∈[0,1]

{∫
Ωε

{1− f ε}ϕdxdy −
∫
Ωε

gε φ dxdy − β−1

∫
Γε

uεϕdS

}
(4.9)

=

∫
Ω

{1− f}ϕdxdy −
∫
Ω

g φ dxdy − β−1

∫
Γ

γ uϕ dS

= ‖(u,H)‖2H0
.

Hence, ‖(uε, Hε)‖Hε
→ ‖(u,H)‖H0

. Since Hε is a Hilbert space, the proof is completed.

�
Remark 5. Theorem 4.1 provides the limit problems for the so-called weak and the

critical regime of the roughness, given respectively by α ∈ [0, 1) and α = 1. In the case of

weak roughness, the same limit system is obtained as the starting one, now posed in the

fixed ε-independent domain Ω. In particular, the slip boundary condition on the upper

wall is kept, but with no effects captured from the rough boundary, as ε → 0. On the

other hand, setting α = 1, we are in the critical regime, where the reaction coefficient

term γ > 1 appears in the slip boundary condition showing how the roughness on the

boundary is affecting the system (see (4.3)). These findings differ from the results for

a purely viscous fluid flow (without the action of the magnetic field). In the case of

weak roughness, the slip boundary condition is kept in the limit only for certain ratio

between the amplitude and the period of the roughness (see e.g. [10] for details). For the

corrugated boundary with the same order of period and amplitude (α = 1), it is known

that the asymptotic behavior of a viscous fluid satisfying the slip boundary condition is

the same as if we assume the no-slip boundary condition (see e.g. [9]).
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12 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

Remark 6. If Ω ⊂ Ωε for all ε > 0, which is called exterior perturbation, the con-

vergence obtained by Theorem 4.1 is given in H0, that is, in the fixed perturbed domain

Ω.

4.2. The case α > 1. In this section we deal with large roughness on the upper bound-

ary. Without loss of generality, we will assume from now on that the roughness occurs

throughout Γε, i.e.,

ψ > 0 in (−c, c) with ψ(−c) = ψ(c) = 0.

We show that the limit system satisfies homogeneous Dirichlet boundary conditions on

y = 1 meaning that the fluid under the action of the magnetic field behaves as if the

velocity vanishes on the whole boundary.

Theorem 4.2. Let (uε, Hε) ∈ Hε be the solution of (2.1)–(2.5) for some α > 1 and for

all ε ∈ [0, 1] with the forcing terms f ε and gε ∈ L2(U) satisfying

f ε ⇀ f and gε ⇀ g weakly in L2(U)

for some f and g ∈ L2(U).

Then, there exists (u,H) ∈ HD with

HD =
{
(ϕ, φ) ∈ H1(Ω)×H1(Ω) : ϕ = 0 on ∂Ω and φ = 0 on Γ0 ∪ Γl

}
such that

‖uε − u‖H1(Ωε∩Ω) + ‖Hε −H‖H1(Ωε∩Ω) → 0 as ε → 0.

Also, (u,H) is the unique solution of

∂2u

∂x2
+

∂2u

∂y2
+M

∂H

∂y
+ 1 = f, in Ω , (4.10)

∂2H

∂x2
+

∂2H

∂y2
+M

∂u

∂y
= g, in Ω (4.11)

endowed with the boundary conditions

u = 0, H = 0, for y = 1 , (4.12)

u = 0, H = 0, for y = −1 , (4.13)

u = 0,
∂H

∂x
= 0, for x = −c, c . (4.14)

Proof. As in the proof of Theorem 4.1, given η > 0, there exists εη > 0 such that

Kη = (−c, c)× (−1, 1− η) ⊂ Ωε for all ε ∈ [0, εη]. Next, we rewrite (3.1) as∫
Kη

{∇uε∇ϕ+∇Hε∇φ−M (ϕ∂yH
ε + φ∂yu

ε)} dydx+ β−1

∫
Γε

uεϕdS

+

∫
Ωε\Kη

{∇uε∇ϕ+∇Hε∇φ−M (ϕ∂yH
ε + φ∂yu

ε)} dydx

=

∫
Kη

{1− f ε}ϕdxdy −
∫
Kη

gε φ dxdy +

∫
Ωε\Kη

{1− f ε}ϕdxdy −
∫
Ωε\Kη

gε φ dxdy.

(4.15)

As before, we have |Ωε \Kη| → 0 as (η, ε) → (0, 0). Thus, since f ε, gε, ∇uε and ∇Hε are

uniformly bounded in L2(Ωε), the integrals on Ωε \Kη go to zero when (η, ε) → (0, 0).
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Also, for each η > 0, the restriction of (uε, Hε) to Kη is uniformly bounded, and then,

we can extract a convergent subsequence which we still denote by (uε, Hε)|Kη
. Notice

that, for each η > 0, there exists (uη, Hη) ∈ H1(Kη)×H1(Kη) such that, as ε → 0,

(uε, Hε)|Kη
⇀ (uη, Hη) weakly in H1(Kη)×H1(Kη).

