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Abstract The dynamical stability of strange-dwarf hybrid
stars and strange planets, constituted by strange-quark-matter
cores and dilute-nuclear-matter crusts, is revisited by ana-
lyzing the fundamental mode eigenfrequencies of the radial
oscillation equations with boundary conditions for slow
(rapid) conversions originating at the density-discontinuous
interface characterizing extremely large (small) microscopic
timescales compared to the oscillation periods. For the
hadronic crust we used an analytic fit of the BPS results
matched to the massless MIT bag model. For the rapid case,
our calculations indicate that the zero mode is the so-called
reaction mode whose frequency is a complex number, thus
ruling out the existence of strange dwarfs (planets) in nature.
On the other hand, slow conversions still provide a sizeable
stability window which, interestingly, also reproduces the
Glendenning-Kettner-Weber results. The robustness of our
findings is demonstrated for different transition densities and
using an equation of state from perturbative QCD for the
ultra-dense core.

1 Introduction

Compact stars are formed at the end of stellar evolution when
the gravitational pull is strong enough to melt atoms keep-
ing only some fundamental fermions as basic constituents
providing enough pressure to balance the imminent gravita-
tional collapse, e.g. electrons in white dwarfs giving max-
imal masses around 1.4M¢ and neutrons in neutron stars
(NS) with maximal masses around 0.7 M, both in the ideal
limits [1]. Currently, the measurements of NS masses being
around 2 M [2-5] may indicate the presence of exotic phases
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at their cores as, e.g. quark matter, which can arise from
the non-perturbative confinement/deconfinement transition
of quantum chromodynamics (QCD) expected to occur at
intermediate baryon densities [6]. However, the description
of the NS cores is still a theme of intense debate and the same
mass limit can be achieved for purely hadronic NSs [7].

A directly related challenging problem is the characteri-
zation of the interiors of all the observed white dwarfs (WD)
reported in Ref. [8], whose masses and radii do not coincide
with those expected for usual WDs. Such objects could be
better explained by the so-called strange dwarfs (SD), which
are exotic — yet hypothetical — stellar objects composed by
a dilute nuclear crust (essentially WD matter) and a strange
quark matter (SQM) core, being strange as proposed by Bod-
mer, Witten and Terazawa [1] (see, e.g., Refs. [10,11] for pro-
posals of their stellar formation). Almost three decades ago,
the authors of Refs. [9,10], using a massless MIT bag model
for the core and the Baym-Pethick-Sutherland (BPS) [12]
equation of state (EoS) for the hadronic mantle, have argued
that SDs are dynamically stable and might exist in nature
when subject to infinitesimal radial perturbations for rea-
sonable values of the transitional density. Nevertheless, Ref.
[13] suggested that these numerical calculations are wrong
and the usual Bardeen-Thorne-Meltzer (BTM) criterion [14]
still works for these hybrid stars.! For better numerical per-
formance, they made a fitting on the BPS equation of state as
well as an hyperbolic smoothing on the discontinuous sec-
tor of the whole hybrid EoS. Notice that their findings were
obtained assuming the neutron drip point as the only transi-
tional density.

More recently, Ref. [11] implemented non-trivial bound-
ary conditions for the Lagrangian variables, which account
for slow and rapid conversions of fluid elements at the

1 See, e.g. Ref. [15] (and references therein) where only the static sta-
bility condition was used to characterize stable strange dwarfs.
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quark-hadron interface when subjected to radial oscillations
[16,17]. Using this formalism, the BPS EoS and a slightly
modified bag model, the authors of Ref. [11] studied one SD
configuration sitting on the right of the minimum-mass SD
in their M-R diagram. They found it is unstable for rapid
conversions whereas it becomes stable if one fixes the total
quark baryon number while varying the transitional pres-
sure (which they argue is equivalent to the slow conversion
case). Then, they generalized this particular result to all their
obtained SD families having different transitional densities
and quark baryon numbers. Nevertheless, we believe that
their stable results should be understood carefully since usual
radial-oscillation studies consider the transition pressure as
constant when imposing rapid and slow boundary conditions.
Any modification of this condition will mean distinct phys-
ical situations which, as can be seen in Fig. 1 of Ref. [11],
even modifies their SD M-R diagram, something unexpected
from microphysical conversions. In this sense, despite being
interesting results by themselves and which deserve further
detailed studies, we will focus in the traditional approach of
Refs. [16,17], in particular, for slow-conversion stars. Thus,
all the aforementioned reasons motivate us to perform a more
detailed and systematic stability analysis in order to verify if
all the past conclusions are kept or might change when the
whole families of SDs are studied, varying also the values of
the transitional densities and using another quark model for
the ultra-dense core.

