Trabalho

Titulo em Portugués: Implementacdo e manutencdo de cddigo computacional em framework de cilculo de estrutura eletronica de semicondutores
Titulo em Inglés: Implementation and maintenance of computational code in a semiconductor electronic structure calculation framework
Autor: Jo3o Pedro Fernandes

Instituicdo: Universidade de S3o Paulo

Unidade: Instituto de Fisica de S3o Carlos

Orientador: Guilherme Matos Sipahi

Area de Pesquisa / SubArea: Fisica da Matéria Condensada

Agéncia Financiadora: USP - Programa Unificado de Bolsas



33

DSICUSP

Implementagao e manutengao de cédigo computacional em um
framework de calculo de estrutura eletronica de semicondutores

Estudante de Graduacao Autor: Joao Pedro Fernandes

Orientador: Prof. Dr. Guilherme Matos Sipahi

Universidade de Sao Paulo - USP

E-mail: joao.pedro.fernandes.jotape7@usp.br

Objetivos

Este projeto possui como objetivo principal dar
continuidade a implementagcdo e manutencgao
do framework desenvolvido no LFC
(Laboratério de Fisica Computacional) da USP
em S&do Carlos, o qual é um cébdigo
computacional em Fortran que realiza calculos
da estrutura eletrbnica de semicondutores. O
alvo final é a completa integracdo Python-
Fortran, oferecendo maior acessibilidade ao
usuario. Nesta etapa, o objetivo teve como
fases especificas duas etapas: a validagao dos
médulos do codigo-fonte através da expansao
da suite de testes unitarios, e também a
investigacdo qualitativa do framework quanto
aos testes desenvolvidos através da analise de
cobertura de codigo (Code Coverage). O
propdsito dessas etapas entdao se estendeu a
uma obtencgao e estudo de métricas qualitativas
e quantitativas, visando a manutencdo do
codigo.

Métodos e Procedimentos

Os métodos desta fase do projeto focaram em

duas frentes:

1. Expansdo da suite de testes unitérios: as
testagens foram referentes ao diretdrio de
“ferramentas/utilidades” necessarias aos

calculos em “src/utils” e também quanto ao
diretério “src/hamiltonians” principalmente
em relagdao aos arquivos kvector e matrix,
essenciais para a manipulagdo de matrizes
hamiltonianas. Tais testes seguiram um
padrdo ja desenvolvido anteriormente no
framework com o Fortran Package
Manager (FPM), tendo como procedimento
uma sequéncia de passos ja estabelecida.

2. Cobertura de Cdédigo: esse procedimento
utiliza uma ferramenta chamada Gcovr
juntamente com o compilador Gfortran para
provar a eficacia dos testes. Esta
metodologia que visa avangar quanto a
manutencdo do framework, também é
gerenciada pelo FPM e utiliza flags
especificas de comando como “--coverage"
para gerar os dados de cobertura e gerar
um relatério HTML interativo e filtrado
exibindo ao usuario a analise quantitativa e
qualitativa do cédigo-fonte do framework.
Esse relatério usa um sistema de cores
(verde, vermelho e amarelo) e fornece a
cobertura de Linhas, Fungbes e Branches
(Ramificacodes).

Resultados

Os resultados relativos a expansao dos testes
foram positivos, mostrando o seguinte quanto
aos arquivos:



33

DSICUSP

e A suite de testes continuada para
kvector.f90 obteve 100% de sucesso com
todos os testes passando (4 de 4).

e A suite de testes criada para matrix.fo0 foi
desenvolvida do zero obtendo mais de 30
testes quanto as funcionalidades de uma
matriz. Destes, 28 de 31 testes passaram
com sucesso, mostrando-se uma boa
depuragdo do codigo, embora exigindo
uma avaliagdo e analise daqueles que nao
obtiveram sucesso.

Entretanto, o principal resultado veio mesmo

quando foi aplicada a analise de Cobertura de

Cddigo com Gceovr, o qual revelou que para o

“kvector”, embora houve sucesso em todos os

testes, a analise de cobertura apontou 83,3%

de linhas cobertas e apenas 18,0% das

branches (ramificacdes de possibilidades do

cédigo — 36 linhas de um total de 200

encontradas), alegando com isso que a

validagéo do cdédigo-fonte ndo estava completa.