Next, let us assume the test function ϕ satisfies ϕ = 0 if y ≤ 1 − η. Hence, there exists

R(η) ∈ R, R(η) → 0 as η → 0, such that, for each η > 0, we can pass to the limit in

(4.15) as ε → 0 obtaining∫
Kη

{∇uη∇ϕ+∇Hη∇φ−M (ϕ∂yHη + φ∂yuη)} dydx

=

∫
Kη

{1− f}ϕdxdy −
∫
Kη

g φ dxdy +R(η).

(4.16)

From item (i) in Proposition 3.2, there exists an extension operator Pη : H1(Kη) �→
H1(U) with ‖Pηϕ‖H1(U) ≤ C1‖ϕ‖H1(Kη) for some positive constant C1. Hence, there

exists (u,H) ∈ H1(Ω)×H1(Ω), such that, the restriction of Pηuη and PηHη to Ω, weakly

converges to (u,H), i.e. such that

(Pηuη, PηHη)|Ω ⇀ (u,H) weakly in H1(Ω)×H1(Ω). (4.17)

Consequently, it follows from (4.16) that (u,H) satisfies∫
Ω

{∇u∇ϕ+∇H∇φ−M (ϕ∂yH + φ∂yu)} dydx

=

∫
Ω

{1− f}ϕdxdy −
∫
Ω

g φ dxdy ∀(ϕ, φ) ∈ HD.

Now, in order to finish the proof, we need to show that u = 0 on y = 1 (see that

the convergence of the norms can be performed as in (4.9)). Here, we proceed as in

[3, Proposition 4.2]. First, let us notice that, for any ϕ ∈ L∞(Ω), we have∣∣∣∣
∫
Γ

uϕ

∣∣∣∣ ≤
∣∣∣∣∣
∫
Γ

uϕ−
∫
Γη

ϕu

∣∣∣∣∣+
∣∣∣∣∣
∫
Γη

ϕ(u− uε)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Γη

ϕ(uε − uε ◦Ψε
η)

∣∣∣∣∣+
∣∣∣∣∣
∫
Γη

ϕ (uε ◦Ψε
η)

∣∣∣∣∣ ,
where Γη is the upper boundary of Kη, given by Γη = {(x, 1− η) : x ∈ (−c, c)}, and Ψε

η

is the map

Ψε
η(x, y) =

{
(x, y + (1 + y)εφ(x)G(x/εα)) for y ∈ (−1, 0)

(x, y + (1− y)εφ(x)G(x/εα)) for y ∈ [0, 1)
.

Since u and φ are fixed functions on Ω and uε satisfies (4.17), given δ > 0, there exist

η > 0 such that ∣∣∣∣∣
∫
Γ

uϕ−
∫
Γη

ϕu

∣∣∣∣∣+
∣∣∣∣∣
∫
Γη

ϕ(u− uε)

∣∣∣∣∣ ≤ 2δ.
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14 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

Also, from [3, Lemma 3.2] and [3, Inequalities (4.9) and (4.10)], we get respectively∣∣∣∣∣
∫
Γη

ϕ(uε − uε ◦Ψε
η)

∣∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)‖uε − uε ◦Ψε
η‖L2(Γη) → 0 as ε → 0

and

∣∣∣∣∣
∫
Γη

ϕ (uε ◦Ψε
η)

∣∣∣∣∣ → 0 as (ε, η) → (0, 0).

Thus, there exist η > 0 and ε0 > 0, such that, for each ϕ ∈ L∞(Ω), we have∣∣∣∣
∫
Γ

uϕ

∣∣∣∣ ≤ 4δ ∀ε ∈ [0, ε0].

Hence, we can conclude that u = 0 on Γ finishing the proof. �

5. The effect of the slip length on the MHD system. Motivated by the results

from [32], in this section we focus on the effects of the dimensionless slip length β on the

MHD equations (2.1)–(2.2) posed in the fixed rectangle Ω = (−c, c) × (−1, 1) without

boundary distortion. We set β = εδ, for some δ ∈ R, and consider

∂2uε

∂x2
+

∂2uε

∂y2
+M

∂Hε

∂y
+ 1 = f ε, in Ω , (5.1)

∂2Hε

∂x2
+

∂2Hε

∂y2
+M

∂uε

∂y
= gε, in Ω (5.2)

endowed with the following boundary conditions

uε + εδ
duε

dn
= 0, H = 0, for y = 1 , (5.3)

uε = 0, H = 0, for y = −1 , (5.4)

uε = 0,
∂H

∂x
= 0, for x = −c, c . (5.5)

Notice that the existence and uniqueness of the solution are guaranteed by Remark 3

with ψ ≡ 0 in (−c, c). Thereby, we have a family of solutions (uε, Hε) ∈ H with H := H0.

