

6º CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 6th BRAZILIAN CONFERENCE ON MANUFACTURING ENGINEERING 11 a 15 de abril de 2011 – Caxias do Sul – RS - Brasil April 11th to 15th, 2011 – Caxias do Sul – RS – Brazil

ANÁLISE DO PROCESSO DE PEEN FORMING APLICADO A CHAPAS DE LIGA DE ALUMÍNIO 7050 USANDO REGRESSÃO MULTIVARIÁVEL E REDES NEURAIS

Fleury, A. T., agfleury@fei.edu.br¹
Delijaicov, S., sergiode@fei.edu.br²
Martins, F. P. R., flavius.martins@poli.usp.br³

¹Centro Universitário da FEI, A. Humberto de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 ²Centro Universitário da FEI, A. Humberto de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 ³Escola Politécnica da USP, Av. Prof. Mello Moraes, 2231, São Paulo, 05508-970

Resumo: Peen forming é um processo do conformação de chapas que, embora tenha suas origens na década de 1940, continua sendo bastante utilizado por importantes empresas do setor aeronáutico. Com esse processo conformam-se chapas e painéis reforçados(fabricados em ligas de alumínio) mediante o jateamento de suas superfícies por pequenas esferas (granalhas) de aço. Trata-se, portanto, de um complexo processo de fabricaçã, onde as curvaturas almejadas somente são obtidas a partir do adequado controle das variáveis intervenientes, a saber: diâmetro médio das granalhas, velocidade de impacto, pré-carregamento e grau de cobertura. Neste trabalho avaliam-se os efeitos dessas variáveis sobre as curvaturas observadas em um conjunto de placas fabricadas em ligas de alumínio 7050 e submetidas a um projeto experimentos de 215 casos. Para tanto, adotam-se duas metodologias — regressão multivariável e redes neurais. Os resultados dessas aálises mostraram excelentes índices de correlação com os dados experimentais — 0,97 para a regressão múltipla e 0,99 para a rede neural artificial, indicando que ambas as metodologias podem ser aplicadas na previsão das deformações permanentes causadas pelo processo de peen forming.

Palavras-chave: peen forming, regressão multivariável, redes neurais.

1. INTRODUÇÃO

Historicamente, o processo de *peen forming* foi proposto e patenteado na década de 1940 pela Lockheed Aircraft Corporation, em Burbank, Califórnia. Tendo expirado o prazo da patente, inúmeras empresas aeronáuticas, como a McDonnell Douglas, British Aerospace, Boeing, Airbus e Embraer entre outras, adotaram este processo para a fabricação de chapas e painéis com formas aerodinâmicas (O'Hara, 2002).

Peen forming é um processo de conformação plástica a frio de chapas metálicas pelo jateamento controlado, sobre a sua superfície, de pequenas esferas de aço, cujo impacto dá origem à formação de uma fina camada sujeita a tensões residuais compressivas, as quais promovem o encurvamento da chapa. A pressão de impacto de cada esfera causa uma deformação plástica localizada que se manifesta como uma tensão residual, além de um estiramento elástico na superfície de ataque. A distorção geométrica da chapa devida às tensões residuais, juntamente com o retorno elástico do estiramento, provocam o desenvolvimento de uma superfície côncava na superfície da chapa (vide Figura 1). O grande benefício deste processo é que as tensões residuais geradas são de compressão, melhorando, com isso, a vida em fadiga e a resistência à corrosão do componente conformado.

Tradicionalmente, o controle do processo de *peen forming* é baseado no método comparativo de Almen (Clarke e Birley, 1981), no qual a assim denominada intensidade Almen corresponde à flecha máxima adquirida por uma pequena lâmina de aço de dimensões normalizadas, fixada a um dispositivo padrão – Almen *gauge* (Champaigne, 2002) – quando sujeita a um processo de *shot peening* por um intervalo de tempo suficiente para que se atinja a condição de saturação. Conforme salientado por Fuchs (1984), a simplicidade desse método e do instrumental requerido para sua aplicação, explica, em parte, a sua grande difusão no setor industrial. Todavia, pelo fato de a medida da intensidade Almen ser o resultado do efeito de diversas variáveis intrínsecas do processo (velocidade de impacto, diâmetro e dureza das granalhas, ângulo de incidência, vazão mássica e tempo de exposição), não se presta à realimentação de processos de *peen forming* controlados em malha fechada, objetivo perseguido de longa data, especialmente pela indústria aeroespacial. A propósito desse fato, Wang *et al.* (2006) salientam que o problema que demanda solução mais urgente para os usuários do processo de *peen forming* consiste no desenvolvimento de um plano de processo de fabricação reprodutível que permita obter uma peça com a geometria desejada a partir de uma peça em bruto dada.