Veja abaixo o explicitado:

GCC Code Coverage Report

Directory: src/ Exec Total Coverage
File: hamiltonians/kvector.f90 Lines: 5. 6 833%
Date: 2025-07-07 01:29:27 Functions: 0 -%

0
Branches: 36 200 IS0

Line Branch Exec Source
| module hamiltonians kvector
use hamiltonians matrix element
use hamiltonians matrix element term
use utils_constants
implicit none
private

GO B

Figura 1: Code Coverage do cédigo-fonte ao kvector

Esse total de 6 linhas identificadas se referem
somente as que podem ser executadas,
estando mais abaixo das linhas de cdédigo
mostradas na imagem.

Ja para o “matrix”, a analise mostrou uma boa
qualidade da suite de testes obtendo 88,2% de
suas linhas cobertas, entretanto uma funcéao
nao foi executada por nenhum dos testes
criados e além disso, as possibilidades de
execucao de testagem nos blocos de cédigo
foi, no entanto, limitada, faltando muitas
ramificagbes (branches) a serem executadas
para trazer uma cobertura diversa e completa
do cdédigo. Veja abaixo a analise mencionada:

GCC Code Coverage Report

Directory: sre/ Exec Total Coverage
File: hamiltonians/matrix.f90 Lines: = 157 178 88.2%
Date: 2025-07-07 01:29:27 Functions: 3 4 75.0%

Branches: = 421 1456“

» List of functions

Line Branch Exec Source

1 I module hamiltonians matrix

use utils_kinds
use utils_constants, only: NAME SIZE
use hamiltonians matrix_element
use mfi_lapack
implicit none
private

W@~ O U A W

type, public :: matrix t

Figura 2: Code Coverage do codigo-fonte ao matrix

Conclusoes

Conclui-se que a expansdo e criacdo dos
testes, além da implementacdo da analise de
Cobertura de Cddigo se mostraram essenciais
€ um avango para a manutencgao do framework.
O principal resultado e conclusédo foi o
entendimento que um sucesso grande dos
arquivos de teste ndo garante a validacéo
completa do codigo-fonte, pois através da
andlise de cobertura foram identificadas
lacunas nos blocos de cddigo, como linhas e
fungdes que nao foram executadas, e além do
fornecimento quantitativo de ramificacbes de
possibilidades ndo executadas nos blocos de
condicionais e repeti¢cdes do framework.

A utilizagdo dessa nova metodologia trouxe um
diagnéstico qualitativo preciso e que valida a
eficacia dos testes criados, e com isso sendo
uma ferramenta de implementacdo de
confiabilidade do cddigo-fonte. Logo, visando a
manutencdo agora do framework, uma
metodologia de facil visualizagdo ao usuério se
mostrou extremamente relevante, se
preparando ao futuro com a integragao final
Python-Fortran do framework.

Referéncias

https://fom.fortran-lang.org
https://github.com/luizpbraga/fortran4duck
https://gcovr.com/en/8.3/




33

DSIICUSP

Implementation and maintenance of computational code in a
semiconductor electronic structure calculation framework

Undergraduate Student Author: Joao Pedro Fernandes

Supervisor: Prof. Dr. Guilherme Matos Sipahi

University of Sdo Paulo - USP

E-mail: joao.pedro.fernandes.jotape7@usp.br

Objectives

This project has as its main objective to
continue the implementation and maintenance
of the framework developed at the LFC
(Computational Physics Laboratory) of USP in
Sao Carlos, which is a Fortran computational
code that performs electronic structure
calculations of semiconductors. The final goal is
the complete Python-Fortran integration,
providing greater accessibility to the user. In
this stage, the objective had two specific
phases: the validation of the source code
modules through the expansion of the unit test
suite, and also the qualitative investigation of
the framework regarding the developed tests
through code coverage analysis. The purpose
of these phases then extended to obtaining and
studying qualitative and quantitative metrics,
aiming at the maintenance of the code.

