IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 14, 2020, accepted October 26, 2020, date of publication November 2, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035083

BIPES: Block Based Integrated Platform

for Embedded Systems

ANDOUGLAS GONCALVES DA SILVA JUNIOR™,

LUIZ MARCOS GARCIA GONCALVES 2, (Member, IEEE),

GLAUCO A. DE PAULA CAURIN3, (Member, IEEE),

GUSTAVO TERUO BERNARDINO TAMANAKA3, ANDRE CARMONA HERNANDES*5,

AND RAFAEL VIDAL AROCA*5, (Senior Member, IEEE)

! Academic Directory, Instituto Federal do Rio Grande do Norte (IFRN), Mossoré 59628-330, Brazil

2Graduate Program on Electrical and Computer Engineering, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, Brazil

3 Aeronautical Engineering Department, School of Engineering of Sao Carlos (EESC), Universidade de Sio Paulo (USP), Sao Carlos 13566-590, Brazil
4Computer Science Department, Universidade Federal de Sao Carlos (UFSCar), Sao Carlos 13565-905, Brazil

SElectrical Engineering Department, Universidade Federal de Sao Carlos (UFSCar), Sdo Carlos 13565-905, Brazil

Corresponding author: Luiz Marcos Garcia Gongalves (Imarcos @dca.ufrn.br)

This work was supported in part by the National Council for Scientific and Technological Development (CNPQ) under Grant
309447/2017-8, Grant 314936/2018-1, and Grant 141395/2017-6; in part by the Sdo Paulo Research Foundation (FAPESP) under Grant
2017/01555-7; and in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) under Grant 001.

ABSTRACT This article proposes the BIPES, a Block based Integrated Platform for Embedded Systems,
including its architecture, design and validation results. BIPES is an open source software and service that is
freely available through the website http://www.bipes.net.br and has been conceived from our experience
of several years developing embedded systems and Internet of Things (IoT) applications, and teaching.
It allows anyone to quickly and reliably design, program, build, deploy and monitor embedded systems, [oT
devices and applications using blocks or Python based programming. It is fully based on web environment,
so absolutely no software installation is needed on the client developer machine. In this way, a tablet,
a netbook, a Chromebook or any other device can be used to program and test several types of devices.
Mainly, it relies on MicroPython or CircuitPython, WebREPL, WebSockets, Web Serial API, HTML,
JavaScript and Google Blockly to allow no-code programming (blocks) to be translated into Python code and
then deployed to the target board. Moreover, it does not require server side processing, so it can be deployed
as a Progressive Web Application (PWA), allowing it to be used even when the computer is offline. It is
compatible with several low cost boards such as: mBed, BBC micro:bit, ESP8266, ESP32 and Raspberry Pi
using only a web browser and without the need to install any software on the device where the user develops
the programming.

INDEX TERMS Embedded systems, block based programming, Internet of Things, STEAM, wearable

devices programming.

I. INTRODUCTION

Programming Without Code: The Rise of No-Code Software
Development, a recent article by Rina Diane Callabar [6] on
IEEE Spectrum Tech Talk section remembers how impor-
tant software is and how several tools are helping more
people to program without code. In that way, several tools
and approaches are already available for people interested
in developing several types of software without the need of
writing code. One of the most common alternatives to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaolong Li

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

traditional code based programming is block based program-
ming, which is intuitive for several users.

A successful example of block based programming is the
MIT App Inventor (https://appinventor.mit.edu/), a consoli-
dated and freely available online tool that allows easy devel-
opment of smartphone applications using drag and drop and
block based programming. According to MIT App Inven-
tor usage information from the project website (July/2020),
App Inventor already has more than 8 million users, from
195 countries and more than 30 million smartphone appli-
cations were developed using App Inventor.

In fact, we have been teaching programming concepts
using App Inventor for Brazilian students of several education

197955

https://orcid.org/0000-0003-0579-8464
https://orcid.org/0000-0002-7735-5630
https://orcid.org/0000-0002-8104-3234

IEEE Access

A. G. Da Silva Junior et al.: BIPES

FIGURE 1. Example of soccer game application developed using MIT
App Inventor by a 13-year old student.

levels and observed that even students that had never pro-
grammed before can create and customize their own appli-
cations in about 4 hours. Figure 1 shows an example of
simple and fully functional soccer game created by a 13-year
old student, during a 4-hour workshop - we notice that this
student had never programmed before.

The block based programming approach used by
App Inventor is key for teaching programming, Science,
Technology, Engineering, Arts and Math (STEAM), and
indeed it foster students interest, motivation and empow-
erment, being usually chosen as entry-point language [2]
and usually have a better performance with non-experts in
programming [5]. More than that, it has been enabling enthu-
siasts to build real world prototypes, applications, innovations
and business, such as XLBlocks [3], for spreadsheet formulas
editor and CoBlox [4], a block-based programming interface
for a single-armed industrial robot.

A special type of software, often called embedded soft-
ware, is present in hundreds of types of products, such as
printers, cameras, televisions, robots and cars. In fact, about
1/3 of the costs of cars and airplanes are related to the prod-
uct’s electronics, embedded systems [7], and consequently
embedded software operating in such products.

A related definition is “Physical Computing™, which com-
bines software and hardware ‘“‘to build interactive physi-
cal systems that sense and respond to the real world” [1].
According to Hodges et al. [1] there are still challenges
and work to be done in such area and a close integration
between hardware and software is critical to a good user

197956

experience. Such challenges motivated our applied research,
which resulted in the development of BIPES.

Moreover, with the recent increasing interest in Robotics,
IoT, and embedded systems in all levels of education, there
is still a lack of simple and intuitive tools to program such
devices either for education or even professional usage. In this
way, most embedded programming tools, even the ones that
allow block based programming show some restrictions.
Most of them require software download and installation,
configuration and boards with specific firmware, which are
hard to find or expensive. Moreover, some of these tools are
commercial and a licence must be purchased in order to be
used.

Yet in this direction, we have conducted 4-hour workshops
with students, using NodeMCU (ESP8266) modules for IoT,
and we observed some common characteristics in most ses-
sions. One issue observed is the requirement of installation
of compilers and integrated development platforms (IDEs),
and configuring the correct board and device drivers that
usually took about 25% of the workshop duration. Moreover,
we also observed platform differences and incompatibilities
(Linux, Mac, Windows), or even permissions issues. These
difficulties are also reported by the authors of Microsoft
MakeCode platform, mentioning that schools have a diversity
of computers and that “the only software in common across
platforms is the modern web browser” [24]. Moreover, in cor-
porate computers or school laboratory computers, software
installation and configuration requires administrative permis-
sion, which cannot be obtained in many cases.

Such situations motivated us to propose a new approach
that we named BIPES, which, by design, consists of a fully
web-based tool that does not require any software installation,
nor even add-ons or plugins for the web browser. Another
project goal is to allow block based programming with mul-
tiple target boards and modules. Yet, it also works offline
as a web application, which is important for a good user
experience as some trials of BBC micro:bit in UK schools
using cloud compilation had “‘unacceptable failures due to
spotty network connectivity’’ [24]. In that way, BIPES does
not compile code, but generates Python code to be interpreted
by a variety of boards running MicroPython, CircuitPython
or standard Python. So, the only requirement for BIPES
to work is a device with a web browser and a board with
MicroPython or CircuitPython previously loaded (only one
time), or an embedded Linux device with Python interpreter
installed. Such boards can be purchased with such firmwares
pre-loaded, or can be flashed by the user or someone that
prepares new boards before workshops.