[©] Associação Brasileira de Engenharia e Ciências Mecânicas 2011

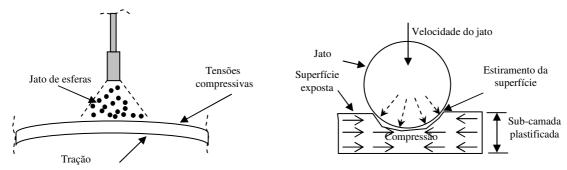


Figura 1. Esquema geral do processo de peen forming.

Embora atualmente existam instrumentos apropriados à medição, em tempo real, das variáveis intrínsecas do processo de peen forming (Neelakantan et al., 1981; Parker et al., 2005) a formulação de um modelo matemático que descreva a interação entre o jato de granalhas e a peça submetida à conformação ainda é um objetivo não plenamente atingido. Para a modelagem do processo de shot peening, Meguid et al. (1999-a; 1999-b) realizaram análises dinâmicas elastoplásticas adotando modelos de impacto simples e duplo, com o propósito de avaliarem os efeitos da velocidade, tamanho e forma da granalha sobre a variação do tempo da força de contato, o desenvolvimento da zona plástica e seu aumento e alívio da tensão residual. A extensão desse método a toda a área afetada pelos impactos, todavia, teria um custo computacional proibitivo. Schiffner e Helling (1999), por sua vez, simularam o desenvolvimento da tensão residual devida a shot peening por meio de um modelo bastante simplificado, baseado em comportamento de alvo quase-estático e em funções de carregamento dependentes do tempo. Contudo, as limitações dessas aproximações ficam evidenciadas pela necessidade de aproveitamento das leis do material, incluindo-se efeitos da taxa de deformação, influência do atrito entre granalha e peça e impactos múltiplos. Por causa das dificuldades inerentes à modelagem analítico-numérica do processo de peen forming, das quais algumas poucas foram anteriormente apontadas, muitos autores (Tatton, 1986; Watanabe e Hasegawa, 1996; Evans, 2002) têm enfatizado que a construção de um modelo matemático passível de ser utilizado em sistema de controle de malha fechada não pode prescindir de dados experimentais.

2. PROJETO DE EXPERIMENTOS

Tendo em vista o desenvolvimento de uma metodologia numérico-experimental capaz de explicitar a relação entre as variáveis do processo de peen forming e as variáveis estruturais das peças, experimentos sistemáticos foram realizados com dois grupos de 222 placas retangulares (400mm x 50mm) usinadas em ligas de alumínio 7050 e 7475, com espessuras de 2mm, 5mm, 10mm e 15mm. Esses corpos de prova foram conformados no Laboratório de Metalurgia do Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), utilizando uma máquina de shot peening CNC e instrumentos auxiliares de medição que permitiram caracterizar uma matriz de experimentos abrangendo variações regulares das seguintes variáveis do processo: diâmetro médio das granalhas, velocidade média de impacto, cobertura superficial (porcentagem de área afetada pelos impactos) e pré-carregamento estático. Quanto a esta última variável, cabe uma observação: quando uma peça é mantida sob flexão elástica durante a aplicação do jato de granalhas, a profundidade da camada compressiva resultante e o valor médio das tensões residuais sofrem incrementos apreciáveis (Li, 1981), razão pela qual normalmente se aplica uma pré-carga estática a meio-vão das peças durante o execução do processo de peen forming. Os experimentos realizados abrangeram combinações das seguintes variáveis: 1) diâmetro médio das granalhas – 0.7mm, 1.3mm e 3.2mm; 2) velocidade média de impacto – baixa, média e alta (níveis ajustados de acordo com o tipo de granalha utilizada); 3) cobertura – baixa e alta (de acordo com o tipo de granalha utilizada); 4) pré-carregamento estático – 0 (ou seja, ausente) e 90% (correspondente ao valor da carga concentrada no meio-vão de forma a gerar um campo de tensões superiormente limitado a 90% da tensão de escoamento do material). O comportamento estrutural de cada chapa foi caracterizado medindo-se sua flecha máxima a meio-vão e o respectivo perfil de tensão residual ao longo da camada compressiva (para o quê se aplicou o método do furo cego (Lu, 1995)).