Materials and Methods

The methods of this phase of the project

focused on two fronts:

1. Expansion of the unit test suite: The tests
were related to the “tools/utilities” directory
required for calculations in src/utils, as well

as the src/hamiltonians directory, mainly
regarding the kvector and matrix files,
which are essential for the manipulation of
Hamiltonian matrices. These tests followed
a pattern previously developed in the
framework with the Fortran Package
Manager (FPM), following an already
established sequence of steps.

2. Code Coverage: This procedure uses a tool
called Gcovr together with the Gfortran
compiler to prove the effectiveness of the
tests. This methodology, which aims to
advance the maintenance of the framework,
is also managed by FPM and uses specific
command flags such as --coverage to
generate coverage data and produce an
interactive and filtered HTML report,
displaying to the user the quantitative and
qualitative analysis of the framework's
source code. This report uses a color
system (green, red, and yellow) and
provides coverage metrics for Lines,
Functions, and Branches.

Results

The results related to the expansion of the tests
were positive, showing the following regarding
the files:



33

DSIICUSP

e The continued test suite for kvector.fo0
achieved 100% success with all tests
passing (4 out of 4).

e The test suite created for matrix.f90 was
developed from scratch, obtaining more
than 30 tests regarding the functionalities of
a matrix. Of these, 28 out of 31 tests
passed successfully, showing good
debugging of the code, although requiring
further evaluation and analysis of those that
did not succeed.

However, the main result came when the Code

Coverage analysis with Gcovr was applied,

which revealed that for kvector, although there

was success in all tests, the coverage analysis

showed 83.3% of lines covered and only 18.0%

of branches (branches of code possibilities — 36

lines out of a total of 200 found), indicating that

the validation of the source code was not
complete. See the explanation below:

GCC Code Coverage Report

Directory: src/ Exec Total Coverage
File: hamiltonians/kvector.f90 Lines: 5 6 83.3%
Date: 2025-07-07 01:29:27 Functions: 0 -%

0
Branches: 36 200 IS0

Line Branch Exec Source
i module hamiltonians_kvector
2 use hamiltonians matrix element
3 use hamiltonians_matrix_element_term
4 use utils constants
5 L implicit none
6 private
7
Picture 1: Code Coverage of the source code for
kvector

This total of 6 identified lines refers only to
those that can be executed, located below the
lines of code shown in the image.

As for matrix, the analysis showed good quality
of the test suite, achieving 88.2% of its lines
covered. However, one function was not
executed by any of the created tests, and in
addition, the possibilities for executing tests in
the code blocks were limited, with many
branches still needing to be executed to bring
diverse and complete coverage of the code.
See the analysis mentioned below:

GCC Code Coverage Report

Directory: src/ Exec Total Coverage
File: hamiltonians/matrix.f90 Lines: = 157 @ 178 88.2%
Date: 2025-07-07 01:29:27 Functions: 3 4 75.0%

Branches: = 421 1456“

» List of functions

Line Branch Exec Source

1 I module hamiltonians matrix

use utils_kinds
use utils_constants, only: NAME SIZE
use hamiltonians matrix_element
use mfi lapack
implicit none
private

W@~ O U A W

type, public :: matrix t

Picture 2: Code Coverage of the source code for
matrix

Conclusions

It is concluded that the expansion and creation
of tests, in addition to the implementation of the
Code Coverage analysis, proved to be essential
and an advancement for the maintenance of the
framework. The main result and conclusion was
the understanding that a high success rate of
the test files does not guarantee the complete
validation of the source code, since the
coverage analysis identified gaps in the code
blocks, such as lines and functions that were
not executed, as well as providing quantitative
information about unexecuted branches in the
conditional and loop blocks of the framework.
The use of this new methodology brought a
precise qualitative diagnosis that validates the
effectiveness of the created tests, thus serving
as a tool for implementing source code
reliability. Therefore, aiming now at the
maintenance of the framework, a methodology
that provides easy visualization to the user has
proven to be extremely relevant, preparing for
the future with the final Python-Fortran
integration of the framework.

References

https://fom.fortran-lang.org
https://github.com/luizpbraga/fortran4duck
https://gcovr.com/en/8.3/




