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A permeabilidade da barreira hematoencefdlica (BBB, do inglés blood-brain barrier) é uma
propriedade fundamental no planejamento de firmacos que atuam no sistema nervoso central
(CNS) no tratamento de doengas como a epilepsia, depressdo, mal de Alzheimer, mal de Parkinson,
esquizofrenia, entre outras. No presente trabalho, estudos das relagdes quantitativas entre a estrutura
e propriedade (QSPR) foram conduzidos para o desenvolvimento e valida¢do de modelos in silico
para a predi¢do da permeabilidade da BBB. O conjunto de dados utilizado possui significativa
diversidade quimica e ampla distribui¢do dos valores da propriedade alvo. Os modelos de QSPR
gerados apresentaram bons pardmetros estatisticos e foram empregados com sucesso na predigao de
um conjunto teste de 48 compostos. Os modelos desenvolvidos sdo tteis na identifica¢do, selecao
e planejamento de candidatos a novos farmacos com propriedades farmacocinéticas otimizadas.

Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central
nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer’s
disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative
structure-property relationship (QSPR) studies were conducted for the development and validation
of in silico models for the prediction of BBB permeation. The data set used has substantial chemical
diversity and a relatively wide distribution of property values. The generated QSPR models showed
good statistical parameters and were successfully employed for the prediction of a test set containing
48 compounds. The predictive models presented herein are useful in the identification, selection and
design of new drug candidates having improved pharmacokinetic properties.
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Introduction

The challenges facing the pharmaceutical industry
are tremendous at every step of the drug discovery and
development process. Technology-based discovery
certainly is one of the most important elements to increase
research and development (R&D) productivity. The new
paradigm of drug discovery involves a combination
of classical and modern technologies with innovative
strategies addressed to the design of new chemical entities
(NCEs) with improved properties.'* NCEs expected to
advance into clinical trials should have a good balance of
pharmacodynamic and pharmacokinetic properties. For
the past decades, problems with absorption, distribution,
metabolism and excretion (ADME) have been one of the
major reasons for the failure of attractive compounds in
advanced stages of drug development.*®

*e-mail: aandrico@ifsc.usp.br

Traditionally, in vivo and in vitro models are employed
in the pharmaceutical industry for the evaluation of
pharmacokinetic parameters. However, animal models
and cell-based assays are typically time consuming and
expensive, and thus not applicable to the early screening
of large libraries of compounds.”™ In recent years, the
appearance and consolidation of in silico ADME models
have provided useful tools for a faster, simpler, and more
cost-effective evaluation of pharmacokinetic properties.'%-!2
Quantitative structure-activity and structure-property
relationships (QSAR/QSPR) are powerful technologies that
correlate descriptors based on molecular structures and use
computational algorithms to relate the key descriptors to
relevant ADME properties.'*!313

Drugs to treat human central nervous system (CNS)
diseases and disorders, such as epilepsy, Alzheimer’s
disease, Parkinson disease, schizophrenia, depression
and brain tumors are required to cross the blood-brain
barrier (BBB) by passive diffusion or through the help of
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transporters. In contrast, drugs that do not target the CNS
should present limited capacity to cross the BBB in order
to avoid drug-induced side effects in the brain.'° Delivering
drugs into the brain is a complex process that depends on
multiple factors, such as logP, hydrogen-bond acceptors
and donors, molecular weight, polar surface area and other
molecular properties.!” The tight junctions between the
endothelial cells of the brain’s capillaries make it almost
impossible for anything to get into the brain around the cells.
In addition, efflux pumps such as P-glycoprotein (P-gp)
and the multidrug resistance-associated protein family
(MRP) significantly hinder permeation across the BBB
turning chemical compounds back to the way of blood.'*!8