Os efeitos da espessura da placa (e), diâmetro das esferas (d), velocidade de impacto (v), pré-tensão (t) e grau de cobertura (c), sobre a flecha (f) dos corpos de prova de liga de alumínio 7050 medidas a meio-vão depois de conformadas pelo processo de peen forming, foram experimentalmente investigados a partir de um projeto de experimentos com 215 casos, sendo que a cada uma das condições do experimento correspondem três réplicas. Na Tabela 1 indicam-se os níveis das variáveis inerentes aos corpos de prova (CP) e aos experimentos de peen forming. Na Tabela 2, apresentam-se algumas das combinações do projeto de experimentos adotado.

Tabela 1. Níveis das variáveis.

	Variável	Unid.								
e	Espessura da placa	mm	2	5	10	15				
d	Diâmetro da esfera	mm	0,6	1,4	3,175					
v	Velocidade de impácto	m/s	12,5	16,9	18,5	22,4	28,6	61,2	72,2	
t	Pré-carga	KN	0,594	1,336	2,672	4,008	10,688	26,718	53,348	80,156
С	Grau de cobertura	%	0,66	0,85	0,92	2,00				

Tabela 2. Parte do projeto de experimentos de 215 casos.

CP n ⁰	e (mm)	d (mm)	v (m/s)	t (KN)	c (%)	f (mm)
70	5	0.6	50.20	1.336	2.00	1.174
71	5	0.6	50.20	1.336	2.00	1.085
72	5	0.6	50.20	26.718	0.66	2.097
73	5	0.6	50.20	26.718	0.66	1.960
74	5	0.6	50.20	26.718	2.00	2.575
75	5	0.6	50.20	26.718	2.00	2.496
76	5	0.6	50.20	26.718	2.00	2.474
77	5	0.6	61.20	1.336	0.85	1.426
78	5	0.6	61.20	1.336	0.85	1.502
79	5	0.6	61.20	1.336	0.85	1.520
80	5	0.6	61.20	1.336	2.00	1.529
81	5	0.6	61.20	1.336	2.00	1.528
82	5	0.6	61.20	1.336	2.00	1.566
83	5	0.6	61.20	26.718	0.85	2.689
84	5	0.6	61.20	26.718	0.85	2.791
85	5	0.6	61.20	26.718	0.85	2.509
86	5	0.6	61.20	26.718	2.00	3.083
87	5	0.6	61.20	26.718	2.00	3.122
88	5	0.6	61.20	26.718	2.00	3.294
89	5	0.6	72.20	1.336	0.92	1.512

3. PROJETO DE EXPERIMENTOS

Foram adotadas duas metodologias de análise estatística disponíveis na ferramenta de software StatisticaTM – uma baseada em análise de variância e posterior regressão linear dos dados, outra baseada na aplicação de redes neurais artificiais. Mediante a aplicação desse métodos estabeleceram-se relações quantitativas entre a flecha máxima da placa deformada e as variáveis do processo de *peen forming* utilizado em sua conformação.

Inicialmente utilizou-se um método de regressão fatorial com interações de segunda ordem, obtendo-se um coeficiente múltiplo de correlação de 0,83, conforme mostrado na Tabela 3. Entretanto, analisando-se a Figura 2, onde se observa uma clara tendência não aleatória e não linear na distribuição dos resíduos relativos aos valores previstos, pode-se concluir pela não adequação desse método de regressão.

Tabela 3. Coeficientes de correlação do modelo fatorial das flechas.