In this work, we revisit the question of the stability of
strange dwarfs and strange planets® by carefully analyz-
ing the behavior of the fundamental mode eigenfrequencies
which decide what hybrid stellar configurations are stable
or not for the extreme cases of slow and rapid microscopic
phase conversions, both assuming a constant transition pres-
sure. We will perform a systematic approach by using three
values for the transitional density in order to probe the depen-
dence of the positiveness/negativeness of the zero mode on
this free parameter. Finally, the hadronic crust will be mod-
eled by a fit formula of the original (tabulated) BPS EoS and
for the quark phase we will use the MIT bag model as well
as an EoS from cold and dense perturbative QCD.

As we will see, the rapid-conversion eigenfrequency of
the fundamental mode turns out to be the so-called reaction
mode [16,17], which generically depends on the energy den-
sity jump between phases as well as the ratio between the
transition pressure and transition density. In this sense, it is
not obvious that this reaction mode is important in all situa-
tions. We note that this reaction mode has not been properly
analyzed in any of the aforementioned works on SDs where
large jumps are present at very low critical pressures having

2 By ‘strange planets’ we mean very light planetary-like strange-matter
stars whose masses lie in order of the mass of Jupiter (~ 1073 M),
allowed to exist by the SQM hypothesis.
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also large ratios between critical pressure and transition den-
sities. In fact, for SDs the reaction mode coincides with the
lowest mode, thus being decisive on their stability.

This paper is organized as follows. In Sect. 2, we give a
brief summary of the equations of state (EoSs) to be used for
the SQM core and for the hadronic mantle. Besides, some
details about the reaction mode in the general-relativistic
limit of the Gondek’s radial oscillation equations are given.
Section 3 is devoted to present our results for strange-dwarfs
and strange planets analyzing the stability of the stellar con-
figurations for rapid and slow conversions. Moreover, we
further investigate the robustness of our results by also using
an EoS from cold and dense perturbative QCD to model the
SQM core. Finally, Sect. 4 discusses and summarizes our
main findings for which we also propose possible outlooks.
Along this work we use natural units (G = i = ¢ = 1)
unless stated otherwise.

2 Methodology

In order to analyze the dynamical stability of strange dwarfs
and planets one has to specify the EoSs entering as inputs
when modelling their interiors as well as the formalism
of infinitesimal radial oscillations when having non-trivial
boundary conditions at the interface between phases. The
microscopic interior of cold strange dwarfs is described by
a matching between an equation of state for dilute nuclear
matter to a strange quark matter one through a first-order-
like phase transition [1] (see, e.g., Refs. [9,10] for more
details). In this work, we use an analytic fit [18] for the
BPS model [12] for the hadronic crust at low baryon den-
sities. On the other hand, SQM will be described by the
massless MIT bag model with B'/4 = 145MeV which sat-
isfies €/np < 930MeV at zero pressure, being € and np
the energy density and baryon number density, respectively.
Recall that within this particular model, any B'/# in the range
145 MeV < B'/* < 162.8 MeV leads to absolutely sta-
ble strange quark matter [19]. Moreover, for the transitional
densities, €;, we use the same values of Refs. [9-11,13], i.e.
10, 10'9 and 4 x 10''g/cm?, being the last density> asso-
ciated to the neutron-drip point [1].

