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Abstract

The Amazon, the world’s largest tropical forest, plays a critical role in the global carbon cycle. It has
a large carbon pool and acts as a major carbon sink. However, in 2023-2024, a compound
heatwave-drought (CHWD) event (HD2023) hit the Amazon region, resulting in extreme
temperatures and soil moisture deficits, threatening the region’s carbon sink capacity. Using
advanced multisource satellite data and meteorological reanalysis, we quantified the impact of
various climatic factors on vegetation productivity during HD2023 and analyzed its progression.
Our findings showed that HD2023 led to a 530 Tg C decline in gross primary productivity (GPP)
and 0.003 reduction in near-infrared reflectance of vegetation. The strongest phase of the event
spanned 5 months, causing persistently high temperatures and reduced precipitation, leading to a
continuous decline in soil moisture and marked reduction in GPP. The most severe decrease in
GPP occurred in January 2024. The event originated in the northwest and gradually spread to the
southeast. Soil moisture was the dominant factor in the decline of photosynthesis across vegetation
types, whereas high solar radiation mitigated the impact of drought in evergreen broad forests and
savannas. Moreover, the sensitivity of GPP to CHWD varied across vegetation types, ranking as
grassland > savanna > evergreen broad forest. This study assessed the impact of HD2023 on
regional carbon flux in the Amazon. As climate projections indicate future increases in climate
extremes over the Amazon, it is important to identify the drivers of this impact on the carbon cycle
of the Amazon.

1. Introduction

The Amazon, the world’s largest tropical rainforest,
is crucial to the global carbon cycle, storing approx-
imately 120 Pg of carbon in its biomass, and through
photosynthesis and respiration, exchanges 18 Pg C

© 2025 The Author(s). Published by IOP Publishing Ltd

annually (Phillips et al 2009). Due to this large
carbon pool and flux, the Amazon plays a signi-
ficant role in the global carbon budget (Pan et al
2011, Davidson et al 2012, Artaxo et al 2022a). The
Amazon is susceptible to climate change drivers,
particularly increases in temperature and decreases
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in precipitation, which affect several processes that
influence the carbon cycle (Artaxo et al 2022a, Artaxo
et al 2022b, Artaxo 2023, Chen et al 2024).

Over the past few decades, the Amazon has been
affected by several compound heatwave-drought
(CHWD) events, threatening the region’s carbon sink
capacity. A marked change in the hydrological bal-
ance in central Brazil associated with a severe warm-
ing trend can be identified starting in the 1970s, which
has no analog over the last 720 years (Strikis et al
2024). Other examples include extreme droughts in
2005 and 2010 due to the warming anomaly of the
Tropical North Atlantic and the recent 2015-2016 El
Nino event (Doughty et al 2015, Jiménez-Munoz et al
2016, Yang et al 2018, Bennett et al 2023). The well-
documented intense drought of 2005 shows that dur-
ing that event, the forest lost between 1.2 and 1.6 Pg
of carbon (Phillips et al 2009). In the Amazon, forest
degradation, rather than fire emissions, was the pre-
dominant driver of carbon loss between 2010 and
2020 (Feng et al 2024) and the increasing frequency
of CHWD events is expected to intensify this trend.

The year 2023 was the hottest year on record,
with the global average temperature reaching 1.45 °C
above pre-industrial levels (1850-1900) (Perkins-
Kirkpatrick et al 2024). The El Nino events of 2023—
2024 increased the risk of record-breaking regional
temperatures (Espinoza et al 2024, Jiang et al 2024). In
2023-2024,a CHWD event (HD2023) in the Amazon
region (Rodrigues 2023) severely affected the liveli-
hoods of local people and the carbon and water cycles
of terrestrial ecosystems. Nevertheless, the effects of
HD2023 on carbon flux in the Amazon have not been
fully investigated.

