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We study interaction-mediated magnetism on the surface of ABC-multilayer graphene driven by its zero-
energy topological flat bands. Using the random-phase approximation, we treat onsite Hubbard repulsion and
find multiple competing magnetic states, due to both intra- and intervalley scattering, with the latter causing an
enlarged magnetic unit cell. At half-filling and when the Hubbard repulsion is weak, we observe two different
ferromagnetic orders. Once the Hubbard repulsion becomes more realistic, new ferrimagnetic orders arise with
distinct incommensurate intra- or intervalley scattering vectors depending on interaction strength and doping,

leading to a multitude of competing magnetic states.
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Introduction. Graphene has extraordinary electronic and
structural properties [1-3]. While ideal graphene does not
exhibit magnetic properties, various derivatives of graphene
do [4-7], e.g., in the presence of a sublattice imbalance [8—11]
or due to Landau levels [12-15] or interlayer twists [7,16-21].
In particular, modifications generating flat bands with a high
density of states (DOS) close to the Fermi energy are prone to
not only magnetism, but generally correlated insulators and
even superconductivity [7,22-31]. The flat band dispersion
quells kinetic energy, and thus even weak electron-electron
interaction generates electronic ordering.

In monolayer graphene, the large Fermi velocity gener-
ated by the linear k dispersion prevents electronic ordering.
Bilayer AB-stacked (Bernal) and trilayer ABC-stacked
(thombohedral) graphene host quadratic k> and cubic k3
band dispersions, respectively, resulting in electronic insta-
bilities, with bilayer [19,32-38], trilayer [35,36,39-41], and
also tetralayer graphene [42,43] having been found to exhibit
magnetic, as well as superconducting ordering, but so far only
with application of electric and/or magnetic fields [44—49].
Further stacking of N layers in an ABC-sequence produces
a locally flat kN band dispersion on the surfaces of the
stack, protected by topology [50-53]. These flat surface states
have been shown to host versatile Fermi surface properties
[47-49,54-59] leading to magnetism [60—68] and theory pro-
posals also exist for superconductivity, without any need for
external fields [31,50,69,70].

Theoretical understanding of ABC-stacked multilayer
graphene (ABC-MLG) [49,71] even predating experimental
findings, is primarily based on work, including first-principles
calculations, studying only the primitive (in-plane) unit cell,
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then finding surface ferrimagnetism; opposite magnetic mo-
ments on the two sublattices with one moment substantially
suppressed [62,65-67,69,72,73]. Recent experiments have
further reported domain formation [60], interpreted as a
competition between a ferrimagnetic state and a suggested
correlated paramagnetic state, while longer-range magnetic
ordering has only been discussed for finite doping [61]. In
this work we study the formation of magnetic ordering on the
surface of ABC-MLG, in particular, taking into account all
possible magnetic ordering patterns.

We use the T-matrix formalism to isolate the ABC-MLG
surface Green’s function for N >> 1 layers and then incor-
porate electronic interactions in the form of Hubbard on-site
repulsion U within the matrix random-phase approximation
(RPA). We find strong ordering tendencies for both intra-
and intervalley scattering, generating single and extended unit
cell magnetic patterns, respectively. At half-filling, we find
putative ferromagnetic (FM) ordering centered on one sub-
lattice only and mediated by the noninteracting flat bands,
but is quickly suppressed for small interactions U. At more
realistic U values we find opposite but unequal moments on
the two sublattices, rendering ferrimagnetic (FiM) ordering at
incommensurate scattering vectors. The intervalley ordering
requires lower U for ordering, while the intravalley ordering
is close to the commensurate ferrimagnetic order reported
in earlier work [61,62,65-67,69,72,73]. Adding finite dop-
ing, intravalley ordering instead requires the lowest U, with
a substantially shorter spin-spin relaxation time. Our work
establishes a fierce competition between different magnetic
orders, as well as the importance of incommensurability.

Model and method. To model ABC-MLG we consider
a tight-binding model of the bulk unit cell in the basis

{cé‘, cf‘, Pt cgz, e, clfj*},whereA,l(B,,)denotes sublattice
AéB) in layer n [57,55]. We use intra(inter)layer hopping y; =

3.3eV (y» =0.42eV)between A, — B, (B, — A,+1), while
finite interlayer hopping y; between A, — B,41 is responsible
for trigonal warping, splitting the graphene Dirac cone into
three satellite Dirac cones causing a triangular Fermi surface
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FIG. 1. Surface spectral function A(k, w = 0) in the first BZ
displaying triangular Fermi surfaces around k ~ K, K for y;/y, =
0.1 (a). Structure of A(k ~ K,w =0) for u =0 eV (b) and u =
0.025 eV at y3/y; = 0 (c). Surface unit cell with sites A;---B; in
three layers with an impurity wall (red line) (d).