In order to probe the robustness of our results for a differ-
ent quark model at high densities, we will also consider the
state-of-the-art EoS obtained using results of cold and dense
perturbative QCD (pQCD) of Ref. [24] up to next-to-next-
to-leading order in the strong coupling o for a gas consist-
ing of massless up and down plus massive strange quarks.
Their three-loop calculation gives a pressure parametrized
only by the so-called (dimensionless) renormalization scale

3 These values include implicitly the limit €™ = 8.3 x 10'%g/cm?
[23] to ensure mechanical stability.
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X which is allowed to vary between 1 and 4 [24]. In order to
get fully renormalization-group invariant results, they also
allowed the strong coupling and strange quark mass to be
dependent on X. Notice that this scale X is a nonphysical
artifact originated when applying dimensional-regularization
techniques. The main astrophysical implications of a pQCD
EoS for strange stars have been discussed e.g. in Refs. [24—
26]. In the next section, we will use the original (involved)
numerical results of Ref. [24], dubbed pQCD [X], satisfying
B—equilibrium and local electric charge neutrality. For this
pQCD [X]EoS we restrict ourselves to values of X satisfying
the SQM hypothesis, i.e. X € [3, 4].

On the other hand, the stability of strange dwarfs and plan-
ets against radial oscillations will be investigated using the
Gondek’s first-order formalism [27], which we summarize in
what follows. This formalism is based on the analysis of the
variation of pressure Ap and the radial displacement function
Ar, which allows to define the quantity £ = Ar/r, both at a
given radial coordinate ‘r’ and time ‘¢’ which is factorized as
a harmonic contribution. Such quantities are the Lagrangian
variables associated to the radial disturbances of fluid ele-
ments inside the general-relativistic star found initially in
hydrostatic equilibrium without still knowing if they repre-
sent stable or unstable stellar configurations. Within general
relativity*, we first solve the Tolman-Oppenheimer-Volkov
(TOV) equations to obtain energy density, pressure, and met-
ric function profiles for a given central energy density. We
then insert these profiles into the radial oscillation equations
satisfying intuitive boundary conditions (see Ref. [27] for
further details) which must give us frequencies w,% satisfying
a’,%:o < a)ﬁzl < w5=2 < --- where we recognize a)ﬁzo as
the (squared) fundamental mode eigenfrequency which help
us to analyze the dynamical stability of a given relativistic
star. In practice, if and only if a),%:o is (zero) positive, then
the star is said to be (maximally) stable [27-29]. See the
Appendix for more technical details on the numerical reso-
lution of the TOV and Gondek’s radial oscillation equations
with respective (rapid and slow) boundary conditions.

For an EoS having a continuous behavior in the energy
density, instead of solving the oscillation equations one can
use the practical rule of dM/de, > 0O to discriminate sta-
ble from unstable branches of relativistic stars [1]. Never-
theless, if the system is characterized by an EoS that has a
discontinuity characteristic of first-order transitions, in par-

4 Although white dwarfs and strange dwarfs (planets) are not fully rel-
ativistic objects as a whole since they have very small compactness,
M/R <« 1, it is not clear for us if it is completely correct to use the
Newtonian approximation for their structure and stability since the SQM
core radius, Rsqm, is very compact compared to the observable radius,
R,i.e. Rsom < R, having perhaps relativistic corrections when obtain-
ing their stellar properties. Thus, we study the problem in full relativistic
gravity in order to not overlook any of these possible corrections.

ticular, by a Maxwell construction,® then one has to add fur-
ther boundary conditions on the radial-oscillation variables
at the phase boundary between SQM and dilute nuclear mat-
ter. This more complex situation was studied in a Newtonian
framework in Ref. [16] whereas a general-relativistic gen-
eralization was only given some years ago in Ref. [17]. In
both studies, the extreme cases of rapid and slow phase con-
versions were explored. By rapid conversions we refer to the
physical situation where the radial oscillation period is very
large compared to the microscopic timescale leading to the
conversion of nuclear matter into SQM (and vice-versa) at
the phase-splitting boundary. On the other hand, slow con-
versions are characterized by a radial oscillation period that
is very small compared to the microscopic timescale [16,17].

Furthermore, it should be emphasized that for rapid
conversions a new mode of oscillation is present, the so-
called reaction mode,® already found in Newtonian gravity
[16] as well as in general relativity [17], which is related
to the energy-density discontinuity between phases n =
eéavl /61(\I+1\/)[ and the ratio p, /EI(\;{/}, where 51(\;1(/)1 is the maxi-
mum nuclear matter (NM) energy density before reaching
the discontinuity, eéa\,[ is the minimum SQM energy density
after the discontinuity, and ‘p,’ is the transition pressure.