Therefore, the main contributions of this paper are to intro-
duce the design, architecture, implementations, and current
status of BIPES development, and making it fully available
to other groups and researchers as an open source tool.
It relies on MicroPython, CircuitPython or Python running
on target boards, such as ESP32, ESP8266, Raspberry Pi or
even a standard x86 computers. In order to interact with the
boards, it uses W3C Web USB API communication to talk

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

repeat times
print [I [ReadnADC... »
set (EIMED to | Read ADC Input |
L2001 Sending to server...
£ bipes v RORED
set (MRS to [(3] create textwith | CIYTEd

.

set@@Xto | Make HTTP GET Request URL
Execute Python Code I, & ”
F\ri'nt ‘ (o) create text with | L% »

delay | B

FIGURE 2. Complete lIoT example developed with BIPES.

directly from the browser to the devices using USB cable or
WebREPL and WebSockets to communicate with the devices
using network. It also integrates Google Blockly and other
open-source softwares. In such a way, it is possible to design
programs using blocks, and quickly transfer, run and monitor
it from modern web browsers. Figure 2 shows an example of
a program built in a few minutes, which can read an analog
sensor and send the obtained data, in real time to a server,
which allows data visualization, in a real time graph and keeps
the sent data in a database for history analysis. This test is
conducted with an ESP8266 board. In an extensive search
we have not found any similar architecture, and with such
features. So we truly believe that this new architecture model
and the BIPES itself are a very good contribution not only
to educational purposes but also to more general automation
research development.

The article is organized as follows: section 2 discusses
related works and the state of the art. Section 3 introduces
BIPES underlying technologies, which provides the infras-
tructure for BIPES to work. Section 4 proposes the BIPES
architecture and design. Section 5 discusses the BIPES cur-
rent development stage and some study cases, and section 6
presents our final remarks including ongoing and future
works.

Il. RELATED WORKS
Code implementation is considered one of the most important
step in software development life-cycle [25]. However, from
software design to real implementation, a semantic gap [23]
may exist due to several factors, such as communication and
developers interpretation of the problem to be solved. More-
over, text based programming is prone to possible mistakes,
which are not acceptable for some applications: for example,
in safety-critical systems, “failure is not an option” [26].
On the other hand, studies show that code based software may
have up to 50 errors for each 1000 lines of code [27].

In this direction, engineering applications have been using
approaches with automatic code generation, such as model

VOLUME 8, 2020

driven engineering (MDE) and model driven development
(MDD), with automatic code generation (ACG), which has
been proven to reduce source code writing and leading to
considerable reduction in development time [28]. Actually,
Liao et al. [22] argue that ACG improves software quality
and shortens development cycles.

With the increasing demand for developers and new appli-
cations, automatic code generation has been gaining each
time more importance, and now such tools are mostly known
as no-code or low-code programming tools [6]. However,
such tools are typically used by developers and engineers.
With the scenario of low cost devices, several efforts are
being done to take no-code and low-code programming to
a wider public. Several tools are already available, such as
Snap!, MicroBlocks, Scratch for Arduino, Blocklyduino, and
Microsoft Make Code, between others.

The above mentioned App Inventor has also generated
spin-off projects related to embedded and IoT devices pro-
gramming. In fact, a block-based programming approach
using MIT App Inventor [15] was proposed in order to be
able to help novice programmers to build mobile apps in
a simpler way, integrated with IoT technology. Basically,
the authors used the MIT platform to create Arduino algo-
rithms blocks, such that the user can just drag and use these
blocks without necessary understand the math behind them.
Such project is focused on Arduino 101. App Inventor IoT
Embedded Companion is another project [19] that adds more
functionalities to the App Inventor in order to make easier the
development of Arduino projects using light sensor, humidity
and temperature sensor, buzzer, and others. For such project,
also, an Arduino with a special code interpreter is needed.

The soEasy project by Lee et al. [8] uses a web-based
IDE and a database to configure pins and alternate functions
on processors that was included on the same database. The
ease of configure pin has a similar idea that CubeMx for ST
microcontrollers. A downside is that the tool uses C/C++
code implementation despite being block-based. Hauck and
colleagues [12] have chosen ArduBlock as block-based pro-
gramming IDE and used a MQTT communication to a IBM
node-RED device to run Al applications, thus, the device
that captures the signal does not process it. Other propos-
als including MicroPython and Blockly are also found for
embedded programming [13], [14]. In those study cases,
they use Chrome Embedded Framework to build a desktop
program based on a web application and then uses serial
communication to load the program.

Analyzing the challenges brought by recent advances on
Industrial Internet of Things [10], one of them is attending
multi-vendor technologies for Industrial Internet-of-Things
systems. As observed until now, neither applications have this
cross vendor/platform capability, which the proposed BIPES
architecture has.

The DSCBlocks team [9] has created a web-based block-
based programming IDE focused on dSPic microcontrollers.
TUNIOT is as a web based tool (http://www.easycoding.tn/
tuniot/demos/code/), that makes possible to program the

197957

IEEE Access

A. G. Da Silva Junior et al.: BIPES

ESP8266 module (NodeMCU) in blocks, and the tool gen-
erates a program in C language, from blocks prepared using
Blockly, but does not send or compile the code. To com-
pile and send the code to the board, it is necessary to
install a compiler on the local computer and firmware
flashing tools on the user’s local computer. ArduBlockly
(https://github.com/carlosperate/ardublockly), focused only
on the Arduino platform, also allows block based program-
ming, but it is necessary to install local software (server) on
the user’s PC to compile and send the program to the Arduino.

Several other projects are worth mentioning as
MicroBlocks (https://microblocks.fun/tech), which provides
a kernel/firmware for quickly programming embedded
boards, however software download is needed for program-
ming on the desktop. Snap4Arduino (http://snap4arduino.
rocks/) is another block based programming environment
for most Arduino boards, but also, it consists of a desktop
application, needing download and installation. On the same
way, Scratch for Arduino (http://s4a.cat/) also allows block
based programming focused on Arduino boards, but requires
download and installation of desktop software and a firmware
on target Arduino boards.

At this point we discuss in more detail the UIFlow and
Microsoft MakeCode projects that are the ones mostly related
to BIPES. UlFlow is a web-based programming environment
(https://flow.m5stack.com/) that was created focused on pro-
gramming mS5stack / mSstick commercial products based on
ESP32 processor running MicroPython. It allows block based
programming using Blockly, and blocks are converted into
Python code. As it is focused on the m5 product family,
it requires an API key to connect to these specific boards.