[57], using both y3/y; =0,0.1 for unwarped and warped
ABC-MLG. We note that intralayer next nearest neighbor
hopping is redundant as satellite Dirac cones already exist. We
further use intralayer nearest neighbor distance ag = 1.42 A,
and interlayer nearest neighbor distance dy = 2.36a, and vary
the chemical potential through w.

As we are interested in the ABC-MLG surface in the
limit of N > 1 layers, we introduce a virtual wall of impu-
rities separating the bulk system into two semi-infinite pieces
along the z direction. Following the T-matrix formalism, we
construct the surface Green’s function G(ky, ks, iw,) from
the bulk Green’s function Go(fc, iw,) [59,74], with w, the
Matsubara frequency. We extract the surface Green’s func-
tion of one of the surfaces adjacent to the impurity plane,
Gk, iw,), by partial Fourier transform of G(k,, k,, iw,) in
the z direction, henceforth using the in-plane notation k =
(ky, ky). This results in an effective surface Green’s function
for a three layer deep, six carbon atom, single surface unit cell,
see schematic in Fig. 1(d). This exact numerical method al-
lows us to encode the effects of a large number of internal lay-
ers into G(i(l, ks, iwy) [75]. For more details, see further the
Supplemental Material (SM) [76,77].

As a realistic, yet minimal, model of electron-electron in-
teractions, we consider on-site intraorbital Hubbard repulsion
U Zm ni,nj, where nj, = cf’j cf is the occupation number for
site i, orbital a, and sp1n o. This interaction is not only the
largest term in graphene [78], but nearest-neighbor repulsion
is also irrelevant in ABC-MLG since each flat band only
occupies one sublattice [61,65,67]. It also reproduces first-
principles calculations (of single unit cells) that include the
full range of Coulomb interactions [31,69].

We track the influence of interactions on both charge and
magnetic fluctuations by employing the RPA to extract the
relevant susceptibilities. Magnetic phenomena are governed
by the spin susceptibility matrix given by [79-81]

#s(q, ©) = Ro(q, io)[1 — Us0(q, io)] ™", (1
sp
%1 @ @) = — 25 Z Gt (k, i0,)Gpa(k + ¢, i, + iw),
k,iw,

(@)

where the noninteracting, or bare, susceptibility matrix
Xo0(q, w) has size sz X Ng and is constructed from the sur-
face noninteracting Green’s function. N, = 6 denotes the
number of carbon sites in the surface unit cell, indexed as
s,p,t,d =Ayq, ..., Bz, while g = (g, g,) accounts for the
scattering momentum, and § = (kgT)~" is the inverse tem-
perature. The spin interaction matrix U, takes the simple
form U&,,0,:6;4 [80]. To extract magnetically ordered states
we use the density-density correlation functions, namely the
homogeneous spin susceptibility [82,83], also experimentally
tractable [84],

x(g, ) = Zx g, ). 3)

In particular, we compute the real [imaginary] parts of the
homogeneous contributions for both the bare susceptibil-
1ty, Xx0(q, ) [x{/(q, )], and the RPA susceptibility x.(q, w)
[x! (g, ®)]. In a similar treatment for the charge susceptibility,
we find that it always remains small compared to the spin
susceptibility. We thus conclude that charge fluctuations are
not important in ABC-MLG.

A divergent RPA susceptibility signals the formation of an
ordered state, for magnetism expressed by the (generalized)
Stoner criterion det[ﬁsf(g(q, w) — 211 = 0 with ﬁs = US/U
[85]. We thus obtain the critical Hubbard interaction strength
for magnetic ordering from the maximum positive eigenvalue
A = max (A} = 1/UJ". We perform this analysis over the
full first Brillouin zone (BZ) to capture longer-range mag-
netic ordering patterns, beyond single-unit cell ordering, to
include all incommensurate ordering. The eigenvector l//fl)mzo,

associated with the eigenvalue AZ" once the Stoner criterion is
satisfied, encodes the spatial structure of the magnetic order
[86-90]. Furthermore, a resonance structure in the dynamic
profile of x.(gq,,, ) at specific w = & in the ordered regime,
i.e., for U > U, can be assigned as the spin gap of the un-
derlying order [86,87,89]. We further remark that all magnetic
states in this work, i.e., within one surface, fall within the layer
antiferromagnet (LAF) phase [71] when considering the two
opposite surfaces of any slab, see the SM [76].