As noted in Ref. [17], the reaction mode (squared) fre-
quency can be estimated as a)%e ~ (3[1 +p,/el(\;£,)1] =2n)/(n—
1). From this relation one can see that this reaction mode can
be any excited state, in particular, its frequency can be very
large numerically (compared to the usual fundamental and
first excited frequencies) when n — 1, i.e. the size of the
SQM core tends to be very small compared to the size of the
nuclear matter mantle. Besides, even if this last case applies
or not, a)%. could still be real and a low mode if p; /GI(\?II/} is
large. Thus, the above estimate of w%e allow us to infer if the
hybrid stars will have real or complex ‘wgr’ depending on
the situation under study. For instance, it was proven [17]
that hybrid compact stars will not have reaction modes when
3[1 —i—pt/ef\f{v)l] > 2nisnot satisfied or 7 is very large. Finally,
itis worth to mention that Refs. [17,33] made these estimates
on the assumption that hybrid stars satisfy oM /dp. > O,
which is not always the case.

Notice that although in Refs. [16,17] this situation was
theoretically analyzed, it was not clear which physical sys-
tem might embody such a condition. As we will see, strange
dwarfs and planets are perfect examples where this circum-
stance occurs. In practice, these reaction modes can be distin-
guished by analyzing their behavior when the squared eigen-

> The smooth Gibbs-Glendenning construction enforcing global elec-
tric charge neutrality was studied in, e.g. Refs. [30,31].

6 Strictly speaking, this mode has no new mathematical properties, as
for quasi-normal modes [32], being an ordinary radial mode although
highly sensitive to the discontinuity of the rapid junction condition.
Besides, it should not be confused with the non-radial reaction modes
related to rotational instabilities [32].

@ Springer
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Fig. 1 Left panel: Mass-radius diagram indicating the behavior of
strange-dwarfs, strange planets and usual compact strange stars for
different crust-core transition densities (in gcm™>) and using the fit
formula for the BPS EoS and MIT bag model. For clarity, we are con-
sidering strange dwarfs to be between the tip of the curve down to
the minimal mass (squares), which partially includes strange planets

frequencies for the hybrid star, a)lz1 b n» does not tend to the
corresponding one-phase (in our case the BPS model) values,
Wgne—phase,n’ &S W€ reduce the quark matter core to zero, for
a given mode ‘n’ mode. Of course, if this behavior for the
reaction modes is found for the fundamental mode (n = 0)
then the whole dynamical stability will be determined exclu-
sively by how one tunes the values of ‘n” and ‘p;/ 61(\;{\,)[’ from
physical arguments characterizing a family of hybrid neutron
or strange dwarfs (planets).

3 Results

In this section, we will display our numerical results for the
structure and stability of strange dwarfs (planets). Along this
section, their crust will be modelled only by the BPS [1,12]
equation of state but now adjusted to be a smooth analytic
formula [18]. On the other hand, for the first part of this
section we use the MIT bag model for the quark core of these
SDs, whereas in the second part we change to the pQCD EoS
to explore if QCD corrections affect their stability or not.
It should be noted that at the transition point our strange-
dwarf EoSs have a discontinuous derivative, although they
are continuous by parts. This agrees with Ref. [10] but differs
from the approach of Ref. [13], not only replacing the original
sharp transition by a smooth crossover, but also excluding the
consistent imposition of the rapid junction conditions when
solving the radial oscillation equations. We stress that the
main objective of this section is to fill the gap in relation
to past works, where somewhat incomplete results for the
dynamical stability of these stellar objects was presented. In

@ Springer
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(where M < 9 x 1072 Mg). At the left of the squares, for M > 0.1
Mg we have the usual strange stars with a thin nuclear matter crust.
Right panel: Corresponding mass-central pressure diagram for strange
dwarfs. The full circles (squares) represent the maximum (minimum)
mass configurations for each family of SDs differentiated by a single
crust-core transitional density value

particular, we aim to probe, strengthen and extent the findings
of Refs. [9-11,13].