The most commonly used experimental approaches
to predict membrane permeation are the octanol/
water partition coefficient, high performance liquid
chromatography (HPLC)-related techniques, and the
in vitro approaches, such as parallel artificial membrane
permeation (PAMPA) assays and MDCKII-MDRI1 cell
line.!?! Nonetheless, the complexity, costs, resources and
time involved in these assays have increased the importance
of in silico approaches to predict BBB permeability of
lead compounds that selectively target the CNS.”$22 In
the present work, robust QSPR models were developed
for the consensus prediction of BBB permeation using the
fragment-based hologram QSAR (HQSAR) approach.'®!4
To the best of our knowledge, the majority of the models
reported in the literature are associated with qualitative data
(cross/not cross BBB) that offers imprecise values of BBB
permeability, thus, the quantitative nature of the models
generated in this work is of considerable importance in
medicinal chemistry and drug design.
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The relative affinity for the blood or brain tissue
can be expressed in terms of the blood-brain partition
coefficient, log(C brain/C blood), where C brain and
C blood are the equilibrium concentrations of the drug
in the brain and the blood, respectively (also known as
logBB). A data set of 255 structurally diverse molecules
with known logBB was collected from literature and
the PK/DB - database for pharmacokinetic properties
(http://www.pkdb.ifsc.usp.br).?** The data consist of in
vivo measurements in rats of the compound’s partition
coefficient between the brain and blood. Compounds
containing one asymmetric (chiral) center, for which the
corresponding BBB permeation was determined for the
racemate, were considered as the individual enantiomers
and modeled accordingly, as previously described.!®!*The
list of compounds along with the corresponding logBB
data is shown in Table S1 in Supplementary Information
(SI) section. This structurally diverse (Figure 1) data
set consists of several important therapeutic classes,
including anxiolytics (e.g., alprazolam), anti-ulcers (e.g.,
cimetidine), analgesics (e.g., acetylsalicylic acid), sedatives
(e.g., diazepam, flunitrazepam), anti-inflammatories (e.g.,
ibuprofen and indometacin), antivirals (e.g., nevirapine,
zidovudine, indinavir), antihypertensives (e.g., verapamil
and clonidine), antihistamines (e.g., mepyramine),
antidepressants (e.g., mianserin), and so on.

The 3D structures of the molecules employed in this
work were constructed using CONCORD and standard
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Figure 1. Chemical structures and therapeutic classes of representative drugs included in the data set.
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geometric parameters available in the Sybyl 8.0 molecular
modeling package (Tripos, St. Louis, USA) and stored
as SDF files.* The optimization process of the chemical
structures was performed by carrying out several standard
operations present in ChemAxon Standardizer including
3D depiction layout, hydrogen addition and correction, salt
and solvent removal, chirality and bond type normalization
and harmonization of the representation of aromatic rings,
and others.>® Each molecule in the set was energetically
minimized using the Tripos force field.*

In this study, the original data set of 255 compounds
was arranged in training (001-207) and test sets (208-255)
in Table S1 (SI section) to give approximately 80% and
20% of the data set, respectively. The structurally diverse
molecules having a significant coverage of property values
were included in both sets, as depicted in Figure 2. Thus,
the data set is suitable for QSPR model development. The
training set was then used to generate the models, while
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Figure 2. Data set, training set (modeling set) and test set (validation
set) distribution.
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the test set was hold out for the process of model external
validation.

QSPR studies

All 2D QSPR (HQSAR) calculations and analyses were
performed using the Sybyl 8.0 package,*® as previously
described. The HQSAR technique employed in this
work required the 2D structures and the property value
(logBB) as input. Initially, the calculations of the several
parameters for the generation of the molecular holograms
were performed using the standard parameters implemented
in Sybyl 8.0.1%151A]] generated models were investigated
using full cross-validated #? (¢?) partial least squares (PLS)
leave-one-out (LOO) and leave-many-out (LMO) methods.
The predictive ability of the models was assessed by their
q* values.