	Test of SS Whole Model vs. SS Residual						
Dependent Variable	Multiple R	Multiple R ²	Adjusted R ²	F	p		
f	0.92	0.84	0.83	70.21	0.00		

Figura 2. Distribuição dos resíduos dos valores previstos das flechas.

Em decorrência do insucesso obtido com o método de regressão anterior, aplicou-se aos dados uma regressão fatorial com interações de segunda ordem entre os logaritmos das variáveis, obtendo-se um coeficiente múltiplo de correlação de 0,97 (vide Tabela 4) e, em decorrência, uma perfeita adequação do modelo (Figura 3).

Tabela 4. Coeficientes de correlação do modelo fatorial logarítimo das flechas.

Dan and Jane Vaniable	Test of SS Whole Model vs. SS Residual (ln)						
Dependent Variable	Multiple R	Multiple R ²	Adjusted R ²	² F			
ln(f)	0.98	0.97	0.97	1353.5	0.00		

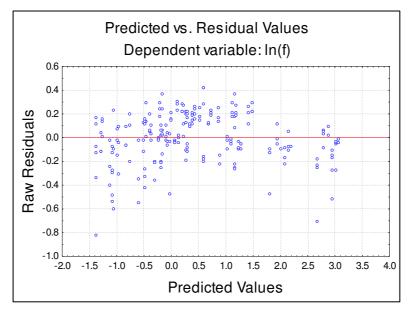


Figura 3. Distribuição dos resíduos do modelo logaritmo das flechas.

Na busca por uma expressão simples que relacionasse a flecha f com as variáveis do processo de *peen forming*, e observando a excelente adequação da regressão fatorial dos logaritmos dessas variáveis, considerou-se um modelo exponencial descrito pela seguinte equação:

$$f = K \cdot e^{x_1} \cdot d^{x_2} \cdot v^{x_3} \cdot t^{x_4} \cdot c^{x_5} \tag{1}$$

Após a aplicação da transformação logaritmica à equação (1), com vistas à sua linearização, utilizou-se um modelo de regressão múltipla linear para inferir a relação quantitativa entre a flecha máxima da placa conformada e as variáveis do processo de *peen forming* utilizado em sua conformação:

$$\ln(f) = \ln(K) + x_1 \cdot \ln(e) + x_2 \cdot \ln(d) + x_3 \cdot \ln(v) + x_4 \cdot \ln(t) + x_5 \cdot \ln(c)$$
onde K , x_1 , x_2 , x_3 , x_4 e x_5 são os coeficientes da regressão. (2)

Aplicando-se a técnica da análise de regressão com estimação pelo método dos mínimos quadrados geraram-se os coeficientes do modelo experimental apresentados na Tabela 5, cujos elevados coeficientes de correlação (vide Tabela 4) denotam a adequação do modelo inferido.

	Test of SS Whole Model vs. SS Residual						
Dependent Variable	ln(f)	ln(f)	ln(f)	ln(f)			
	Param.	Std. Err.	t	p			
Intercept	2.70143	0.155946	17.3229	0.000000			
ln(e)	-2.24536	0.040615	-55.2846	0.000000			
ln(d)	0.79752	0.047005	16.9665	0.000000			
ln(v)	0.30836	0.036529	8.4416	0.000000			
ln(t)	0.29868	0.009753	30.6235	0.000000			
ln(c)	0.24815	0.025704	9.6543	0.000000			

Tabela 5. Estimativas dos coeficientes da equação (1).

Substituindo-se os coeficientes da Tabela 5, chega-se, finalmente, ao seguinte modelo de regressão, relacionando a flecha máxima com as variáveis do processo de *peen forming*:

$$f = 14, 9 \cdot e^{-2,245} \cdot d^{0,798} \cdot v^{0,308} \cdot t^{0,299} \cdot c^{0,248}$$
(3)

Conforme previamente mencionado, a inferência de modelos quantitativos para o processo de *peen forming* voi realizana não apenas por intermédio de métodos clássicos de regressão estatística, mas também com o auxílio de redes neurais. Conforme ilustrado na Figura 4, utilizou-se uma rede neural *MLP* (*multi layer perceptron*) com retropropagação, contendo cinco neurônios de entrada, sete na camada intermediária e um na camada de saída, configuração essa que apresentou a melhor correlação entre os dados de entrada e os de saída.