3.1 BPS + MIT strange dwarfs

In Fig. 1, we present our results for the hydrostatic structure
of strange stars, strange dwarfs and strange planets within the
massless MIT bag model EoS for different values of the crust-
core transition densities, i.e. 10°, 109 and 4 x 1011g cm™3.
Throughout this section the filled circles and squares denote
the maximum and minimum mass SDs, respectively, with
a corresponding color for each crust-core transitional den-
sity. In the left panel, we present the mass-radius relation
for the hybrid family of stars composed by the BPS+MIT
EoSs, which does not include pure WDs. In the M-R rela-
tion, we are able to identify the branch of strange dwarfs and
strange planets with masses in the range ~ 0.8 — 0.1Mg
and ~ 9 x 1072 — 1073 M, respectively, between the
beginning of the curve (left of the circles) and the squares.
We also show the mass-central pressure diagram in the right
panel, where one can see that the SD branch begins at the
transition density/pressure (not shown, because it occurs for
even smaller central pressures), passes through the points
of maximum mass (circles) and ends with configurations of
minimum mass (squares), where the compact strange-star
branch begins.

We now pass to investigate the stability of SDs through
a radial oscillations’ analysis for both rapid and slow con-
versions. Following Ref. [13], we display our findings using
the auxiliary function sinh ! (a),% / Q2?) (which preserves the
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Fig. 2 Left panel: The dependence of the fundamental eigenfrequen-
cies a)g (through an auxiliary function) with central pressure for each
conversion speed and the same crust-core transitional densities of Fig. 1
in the strange dwarfs and strange planets branch. Right panel: w(% for
the pure BPS (one-phase, blue solid curve) and SDs with transitional
densities of 10° (orange curves) and 4 x 10''gem™3 (green curves)

sign of a)ﬁ) as a function of central pressure p. and Q =
6.6 x 10722MeV being an appropriate constant. In Fig. 2
(left panel), we present our results for the stability of SDs
with different transitional densities. Considering rapid con-
versions (solid curves), we have that all SD configurations at
the left of the minimum mass are unstable i.e. a)(z) < 0, which
— as expected from the results of Ref. [17] — give the same
results if one applies the usual stability criterion dM /dp, > O
(see the right panel of Fig. 1). On the other hand, in the slow
conversion case they are stable against radial oscillations.
Both Refs. [10] and [13] did not present a clear treatment
of the radial oscillations’ equations at the phase-splitting sur-
face required to compute the stability of hybrid stars, since
both of them did not explicitly impose the extra boundary
conditions proposed in Ref. [17]. In this sense, the discor-
dance in their results comes from the treatment of the phase
transition itself, i.e. while in Ref. [10] the BPS and the MIT
EoSs were combined to form a discontinuous hybrid EoSs,
in Ref. [13] the same EoSs were combined as a smooth
crossover. Moreover, in Ref. [10], the combination of the two
EoSs (BPS and MIT EoSs) in a discontinuous way without
extra boundary conditions means that they were (implicitly)
assuming the continuity of the Lagragian variables which is
equivalent to the slow conversion scenario. In contrast, the
treatment of Ref. [13] implies they were essentially dealing
with a one-phase star, in the sense that there were no dis-
continuities in the EoS which means that the usual stability
criterion still holds, as is the case of rapid conversions in
the formalism of Ref. [17]. Thus, the left panel of Fig. 2
qualitatively contains the results of both Refs. [10] and [13]

Transitional density Conversion speed

04— BPS one-phase
— 1x10 rapid
— 4 x 10" - slow

—10 1

—15 : : : : : :
10° 10! 102 10% 10* 10° 109 107

Pe U\’[(‘Vhl]

considering a wider central pressure range and, in the SDs case, both
conversion speeds. One can see that w(z)-rapid does not converge to the
one-phase (BPS) results. Although not shown, we have checked that a)%—

rapid tends to a)g—one-phase, as expected from the results of Ref. [16].
As proven in this panel, the rapid cases are in fact the corresponding
reaction modes

and their divergences which can now be explained through
the different conversion speeds, in agreement with the brief
discussion of Ref. [11].

