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Abstract. Performing similarity queries using resolutions different from those
used for the data employed during the index construction is a challenge for tra-
ditional Metric Access Methods (MAMs). Varying data resolution occurs, for
example, in scenarios involving reduced data fidelity, such as when reducing
data resolution for efficient network transmission. This work proposes a novel
way to extend a MAM, using the Slim-tree as a case study, to efficiently and
adaptively support queries over transformed data using indices built using only
the original, full-resolution data. The proposed approach modifies the pruning
heuristic to incorporate safe upper bounds on distances in the transformed do-
main, guaranteeing correct query results while preserving much of the pruning
power of the original MAM. Experimental results on image datasets demon-
strate substantial performance improvements over sequential search, even un-
der conditions of high compression.

1. Introduction

The growing need to analyze large volumes of complex data, such as images, videos,
and audio, often distributed across remote sites via digital networks, poses significant
challenges to traditional similarity query retrieval methods. In many practical scenarios,
such as efficient data transmission in bandwidth-constrained environments or on devices
with limited capacity, it is common to apply transformations that reduce the resolution of
this data. However, this practice introduces a critical challenge: Metric Access Methods
(MAMs) built on the original high-resolution data may become incompatible with their
transformed counterparts. MAMs are specialized index structures that segment a metric
space into hierarchical regions to organize complex objects. The spatial segmentation
takes into account properties of the data space to accelerate similarity query execution, to
allow pruning entire segments that certainly do not contain query answers.

To illustrate, consider a simple case in which an image search procedure filters
result candidates using color histograms with a fixed dimensionality, like 256 bins. In
scenarios with high network traffic, it may be advantageous to reduce the histogram res-
olution to decrease data transfer. However, index structures built for high-resolution his-
tograms are incompatible with queries posed at lower resolutions, and vice versa: the
resolution of the queries must match that of the index. Similar issues arise during ex-
ploratory data analysis, where various data transformations are tested to identify the most
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suitable representation, again requiring resolution alignment between queries and the in-
dex structure.

In environments with limited network connectivity, such as edge or border com-
puting, mobile applications must operate within strict bandwidth constraints. For ex-
ample, in a visual similarity search task, a client may send low-resolution image de-
scriptors to a server for product identification. A key challenge is processing these low-
fidelity queries efficiently against a high-resolution data index to maintain low-latency
responses. Our proposed solution directly leverages the high-resolution index to answer
low-resolution queries, bypassing the need for costly index reconstruction or exhaustive
sequential scans. This approach significantly mitigates performance degradation caused
by limited network connectivity, ensuring faster and more efficient query handling.

As a result, current data search approaches often fall back on either costly se-
quential scans or complete index reconstruction for the transformed data, both of which
significantly degrade search efficiency. This work directly addresses this challenge by
introducing an adaptive solution that enables the efficient reuse of existing indices, even
when queries target data that has been transformed, for instance, through resolution re-
duction via the Haar Transform. We propose an adaptation to the pruning heuristics of
MAMs, exemplified using the Slim-tree [Traina Jr et al. 2000], which integrates safe up-
per bounds for distances in the transformed domain. This ensures result correctness while,
depending on how much the original data is compressed, it is able to preserve much of the
original structure’s pruning ability. By bridging the gap between the need for data trans-
formation and the efficiency of similarity queries, our approach offers a promising di-
rection for faster and more cost-effective analysis in distributed and resource-constrained
environments.

2. Background

2.1. Similarity Measurements

Similarity measurements quantify how closely objects resemble each other in
similarity queries and algorithms operating in distance spaces [Zezula et al. 2006,
Gupta et al. 2025]. They are crucial in Database Management Systems (DBMS), es-
pecially for managing complex datasets like image collections. Similarity can be
quantified using various methods, such as similarity coefficients or distance functions
[Zaki and Meira 2020]. The latter are particularly significant. They evaluate the sim-
ilarity of a pair of objects, where smaller values indicate higher similarity, with zero
representing identical objects. Distance functions that satisfy the properties of non-
negativity, identity of indiscernibles, symmetry, and the triangle inequality are referred
to as metrics [Chen et al. 2023, Deza and Deza 2016]. A typical example is the Manhat-
tan distance, which is often used to compare color histograms in image analysis tasks
[Vadivel et al. 2003].