In recent years, due to anthropogenic green-
house gas emissions, extreme heatwaves and droughts
have occurred more frequently (Ridder et al 2022).
Drought and heat waves are among the most crit-
ical abiotic factors influencing the terrestrial car-
bon cycle (Perkins et al 2012, Zscheischler et al
2014). Moreover, the combined impact of heat waves
and droughts on ecosystem functioning exceeds the
effects of either stress alone, demonstrating the non-
linear amplification of both extremes (Zhu et al
2021). CHWD events are characterized by low precip-
itation and high air temperature, which would signi-
ficantly reduce soil moisture, cause soil water stress
on plant photosynthetic rates, and increase the risk of
fire (Littell et al 2016). For example, CHWD events in
Europe in the summer of 2018 caused carbon sinks in
Central Europe and southern Sweden to reach record
lows, with carbon dioxide uptake falling by more than
50% (Bastos et al 2020). Therefore, a broad and in-
depth understanding of plant responses to CHWDs
is essential for understanding the global and regional
carbon cycles.

Gross primary productivity (GPP) represents the
total amount of carbon compounds produced by
photosynthesis in an ecosystem over a given period.

2

T Yang et al

The GPP has the largest carbon flux, with its vari-
ations significantly affecting the entire terrestrial car-
bon cycle (Chen et al 2019b). Owing to the increased
frequency of CHWDs, the GPP anomalies of mid-
latitude ecosystems in the Northern Hemisphere
increased significantly by approximately 10.6% from
2000 to 2016 compared with the period from 1982 to
1998 (Gampe et al 2021). A record-breaking CHWD
hit China’s Yangtze River Basin in the summer of
2022, causing widespread reductions in GPP (Wang
et al 2023a, Li et al 2024a). Extreme events can cause
significant reductions in the GPP, severely affect-
ing the carbon sink capacity of terrestrial ecosys-
tems. Consequently, understanding the response of
terrestrial GPP to extreme climate events, such as
CHWDs, is vital for forecasting how global terrestrial
ecosystems will respond to future climate change
(Wang et al 2018).

Therefore, this study utilized the latest multi-
source satellite and meteorological reanalysis data-
sets to quantify the contribution of various climatic
factors to changes in vegetation productivity dur-
ing HD2023 and analyze the process of HD2023 in
the Amazon region (approximately 30° S-15° N and
30° W-85° W). Specifically, we aimed to (1) exam-
ine the spatiotemporal variations in climate and pho-
tosynthetic anomalies, (2) explore the impact of dif-
ferent climatic factors on the response of photosyn-
thesis to HD2023, and (3) analyze the development
of HD2023 and the responses of different vegetation
types. The results of this study reveal the potential
impact of environmental factors on vegetation pho-
tosynthesis and will help deepen the understanding of
how the GPP of terrestrial ecosystems in the Amazon
has responded to the most severe CHWD since 2000.

2. Data and methods

2.1. ERA5-land reanalysis meteorology data

The 2 m air temperature, precipitation, surface solar
radiation downwards, and soil moisture (averaged
over depths of 1-100 cm) were adopted from the
ERA5-Land dataset (Munoz-Sabater et al 2021). We
acquired monthly meteorological data at 0.1° spa-
tial resolution spanning from 2001 to 2024. ERAS5-
Land represents the fifth iteration of the European
Center for Medium-Range Weather Forecasts atmo-
spheric reanalysis dataset and provides comprehens-
ive global climate information. This dataset integrates
model-derived data with extensive global observa-
tional records, resulting in a comprehensive and har-
monized global meteorological dataset.

2.2. FluxSat GPP product

GPP data were adopted from FluxSat GPP version
2.2 product (Joiner and Yoshida 2020). We used
FluxSat GPP v2.2, spanning 2001-2024, and res-
ampled it from 0.05° to 0.1° spatial resolution.
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FluxSat GPP was derived using a machine learn-
ing method with the collection of 6.1 MCD43C
Bidirectional Reflectance Distribution Function-
Adjusted Reflectance on the NASA Terra and Aqua
satellites trained on FLUXNET2015 and OneFlux
data. The FluxSat GPP dataset demonstrates good
quality and agreement with eddy covariance flux
measurements and has been validated in numerous
studies (Zhao et al 2023, Wang et al 2023b).

2.3. Near-infrared reflectance of terrestrial
vegetation (NIRy)

Near-infrared reflectance of terrestrial vegetation
(NIRy) is highly correlated with solar-induced
chlorophyll fluorescence, a metric used to estimate
global gridded GPP magnitudes (Badgley et al 2017).
NIR, was calculated as follows:

NIR, = (NDVI— 0.08) x NIR (1)

where NDVT is the monthly normalized difference
vegetation index (NDVI) and NIR is the monthly sur-
face reflectance in the near-infrared (841-876 nm).