Para o treinamento da rede foram sorteados aleatoriamente 80% dos dados iniciais, reservando-se os 20% restantes para a validação do modelo. Na tabela 6 destacam-se as correlações obtidas nas fases de treinamento (0,9907) e de validação (0,9913).

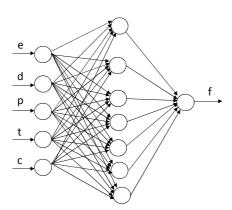


Figura 4. Arquitetura da rede MLP (5-7-1) adotada para a geração do modelo.

Tabela 6. Propriedades da rede MLP 5-7-1.

Net. name	Training	Test .	Training	Test	Training	Error	Hidden	Output
	perf.	perf.	error	error	algorithm	function	activation	activation
MLP 5-7-1	0.990720	0.991277	0.000511	0.000546	BFGS 47	SOS	Exponential	Identity

4. RESULTADOS DOS MODELOS DE PREDIÇÃO

A Tabela 7 e o gráfico da Figura 5 permitem a comparação visual dos valores das flechas medidos experimentalmente (f_{EXP}) com os obtidos a partir dos modelos gerados pela regressão estatística (f_{REG}) e pela rede neural (f_{ANN}).

Tabela 7. Valores medidos das flechas e previstos pelos modelos.

e	d	V	t	С	f_{EXP}	f_{ANN}	f_{REG}
mm	mm	m/s	kN	%	mm	mm	mm
2	0.600	50.200	0.594	0.660	5.389	5.572	5.392
2	0.600	50.200	0.594	0.660	3.790	5.572	5.392
2	0.600	50.200	0.594	2.000	6.821	6.723	7.099
2	0.600	50.200	10.688	2.000	17.102	14.704	16.844
2	0.600	50.200	10.688	2.000	16.072	14.704	16.844
2	0.600	61.200	0.594	2.000	7.682	8.062	7.545
2	0.600	61.200	10.688	0.850	17.491	15.103	14.481
2	0.600	61.200	10.688	0.850	15.067	15.103	14.481
5	0.600	50.200	1.336	0.660	1.156	0.756	0.878
5	0.600	50.200	1.336	0.660	1.222	0.756	0.878
5	0.600	50.200	1.336	2.000	1.174	1.101	1.156
5	0.600	50.200	26.718	2.000	2.474	2.877	2.832
5	0.600	61.200	26.718	0.850	2.689	3.058	2.434
5	0.600	72.200	1.336	2.000	1.648	1.871	1.293
5	0.600	72.200	26.718	0.920	2.868	3.177	2.612
5	1,400	10.200	1.336	2.000	1.487	1.223	1.392
5	1,400	10.200	26.718	0.600	3.079	2.540	2.528
5	1,400	22.400	26.718	0.600	3.628	3.544	3.222
5	1,400	28.600	1.336	2.000	2.408	2.484	1.912
5	1,400	28.600	26.718	0.600	3.949	4.151	3.473
5	1,400	28.600	26.718	2.000	5.530	5.844	4.682
10	1,400	12.500	2.672	2.000	0.517	0.981	0.385
10	1,400	12.500	53.348	0.600	1.277	1.264	0.698
10	1,400	12.500	53.348	0.600	1.198	1.264	0.698
10	1,400	16.900	53.348	0.600	1.818	1.464	0.766
10	1,400	16.900	53.348	2.000	2.257	2.397	1.033
10	1,400	18.500	2.672	0.600	0.716	0.638	0.322
10	1,400	10.200	53.348	0.600	0.710	0.222	0.656
10	1,400	22.400	53.348	0.600	0.784	0.532	0.836
10	1,400	22.400	53.348	0.600	0.773	0.532	0.836
10	1,400	22.400	53.348	2.000	1.038	0.912	1.127
10	1,400	22.400	53.348	2.000	1.026	0.912	1.127
10	1,400	22.400	53.348	2.000	1.016	0.912	1.127
10	1,400	28.600	2.672	0.600	0.316	0.682	0.368
10	1,400	28.600	2.672	2.000	0.574	1.233	0.496
10	1,400	28.600	2.672	2.000	0.382	1.233	0.496
15	3,175	12.500	4.008	2.000	0.250	0.441	0.336
15	3,175	12.500	80.156	0.600	0.441	0.237	0.610
15	3,175	12.500	80.156	2.000	0.675	0.643	0.822
15	3,175	16.900	4.008	0.600	0.245	0.218	0.273
15	3,175	16.900	80.156	0.600	0.706	0.330	0.669
15	3,175	16.900	80.156	2.000	0.886	0.794	0.902

Figura 5. Valores medidos das flechas e previstos pelos modelos.