Flat bands and nesting. We start by analyzing the nonin-
teracting surface states of ABC-MLG. Figure 1(a) shows how
the surface spectral function A(k, w = 0) acquires substantial
weight, signaling a flat band area, around the k = K, K points
in a tripartite and triangular shape due to the three satellite
Dirac points [57], due to the trigonal warping ys. If instead
y3 = 0, a circular shape is instead achieved, see Fig. 1(b).
Moving away from half-filling, the surface spectral function
takes the shape of an annular ring, see Fig. 1(c), now instead
capturing the bulk (dispersive) Dirac cones. The surface unit
cell with an impurity wall is represented in Fig. 1(d).

The existence of two Fermi surfaces, around K and K,
leads to both intra- and intervalley scattering with scattering,
or nesting, vectors ¢ & I', K, respectively. This suggests that
more than one type of magnetic order, with different U,’s, may
be present. Before investigating magnetic ordering driven by
finite interactions, we analyze the effect of nesting on the bare
spin susceptibility. In Fig. 2(a) we plot the real static nonin-
teracting susceptibility x;(¢q, w = 0) at u = 0 and note large
values in small regions ' <g<T; and K_ <q < K,
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FIG. 2. Real part of the bare spin susceptibility x;(g, 0) at p =
0 eV (a) and u = w = 0.025 eV (c) along high-symmetry BZ di-
rections. Imaginary part of the dynamic homogeneous susceptibility
X¢ (g, @) in logarithmic scale in the w-U plane for ¢ = I' (b), and K
(d) for © = 0 eV. Here y3/y, = 0.1.

with divergences at the commensurate nesting vectors
q =T, K. The finite regions are due to the finite extent of the
surface flat bands. Away from half-filling, x/(q, » = 0.025)
instead shows only finite peaks in the same regions, see
Fig. 2(b). Thus, divergences in the bare susceptibility are only
present due to the zero-energy flat bands and limited to half-
filling. This follows directly from the standard representation
of the bare homogeneous susceptibility xo = >, , x5, 0(@)

S FES) — FER) /(0 + Ef T — EX +i0%), with f(E)
the Fermi-Dirac distribution, where the energy denominator
vanishes for the flat bands. We further find no notable
dependence on the trigonal warping y;.

With a divergent bare spin susceptibility, even an in-
finitesimal small interaction U triggers magnetic ordering
at half-filling according to the generalized Stoner criteria.
Analyzing the resulting eigenvectors at I' and K, we find
magnetic moments only on the top surface’s B; orbital. For
the K ordering, the magnetic moment is also modulated in
real space, acquiring zero net magnetization. Due to this mag-
netic structure, we refer to both of these states as sublattice
ferromagnetic (sSFM) order and note that they originate from
commensurate nesting vectors. To gain more understanding
of the sFM orders, we examine the imaginary part of the
dynamic bare spin susceptibility x.(g, ) at the divergent
scattering vectors ¢ = I', K in Figs. 2(b) and 2(d) as a func-
tion of small U. We find a large (negative) peak starting
from (w > 0,U = 0) and ending at (w =0,U = Uci) with
U ~0.5eV forg=T, and U ~ 1.0 eV for ¢ = K. This
indicates the existence of a finite spin gap protecting the sFM
orders, but only for U < UZE. Although the K-sFM state has
zero magnetization and absence of time-reversal symmetry,
the characteristic two-resonance structure of chiral magnons
in altermagnets [91,92] is not seen, so this order is unlikely
to emerge. For a more in-depth discussion on the sSFM orders
and their susceptibilities, see the SM [76].