2.2. Complex Data Signatures

A Complex Data Signature is a set of features extracted from a complex object, typi-
cally represented as a feature vector. A signature captures distinct characteristics that
help identify and compare objects, enabling a more compact representation and faster
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and more accurate comparisons of objects. They are widely used in database sys-
tems for indexing and comparing complex data such as images, videos, and audio
[Saouabe et al. 2024, Cazzolato et al. 2019]. A data signature is typically derived through
mathematical or statistical techniques designed to capture the essential characteristics of
the original object. A variety of methods can be employed for this purpose, including
image processing algorithms [Marques and Rangayyan 2013] and techniques based on
machine learning models [Elharrouss et al. 2024, Santana and Ribeiro 2023].

2.3. Metric Access Methods

A Metric Access Method (MAM) is an indexing technique used in databases that work
with complex data, where a metric defines the notion of similarity. They are im-
portant for optimizing similarity queries in applications such as image and video re-
trieval [Sharma et al. 2019]. A MAM segments the data space into regions, enabling
selective data pruning without analysis of individual elements. For instance, an R-tree
[Guttman 1984] organizes dimensional data into a balanced tree structure, where each
node represents a specific region in the data space. By calculating the minimum and
maximum distances between two nodes, it becomes possible to define node intersections,
enabling their use as a MAM. The primary goal when building a MAM is to minimize
the number of nodes traversed to reach a leaf node. MAMs employ heuristics that, to-
gether with the distances computed within the structure, enable discarding regions in the
search space (pruning), making the process significantly more efficient compared to the
sequential search [Chen et al. 2023].

Many MAMs have been proposed to improve query performance in databases
storing complex data. It is possible to use structures developed for multi-dimensional data
associated to a metric, as well as specific structures were designed for “purely metric” data
(such as the VP-tree [ Yianilos 1993]), that only require the metric and the data (data do not
need to be dimensional), such as texts and sequences. When a structure operates on high-
dimensional objects, its performance degrades as dimensionality increases, eventually
becoming worse than a sequential scan. This decline is due to frequent overlaps between
node regions, requiring the evaluation of every node that overlaps during searches. As
the dimensionality increases, the overlaps tend to increase, also increasing the number
of nodes that must be visited, which is known as the "curse of dimensionality," which
worsens in higher dimensionality. Several structures have been developed to address this
challenge, such as the X-tree [Berchtold et al. 1996] and Slim-tree [Traina Jr et al. 2000].

The Slim-tree is a purely metric MAM designed to organize data based on dis-
tances in a metric space. It selects a small number of elements to serve as pivots, where
each pivot, together with a radius, defines a node’s covering region. Nodes are typically
stored in fixed-length blocks in secondary memory. A key advantage of the Slim-tree lies
in its ability to optimize node occupancy while minimizing overlap between regions. A
node splits when its storage capacity is exceeded, constructing a minimum spanning tree
(MST) from the stored elements, using pairwise distances as edge weights. The longest
edge in the MST is then removed, partitioning the data into two groups.

Both R-trees and Slim-trees support the dynamic insertion of new elements with-
out requiring a complete rebuild of the structure, making them ideal for databases that
experience frequent updates. In contrast, structures like the VP-tree lack this flexibility,
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as they require more effort to accommodate new elements, limiting their adaptability in
dynamic environments.

MAM structures rely on a specific distance measurement for data comparison. If it
changes, the entire structure must be rebuilt, a process that can be highly time-consuming,
particularly when dealing with large datasets. In the same way, if transformations are
applied to the data already stored, the MAM also needs to be reconstructed.

2.4. The Wavelet Transforms and the Haar Transform

Data transformations are widely employed in signal processing. Wavelet transforms are
among the most useful ones. They enable multiresolution analysis by decomposing a
signal into components at various scales [Abdel-Hamid 2024, Daubechies 1990]. They
allow a detailed evaluation of both coarse and fine features, making it possible to analyze
signals at multiple levels of resolution and capture localized variations at varying levels
of detail.