In the MakeCode and CODAL project [11] the authors use
a web-based block-based programming IDE for microcon-
trollers and use UF2 as bootloader, which makes the board act
as USB thumb drives when connected to a computer. In that
way, to run a program on the board, a user simply has to copy
the compiled file to the board as a pen drive. This approach is
also used by mBed environment and online editor/compiler
(https://os.mbed.com/ide/).

The Microsoft MakeCode [24] is an open source (MIT
licence) web-based block based environment supporting sev-
eral target platforms, such as Lego Mindstorms EV3 and
BBC micro:bit. It requires no software installation and works
offline after its been loaded in web browsers. It supports
WebUSB, which allows direct browser communication with
USB devices, however this is only possible with boards
compatible with WebUSB. On the other hand, this it is not
a requirement as the UF2 bootloader can be used for most
computers / boards.

This review has shown that many research works have
been done in the context of block based programming for
embedded devices, and several projects are very active, such
as UIFlow and Microsoft MakeCode. Nonetheless, there are
several further possibilities to be explored, as for example
the capability of attending every device without need of any
software installation, between others. In this context, BIPES

197958

brings some additional contributions to this ecosystem with
some differentials that will be detailed further in Section IV.

Ill. BIPES UNDERLYING TECHNOLOGIES

As said, this paper goal is to introduce the design, archi-
tecture, implementations, and current status of BIPES deve-
lopment. To make it fully available to other groups and
researchers, it is necessary to explain some related tech-
nology as Google Blockly, MicroPython, and CircuitPython
(or Python running on target boards). In order to interact
with the boards, direct communication from the browser is
achieved through the W3C Web USB API using USB cable or
WebREPL and WebSockets. Thus, details of these used tech-
nologies will be introduced and discussed in this Section to
aid the understanding of their use to design and program using
blocks, and quickly transfer, run and monitor it straight from
web browsers.

A. GOOGLE BLOCKLY
Google Blockly is JavaScript library for building visual pro-
gramming editors to create Visual Programming Languages
(VPL). Created by Google in 2012 and also maintained by
Google [16], [17], Blockly has already been used in hundreds
of projects and applications. MIT App Inventor, for example,
uses Blockly. Blockly provides features to build block based
toolboxes, to connect the blocks according to patterns defined
by the developers and generate source code automatically for
several languages. Blockly also allows blocks to be imported,
exported and shared using XML file format. BIPES relies on
Blockly to allow users to built their programs using blocks
and then automatically generate Python source code.
Although Blockly is widely used in educational contexts,
there are also study cases of Blockly applied in commercial
/ industrial situations. Weintrop et al. [18], for example,
presents the usage of Blockly applied to industrial robotics
programming. They argue that they conducted a small-scale
study and observed that Blockly enabled *‘adults with no prior
programming experience successfully programming a virtual
robot to accomplish a pick and place task™.

B. MicroPython OR CircuitPython
Python is an Open Source high-level programming language,
with a growing community and user base. It is used in educa-
tional contexts and to develop real-world applications in the
industry, services and even for scientific computing.
MicroPython (https://micropython.org/) is a complete
Python compiler and runtime, optimized for devices with
low resources, that runs on the several low cost microcon-
trollers. It is mostly compatible with Python 3 and provides
an interactive prompt (REPL). It was originally written by
Damien George, having its first release in 2014. Among
several supported devices, we highlight some ARM families,
STM32, ESP32 and ESP8266, 16-bit PIC, and a native Unix
port (running on a Raspberry / ARM or x86 Linux).
Another relevant tool is CircuitPython: according to
its website (https://circuitpython.org/), ““CircuitPython is a

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

programming language designed to simplify experimenting
and learning to code on low-cost microcontroller boards™.
Created in 2017, CircuitPython is a fork of MicroPython
intended to be a solution for microcontroller programming,
which is usually done with C, C++ or Arduino. It includes
a selection of core Python libraries and modules which give
the programmer access to the low-level hardware of several
microcontrollers.

Both MicroPython and CircuitPython allow a direct read—
eval-print loop (REPL) interactive shells over serial (USB)
port. REPL works in a similar way to a shell, where a user
may enter commands to a prompt, which are executed and the
result shown to the user. An example of REPL, is accessing
an interactive Python session, where the user may define
variables, call functions, and interact with the interpreter.

C. WebSocket AND WebREPL

WebSocket is a World Wide Web Consortium (W3C) rec-
ommendation / specification, implemented as Application
Programming Interfaces (APIs) in modern web browsers.
It enables Web pages to use the WebSocket protocol (defined
by the IETF) for two-way communication with a remote
host, using JavaScript, for example. In that way, a standard
HTML page / site, without any server support may start and
keep direct full-duplex communication with devices or other
servers.

WebREPL consists of a REPL session over WebSock-
ets, in a way that the client is a standard HTMLS5 appli-
cation running on the web browser, talking with the board
using network (Wifi, for example). WebREPL not only pro-
vides an interactive REPL over the network, but has also
defined a protocol to send and receive files and other com-
mands to the target board through the network. In that way,
WebREPL allows storing and retrieving files from a remote
device filesystem, starting programs, and interacting with
programs in remote boards directly from a standard HTML
application.

D. WEB SERIAL API
It is known that many applications and management systems
are each time more being transformed into web-based cloud
solutions, fully accessed and managed from any web browser.
In fact, many corporate systems are web based. However, one
typical past limitation of web browsers is to directly access
the hardware, specifically USB devices. In this way, a recent
effort from the community led to the W3C Draft Community
Group Report (13 August 2020) of Web Serial API, which
proposed a preliminary specification for the implementation
of web browser direct communication with devices.
According to such document (https://wicg.github.io/
serial/), the Serial API provides a way for websites to read and
write from a serial device through script. Such an API would
bridge the web and the physical world, by allowing docu-
ments to communicate with devices such as microcontrollers,
3D printers, and other serial devices. There are also other
specifications as WebUSB (https://wicg.github.io/webusb/)

VOLUME 8, 2020

or Web Bluetooth (https://webbluetoothcg.github.io/web-
bluetooth/) however they need specific boards and chipsets to
communicate. Also, the Web Bluetooth API context has more
focus on device attack from malicious websites, thus direct
access to some Bluetooth features are eventually removed.
Actually, it needs the user to select and approve the access
to devices. In that way, one advantage of Web Serial API is
the possibility to communicate with any serial or USB-Serial
device, without the need of specific chipsets or board config-
uration.

E. PROGRESSIVE WEB APPLICATIONS

As mentioned in the last section, several applications are
web-based today. With modern web-based technologies, such
as HTMLS, JavaScript, storage, WebSockets and others, web
technologies became a full featured environment to develop
several kinds of applications, that can be fully executed from
the browser, using the scripting languages that web browsers
can execute, specially JavaScript.

Such applications are typically stored and deployed
through web servers. Thus, a natural step further is to down-
load the set of files of an application stored in a web server to
execute it directly from local files stored on the user’s device.
Progressive Web Applications (PWA) [20] allows such oper-
ation, but in a easy and practical way. Basically, a PWA are
simple websites that can be locally installed, instead of being
downloaded from an App Store.

As PWAs are standard HTMLS5 applications, they are plat-
form independent and can provide interactions similar to real
Apps from standard App stores. They can work offline, and
are easy to install. When the a user access a PWA compatible
website / application, an “Install” button is automatically
shown, and the user can install it directly from the browser.