Another important feature that helps to further explain the
aforementioned discordances between Refs. [10] and [13] is
the reaction mode. This mode appears in the rapid conversion
scenario and it is defined as the mode whose frequency does
not tend to its one-phase counterpart when p. — p; orequiv-
alently, in our case, Rgm — 0. As explained in Ref. [16],
when the core is much smaller than the outer layers of the star
one has that the reaction mode is the fundamental one, being
decisive in the determination of the star’s stability. In the right
panel of Fig. 2, we present a)% as a function of central pressure
— considering a large interval of p. — for the pure BPS (blue
solid curve) but also for the BPS + MIT hybrid configurations
with crust-core transition densities of 10° (orange curves) and
4x 101 g cm™3 (green curves) in the rapid (dashed) and slow
(dotted) scenarios. From this figure, one can clearly see that
the fundamental frequency in the slow conversion scenario
for both transitional densities coincide with the one-phase
BPS at the beginning of the respective dotted curves, which
is the region where p. — p;. Additionally, one can notice
that the reaction mode have negative (squared) zero-mode
frequencies over a large region of central pressures resulting
in unstable SDs, specially for ¢, = 10°g cm™3 where its slow
frequencies and the BPS are positive. As already discussed,
this reaction mode was not analyzed in Refs. [10] and [13]
since the former work was implicitly dealing with slow con-
versions while the last work smoothed the phase transition,
thus leading to an artificial continuity between the pure BPS

@ Springer
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Fig. 3 Left panel: Mass-radius relation for SDs (planets) obtained
using the fitted BPS formula with the pQCD EoS for quark matter for
the extreme X in the pQCD EoS producing stable SQM, in the particular
case of the neutron drip density as the crust-core transition density. Right

frequency and the fundamental one of SDs. Besides, although
it seems that the reaction mode was also found in Ref. [11],
it was not properly identified/characterized since the authors
only calculated the frequency of the fundamental mode (of
the rapid case) for a single configuration near the minimum
mass. We believe that all these technical issues posed this SD
stability puzzle for which we proved that they are only stable
in the slow scenario.

For completeness, some comments must be made about
the solutions of the Lagrangian variables, in particular, &.
Generically, when going from the core to the neighborhood
of the transition radius of the crust (~ 4km) the adiabatic
index will decrease from being very large (almost incom-
pressible quark matter) to be very small (very compressible
WD matter). This will induce regular values of & ~ 1 at the
core but large values of ‘¢’ in the dilute mantle. One can eas-
ily see this by noticing how the adiabatic index enters into
the Gondek’s oscillation equations. Of course, depending on
the conversion speed one finds a (dis)continuous behavior of
‘£’ at the transition point. We have also verified in all our cal-
culations that the obtained ‘£’ agree with the corresponding
number of nodes, for instance, ‘€ with no nodes are related
to the fundamental mode.

3.2 BPS + pQCD strange dwarfs

Finally, in order to probe the robustness of our findings for
the stability of strange dwarfs (planets), we present some
results for the M-R diagram and behavior of w(z) but now
using the pQCD EoS and keeping the BPS fit formula for
the thick crust fixing also the transitional density to be the
neutron drip one. When the pQCD [X = 4] EoS is used

@ Springer
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panel: Corresponding behavior of w(z) (through the auxiliary function)
as a function of central pressure. Again, the zero mode is the reaction
mode which is unstable in the strange dwarf (planet) branch

we find SDs with slightly smaller maximum masses while
the corresponding strange planets are heavier, all this com-
pared to the pQCD [X = 3] and MIT bag model, as can
be seen in Fig. 3 (left panel). Besides, a similar behavior is
found for the case of pQCD [X = 3] when compared to the
MIT bag model. Physically, all this happens because SDs
around the maximum mass have a smaller energy density
jump for the pQCD [X] (for increasing X) EoS than the bag
model. On the other hand, configurations near the minimum
mass have larger SQM cores and are described by stiffer
EoSs which imply in higher masses for strange planets when
pQCD [X] (for increasing X) is compared to the bag model.
In short: maximum masses are dominated by the transition
jump whereas masses near the minimum are dominated by
a large SQM core. Notice that the same reasoning applies
for the discussion at the beginning of this section for the
bag model with different transitional densities. Now, in the
right panel of Fig. 3, we present the stability analysis of the
pQCD SDs having almost the same qualitative behavior as
when using the MIT bag model although the pQCD strange
dwarfs and planets live in the sector of lower pressures com-
pared to the bag model. This can be understood by noting that
the pQCD EoS is stiffer for increasing X which in strange
star branch produces larger maximum masses. Nonetheless,
rapid conversions still rule SDs and planets out whereas in
slow conversions strange dwarfs and planets remain stable.
Furthermore, we also proved that the BTM criteria is still
true only for rapid conversion SDs. In summary, the MIT
bag model and pQCD EoSs for high densities produce simi-
lar results when such low-density transitions occur.
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4 Summary and outlook