FiM order with interactions. With UF < y; and estima-
tions of the on-site repulsion in graphene and graphite instead
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FIG. 3. Real part of the spin susceptibility x/(g,0) for U} <
U SUK (a) and UK < U S U (c) along high-symmetry BZ di-
rections. Imaginary part of the dynamic homogeneous susceptibility
X4 (g, ») in logarithmic scale in the w-U plane for ¢ = I'" (b) and
q = K’ (d). Insets: Real space magnetic structure associated with g =
K’-, and I'"-FiM states on the top surface layer (incommensurability
ignored). Circle radii are determined by overall magnet moment
magnitudes, colors differentiate signs. Here © = 0 and y3/y, = 0.1.

giving U 2 y; [78,93-95], we do not expect the SFM solu-
tions to likely exist in ABC-MLG. We thus continue analyzing
the spin susceptibility x,(g, w) for more realistic U, here first
at half-filling. We find that as U increases beyond U}, the
static spin susceptibility x.(q, w = 0) becomes substantially
suppressed at both ¢ = I', K. We instead observe new diver-
gences appearing for intervalley scattering at ¢ = K' ~ K_
with UCK' ~ 2.30 eV and for intravalley scattering atg = I ~
I, for UCF' ~ 4.40 eV, see Figs. 3(a) and 3(c). Both diver-
gences appear at incommensurate scattering vectors, linked
to the finite extent of the surface flat band and thus different
from the noninteracting commensurate sFM states. We can
qualitatively understand this shift in scattering vectors by
noting that a finite interaction shifts the quasiparticle energies
Elk — Elk + Ef with a self-energy Ef [96], such that the
momentum dependence of x; may be different from that of
Xo- We further note that the peak in x/(¢g, w = 0) changes
from positive to negative values as soon as the Stoner criterion
is satisfied at UK’ [86,87,89]. The negatively valued diver-
gency is necessary due to the previous magnetic transitions at
U < UI"X found in the previous section, see the SM [76].

In terms of the resulting magnetic moments for the I state,
we find that the dominant contribution to x/(g, 0) comes from
the top surface B3 orbital and now also with the Az orbital
carrying an unequal finite magnetic moment but with opposite
sign, as illustrated in the inset of Fig. 3(d) (incommensurabil-
ity not visible). A similar analysis of the K’ state results in the
pattern in the inset of Fig. 3(b), again with dominant contri-
bution from a B3 orbital, but now with a ﬁ X \/5 extended
spatial repetition, due to the intervalley scattering [§6—88], see
the SM [76]. Due to these patterns, we refer to the I’ and
K’ states as incommensurate ferrimagnetic (FiM) orders, but
note that the latter can also be called an incommensurate spin
density wave.

1.241401-3
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FIG. 4. Minimum critical Hubbard interaction U} extracted for
all scattering vectors in a circular region around I (red) and K (blue)
as a function of doping 1 and carrier density n,. (Inset) Deviation
in the ordering vectors with respect to the high-symmetry points
Agqy = T"(K") — T'(K) normalized by the real-space graphene lat-
tice constant a as a function of p and carrier density n,. Stars
indicate U™, UX', and deviation for I, K’ in the main plot and inset,
respectively. Corresponding number density (units of ¢/cm?) on the
upper horizontal axes (not linear scale). Here y3/y, = 0.1.

Moreover, we consider the dynamic profile of x/(¢q, ®) in
Figs. 3(b) and 3(d), now at the incommensurate wave vectors
g = I'", K’ hosting the divergent (real) spin susceptibility [97].
We find a large positive peak originating at U = U!"X" and
w = 0 and rising to larger frequencies w with increasing U.
This signals the existence of finite spin gaps [83,84], con-
firming the formation of first a K'-FiM state at UX from
intervalley scattering and then a I'"-FiM ordered state at UCF/
from intravalley scattering. With the spin susceptibility at K’
becoming substantially suppressed at UCF/, see Fig. 3(c), we
infer that the I"-FiM order likely directly set in at U > Ul
with little competition from the K'-FiM order, see the SM
[76]). We further find that I, K’ varies slightly with trigonal
warping, producing slightly different U,’s, but not changing
the overall behavior. Taken together, these results point to a
close competition between the I'-FiM and K’'-FiM states at
half-filling, such that any spatial dependence of U will likely
create spontaneous domains of different FiM states.

Finite doping. Finally, we vary the doping away from half-
filling, modeling spontaneous charge inhomogeneity [61] or
an applied gate voltage [60,61]. To probe the doping depen-
dence, we extract the minimum critical Hubbard parameter
U} at zero temperature, satisfying the Stoner criterion for
any nesting vector ¢ in disks centered at I', K to capture all
previously explored divergences and beyond. In Fig. 4 we plot
the result as a function of doping u (lower-horizontal axis)
with associated number density n, (upper-horizontal axis). We
find increasing U} for both intravalley (red) and intervalley
scattering (blue), with higher U} for the latter. At u =0 eV
the results coincide with Fig. 2 with its commensurate orders
already at U = 0. With increasing doping, we find a roughly
linear increase in U}, while at the same time, the ordering
vectors move away from I, K. The resulting scattering vectors
are labeled I'” and K”, and the order as I'”’- and K”-FiM orders
as they show large similarities with the . = 0 FiM orders, see
the SM [76].