NDVI data were adopted from the Moderate-
Resolution Imaging Spectroradiometer (MODIS)
MODI13C2 Version 6.1 product (Didan 2021).
MOD13C2 provides NDVI, enhanced vegetation
index, VI QA, reflectance data, angular information,
and spatial statistics at a 0.05° climate modeling grid
resolution. We retained the NDVI and NIR reflect-
ance data for analysis with a QA flag of 0 (Good Data)
and 1 (Marginal Data) and resampled them to a 0.1°
resolution.

2.4. MODIS landcover product

Land-cover data were obtained from the MODIS
Land Cover Climate Modeling Grid Product
(MCD12C1), which provides a spatially aggreg-
ated and reprojected version of the tiled MCD12Q1
product (Friedl and Sulla-Menashe 2022). The
product provides global land cover maps of the
International Geosphere (Biosphere) and University
of Maryland classification schemes at an annual spa-
tial resolution of 0.05° from 2001 to 2022. We applied
land cover data from the IGBP classification for 2022
and resampled the data to a resolution of 0.1°.

2.5. Anomalies and contributions

We calculated anomalies in climate- and vegetation-
related variables from 2001 to 2024 using the follow-
ing two steps. First, the monthly average values of
climate- and vegetation-related variables were com-
puted for each pixel

V==YV @)

where V(#) is the annual climate- or vegetation-
related variables for the corresponding month, V(¢)
is the average value of the monthly climate- or
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vegetation-related variables from 2001 to 2024, ¢ is the
corresponding month, and 7 is the number of years
from 2001 to 2024.

The anomalies of climate- and vegetation-related
variables for each month from 2001 to 2024 were then
derived by subtracting the corresponding monthly
average values from the monthly data:

Vanom (1) = V(1) = V(£) (3)

where Vpom (2) is the anomalies of climate- and
vegetation-related variables.

Based on the anomalies in air temperature, pre-
cipitation, and GPP, we identified the period of
HD2023 as September, 2023 to January, 2024 (figure
S1in supplementary material). Therefore, we defined
the study period as September to January of each year,
calculating anomalies of climate- and vegetation-
related variables (i.e. GPP and NIR, ) for the Amazon.
Additionally, we detrended the anomalies with the
trend calculated from the variations in the period
2001-2024 to eliminate the influence of human man-
agement, CO, fertilization, and other factors (Sitch
etal 2015, Yang et al 2022).

Finally, we quantitatively estimated the individual
contributions of temperature, solar radiation down-
wards, and soil moisture to GPP and NIR, anomalies
in different vegetation types using a simple decom-
position method, which have been widely used in pre-
vious studies (Piao et al 2013, Jung et al 2017):

y=BTAT+ RPASRD 4 fSMASM ¢ (4)

where y is the annual anomalies of GPP and NIR, for
different vegetation types according to the MCD12C1
land cover map for 2022, which are mainly ever-
green broadleaf forest, savanna, and grassland; AT,
ASRD, and ASM are the annual anomalies of tem-
perature, solar radiation downwards, and soil mois-
ture, respectively; 37, B5P, and M are the appar-
ent sensitivities of temperature, solar radiation down-
wards, and soil moisture; and ¢ is the residual term.

3. Results

3.1. Anomalies of climate and vegetation
photosynthesis since 2001

Under the influence of a strong El Nino event in
2023, the Amazon suffered from widespread high
temperatures and drought events from September
2023 to January 2024 (HD2023). The Amazon exper-
ienced the largest positive anomaly in air temper-
ature (1.13 =+ 0.30 °C) and largest negative anom-
aly in precipitation (—29.51 £ 7.57 mm) since
2001 (figure 1(a)). Due to reduced precipitation
and decreased cloud cover, there was also a strong
positive anomaly in solar radiation downwards
(7.78 & 3.83 W m~2) during HD2023 (figure 1(b)).
Therefore, increased evapotranspiration caused
by high air temperature and intensive radiation,
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Figure 1. Detrended anomalies in climate and photosynthesis during September—January from 2001 to 2024. Time series of
anomalies in (a) 2 m air temperature (ATemp) and precipitation (APre), (b) solar radiation downwards (ASRD) and soil
moisture (ASM) anomalies, and (c) gross primary productivity (AGPP) and near-infrared reflectance of vegetation (ANIRy)
during September—January from 2001 to 2024 averaged in Amazon.