BIPEs relies on PWA, allowing the BIPES block pro-
gramming environment to be eventually installed to be used
offline, for example, on laboratories or schools with unstable
Internet connection.

F. OTHER TECHNOLOGIES

Other technologies are also involved to enable BIPES func-
tionality, which we mainly highlighted, as Google Cloud
Storage to store and share BIPES programs, and the High-
Charts API to plot IoT real time and historic graph. An inter-
active console terminal is also used (term.js), which is written
in JavaScript, and the OpenCV on Raspberry Pi library to
allow computer vision applications to be developed using
BIPES blocks.

IV. BIPES ARCHITECTURE

The general overview of BIPES components is shown in
Figure 3. Block based programs can be developed by opening
BIPES web application, either online of offline (web applica-
tion stored on disk). After the program is ready, the user can
connect to a device using USB or network to send, monitor
and control the created program using WebREPL protocol
over network or Serial REPL over Serial-USB interface.

197959

IEEE Access

A. G. Da Silva Junior et al.: BIPES

Use
connection
using
Web Serial
API

——
nernet -

(or Local Network) —
(or Direct Wifi)

.o

Wifil IP
connection
using
WebREPL

Devices with

nEaR.

"Wl

A%
.

-

GEiE

Mbed — Nucleo
(UsB)

mbstick/mSstack
(USB or Wifi)

ESP32
(USB or Wifi)

ESP8266
(USBE or Wifi)

MicroPython or CircuitPython
WebREPL or USBE-Serial

Wemos d1 mini
(USB or Wifi)

bbc:microbit
(UsB)

Devices with

Linux + Python
SocketServerwebREPL

Toradex modules PC104 and other devices
(USB or Ethernet) (USB, Wifi, Ethernet)

SWMEV
Raspberry (any version)
(wifi or Ethernet)

"

BeagleBone
(Wifi or Ethernet)

FIGURE 3. General overview of BIPES architecture and operation.

A typical embedded development scenario would require to
write code, compile, flash the compiled code on the micro-
controller and debug. With BIPES, there is no need to compile
neither to flash the microcontroller. A single click transfers
and executes the Python program. If needed, the program can
be later saved in the flash memory filesystem for stand alone
operation.

Figure 4 shows the main screen of BIPES when its web
address (http://www.bipes.net.br/beta2/ui/) is accessed. As it
can be seen, there are several tabs. In order to explain BIPES
architecture, the function of each tab present in this home
screen will be explained next.

A. BLOCKS

The Blocks tab contains all the blocks available for a certain
device in a toolbox shown on the left side of the screen. Some
blocks are native from Blockly, others were automatically or
manually generated by BIPES team. The toolbox layout and

197960

block list is configured by a XML file, and the actions of each
block are defined in additional files (generator_stubs.js and
block_definitions.js).

Notice the “Target device” drop down selection box on the
top right area of the browser. When the user selects a certain
device from that drop down selection box, an event reloads the
toolbox, showing only blocks related to functions available in
that board.

Thanks to MicroPython and CircuitPython support for sev-
eral hardware buses and sensors, BIPES takes advantage of
these functions providing blocks for I12C, SPI, OneWire and
UART Serial communication. Moreover, there are blocks for
file operations and file system manipulation, which is a good
advantage of classical microcontrollers. Blocks for several
types of sensors and actuators are also provided.

In this way, custom blocks can be prepared for each board.
For example, current BIPES version provides Timer blocks,
which allow pseudo-parallel tasks execution in each Timer

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

@ BIPES Project - Beta2

C @ Notsecure | bipes.net.br/betaz/uif#ejaz3e

BIPES Beta (USB/Serial | Network)

Blocks Console Python Files Shared Device
Logic
Loops
Math - .
et count with [fom @) | to gby a|
Lists do [print | (%) create text with . Speaking: £}
Variables
Functions set [FINES to | ‘ () create text with | | 1 espeak |
[Run Linux command
Linux delay seconds | [}
Python (Linux)
» OpenCv2
» contrib

Project INFO

Gl 1Y Rafael V. Aroca |2
10T ID

g coo

r % ¢ O 0ol v »G

XML Target device: [Raspberry Pi (any Linux)_~| B oo n

LB 1 Uses Linux espeak to speak number from 1to 2 by 2 ©/2

FIGURE 4. General overview of BIPES web based user interface and operation.

block, by Timer interrupts executing code associated with
several hardware timers.

B. CONSOLE

The Console tab has an interactive console like any serial
terminal software, as the PuTTY for example (https://www.
putty.org/). It is based on term.js project by Christopher
Jeffrey (https://github.com/chjj/term.js/) and integrated on
BIPES with WebREPL and Web Serial APIL. In that way,
it allows interactive REPL sessions from BIPES to any board,
using USB or Network modes.

This console is, in fact, a key part of BIPES, so all com-
munications from BIPES to the boards are done using this
channel. Sending and receiving files, commands and running
interactive Python / MicroPython / CircuitPython sessions.

Due to some web specification constraints, BIPES needs
a workaround to use USB and WebSockets. USB commu-
nication from browser to devices is only permitted when
the website is hosted in a secure (SSL / HTTPS) environ-
ment. WebSockets on MicroPython / CircuitPython devices,
on the other hand, are only supported without SSL, so BIPES
must connect to devices using standard WebSockets, which,
by themselves, can only be established from non-SSL hosted
pages. In this way, BIPES provides 2 addresses, one for USB
connections and the other for networks connections. These
options are available in the top left corner of BIPES screen,
on the USB/Serial or Network links.

After selection of the type of connection, a user has simply
to power on a board and connect to it, selecting its USB port
or I[P Address.

VOLUME 8, 2020

One powerful and practical feature of MicroPython and
CircuitPython is that devices with Wifi connectivity can cre-
ate Wifi Access Points when the board is powered on so
that one user can simply connect to the board’s network and
interact with it using the Console tab of BIPES. If needed,
for certain, a user can also configure a board to connect to
an exiting Wifi network and connect to it using the existing
infrastructure (Access Point) or simply connect by USB.

For devices with only USB connection, but with net-
work connectivity requirement, we developed a protocol
converter for BIPES named SerialWebSocketServer (https:/
github.com/rafaelaroca/SerialWebSocketServer). This tool
establishes a bridge between a WebSocket and a USB (serial)
connection, allowing BIPES WebREPL Console to access
USB only devices connected to any computer or device
capable of running Python. In such a way, this SerialWeb-
SocketServer can be executed on Windows, Mac or Linux
computers, or even on a BeagleBone or Raspberry Pi, provid-
ing network programming and control to a USB only board,
such as the BBC micro:bit or the mBed Nucleo USB boards.