Os gráficos da Figura 2 indicam um razoável grau de concordância entre os valores experimentais e os obtidos pelos modelos estatísticos. Calculando-se os desvios médios relativos das flechas medidas e previstas por esses modelos, obtêm-se:

$$e_{ANN} = \frac{1}{n} \sum_{i=1}^{n} \frac{\left| f_{ANN,i} - f_{EXP,i} \right|}{f_{EXP,i}} \cdot 100 = 29,3 \tag{4}$$

$$e_{REG} = \frac{1}{n} \sum_{i=1}^{n} \frac{\left| f_{ANN,i} - f_{EXP,i} \right|}{f_{EXP,i}} \cdot 100 = 18,4 \tag{5}$$

Portanto, a despeito da extrema simplicidade da técnica estatística de inferência utilizada, o modelo gerado pelo método de regressão mostrou-se mais acurado do que o oriundo da aplicação da rede neural. Tal se deve, possivelmente, à pequena quantidade de dados disponíveis no conjunto-treinamento, fato, aliás, que freqüentemente limita a aplicação de redes neurais a muitos problemas de inferência estatística (Kovács, 1996).

5. CONCLUSÕES

Métodos estatísticos baseados em regressão múltipla e em redes neurais artificiais foram aplicados a um conjunto de dados gerados por um projeto de experimentos de conformação de placas de ligas alumínio 7050 por *peen forming*, de modo a que se sintetizassem modelos quantitativos relacionando a flecha máxima da placa deformada com as variáveis do processo. Embora os dois modelos obtidos tenham produzido estimativas de flechas razoavelmente concordantes com as medidas experimentais, o modelo inferido pelo método de regressão mostrou-se mais acurado do que o inferido pela rede neural, fato que se deve, possivelmente, ao limitado número de exemplares do conjunto-treinamento.

Cabe finalmente destacar que, apesar de sua extrema simplicidade, o modelo gerado pelo método de regressão, relacionando o valor da flecha máxima f esperada para a placa conformada com a sua espessura e e com as quatro variáveis significativas do processo de *peen forming* – pré-carga (t), diâmetro médio das granalhas (d), cobertura (c) e velocidade média de impacto (v) – permite resolver dois problemas comuns ao setor de projetos da indústria aeronáutica: 1) verificar, *a priori*, se é possível obter uma dada curvatura de placa por meio de peen forming; 2) estimar, a priori, um conjunto de parâmetros do processo de peen forming capazes de produzir a curvatura desejada na placa em foco.

6. DIREITOS AUTORAIS

Os autores agradecem à FINEP pelo financiamento do projeto "Modelamento, monitoramento e controle de processo de conformação por jateamento de esferas de peças usinadas de ligas de AL" (convênio 01.05.0748.00 / Ref. 2227/05), do qual este artigo é um dos resultados. O primeiro autor também agradece o CNPq pelo apoio financeiro a ele pessoalmente concedido.

7. REFERÊNCIAS

Almen, J., Black, J.P.H., 1963, Residual stresses and fatigue in metals, McGraw-Hill, Toronto, pp. 64-69.

Barker, B., Young, K., Pouliot, L., 2005, Particle velocity sensor for improving shot peening process control. Proceedings of the 9th International Conference on Shot Peening (ICSP-9), pp. 385-391.

Champaigne, J.M., 2002, Almen gage calibration. Proceedings of the 8th International Conference on Shot Peening (ICSP-8), pp. 108-113.