2015 2020 2023

coupled with reduced precipitation and accelerated
soil moisture depletion, exacerbates drought con-
ditions. The soil moisture over the Amazon during
HD2023 showed a reduction of 0.08 + 0.03 m* m~—>
(figure 1(b)).

Abnormally high air temperatures and soil dry-
ness have a serious impact on terrestrial ecosystems.
During HD2023, the interactions between air tem-
perature, precipitation, solar radiation downwards,
and soil moisture greatly influenced photosynthesis
in the Amazon. GPP severely declined by 530 Tg C,
marking the most severe reduction observed since
2001 (figure 1(c)). The interannual variability in NIR,
was generally consistent with that of GPP, although
the decrease in NIR, was less severe, possibly because
of the influence of cloud cover and soil reflectance.

3.2. Spatial distribution of anomalies in climate
and vegetation photosynthesis

As expected, the anomalies in climate and veget-
ation photosynthesis showed clear spatiotemporal
heterogeneity. During HD2023, seriously high

temperature and low precipitation anomalies were
observed in the Amazon region. Over 80% of Amazon
experienced a positive temperature anomaly exceed-
ing 1 °C (figure 2(a)), whereas approximately 60%
of the area witnessed a reduction in precipitation of
more than 30 mm (figure 2(b)). The entire Amazon
received strong solar radiation (figure 2(c)). Soil
moisture anomalies were most severe in the cent-
ral Amazon (figure 2(d)), persisting from September
to November. However, the spatial distribution of the
GPP anomalies did not fully align with that of the cli-
mate anomalies. Most areas experienced a decline in
the GPP to varying extents (figure 2(e)). The regions
with the most severe relative declines were the grass-
lands of the east and savannas of the south, while
the decrease in GPP for evergreen broadleaf forests
in the central region remained within 10%. The spa-
tial pattern of NIR, changes was similar to that of
GPP, with the most severe relative declines occur-
ring in the grasslands of the east and savannas of the
south (figures 2(e) and (f)). However, in the central
region of the evergreen broadleaf forests, the changes

o~
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in NIR, differed from those in GPP, suggesting a
weaker correlation between NIR, and GPP in ever-
green broadleaf forests (figures 2(e) and (f)).

There are three major vegetation types in the
Amazon: evergreen broadleaf forest (42%), savanna
(28%), and grassland (20%) (Fig. S3(a) in supple-
mentary material). The average NIR, anomalies for
these vegetation types were all negative, with the
lowest value being —0.006 for savanna, followed by
—0.003 for both evergreen broadleaf forest and grass-
land (figure 2(f)). In comparison, evergreen broadleaf
forest contributed the most to the total anomaly in
GPP, with a value of —282.49 Tg C, accounting for
approximately 53% of the total decrease in GPP across
the region. The second was savanna, exhibiting an
anomaly of —130.20 Tg C, while grassland contrib-
uted the least, with an anomaly of —63.08 Tg C
(figure 2(e)).

To better understand the development of HD2023
and its impact on vegetation photosynthesis, we

mapped the spatial patterns of the anomalies in
climate- and vegetation-related variables on a
monthly basis (figure S2 in supplementary material).
Overall, the spatial pattern of HD2023, as observed
through the distribution of various meteorological
factors, showed a gradual spread from northwest to
southeast. However, owing to differences in vegeta-
tion types, the response of terrestrial ecosystems to
drought exhibited variable spatiotemporal patterns.

3.3. Contribution of environmental factors to the
photosynthetic anomalies

Using a multiple linear regression analysis, we sought
to understand the contributions of air temperat-
ure, solar radiation downwards, and soil moisture to
anomalies in GPP and NIR, across different veget-
ation types in the Amazon. The overall accuracy of
the model was satisfactory (R*: 0.30-0.49), with all
models being significant at the 95% confidence level
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Figure 3. Contributions of Temp, SRD, and SM to anomalies of (a) GPP and (b) NIR, over different vegetation types in the
Amazon. The term ‘residual’ denotes the unexplained variation and the error bars represent the standard error.