Results and Discussion
HQSAR analyses

The generation of the molecular fragments for the data
set compounds was carried out using the following fragment
distinctions: atoms (A), bonds (B), connections(C),
hydrogen atoms (H), chirality (Ch), and donor and acceptor
(DA). In order to assess the process of hologram generation
and to seek the best predictive models, several combinations
of these parameters were considered using the fragment size
default (4-7) (Table 1). The Ch descriptor was considered
in all fragment combinations due to the presence of several
(R) and (S) enantiomers. The absence of this descriptor
could lead to an over-training of the models because two
different compounds would be considered as one and
treated as such (i.e., calculated twice). The HQSAR analysis

Table 1. Results of HQSAR analyses for various fragment distinctions on the key statistical parameters using fragment size default (4-7)

Statistical parameters

Model Fragment distinction

¢ r? SEE N HL
1 A/B/C/Ch 0.61 0.81 0.33 8 199
2 A/Ch/DA 0.58 0.79 0.35 8 401
3% A/B/C/H/Ch 0.66 0.87 0.27 8 353
4 A/C/Ch/DA 0.55 0.86 0.29 8 353
5% A/H/Ch/DA 0.66 0.86 0.29 8 353
6 A/B/C/Ch/DA 0.53 0.86 0.29 7 353
7* A/B/H/Ch/DA 0.68 0.88 0.26 8 307
8* A/B/C/H/Ch/DA 0.69 0.91 0.22 8 401

*The four best HQSAR models; ¢?, cross-validated correlation coefficient (LOO); r2, noncross-validated correlation coefficient; SEE, noncross-validated

standard error; N, optimal number of components; HL, hologram length.
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was performed over the twelve default series of hologram
lengths of 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353,
and 401 bins. The patterns of fragment counts from the
training set compounds were then related to the measured
experimental BBB permeation data.

The best statistical results (predefined accuracy
thresholds for training 7% > 0.80 and ¢ > 0.60) were obtained
using the fragment distinctions A/B/C/H/Ch (model 3,
¢*=0.66 and 7> =0.87), A/H/Ch/DA (model 5, ¢> = 0.66 and
r*=0.86), A/B/H/Ch/DA (model 7, ¢* = 0.68 and * = 0.88)
and A/B/C/H/Ch/DA (model 8, ¢*> = 0.69 and > = 0.91).

The influence of different fragment sizes in the
statistical parameters was further investigated for the four
best HQSAR models marked with asterisk in Table 1
(models 3, 5, 7 and 8), and the results are summarized in
Table 2. Fragment size parameters control the minimum
and maximum length of fragments to be included in
the hologram fingerprint. These parameters represent a
fundamental aspect to this fragment-based approach, and
should be considered to provide larger or smaller fragments
into the molecular holograms.!%!45!

The results show that the variation of the fragment size
did provide a considerable improvement for the majority
of the models (marked with asterisk in Table 2) when
compared to the results obtained using the fragment size
default (4-7). The exception was model 5, for which no
improvement was observed using a set of different fragment
sizes. It is worth noting that model 3 exhibited improved
cross-validated correlation coefficients (¢* of 0.68 and
0.71). In the case of model 7, the ¢* value increased from
0.68 to 0.71. For model 8, the ¢ value varied slightly from
0.69 to 0.70, whereas the 7 remained unchanged.

As the molecular structure encoded within a 2D
hologram is directly related to the property value of the
training set molecules, the HQSAR model should be
able to predict the logBB for new compounds from its
fingerprint. The ¢* LOO procedure used may give a suitable
representation of the internal consistency and predictive
power of the models. However, the real predictive ability
of the HQSAR model derived with the 207 training set
molecules was assessed by predicting logBB values of an
external test set of 48 molecules (compounds 208-255,
Table S1 (SI section)). Prior to prediction, the test set
compounds were processed identically to the training set
compounds as previously indicated. The external validation
process can be considered the most valuable validation
method as these compounds were completely excluded
during the training of the model. The results are listed
in Table S1 and show that the test set compounds, which
represent the different structural features incorporated
with in the training set, are reasonably well predicted by
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Table 2. HQSAR analysis for the influence of various fragment sizes on
the key statistical parameters using four selected fragment distinctions:
A/B/C/H/Ch, A/H/Ch/DA, A/B/H/Ch/DA and A/B/C/H/Ch/DA