We plot the deviation Agr = |T” — I'| and similar for K
in the inset of Fig. 4. There is a sharp jump in Ag directly
when u acquires finite value, followed by a slow increase for
increasing p. We find that Agr g fully tracks the position
of the finite amplitude peaks in the bare susceptibility, see
Fig. 2(c) for a fixed w. Thus, magnetic ordering at finite
doping is fully determined by the bare susceptibility with the
interaction just enhancing its peaks into divergences at UJ.
This is notably different from the half-filled case where the
interaction also shifts the ordering vectors to incommensurate
vectors, compare Figs. 2(a), 3(a) and 3(c).

To highlight further differences to the half-filling results
in Fig. 3, we mark UK with stars in Fig. 4. As seen, at
half-filling, intervalley FiM order commands the lowest U,,
while at any finite doping, intravalley scattering has the lowest
U.. Also, the incommensurability is always largest at half-
filling, which seems to provide an upper limit for Aq at finite
doping. We also find a notably different overall behavior of the
spin susceptibility. At half-filling a clear spin gap is present
at U = 0, protecting the commensurate sFM orders until its
closure at UZE, while at U" "K' a new spin gap develops,
protecting the FiM orders as shown in Figs. 2(b), 2(d), 3(b)
and 3(d). Instead, at finite doping no spin gap, or order, exists
for any U < U}. Moreover, when ordering is established at
U, we find no sharp peaks at finite frequencies in x,'. The
dynamic susceptibility displays signatures of a markedly short
spin-spin relaxation time [91,98,99], flattening the peaks in
x"” and also making x’ continuous at nonzero frequencies.
We attribute the shortened relaxation time to more substantial
overlap with the dispersive surface states at finite doping [91],
generating damping. Interestingly, the bulk metallic states do
not generate any strong damping, as obvious from orders at
half-filling. Still tracing a spin gap from the (flattened) peaks
in x/, we find that they never disappear with increasing U,
once developed at U*. For more information, see the SM [76].
Based on the different U, s and their trends, scattering vectors,
and different relaxation times, we conclude that the states at
finite doping are notably different from those at half-filling.

Concluding remarks. Our work reveals how the surface
flat band in ABC-multilayer graphene leads to a plethora
of magnetic states: at half-filling, commensurate sFM or-
ders with either intra- and intervalley nesting vectors in the
noninteracting limit, but at any realistic interaction strength,
incommensurate FiM orders instead develop for both intra-
and intervalley scattering. Away from half-filling, interactions
result in another set of incommensurate FiM orders with dif-
ferent nesting vectors and a shorter spin-spin relaxation time.
This demonstrates remarkably rich possibilities for different
magnetic ordering on the surface ABC-MLG: both competing
intra- and intervalley scattering and with ordering varying
intricately as a function of interaction and doping [91,92].

We note that there exist qualitative similarities between our
results on ABC-MLG with N > 1 layers and recent experi-
ments on few-layer graphene. For example, all our magnetic
states belong to the layer antiferromagnet (LAF) phase re-
cently found in pentalayer ABC-stacked graphene [68,71], but
we additionally uncover a rich in-surface structure for these
LAF states. Also, in contrast to bilayer [32-34,38], trilayer
[39—-41], tetralayer [42,43], and pentalayer [68] graphene, ex-
ternal displacement field is not required to stabilize magnetic

1L241401-4
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states in ABC-MLG. The reduced spin-spin relaxation time
with finite doping also agrees with the loss of magnetic or-
dering in fewer-layer systems. Further, recent experimental
work on ABC-MLG has reported a gapped magnetic order
at half-filling and an enlarged magnetic unit cell at finite
doping, similar to our I'"- and K’-FiM states, respectively, but
without incommensurability, together with an ungapped phase
modeled as a correlated paramagnetic phase [61]. Importantly,
we find that both incommensurability and magnetic pattern
vary intricately with interaction strength and doping, resulting
in a multitude of energetically close but different domains
in real samples. This likely results in increased quantum

fluctuations and reduced energy gaps, consistent with current
experiments [60,61].
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