(p < 0.05). However, the attribution of NIR, anom-
alies in the evergreen broadleaf forest still exhibited
poor performance (R? = 0.06).

In terms of GPP and NIR,, a reduction in soil
moisture predominantly drove a decline in photosyn-
thesis across all three vegetation types. (figures 3(a)
and (b)), agreeing with the results of previous stud-
ies (Meir et al 2015, Liu et al 2020). For evergreen
broadleaf forest and savanna, high solar radiation
appeared to promote photosynthesis (figures 3(a)
and (b)). This suggests that high solar radiation par-
tially offsets the negative effects of water stress on
photosynthesis. Li et al (2018) investigated the impact
of the 2015 drought on photosynthesis in the Amazon
rainforest using satellite solar-induced chlorophyll
fluorescence products along with other climate and
vegetation datasets and reached similar conclusions.
Intense solar radiation suppressed photosynthesis in
grassland. Grassland typically has shallow root sys-
tems and intense solar radiation accelerates soil evap-
oration, preventing them from replenishing sufficient
moisture. Finally, higher temperatures seemed to pro-
mote photosynthesis in evergreen broadleaf forest
and savanna.

3.4. Progress of HD2023 and the response of
vegetations to HD2023

HD2023 lasted for 5 months (September 2023 to
January 2024), severely affecting the vegetation

GPP in the Amazon. Overall, the progress can be
chronologically divided into four stages (figure 4).
First, in the early stage (September 2023), despite
positive anomaly (4-0.86 °C) in air temperature and
negative anomalies in precipitation (—18.00 mm) and
SM (—0.049 m®> m~?), GPP still exhibited a slightly
positive anomaly (420.3 Tg C). This indicated that
GPP had not been suppressed yet, even if HD2023
started at this early stage.

In the middle stage (October and November
2023), positive anomalies (4+1.36 °C and +1.52 °C)
in air temperature, along with negative anomalies in
precipitation (—34.00 mm and —45.48 mm), resul-
ted in negative anomalies in SM (—0.096 m* m 2 and
—0.128 m® m ). Meantime, GPP exhibited negative
anomalies (—37.4 Tg C and —140.5 Tg C). It indic-
ated that HD2023 started to suppress GPP in Amazon
at this stage.

In the late stage (December 2023), the positive
anomaly in air temperature (+1.07 °C) decreased and
the negative anomaly in precipitation (—31.64 mm)
decreased, resulting to smaller negative anomaly in
SM (—0.097 m* m~3) compared to the previous stage.
In this stage, the negative anomaly in GPP (—153.7 Tg
C) was larger than that in previous stage. It indic-
ated that the suppress of GPP still proceeded even if
HD2023 entered to the late stage (figure 4).

In the end stage (January 2024), the positive
anomaly in air temperature (40.81 °C) and the
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negative anomaly in precipitation (—18.43 mm) both
further decreased compared to those of the previ-
ous stage. The negative anomaly in SM was small
(—0.051 m®> m~?), indicating the end of HD2023.
However, the negative anomaly in GPP became more
severe (—220.1 Tg C) compared to that of the previ-
ous stage. It indicated that the suppress of GPP further
proceeded even if HD2023 was close to the end.

To investigate variations in the responses of differ-
ent vegetation types to HD2023, we selected a region
of interest for each vegetation type, each covering an
area of 1° longitude x 1° latitude (figure S3(a) in sup-
plementary material). The monthly relative changes
in AGPP/GPP for EBF were small (<10%) during
HD2023 (figure S3(b)), indicating that the impacts of
HD2023 on GPP of EBF was small. In contrast, the
monthly AGPP/GPP for Sava were —14%, —28%,
—9%, and —11% during October 2023 to January
2024 (figure S3(b)), indicating that the Sava GPP
affected by the HD2023 event. Also, the monthly
AGPP/GPP for Grass were in the range of —40% to
—75% during September to December 2023, and it
recovered to 55% in January 2024 (figure S3(b). The
impacts of the HD2023 event on Grass GPP was the
most severe among the three vegetation types during
September to December 2023. Therefore, the sensit-
ivity to the HD2023 event among the three vegetation
types can be ranked as follows: grassland, savanna,
and evergreen broadleaf forest.

