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around the critical temperature. Our results are related to the zero-temperature behavior of in-
frared propagators for comparison.
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1. Landau-Gauge Propagators and Temperature

Gluonic correlations of Yang-Mills theory at nonzero temperature are encoded in the chromo-
electric (i.e. longitudinal) sector of the gluon propagator, which is a gauge-dependent quantity. At
high temperatures, deconfinement should be felt in the electric gluon propagator as an exponential
fall-off at long distances, defining a screening length and conversely a screening mass [1]. As for
the magnetic (i.e. transverse) sector, the dimensional-reduction picture (based on the 3D-adjoint-
Higgs model) suggests a confined magnetic gluon, associated to a nontrivial magnetic mass.

Lattice studies of gluon and ghost propagators in Landau gauge have shown that both the ghost
propagator and the magnetic gluon propagator are essentially unaffected by temperature. The lon-
gitudinal propagator DL(p), on the other hand, shows significantly different behavior for different
temperatures. As soon as a nonzero temperature is introduced in the system, DL(p) increases con-
siderably. More precisely, for all fixed temperatures, the curve described by DL(p) seems to reach
a plateau in the low-momentum region [2]. As the temperature is increased, this plateau increases
slightly until, approaching the phase transition from below, it has been observed to rise further and
then, just above the transition temperature, to drop sharply. This has been interpreted as a sign of
singular behavior of the longitudinal gluon propagator around Tc and, in fact, it has been related
to several proposals of a new order parameter for the deconfinement transition (see e.g. [3]). Of
course, a relevant question is, then, whether this singularity survives the inclusion of dynamical
quarks in the theory [4, 5].

Let us mention that, at all investigated temperatures, the infrared plateau just described is not
long enough to justify a fit to the Yukawa form

DL(p) = C
1

p2 + m2 ,

predicted at high temperatures. If this were the case, DL(0)−1/2 would provide a natural (tempe-
rature-dependent) mass scale. Note that this value depends also on the global constant C. On the
other hand, the so-called Gribov-Stingl forms involve complex-conjugate poles, defining real and
imaginary masses (independently of C).

2. Electric Screening Masses

In order to characterize a mass scale around Tc, we consider a generalized fitting form of the
Gribov-Stingl type

DL,T (p) = C
[

1 + d p2

(p2 +a)2 + b2

]η

. (2.1)

This form allows for two (complex-conjugate) poles, with masses m2 = a ± ib, where m =

mR + imI . The mass m thus depends only on a, b and not on the normalization C. Note that, for
given values of a, b, d, η , the global constant C is fixed by the renormalization condition, so that
there are only four free parameters in (2.1).

The parameter η should be 1 if the fitting form also describes the large-momenta region (from
our infrared data we get η 6= 1). Recall that at high temperatures one usually defines the electric
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screening mass as the scale determining the exponential decrease of the real-space propagator at
large distances, which is equivalent to DL(0)−1/2 in the case of a real pole. We therefore expect to
observe mI → 0 (i.e. b→ 0) for the longitudinal gluon propagator at high temperature.

Note that, if the propagator has the above form (and η = 1), then the screening mass defined
by DL(0)−1/2 =

√
(a2 +b2)/C mixes the complex and imaginary masses mR and mI and depends

on the (a priori arbitrary) normalization C.

We generally find good fits to the above form with nonzero real and imaginary parts of the
pole masses in all cases. The form is well suited for the longitudinal and the transverse cases. For
the transverse propagator DT (p), the masses mR and mI are of comparable size (around 0.6 and 0.4
GeV respectively). The same holds for DL(p), but in this case the relative size of the imaginary
mass seems to decrease with increasing temperature.

The use of a Gribov-Stingl form is motivated by the behavior of the gluon propagator at T = 0,
where this type of expression has been shown to describe well the data in 3d and 4d [6]. (Note
that the 3d case may be considered as the T → ∞ limit of the 4d case.) Here, however, we need to
incorporate the anomalous-dimension exponent η , corresponding to a nontrivial analytic structure
of the gluon propagator involving branch cuts, as proposed in [7].

3. Numerical Simulations

We have considered the pure SU(2) case, with a standard Wilson action and lattice sizes
N3

s ×Nt ranging from 483× 4 to 1923× 16. For our runs we employ a cold start, performing
a projection on positive-Polyakov-loop configurations. Also, gauge fixing is implemented using
stochastic overrelaxation. The gluon dressing functions are normalized to 1 at 2 GeV. We con-
sidered several values of the lattice parameter β , allowing a broad range of temperatures. Our
procedure for determining the physical temperature T is described in [8]. The momentum-space
longitudinal gluon propagator DL(p) is given by the scalar function

DL(p) =
1

N2
c −1

〈
Aa

0(p)Aa
0(−p)

〉
,

where Nc = 2, we take p0 = 0 and Aµ(p) is the Fourier transform of the gauge field

Aa
µ(x)λ

a =
Uµ(x)−U†

µ(x)
2i

∣∣∣∣∣
traceless

,

satisfying the Landau gauge condition.
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4. Results
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In the above plots we show the longitudinal (left) and transverse (right) gluon propagators
DL and DT as functions of the (unimproved) lattice momentum p together with the corresponding
fitting functions. We plot data for T/Tc ≈ 0.9 and several lattice sizes.

A table with the mass scales obtained from fits of DL and DT is shown below.

T/Tc N3
s ×Nt m(E)

R m(E)
I m(M)

R m(M)
I

0 643×64 0.69 GeV 0.34 GeV 0.77 GeV 0.42 GeV
0.25 963×16 0.82 GeV 0.33 GeV 0.64 GeV 0.29 GeV
0.5 483×8 0.69 GeV 0.21 GeV 0.67 GeV 0.44 GeV
0.7 963×8 0.58 GeV 0.23 GeV 0.58 GeV 0.25 GeV
0.9 963×16 0.53 GeV 0.24 GeV 0.69 GeV 0.42 GeV
0.98 963×8 0.49 GeV 0.22 GeV 0.65 GeV 0.44 GeV
1.0 963×8 0.56 GeV 0.19 GeV 0.58 GeV 0.31 GeV
1.05 963×8 0.70 GeV 0.26 GeV 0.58 GeV 0.36 GeV
2.0 963×8 1.08 GeV 0.15 GeV 0.83 GeV 0.35 GeV
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