C. PYTHON

The Python tab shows the automatically generated code by
BIPES, which can be also seen on the Files tab, and edited
in Python (if desired) in that tab. Figure 5 shows an overview
of the operation explained up to this point. Basically, a user
designs its program using blocks, which are automatically
converted into Python code and then sent to the board using
USB or network. Standard output (prints) from programs are
automatically redirected to the console, so the user can have

197961

IEEE Access

A. G. Da Silva Junior et al.: BIPES

do |_|:|rlnt s

delay | D

#Code automatically generated by BIPES

import time
import machine

s J N for count in range(28):
o pi __ﬂ Automatic code print{’Blinking’)
neration (Bloc time.sleep(1)
| ‘o 1 g { Idy} p = machine.Pin(2, machine.Pin.0UuT)
. p.oni{)

| delay n time.sleep(l))

set pin E E-:frfn??hme.hn[zu machine.Pin.0UT)

to
L —
+
Send to board WebREFL mWEHSDd{et
(USE or Network) Wel ial API

FIGURE 5. General overview of BIPES architecture and operation.

immediate feedback of the program operation. Note that the
code generation, transmission and startup operation runs in a
few milliseconds, allowing to perform quickly and simply the
testing and debugging steps.

Notice that this presented approach is rather different
than the one typically used with traditional microcontroller
programming, which usually involves uploading binary
codes/sketches to the board, which are written in the device’s
flash memory and executed after the board reboots. This can
also be done using bootloader softwares, but the process of
flash writing is still needed, which takes several seconds or
even minutes, making it more difficult to quickly debug /
adjust programs.

D. FILES

One interesting and powerful feature supported by MicroPy-
thon and CircuitPython is the implementation of a file system
in the device’s flash memory. With this feaature, program,
libraries, configuration and data can be directly stored in the
devices’ flash memory as files.

The Files tab provides additional functions to manipulate
files in the mentioned file system using the WebREPL pro-
tocol. Users can send local files directly to the device, which
will be permanently stored in the device’s file system. Files
can also be downloaded from the board, or opened in a Python
text source code editor in this same tab.

The text editor allows users to directly program and
test Python code on the target board. To do this, several

197962

approaches are possible. First one is to view and edit the
Python code automatically generated by the blocks, which is
interesting for educational purposes or fine tuning generated
code. A second option is to directly type Python code in the
Files tab. Any code typed or generated by blocks can be saved
and executed using the buttons Save, Run and Stop.

One last feature is to load Python code templates or
libraries from BIPES server. This is useful for situations
where some device needs drivers or specific libraries. There-
fore, the library can be provided by a server and automat-
ically loaded in the Python editor and sent / written to
the board’s flash memory. One example is the OLED LCD
Display, SSD1306, which requires some functions from the
$sd1306.py library, which is not provided with MicroPython
or CircuitPython firmware. Another related possibility pro-
vided by BIPES is the automatic installation of additional
libraries needed by specific blocks, by simply clicking on the
“Install library”” button on the blocks toolbox.

E. SHARED

The Shared tab offers a quick and simple way to open exam-
ples and block programs shared by the BIPES community.
Whenever someone wants to share his code with others,
he just needs to click on the link button on the top right area of
BIPES interface (at the left of the run button). After clicking
this button, a script will save the current blocks on the screen,
send it to a server and define a unique link to access this
program (blocks) again by simply clicking on the link. With

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

this, it is possible to share the link with anyone interested
in viewing, discussing, or even using a program. Such one
example of a link is at http://bipes.net.br/beta2/ui/#npoksg.

In order to keep the shared files organized, the blocks will
only be saved and the link generated if the block Info: Project
Info is used. This block allows programmers to provide a
description for the block based program, author name and an
ID for IoT applications. Such information is shown on the
list that can be seen on the Shared tab. Clicking in one of the
options on the shared tab will open the shared block based
program.

F. DEVICE

The Device tab is an area to provide custom documentation
for each board that can be programmed with BIPES. As it
happens with the toolbox, when a different target device is
selected, this tab is automatically updated to show the pinout
diagram of the selected device and other useful information
for that specific device. The idea is to provide a quick refer-
ence for designers, and links to more detailed information.

G. loT

The IOT tab provides web access to a simple database of sen-
sor data. In this way, any device connected to the Internet can
send data to this IOT backend by using HTTP GET requests.
Sensor and other information are sent as part of the URL.
For example: http://www.bipes.net.br/sensors/send.php?id =
90&s1 =17.

From the example URL, data sent to the server will be
stored associated with the identification (ID) 90, and the
column for sensor 1 (s1) will store the number 7. Several
sensors can be stored in the same request, by adding other
variables to the URL. Each request to the server will store the
provided data, with an associated timestamp provided by the
server at the instant of data reception.

With the data sent to the server, it is possible to view
such data in a graph (single or multi-line), with configurable
parameters, such as line names, date and time interval. It is
also possible to view a real time graph, with automatic
updates of the data sent to the server or to view a table with
real time updates. If needed, a comma separated value (CSV)
can be downloaded for offline analysis using other tools, such
as Excel or LibreOffice Calc spreadsheets.

H. XML, INTERNATIONALIZATION AND SECUTIRY

The XML tab is a simple view of the XML generated by the
blocks. Another relevant feature is multi-language support.
With this, commands can be translated to other languages,
for example, Portuguese (somewhere tested) or Spanish. With
this, the BIPES can be even more inclusive and used in
countries in their own languages.

A final notice is about security. It should be clear that the
presented scheme offers no authentication, privacy or security
of the data sent to the server. It is provided as resource to
enable quick and easy start and testing IoT and data shar-
ing. Professional applications should consider privacy, secure

VOLUME 8, 2020

protocols, authentication and other security issues according
to the requirements of each project.

I. TARGET DEVICES WITH PYTHON

The approach provided by BIPES to program low cost micro-
controllers can be also extended to more powerful devices.
In order to accomplish such task, a Python REPL server using
WebSockets was also developed: SocketServerWebREPL.!
This software can be executed in any Python environment,
such as a standard computer running Python, a Raspberry Pi
or a BeagleBone board running Python. Such setup is shown
on Figure 6.

The setup allows advanced features and blocks to be
included to BIPES. Not only by providing access to a full
version of Python and libraries, but also by enabling use
of other resources, programs and features of these powerful
platforms through Python integration.

One example of integration, already available as a BIPES
Block is to execute shell commands on a Linux or Windows
device. In that way, the block based program can invoke
external commands, programs and tools according to certain
conditions. For example, a block based program can invoke
an external voice synthesis program to allow the system to
“speak’’. This takes all the advantage of one Unix philosophy,
as written by Salus [21]: “WTrite programs to work together™.
In this same direction, as many Unix Shell scripts that can do
a variety of tasks by invoking other programs, BIPES can also
take advantage of such feature.

Another feature already implemented on the current BIPES
version is computer vision blocks using OpenCV, allow-
ing advanced computer vision programs to be developed,
deployed and tested using blocks. Some examples are shown
in section V. OpenCV blocks were automatically generated
using an open source tool that parses OpenCV source code
and generate Blockly files (https://github.com/berak/blockly-
cv2/). Several adjusts and interactions had to be done. How-
ever, the automatic code generation of OpenCV blocks was
quite useful.

Finally, another important feature of BIPES, as a web
platform, is that when new boards are added to BIPES main
site, all users can automatically start using these new boards,
features, or libraries. In the traditional way, libraries should be
downloaded and installed, or new development IDEs should
be downloaded and installed for new boards.