4. Discussion

4.1. Progress of HD2023 and GPP responses

The asynchronism in the progress of HD2023 and
GPP responses revealed that at least 1 month of
lag existed between GPP responses and HD2023
(figure 4). Specifically, heatwaves are usually associ-
ated with a high vapor pressure deficit, which causes
the decrease in stomatal conductance, suppressing
photosynthesis rates (Merilo et al 2018, Hsu et al
2021). During the progress of prolonged drought, leaf
photosynthetic capacity (i.e. Vimaxzs) and synthesis
of leaf photosynthetic pigments (i.e. chlorophyll and
carotenoid) would be damaged with accumulated soil
water deficit, resulting to further suppression in GPP
(Chen et al 2019a, Li et al 2024b). Although climate
conditions in the Amazon almost returned to normal
in January 2024, GPP was still severely suppressed.
This could be attributed to spatial heterogeneity of
climate conditions in the Amazon region and the
diverse responses of GPP among EBF, Sava and Grass.
This issue will be clarified in detail in the next section.

4.2. Response of different vegetation types to
HD2023

The EBF is located in the tropical rainforest (Af) cli-
mate zones (Beck et al 2023). The Af region usually
receives abundant rainfall throughout the year and
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the rooting depth of tropical rain forests can reach 3—
4 m depths (Jackson et al 1996, Bachofen et al 2024).
Thus, the availability of soil moisture to EBF were still
good enough for maintaining photosynthesis even if
APre/Pre was —80% (figure S3(c)) and ASM/SM
was around —40% in October (figure S3(d)) during
the HD2023. The Sava was a transition vegetation
type between forests and grassland, with both trees
and grass. The Sava is located in the tropical savan-
nah (Aw) climate zones with distinct wet and dry sea-
sons (Beck et al 2023). The precipitation and SM defi-
cit during October to November 2023 (figure S3(d))
would suppress the photosynthesis of grass, which is
more sensitive to SM deficit. Trees would shift root
water uptake from surface to deeper soil layers dur-
ing the progress of SM dry-down (Bachofen et al
2024). Also, tropical trees have stem water storage,
which could serve as a buffer to drought (Preisler et al
2022). Thus, impacts of the HD2023 event to trees
in Sava could be small. Grass is low-growing veget-
ation. Under drought conditions, the photosynthesis
of such vegetation is highly sensitive to SM availabil-
ity. Also, the shallower roots of tropical grass in Grass
than those of trees limit its ability to access deep soil
moisture (Gao et al 2024), which could be another
reason why the most severe photosynthesis suppress
occurred in Grass.

4.3. Comparison with previous droughts since 2000
HD2023 in the Amazon region garnered widespread
attention (Espinoza et al 2024, Meunier et al 2024,
Wagner et al 2024). Our findings on HD2023 revealed
a GPP reduction of 530 Tg C across the region, mark-
ing the most severe decline in the past 20 years.
Compared with previous drought events, our res-
ults show consistency in that extreme droughts led
to substantial carbon losses in the Amazon region.
However, our study revealed that the decline in GPP
caused by HD2023 was the most severe since the
beginning of the 21st century. However, when con-
sidering carbon loss alone, it did not appear to be the
most severe factor compared with previous droughts
(table 1). This discrepancy can be explained by differ-
ences in the methods, duration of drought events, and
scope of the study. First, there were notable method-
ological differences. Previous studies primarily relied
on forest plots and model simulations, both of which
are subject to considerable uncertainty (Holdaway
et al 2014, Post et al 2018). In contrast, the FluxSat
GPP product, which combines satellite and flux tower
data using machine learning techniques, has been
increasingly adopted to assess regional carbon uptake
(Lee et al 2022) and the impact of extreme climatic
events on the terrestrial carbon cycle (Byrne et al
2021, Wang et al 2023a). Second, the duration of
drought events varies across studies. For instance,
Phillips et al examined the 2005 drought on an annual
scale, whereas other studies, including ours, defined
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Table 1. Previous droughts in the Amazon since 2000.
Events Method Duration Carbon loss References
2005 drought Permanent forest plots 2005.1-2005.12 1.2-1.6 PgC (Phillips et al 2009)
2010 drought Forest plots 2010.5-2010.12  0.23-0.53 PgC  (Doughty et al 2015)
2015-2016 drought Land surface model (LSM) 2015.10-2016.3 0.95PgC (van Schaik et al 2018)
2023-2024 drought Machine learning 2023.9-2024.1  0.53PgC This study