Fragment Statistical parameters
size o ” SEE N HL
Model 3
2-5 0.68 0.85 0.30 8 307
3-6% 0.71 0.87 0.28 8 401
4-7 0.66 0.87 0.27 8 353
5-8 0.60 0.81 0.33 7 307
6-9 0.53 0.80 0.34 7 307
Model 5
2-5 0.64 0.78 0.36 8 71
3-6 0.65 0.84 0.30 8 353
4-7% 0.66 0.86 0.29 8 353
5-8 0.64 0.86 0.29 8 353
6-9 0.62 0.86 0.29 8 257
Model 7
2-5% 0.71 0.85 0.29 8 199
3-6 0.68 0.86 0.28 8 353
4-7 0.68 0.88 0.26 8 307
5-8 0.68 0.87 0.27 8 307
6-9 0.61 0.84 0.31 7 307
Model 8
2-5 0.68 0.89 0.25 8 307
3-6%* 0.70 0.91 0.23 8 401
4-7 0.69 0.91 0.22 8 401
5-8 0.64 0.85 0.29 6 401
6-9 0.60 0.85 0.29 6 353

*The four selected HQSAR models; ¢?, cross-validated correlation
coefficient (LOO); r?, noncross-validated correlation coefficient; SEE,
noncross-validated standard error; N, optimal number of components;
HL, hologram length.

the four selected HQSAR models (marked with asterisk in
Table 2). The good agreement between experimental and
predicted BBB permeation values indicates the robustness
of the HQSAR models.

The predictive power of the models 3, 5, 7, 8 and
consensus (r°,,) are also showed in Table S1. As can
be seen, model 7 exhibited higher predictive ability
(7 ea = 0.79) than that of models 3, 5 and 8 (»*,,, = 0.72,
e = 0.69 and r° = 0.62, respectively). The consensus
approach exhibited an r°,, of 0.75. Thus, the results
indicated that models 3, 7 and consensus could provide
better predictions of the property value for new compounds.
The graphic representation of the experimental versus
predicted BBB permeation for both training (model

pred



Vol. 23, No. 12,2012

generation) and test (external evaluation) sets for model 7 is
displayed in Figure 3. Similar graphic results were obtained
for models 3 and consensus (not shown).
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Figure 3. Plot of experimental versus predicted BBB permeation for both
training and test sets.

The models were successfully validated as shown in
Table S1 and Figure 3, especially taking into account the
complexity of the BBB biological system. Despite not
having the highest 7°,,,, the consensus approach is also an
attractive tool for the prediction of logBB, considering that
the ensemble of models would allow a greater coverage of
the chemical space, which, in turn, could be useful for the
selection and design of new compounds with improved
logBB properties. Additionally, the HQSAR technique can
provide predictions for a broad scope of molecules when
compared to other methods, considering that the molecular
fragmentation offers a much larger range of different
scaffold possibilities.

Conclusions

A key challenge in the development of drugs that act in
the CNS for the treatment of a variety of human diseases
and disorders is their transport across the BBB. The final
HQSAR models described here possesses high internal and
external consistency. In addition, the quantitative models
showed good predictive power and could potentially be
used to assist the processes of chemical library design and
virtual screening. Compound libraries usually possess a
broad chemical diversity, and therefore, in silico ADME
models that are needed to screen these libraries should
inevitably be able to cover a substantial portion of the
chemical space. This is hard to be achieved by training
the model with few hundreds of compounds. It should be
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noted, however, that this limitation may be overcome by the
application of similarity analyses in the way of selecting
appropriated compounds for screening, thus, avoid making
predictions for compounds that differ substantially from the
training set molecules.>What is clear at this point is that the
predictive models generated in this work are useful in the
processes of early compound identification and selection,
as well as in the design of lead compounds with improved
BBB permeability.

Supplementary Information

Supplementary data are available free of charge at
http://jbcs.sbq.org.br as PDF file.
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