V. BIPES BETA (CURRENT STAGE OF DEVELOPMENT)
AND EXAMPLES
We started BIPES development in Mach 2020, in such a way
that the current version can still considered a beta version.
However, it is already usable and fully functional, as the
examples shown next.

Figure 7 shows a complete example of a simple tem-
perature control loop implemented on a board based on a
ESP8266 or ESP32 board. An analog temperature sensor

1 https://github.com/rafaelaroca/SocketServer WebREPL

197963

IEEE Access

A. G. Da Silva Junior et al.: BIPES

repeat
do [print || ¢ EIIT *?

delay

set pin
to

delay

set pin

to

-

#Code automatically generated by BIPES

import time
import machine

for count in range(2e):
print("Blinking')
time.sleep(l)
p = machine.Pin(2, machine.Pin.OUT)
p.oni)
time.sleep(1)
p = machine.Pin(2, machine.Pin.QUT)
p.off()

FIGURE 6. Overview of BIPES usage with Python enabled devices and using SerialWebSocketServer.

repeat | true v
do set ELIRS to Read ADC Input |)

st EIR e || (e | €0 @D
{emp v][> - i 35]
set pin 'E

else | setpin | B

to false
| -

' del
delay

FIGURE 7. Complete simple control loop example.

is connected to the board’s analog pin, which is read and
multiplied by 0.1 for scale conversion. Next, the program
check if the temperature is higher than 35 degrees, and turns
a fan on or off using a relay, to control the temperature. The
process sleeps for 2 seconds and restarts (repeat while true
block).

As seen above, Figure 2 has shown a complete [oT exam-
ple, which is an analog sensor connected to the analog input of

197964

a ESP32 or ESP8266 board is read. The reading is stored in a
variable local to the program (value) and joined with another
variable, which is a HTTP GET request to store the reading
on BIPES server. Next, HTTP GET block sends the data to
the server using HTTP GET method. The system then sleeps
for 5 seconds and repeats the operation more 99 times. The
result can be seen in the IOT tab of BIPES. Figure 8 shows an
image of a historic graph generated from the data sent using
the block program from figure 2. Such graph can be seen
/ generated from BIPES IOT tab, where a user can specify
figure captions, date and time range, and view the graph (one
line or multi-line). Real time graph is also available in the IOT
tab.

Figure 9 shows a block program prepared with BIPES and
executed on a Raspberry Pi running SocketServer WebREPL.
Such program guesses numbers from 1 to 100 and speaks the
guessed numbers using the speakers of the Raspberry Pi. This
is done by calling the espeak text-to-speech Linux utility.

Computer vision applications could also be developed
using BIPES blocks and generating Python code with the
OpenCV Python library. Figure 10 shows a simple OpenCV
application, which crops a region of interest (ROI) of the
image and shows both images live, from the camera onto the
monitor. The target device that can be a Raspberry Pi, Beagle
Board or an x86 PC.

Figure 11 shows another OpenCV application, a motion
detector. The blocks create a program that captures live
images from a camera, and subtracts each frame from the

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

40

30
20
10

3. Jul 5. Jul 7. Jul

11. Jul 13. Jul 15. Jul

-»- Temperature

FIGURE 8. Example of temperatures during 15 days, from a real temperature sensor and collected / stored using BIPES.

countwith @@ from g9 to € by D

T ”»

| @

set RIEERA 10 | random integer from n to

set ELLRS to 1% espeak -g 20
T »

do | print _- () create text with

Ifﬁ] create text with

Run Linux command

FIGURE 9. BIPES guessing numbers and speaking them through a
Raspberry Pi using Linux.

VideoCapture (1) L)

507 100 4250 F4 100 14 400

| R Y 100 I

1 break |2/

Execute Python Code
Ny

Execute Python Code " cv2.destroyAllWindows() =

FIGURE 10. OpenCV integration with BIPES.

frame captured 100 milliseconds ago resulting in a difference
image (dif. variable). Next, a Canny edge detector is applied
and the number of non-zero pixels is counted. If there is
no movement, this count is very low. A threshold of 400 is
used, and if the non-zero pixels is larger than 400, an action
is triggered. In this example, the system speaks “ALERT
- Movement Detected”. Notice that other actions could be
easily integrated, such as sending information to a server

VOLUME 8, 2020

set]
VideoCapture [0 [{I)
imshow K70

ol £
set [BIED to subtract
srcl img v |
src2 [im2 v]
set (ZNI0Ad to |, Canny
image
threshold1 [ER0)
threshold2 [EQ)
imshow EL011%)

T mywind |

£ count v U]

countNonZero
src

Wi count

SR count -] (400]

do len (AL TIVEEET T E IR espeak "ALERT - MOVEMENT DETECTED" B4

waitKey millis Kkey
« ”

Execute Python Code
LS.

set [FED to
(ST mywin2 |

) img v |

e to | 0

L1 cv2 destroyAllWindows() |2

Execute Python Code

FIGURE 11. OpenCV movement detection code.

or activating a general purpose input output (GPIO) port to
turn on a light, for example. Figure 12 shows the result of
the execution of these blocks, where we can see the last live
image, the frames subtraction and the border from the Canny
operator.

Another point of flexibility of BIPES is to install new
modules and use them from a block program. Figure 13
shows a BIPES program with a simple Artificial Intelligence
example using the scikit-learn package for machine learn-
ing with Python. The example is a block version from the
first scikit-learn examples (Fitting and prediction: estimator
basics). The program itself installs the needed dependencies

197965

IEEE Access

A. G. Da Silva Junior et al.: BIPES

<N
L

FIGURE 12. Output from the OpenCV program to detect movement and
trigger an event created with the program of Figure 11.

Run Linux comm 7 pip install -U scikit-learn ﬂ

set (&P to

set E&2 to : (@) create list with ») e T— @
a
3]
; (@) create list with ‘
12]
3]
set §E3 to ‘\m create list with m

Ny)
set [IELEED to

FIGURE 13. Basic classifier algorithm using scikit-learn.

and then creates a simple classifier where X are input samples
and Y is the output. After training, the Fit function learns the
input pattern and gives output as answers.

As for the BIPES web interface, it has been tested in
Android devices (tablet and smartphones), Linux and Win-
dows machines with Google Chrome and Firefox, i0OS
devices from Apple, Amazon Fire Stick and even PlaySta-
tion 4 (PS4) gaming console, where all features worked using
PS4 default web browser. Figure 14 shows a capture of BIPES
being used on an Android smartphone.

A video demonstration showing an overview about BIPES
functions can be seen at youtube (https://www.youtube.com/
watch?v=BqGes0sZPM4). Between the several functions,

197966

2100 & =~ 5 -

> A bipes.netbr/beta:

BIPES Beta (USB/Serial | Network)

Blocks Console Python Files Shared Device

Logic

Loops

Math

Text

Lists tepeat (TRA

do (& if ;ﬁeaqdm\lalpln g
do setpin |

Variables
Functions

Info

else setpin

MicroPython
Machine
Network

P micropython

FIGURE 14. BIPES being used from an android smartphone.

the demo includes program creation, editing and saving, con-
nection, live data and historic data viewing, device informa-
tion viewing, and program sharing besides blocks customiza-
tion per device, and sending through the USB or network.