We have revisited the question concerning the dynamical sta-
bility of strange dwarfs and planets for which there was still
not a clear answer about its in-principle existence in nature.
For this we have performed a detailed analysis of the behav-
ior of the fundamental mode eigenfrequencies obtained after
solving the radial oscillation equations within the Gondek’s
formalism [27] but now also including non-trivial boundary
conditions for their Lagrangian displacements when the dis-
continuity is found at the interior of these strange objects
[16,17] and assuming that the related microphysics follows
the extreme situations of rapid and slow phase conversion
dynamics. For slow conversions, our results qualitatively
agree with what was presented in Ref. [10]. However, in
the rapid scenario the fundamental mode becomes the reac-
tion mode but providing only unstable eigenfrequencies, thus
ruling out any stable strange-dwarf configurations, as also
suggested by the BTM criteria. Moreover, our results on the
stability of SDs and planets appear to be robust when using
an EoS obtained from cold and dense perturbative QCD.

Finally, an immediate generalization of our studies would
be to explore other junction conditions, e.g. the ones explored
in Refs. [34,35]. For instance, the intermediate (timescale)
case between rapid and slow conversions might allows us to
probe its macroscopic effects even without having detailed
microscopic knowledge of the physics occurring at the crust-
core transition point. Of course, additional studies must
be done elsewhere to clarify this issue in strange dwarfs.
Besides, it seems interesting to study the gravitational waves
coming from the merger of NS and white dwarfs [36] but
now allowing the dwarf star to have a SQM core as well as a
strange quark star merging with a strange dwarf. For physics
beyond the standard model, it might be possible to find size-
able variations of our findings within modified theories of
gravity, as already done for white dwarfs [37].
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Appendix: Dynamical stability of relativistic stars

In principle, studies concerning the dynamical stability
of relativistic stars must be performed within the ADM-

formulation of numerical relativity, also known as (3+1)-
decomposition of the Einstein equations. Interestingly, it can
be proven (see, e.g. Chap. 3 of Ref. [20]) that if one applies
time-dependent perturbation theory to these set of compli-
cated equations assuming disturbances with small amplitude
around a certain hydrostatic solution, one obtains the same
Sturm-Liouville problem as originally derived by Chan-
drasekhar in 1964. In fact, most general-relativistic hydro-
dynamic codes test the reliability of their findings by com-
paring them against well-known perturbative results [21] for
radial oscillation frequencies. This approach has also been
taken for boson stars where the eigenvalue problem becomes
much more complicated than a hydrodynamic study through
a Fourier transform but which in the end serves to verify the
agreement between both independent methods [22].

For this work, we solved one of the first-order equivalent
forms of the Sturm-Liouville problem, i.e. the Gondek’s set
of equations, being more amenable numerically. First, one
needs to solve the TOV equations [1] given by

d 4 3 2 —1
_Pz_é_'g[lﬂ][lﬂrp“l__ﬂ S
dr r € m r

d d 1 d

T dmr2e, S = L 2)
dr dr p+edr

where p, €, m, v and A are the pressure, energy density, mass,
and metric functions, respectively. The integration of these
equations starts from a central pressure p(r = 0) = p, and
ends when p(r = R) = 0, thus extracting the correspond-
ing radius and, consequently, its mass M = m(r = R),
which starts at m(r = 0) = 0 to assure regularity at the
star center. Besides, the surface boundary condition on ‘v’
isv(r =R) = (1/2)In(1 — 2 M/R). Now, the solutions of
the TOV equations enter as coefficients into the (Gondek’s)
radial oscillation equations given by

dé dv 3 11
== (2 -2)e—-—ap, 3)
dr dr r rI'p
dA 4d dv?

p=r(p+6) w2202 (22 — 8w p | &
dr rdr dr

dv 2
“\ar +4x(p +€)re Ap, “4)

where £ = Ar/r and Ap are the Lagrangian displacement
and the Lagrangian perturbation of the pressure, respectively.
Moreover, I' = (1 4 e/p)dp/de is the adiabatic index. The
w? are the eigenfrequencies of the star, as discussed in the
main text.