specific start and end dates of the drought peri-
ods. Finally, there were differences in the geograph-
ical scopes of the studies. Most studies have focused
on the biogeographical Amazon region, whereas our
study covers a broader area. Consequently, regions
unaffected by drought may have offset some of their
observed carbon losses.

Notably, the frequency of CHWDs is expected
to increase in the future owing to global warm-
ing (Ridder et al 2022). Therefore, further research
on the response mechanisms of ecosystems in the
Amazon to CHWDs is required to better understand
the ecosystem impacts caused by these occurrences.
Notably, our research showed that a decline in soil
moisture was the main factor driving the decrease
in GPP during HD2023. Therefore, future studies
on the response of vegetation in the Amazon to
CHWDs should focus on changes in soil moisture.
Additionally, given the variability in vegetation types
in the Amazon, it is important to consider the differ-
ent thresholds of soil moisture for various vegetation

types.
5. Conclusions

We conducted an in-depth analysis of the impact of
HD2023 on vegetation photosynthesis and its devel-
opmental processes in the Amazon. HD2023 have res-
ulted in severe temperature, precipitation, solar radi-
ation, and soil moisture anomalies since the begin-
ning of the 21st century. Anomalies in these climatic
factors have led to a widespread decline in photosyn-
thesis in the Amazon. Specifically, HD2023 caused a
severe decline in total GPP of 530 Tg C and average
NIR, of 0.003.

HD2023 lasted 5 months (September 2023 to
January 2024). During the early and middle phases,
persistently high temperatures and a lack of precip-
itation led to a continuous decline in soil moisture,
severely impacting plant photosynthesis and causing
a sustained reduction in GPP. In the late phase, des-
pite a slight easing of meteorological conditions, the
cumulative effects of drought and delayed response of
vegetation resulted in the most severe GPP decline in
January. Across spatial scales, HD2023 began in the
northwestern evergreen broadleaf forest and gradu-
ally spread southeast across the entire region. The two
datasets reflecting vegetation photosynthesis, FluxSat
GPP, and MODIS NIRy, showed strong overall spatial

consistency but weaker consistency in the evergreen
broadleaf forest region.

The dominant climatic factors influencing
photosynthetic anomalies were consistent across the
different vegetation types. Multiple linear regression
analysis indicated that the decrease in photosynthesis
across the three vegetation types was primarily attrib-
utable to reduced soil moisture. Additionally, in ever-
green broadleaf forests and savannas, high solar radi-
ation partially mitigates the adverse effects of water
stress on photosynthesis. Different vegetation types
exhibited varying sensitivities to CHWD, ranking as
grassland > savanna > evergreen broad forest.

Overall, our research identified a CHWD event in
the Amazon region during 2023-2024 and evaluated
its impact on the GPP. We revealed the roles of various
environmental factors and the differential responses
of vegetation types to extreme climatic events, provid-
ing valuable insights for ecosystem management and
climate change adaptation strategies.

Data availability statement

All reanalysis and satellite data used in this study are
publicly available at the following URLs:

(1) 0.1° ERA5-Land monthly averaged dataset:
https://cds.climate.copernicus.eu/datasets/

reanalysis-era5-land-monthly-means?tab=overview.

(2) 0.05° FluxSat GPP version 2.2 product:
https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_ GPP/

(3) 0.05° MODIS NDVI product (MODI3C2
Version 6.1):
https://lpdaac.usgs.gov/products/mod13c
2v061/.

(4) 0.05° MODIS Land Cover Climate Modeling
Grid Product (MCD12C1 Version 6.1):
https://lpdaac.usgs.gov/products/mecd12cl
v061/.

All data that support the findings of this study are
included within the article (and any supplementary
files).
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