VI. CONCLUSION

Embedded systems are pervasive in any current application
environments, as in robotics, heating control, smart homes,
printers, media devices, computers, cars, airplanes, health

VOLUME 8, 2020

A. G. Da Silva Junior et al.: BIPES

IEEE Access

care, industry, toys, and much more. Besides, low cost com-
puting devices with high processing capacity and features are
each time more present and accessible in several scenarios.
More than that, such devices can foster more innovations and
developments for Internet of Things applications, education,
and other custom products and devices. In this way, it is
important to be able to quickly program, test and interact with
such devices. Moreover, learning programming offers several
advantages and good results in skills development [1].

BIPES has been proposed to deal with these issues, inte-
grating several technologies, providing an intuitive and quick
approach to learn and develop solutions using embedded pro-
cessors, specially for starters and new users. In fact, starters
can have a faster learning curve as BIPES does not need
any software installation or configuration. Moreover, as algo-
rithms are updates and new libraries added to BIPES, they
are automatically available to all users. As BIPES supports
several target platforms, new users can also have easy access
to devices compatible with BIPES. Besides, it is also a pow-
erful tool for experienced users, as it allows direct Python
programming over the network, and a quick approach to
transfer files, programs and debug applications on several
computing platforms.

The focus of this paper is to introduce BIPES architecture.
One of its main features is to be fully based in standard
HTMLS technologies, so no software or plugin installation
is needed, allowing BIPES to be used (as a programming
platform) on several types of devices, from computers and
smartphones to video-games. As for target devices, BIPES
generates Python code that can be executed in a wide variety
of devices, including low cost modules, such as ESP8266 to
high performance x86 computers.

Itis already fully functional, but as other open source tools,
it is being constantly updated and improved. Moreover, it can
take advantage of all Python ecosystem. For example, BIPES
already has OpenCV blocks integrated to allow computer
vision applications to be developed using BIPES on Linux
based platforms.

To validate BIPES, the paper presented several success
cases of programs created with it, quickly and in an intuitive
way. We hope that BIPES can foster several teaching activi-
ties and also the development of new products and services.
BIPES is an Open Source software, with its source code
shared in github (repository info at http://www.bipes.net.br),
in the terms of the General Public Licence (GPL), so con-
tributions and improvements are welcome. BIPES is also
available as a free programming platform, so any user can
have access at its web site (http://www.bipes.net.br), and start
programming embedded systems using BIPES’ blocks.

BIPES is already fully functional, but there is a road-map
for a bunch of new functionalities that can be developed by
BIPES team or by the community. Internationalization is one
of them, as other countries users can translate BIPES and
make it available to several languages. Also, another way
to improve is to create more blocks, including several types
of sensors and device features. Nonetheless, the creation

VOLUME 8, 2020

of blocks for integration with other tools, such as MIT
App Inventor, Blynk, IFTTT and ThingSpeak is another pos-
sibility. Also, including a more responsive user interface (UI)
is one of our goals for improving BIPES, and to configure it
for more boards and devices. In special, to connect it with
portable and wearable devices as gloves [29], making it pos-
sible and easy to program them ‘“‘on the field”.

Several other ideas for future enhancements are to have a
multi-language documentation about BIPES, boards, video
tutorials and more detailed instructions, including the devel-
opment and publication of block program examples. Auxil-
iary tools as bugfixes in BIPES, SocketServerWebREPL and
other related tools, are also example of missing capabilities,
including the security issue mentioned above. So to provide
authentication and security mechanisms for BIPES ecosys-
tem will also be included in our future works, plus a cloud
compilation server in order to generate compiled bytecode
from BIPES blocks and load these codes in boards already
available and boards less powerful, such as Arduinos.

ACKNOWLEDGMENT

The authors would like to thank the institutions for providing
infrastructure and support. Finally, the authors would like to
thank several authors of all Open Source tools and technolo-
gies used by BIPES Development Team.

REFERENCES

[1] S. Hodges, S. Sentance, J. Finney, and T. Ball, “Physical computing: A
key element of modern computer science education,” Computer, vol. 53,
no. 4, pp. 20-30, Apr. 2020.

[2] D. Weintrop, “Block-based programming in computer science education,”
Commun. ACM, vol. 62, no. 8, pp. 22-25, Jul. 2019, doi: 10.1145/3341221.

[3] B. Jansen and F. Hermans, “XLBlocks: A block-based formula editor
for spreadsheet formulas,” in Proc. IEEE Symp. Vis. Lang. Hum.-Centric
Comput. (VL/HCC), Oct. 2019, pp. 55-63.

[4] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd, and
D. Franklin, “Evaluating CoBlox: A comparative study of robotics pro-
gramming environments for adult novices,” in Proc. CHI Conf. Hum. Fac-
tors Comput. Syst. CHI, 2018, pp. 1-12, doi: 10.1145/3173574.3173940.

[51 J. M. Rodriguez Corral, I. Ruiz-Rube, A. Civit Balcells,
J. M. Mota-Macias, A. Morgado-Estevez, and J. M. Dodero, “A study on
the suitability of visual languages for non-expert robot programmers,”
IEEE Access, vol. 7, pp. 17535-17550, 2019, doi: 10.1109/ACCESS.2019.
2895913.

[6] R. D. Caballar, Programming Without Code: The Rise of No-Code Soft-
ware Development. IEEE Spectr. Tech Talks. Accessed: Nov. 2 2020.
[Online]. Available: https://spectrum.ieee.org/tech-talk/

[7] W. Wolf, “The embedded systems landscape,” Computer, vol. 40, no. 10,
pp. 29-31, 2007.

[8] I.Lee, G. Park, J. Shin, J. Lee, C. J. Sreenan, and S. Yoo, “SoEasy: A soft-
ware framework for easy HardwareControl programming for diverse IoT
platforms,” Sensors, vol. 18, no. 7, p. 2162, 2018, doi: 10.3390/s1807216.

[9] J. A. Ariza, “DSCBlocks: An open-source platform for learning embed-
ded systems based on algorithm visualizations and digital signal con-
trollers,” Electronics, vol. 8, no. 2, p. 228, Feb. 2019, doi: 10.3390/elec-
tronics8020228.

[10] W. Z. Khan, M. H. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi, and
K. Salah, “Industrial Internet of Things: Recent advances, enabling tech-
nologies and open challenges,” Comput. Electr. Eng., vol. 81, Jan. 2020,
Art. no. 106522.

[11] J. Devine, J. Finney, P. de Halleux, M. Moskal, T. Ball, and S. Hodges,
“MakeCode and CODAL: Intuitive and efficient embedded systems
programming for education,” J. Syst. Archit., vol. 98, pp.468-483,
Sep. 2019.