Regarding the boundary conditions, we have that to avoid
irregularities at the stellar center Ap(r = 0) = —3I'p&(r =
0). Since £(r = 0) is arbitrary, it is usually taken to be equal
to one. However, as discussed in Ref. [18], for strange dwarfs

taking & < 1 improves the computational performance. The
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eigenfrequencies w” of the system are the ones that lead to
Ap(r = R) =0 [27].

In the case of hybrid stars with a strong first-order phase
transition, one has to impose extra boundary conditions at
the phase-splitting interface for ‘6” and ‘Ap’, depending on
the conversion speed [17]. For both conversion speeds, one
has that [Ap]™ = 0, meaning that there is no discontinuity in
Ap at the interface, which comes from the constancy of the
pressure during the transition and across the interface. There-
fore, the difference between conversion speeds is computed
in the boundary conditions of &, such that for slow conver-
sions the fluid elements of each phase can be tracked during
the oscillation resulting in the continuity of &, i.e., [§ ]f =0.
On the other hand, for rapid conversions one has [17]

Ap +

[E - r(dp/dr)]_ - ®
These extra boundary conditions were not included in both
Refs. [10] and [13], and the distinct main conclusion were due
to the difference in the treatment of the EOS at the transition.

Regarding our numerical procedure, we used a spline
interpolation for the tabulated pQCD EoSs since the other
EoS are analytical. After that, we applied another spline inter-
polation for the TOV solutions before being introduced into
the Gondek’s equations, in particular, care need to be taken
when obtaining ‘I"” since it is highly sensitive to numerical
derivatives of the already interpolated EoS and metric pro-
files. Then, the eigenfrequencies are found through a shoot-
ing method with the required boundary conditions for ‘€’
and ‘Ap’ at the center. The integration is carried out up to
the phase-splitting interface where the extra boundary con-
ditions for rapid or slow conversions are applied which gives
us the correct values of ‘€ and ‘Ap’ at the other side of
the interface. From this point on, the integration continues
outwards aiming to match the boundary condition for ‘Ap’
at the surface. After each integration, the trial value of w?
is corrected through a root finding method (in our case, the
secant method) until the desired precision on the boundary
condition is achieved. These calculations will give the eigen-
frequencies a),% of the star, being a discrete and numerically
ordered set of real numbers (the case ‘n = 0’ is identified
with lowest eigenfrequency value) satisfying appropriately
the required rapid and slow junction conditions.

Finally, a hint for the readers that intend to reproduce and
extend our findings for the stability of SDs. In our study
we realized that solutions for the TOV equations and the
rapid-conversion radial-oscillation equations (either in the
Gondek’s equations or the Sturm-Liouville problem [1]), are
sensitive to the numerical treatment of the low density BPS
EoS. This technical issue is important when determining the
zero pressure value (which allows us to define the stellar
radius) and boundary condition for Ap (also vanishing at
the SD surface). As already announced, we employed the

@ Springer

following fitting formula [18] for the BPS EoS:

loge =a+ b\/l +c(d +log p)2, (6)

where the coefficientsarea = —15.8306, b = 11.2974, ¢ =
0.00664824 and d = 16.9824, with both ‘p’ and ‘€’ in
MeV*. This fit formula has a smooth behavior at all densities
and removes the numerical issues that arise when the inter-
polation of the tabulated BPS is used. Moreover, the fitting
formula offers a better numerical performance. For instance,
one can analytically obtain the speed of sound squared

2_dp _ pyl+c(d+logp)
¥ de be(d + log p)e

@)

which allows also to calculate analytically the adiabatic index
' =(U+¢/ p)csz. Both quantities are determining when
solving the radial oscillation equations.
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