Depending on the magnitude of the slip length, we prove the following result:

Theorem 5.1. Let (uε, Hε) ∈ H be the solution of (5.1)–(5.5) for ε ∈ [0, 1] with the

forcing terms f ε and gε ∈ L2(Ω) satisfying

f ε ⇀ f and gε ⇀ g weakly in L2(Ω)

for some f and g ∈ L2(Ω). Then, there exists (u,H) ∈ H0 with

‖(uε − u,Hε −H)‖H → 0 as ε → 0

where (u,H) is the unique solution of

∂2u

∂x2
+

∂2u

∂y2
+M

∂H

∂y
+ 1 = f, in Ω , (5.6)

∂2H

∂x2
+

∂2H

∂y2
+M

∂u

∂y
= g, in Ω (5.7)
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endowed with the following boundary conditions

u = 0, H = 0, for y = −1 , (5.8)

u = 0,
∂H

∂x
= 0, for x = −c, c , (5.9)

and, on y = 1, we have

u = 0, H = 0, if δ > 0 , (5.10)

u+
du

dn
= 0, H = 0, if δ = 0 , (5.11)

du

dn
= 0, H = 0, if δ < 0 . (5.12)

Proof. Assuming ψ ≡ 0 in (1.1), we get from Proposition 3.1 that the family of

solutions (uε, Hε) ∈ H is uniformly bounded in ε. Also, we have

‖(uε, Hε)‖2Hε
≤ aε((u

ε, Hε), (uε, Hε)) + ε−δ

∫
Γ

uε2dS

≤ CP max{‖1− f ε‖L2(Ω), ‖gε‖L2(Ω)}
(
‖∇uε‖L2(Ω) + ‖∇Hε‖L2(Ω)

)
implying as well

ε−δ

∫
Γ

uε2dS ≤ CP max{‖1− f ε‖L2(Ω), ‖gε‖L2(Ω)}
(
‖∇uε‖L2(Ω) + ‖∇Hε‖L2(Ω)

)
.

Thus, there exists C > 0 independent of ε such that

ε−δ

∫
Γ

uε2dS ≤ C ∀ε ∈ [0, 1]. (5.13)

Next, we us pass to the limit in

aε((u
ε, Hε), (ϕ, φ))+ ε−δ

∫
Γ

uεϕdS =

∫
Ωε

{1− f ε}ϕdxdy−
∫
Ωε

gε φ dxdy, ∀(ϕ, φ) ∈ H.

(5.14)

Since the solutions are uniformly bounded and ∂Ω is smooth enough, there exists a

subsequence in H, still denoted by (uε, Hε), and (u,H) ∈ H such that

(uε, Hε) ⇀ (u,H) weakly in H and

‖uε‖L2(Γ) is uniformly bounded.
(5.15)

Now, let us pass to the limit in (5.14) as ε → 0. If δ > 0, we take ϕ = 0 on y = 1 getting

a0((u,H), (ϕ, φ)) =

∫
Ω

{1− f}ϕdxdy −
∫
Ω

g φ dxdy

whenever (ϕ, φ) ∈ H with ϕ = 0 on y = 1. Hence, as δ > 0, it follows from (5.13) that

‖uε‖L2(Γ) → 0, and then, u = 0 on Γ and (u,H) satisfies Dirichlet boundary condition

on y = 1. On the other hand, as δ < 0, it follows from (5.15) that ε−δ
∫
Γ
uε2dS → 0.

Hence, (5.14) becomes

a0((u,H), (ϕ, φ)) =

∫
Ω

{1− f}ϕdxdy −
∫
Ω

g φ dxdy, ∀(ϕ, φ) ∈ H
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16 IGOR PAŽANIN AND MARCONE CORRÊA PEREIRA

and the function u satisfies the homogeneous Neumann boundary conditions on y = 1.

The proof of the strong convergence in H is analogous to (4.9) and is left to the interested

reader. �
Remark 7. The result from Theorem 5.1 can be interpreted in the following manner.

Note that M is kept of order 1, whereas we allow the slip length to depend on the small

parameter ε by putting β = O(εδ). Let us introduce the dimensionless parameter S = β
M

as the ratio between the slip length and the Hartmann number appearing in the equations

(5.1)–(5.2). For S � 1 (i.e. δ > 0), the effective flow does not differ from the classical

MHD duct flow without the slip. If S = O(1), then both MHD and slip effects contribute

to the effective flow, as we elaborated in detail throughout Section 4 by introducing the

perturbed boundary as well. If S � 1 (i.e. δ < 0) the MHD effects are still present, but

the flow is not controlled by the slip phenomenon.
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[27] J. Nečas, Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics,
Springer, Heidelberg, 2012. Translated from the 1967 French original by Gerard Tronel and Alois
Kufner; Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G.
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