197967

http://dx.doi.org/10.1145/3341221
http://dx.doi.org/10.1145/3173574.3173940
http://dx.doi.org/10.1109/ACCESS.2019.2895913
http://dx.doi.org/10.1109/ACCESS.2019.2895913
http://dx.doi.org/10.3390/s1807216
http://dx.doi.org/10.3390/electronics8020228
http://dx.doi.org/10.3390/electronics8020228

IEEE Access

A. G. Da Silva Junior et al.: BIPES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

M. Hauck, R. Machhamer, L. Czenkusch, K.-U. Gollmer, and
G. Dartmann, “Node and block-based development tools for distributed
systems with Al applications,” IEEE Access. vol. 7, pp. 143109-143119,
2019.

M. Khamphroo, N. Kwankeo, K. Kaemarungsi, and K. Fukawa,
“MicroPython-based educational mobile robot for computer coding learn-
ing,” in Proc. 8th Int. Conf. Inf. Commun. Technol. Embedded Syst. (IC-
ICTES), May 2017, pp. 1-6.

M. Khamphroo, N. Kwankeo, K. Kaemarungsi, and K. Fukawa, “Integrat-
ing MicroPython-based educational mobile robot with wireless network,”
in Proc. 9th Int. Conf. Inf. Technol. Electr. Eng. (ICITEE), Oct. 2017,
pp. 1-6.

W. Xin and E. W. Patton, “A blocks-based approach to Internet of Things in
MIT App inventor,” in Proc. BLOCKS+ Workshop, Co-Located SPLASH.
Nov. 2018, pp. 1-2.

E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a block
language with blockly,” in Proc. IEEE Blocks Beyond Workshop (B&B),
Oct. 2017, pp. 21-24.

N. Fraser, ““Ten things we’ve learned from blockly,” in Proc. IEEE Blocks
Beyond Workshop (Blocks Beyond), Oct. 2015, pp. 49-50.

D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly goes
to work: Block-based programming for industrial robots,” in Proc. IEEE
Blocks Beyond Workshop (B&B), Oct. 2017, pp. 29-36.

K. Prutz and H. Abelson, “Expanding device functionality for the MIT App
inventor IoT embedded companion,” Student Term Paper, Massachusetts
Inst. Technol., Cambridge, MA, USA, Tech. Rep. 12, 2018.

D. A. Hume, Progressive Web Apps, 1sted. New York, NY, USA: Manning
Publications, 2017.

P. H. Salus, A Quarter Century of UNIX. Reading, MA, USA: Addison-
Wesley, 1994.

H. Liao, J. Jiang, and Y. Zhang, “A study of automatic code genera-
tion,” in Proc. Int. Conf. Comput. Inf. Sci., Dec. 2010, pp. 689-691, doi:
10.1109/1CCIS.2010.171.

Q. Zhuang, J. Feng, and H. Bao, “Measuring semantic gap: An informa-
tion quantity perspective,” in Proc. 5th IEEE Int. Conf. Ind. Informat.,
Jun. 2007, pp. 669-674.

T. Ball, A. Chatra, P. de Halleux, S. Hodges, M. Moskal, and J. Russell,
“Microsoft MakeCode: Embedded programming for education, in blocks
and TypeScript,” in Proc. ACM SIGPLAN Symp. SPLASH-E SPLASH-E,
Oct. 2019, pp. 7-12.

N. K. Singh, “EB2ALL: An automatic code generation tool,”in Using
Event-B for Critical Device Software Systems. London, U.K.: Springer,
2013, doi: 10.1007/978-1-4471-5260-6_7.

D. Pilaud, “Efficient automatic code generation for embedded systems,”
Microprocessors Microsyst., vol. 20, no. 8, pp. 501-504, Apr. 1997.
McConnell, Steve. Code Complete. London, U.K.: Pearson, 2004.

D. Fiehler, B. Collins, and J. Carlaftes. (Oct. 2009). Using Model-
driven Engineering Techniques for Integrated Flight Simulation
Development. Raytheon. On-Line. [Online]. Available: https://ndiastorage.
blob.core.usgovcloudapi.net/ndia/2009/systemengr/8980ThursdayTrack4
Fiehler.pdf

R. Aroca, R. Gomes, R. Dantas, A. Calbo, and L. Gongalves, “A wearable
mobile sensor platform to assist fruit grading,” Sensors, vol. 13, no. 5,
pp. 6109-6140, May 2013.

ANDOUGLAS GONCALVES DA SILVA JUNIOR
received the degree and M.Sc. degree in mecha-
tronics engineering from the Federal University of
Rio Grande do Norte, where he is currently pur-
suing the Ph.D. degree in electrical and computer
engineer with a sandwich period in ISASI Lab,
Italy. His research interests are machine learning,
robotics, and digital holography.

197968

LUIZ MARCOS GARCIA GONCALVES (Mem-
ber, IEEE) received the Ph.D. degree in systems
and computer engineering from the Federal Uni-
versity of Rio de Janeiro, in 1999. He is currently
a Full Professor with the Federal University of
Rio Grande do Norte, Brazil. His research interests
include graphics processing with applications to
computer vision and robotics fields and robotics
in education. He was the Founder and Chair of the
Brazilian Committee on Robotics and the Chair of
the Computer Graphics and Image Processing Committee, both under the
Brazilian Computer Society.

GLAUCO A. DE PAULA CAURIN (Member,
IEEE) has a specialization in mechatronics and
received the Ph.D. degree from the Swiss Federal
Institute of Technology - ETH, Zurich, Switzer-
land, in 1990 and 1994, respectively. He was a
Mechanical Engineer with the EESC — USP Brazil,
in 1988. From 2010 to 2011, he held a sabbatical
year at the Newman Laboratory for Biomechanics
and Human Rehabilitation, MIT, Cambridge, MA,
USA. He is currently a Full Professor with the
Department of Aeronautical Engineering, EESC - USP. His interests include
autonomous systems, UAVs, real-time embedded systems, neural networks,
collaborative robotics, surgery, and rehabilitation robots.

GUSTAVO TERUO BERNARDINO TAMANAKA
received the bachelor’s degree in mechanical engi-
neering from the Federal University of Sdo Carlos,
in 2017, where he is currently pursuing the mas-
ter’s degree in mechanical engineering. He is also
a partner at SFLabs, a tech startup in Sdo Carlos,
with a specialization in areas like computer vision,
web systems, and embedded systems.

ANDRE CARMONA HERNANDES reccived a
degree in mechatronics engineering, and the M.Sc.
and Ph.D. degrees from the University of Sio
Paulo. He has about ten years of experience in
mobile robotics. His main research interests are
aerial robotics and embedded systems.

RAFAEL VIDAL AROCA (Senior Member, IEEE)
received a degree in informatics and the M.Sc.
degree in mechatronics engineering from the Uni-
versity of Sdo Paulo, and the Ph.D. degree in elec-
trical and computing engineering. He has over ten
years of industry experience in embedded systems,
IT systems, and servers administration. He is cur-
rently an Adjunct Professor with the Federal Uni-
versity of Sdo Carlos. His main research interests
are in embedded systems, operating systems, and
robotics.

VOLUME 8, 2020

http://dx.doi.org/10.1109/ICCIS.2010.171
http://dx.doi.org/10.1007/978-1-4471-5260-6_7

