

IDENTIFICAÇÃO DE ESTRUTURAS TURBILHONARES A JUSANTE DE UM MODELO SIMPLIFICADO DE VÁLVULA CARDÍACA DO TIPO "VALSALVA SINUSES" ATRAVÉS DA TÉCNICA DE VELOCIMETRIA POR IMAGEM DE PARTÍCULAS (PIV)

Ana Beatriz de Sá Barbosa Mendes

Prof. Dr. Oscar M. H. Rodriguez

Jorge Enrique Arrollo Caballero, Pedro Jose Miranda Lugo

USP - University of São Paulo

anabeatriz.mendes@usp.br

Objetivos

O objetivo central da pesquisa é realizar a caracterização da dinâmica do comportamento do fluido mediante a ação da complacência de um duto flexível, por meio da técnica PIV (Particle Image Velocimetry). Esse escoamento será submetido a condições semelhantes às do fluxo sanguíneo na aorta ascendente, dentro da realidade que pode ser proporcionada na bancada experimental disponível no laboratório.

Mediante a realização ,de forma experimental, do levantamento dos campos de velocidade no tubo flexível utilizando a técnica PIV , é possível, portanto, com base nesses dados,quantificar os campos de vorticidade. Posteriormente, identificar os pontos de estagnação e as áreas de alto cisalhamento.

Como consequência do estudo, será possível compreender um pouco mais sobre os efeitos resultantes da complacência e indicar a possível importância de considerá-la no procedimento de teste de próteses valvares.

Métodos e Procedimentos

Em primeiro plano, para a execução experimental do projeto contamos com uma instalação composta por uma tubulação de vidro borossilicato com 7,5m de comprimento e 20,5 mm de diâmetro interno.

Ademais, a fim de realizar o controle das condições experimentais há medidores de vazão do tipo coriolis e turbina, termopares e sensores diferenciais da pressão.

É importante salientar que a duto flexível ficará dentro da seção de visualização, composta por uma caixa de acrílico preenchida com glicerina. Com o objetivo de emular o comportamento transiente e periódico do fluxo sanguíneo no atual experimento será alocado a montante do tubo flexível uma válvula solenóide de fechamento rápido.

De maneira similar, será colocada uma válvula agulha a jusante do duto flexível, com a finalidade controlar o diferencial de pressão no trecho da tubulação no qual o duto flexível está posicionado. Com o intuito de estabelecer essa medida, será utilizado um medidor diferencial de pressão, cuja primeira e segunda tomada estão localizadas a jusante da válvula de fechamento rápido e a montante da válvula agulha, respectivamente.

Outrossim, a aquisição de dados será feita por meio do LabVIEW 17 e do sistema de aquisição PIV Davis 8.4. Assim, teremos uma bancada experimental adequada para o estudo da complacência.

Figura 1: Instalação experimental construída para aplicação da técnica PIV. Fonte:[1]

É válido destacar que o experimento será realizado nas seções transversal e longitudinal.

Resultados

Com o intuito de obter a validação do modelo experimental escolhido, foram realizados alguns cálculos, a fim de determinar a velocidade do escoamento de água, o tempo de abertura e fechamento da válvula on/off, a razão do diferencial de pressão pelo comprimento e a expansão máxima do tudo flexível.

Esses valores foram determinados estabelecendo semelhança dinâmica entre as condições experimentais e o fluxo sanguíneo na artéria aorta ascendente em relação aos seguintes adimensionais: número de Reynolds, Strouhal , coeficiente de atrito estabelecido pelo diagrama de Moody e ϵ/D (expansão máxima / diâmetro original do duto), respectivamente. O processo descrito foi realizado para uma vazão máxima de sangue no período da sístole que é igual a 714, 2857 ml/s [1].

Tabela 1: Resultado da semelhança por número de Reynolds, Strouhal, coeficiente de atrito e ϵ/D entre o fluxo sanguíneo e o fluxo de água experimental.

o naxe cangamee e e naxe de agua experimentar.		
Velocidade máxima da água	$u_{a(max)}$	0, 4080[<i>m</i> / <i>s</i>]
Tempo (válvula on/off permanece aberta)	T _{aberta}	0, 8794 [s]
Tempo (válvula on/off permanece fechada)	T fechada	1, 6332 [s]
Diferencial de pressão pelo comprimento	ΔP/L	128, 820[Pa/m
Expansão Máxima	€	0,99 [mm]

Assim, aplicando PIV (Particle Image Velocimetry) no sistema experimental nas condições descritas na Tabela 1 esperamos obter os campos das velocidades para um escoamento monofásico de água em regime turbulento. Dessa maneira, para o estudo da seção transversal da parte flexível espera-se observar o comportamento dos vórtices e os pontos de estagnação, obtendo estruturas de vorticidade semelhantes às expressas na figura 2.

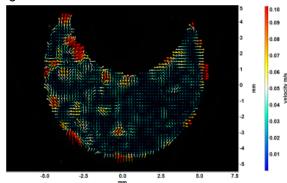


Figura 2: Campo de velocidade em uma seção transversal de um escoamento bifásico água-óleo

Conclusões

Com a técnica PIV será possível observar o comportamento hidrodinâmico da água devido a complacência em uma sessão de observação feita de um material flexível, de acordo com a semelhança estabelecida com o número de Reynolds, Strouhal, coeficiente de atrito e ϵ/D . Desse modo, seremos capazes de validar os resultados obtidos experimentalmente. Além disso, será possível identificar e quantificar os vórtices que vierem a aparecer no escoamento em decorrência da complacência do material.

Referências Bibliográficas

[1]Salmonsmith, Jacob Andrew, Andrea Ducci e Gaetano Burriesci. "O alinhamento da válvula aórtica transcateter importa?." *Open Heart* 6.2 (2019): e001132.