- Clarke, D., Birley, S.S., 1981, The control of manual shot peening. Proceedings of the 1st International Conference on Shot Peening (ICSP-1), pp.161-167.
- Evans, R.W., 2002, Shot peening process: modelling, verification and optimization. Materials Science and Technology, v.18, p.831-839.
- Fuchs, O.H., 1984, Defects and virtues of the Almen intensity scale. Proceedings of the 2nd International Conference of Shot Peening (ICSP-2), pp. 74-78.
- Kovács, Z. L., 1996, Redes Neurais Artificiais: Fundamentos e Aplicações, Livraria Física Editora, São Paulo, SP.
- Li, K., 1981, Using stress peen forming process for integrally stiffened wing panels. Proceedings of the 1st International Conference on Shot Peening, pp. 555-564.
- Lu, J., 1995, Handbook of Measurement of Residual Stresses. Fairmont Press, 253p.
- Meguid, S. A., Shagal, G., Stranart, J. C. "Finite element modeling of shot-peening residual stresses". Journal of Materials and Processing Technology. 1999, pp. 401-404.
- Meguid, S. A., Shagal, G., Stranart, J. C., Daly, J. "Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses". Finite Element in Analysis and Design, 31, 1999, pp. 179-191.
- Neelakantan, M.N., Green, R.G., Foo, S.H., John, R., 1981, Measurement and control of impact finishing processes. Proceedings of the 1st International Conference on Shot Peening, pp.147-158.
- O'Hara, P., 2002, Peen-Forming A Developing Technique. Proceedings of the 8th International Conference on Shot Peening (ICSP-8) in Germany, 16-20.
- Schiffner, K., Helling, C.D., "Simulation of residual stress by shot peening". Computers and Structures, 72, 1999, pp. 329-340.
- Tatton, R.J.D., 1986, Shot peen forming. In: Impact Surface Treatment The 2nd International Conference on Impact Treatment Processes, Cranfield Institute of Technology, Bedford, UK. Meguid, S.A., ed., Elsevier, London, pp. 134-143.
- Wang, T., Platts, M.J, Levers, A., 2006, A process model for shot peen forming. Journal of Materials, Processing and Technology, 172(2), pp. 159-162.
- Watanabe, Y., Hasegawa, N., 1996, Simulation of residual stress distribution on shot peening. Proceedings of the 6th International Conference on Shot Peening, pp. 530-535.

6º CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 6th BRAZILIAN CONFERENCE ON MANUFACTURING ENGINEERING 11 a 15 de abril de 2011 – Caxias do Sul – RS - Brasil April 11th to 15th. 2011 – Caxias do Sul – RS – Brazil

APPLICATION OF MULTIPLE REGRESSION AND NEURAL NETWORKS TO SYNTHESIZE A MODEL FOR PEENFORMING PROCESS PLANNING

Fleury, A. T., agfleury@fei.edu.br¹
Delijaicov, S., sergiode@fei.edu.br²
Martins, F. P. R., flavius.martins@poli.usp.br³

¹Centro Universitário da FEI, A. Humberto de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 ²Centro Universitário da FEI, A. Humberto de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 ³Escola Politécnica da USP, Av. Prof. Mello Moraes, 2231, São Paulo, 05508-970

Abstract. Shot peenforming, a dieless forming process, is one of the most successful methods to produce slight and smooth curvatures on large panels and plates. Through the application of a regulated blast of small round steel shot on the piece surface, a thin internal layer of residual compressive stress causes the elastic stretching of the shotted surface, giving rise to a permanent non-plastic deformation of the whole piece. Although this forming process has been used since the fifties, especially by the aerospatial industry, a scientific method for peenforming process planning has not been developed yet. This can be explained by the difficulty to develop a mathematical model to describe the relationship between the process variables (shot diameter, impact velocity, static preload and coverage) and the curvature of the piece. In this article we present a simple method to synthesize an empirically-based model that permit to estimate the maximum displacement of a plate when the process values are known. Such a model was generated through the application of statistical inference methods – multivariable regression and neural networks – to a set of experimental data concerning the application of peenforming processes to a group of 215 aluminum 7050 alloy rectangular plates. The referred model can be used as an engineering tool to aid setting up a peenforming process in order to produce a desired curvature on a given plate.

Keywords: peen forming, multivariable regression, neural networks.

[©] Associação Brasileira de Engenharia e Ciências Mecânicas 2011