The Haar transform is particularly effective for signal compression, and is fre-
quently applied in image processing [Eliasof et al. 2024, Mulcahy 1997]. It operates by
computing the averages and differences between pairs of elements, as follows. Given a
vector [ay, as, as, ..., a,|, two arrays are calculated: the coefficients of approximation Aga)

and of details Agd):

a +ay az+ ay Ap_1 + Qp,

A _ & 1

h [ 2 I 2 ) ) 2 ] ( )
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In the context of content-based image retrieval (CBIR — retrieval of images based
on their visual content), the approximation coefficients capture the coarse structure of
the image. They can be compared more efficiently, making them well-suited for initial
retrieval steps. This transformation can be applied iteratively to the approximation coef-
ficients, yielding progressively coarser representations. This multilevel decomposition is
especially valuable for narrowing down the search space, enabling a fast, preliminary se-
lection of candidate images, which can then undergo more detailed and computationally
intensive comparisons using higher-resolution features.

The Haar transform can be extended to multidimensional data by applying it
sequentially along each dimension, typically starting with rows and then progressing
to columns. With a linear complexity of O(n), it is highly efficient, even for large
datasets. By preserving both approximation and detail coefficients, the transform remains
reversible and lossless, ensuring exact data reconstruction, an essential feature for appli-
cations like Content-Based Image Retrieval (CBIR), where both efficiency and fidelity are
critical.

When used for compression, the Haar transform retains only the approximation
coefficients. The compression ratio is adjustable via the number of decomposition levels,
enabling a flexible trade-off between efficiency and fidelity. This adaptability makes it es-
pecially effective in contexts where storage or transmission constraints must be balanced
while preserving the essential image content.
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3. Methods
3.1. Description of the adopted approach

Structures designed for complex data, such as the Slim-tree and X-tree, are effective for
similarity queries. However, they become unsuitable when queries involve transformed
data — for instance, when accessing different resolutions or applying data transformations.
In such cases, either the MAM must be entirely rebuilt using the transformed data, or the
system must fall back on sequential search. This limitation arises because the precom-
puted distances and the resulting search space no longer align with the modified data,
preventing the structure from effectively guiding the search.

Consider, for instance, a set of complex objects represented by image feature vec-
tors, such as 256-bin color histograms. If a structure like the Slim-Tree is built on these
vectors, it can support efficient similarity queries searching for 256-dimensional vectors.
However, when a query requires comparisons using a resolution of 128 bins, the original
structure is useless, because the previously computed distances are no longer the same for
the new representation. The workaround is to perform a sequential search, because the
transformation can be applied to each object immediately before performing the similar-
ity computation. While this ensures correctness, it sacrifices the efficiency provided by
the original indexing structure.

A potential transformation suitable for this scenario is the Haar Transform, whose
reversibility can be leveraged to maintain efficiency and flexibility. By employing only
the approximation coefficients, similarity comparisons can be performed more quickly
on a lower-dimensional representation. At the same time, by storing the coefficients of
details, it remains possible to reconstruct the original data when needed. In the case of
image histograms, for example, the Haar Transform enables, in a single step, a reduction
in dimensionality from 256 bins to 128 bins.

Indexing structures rely on heuristics to optimize computations and enable sub-
space pruning during query processing, using previously calculated distances to avoid
unnecessary comparisons. However, when a transformation is applied to the data, these
precomputed distances become invalid, rendering the indexing structure ineffective. This
work proposes a method that allows continued use of the index even after the data has
been transformed. When estimating a bound on how much the new distances deviate
from the original ones is possible, the indexing heuristics can be adapted accordingly. By
incorporating these estimated distances into the pruning mechanism, the index can still
guide the search process effectively. As a result, our approach can deliver performance
superior to that of a full sequential search, retaining part of the efficiency of the original
index without requiring its reconstruction.

3.2. Implementation Details

This work investigates an indexing framework for querying data subjected to resolution-
reducing transformations. We combine the Slim-tree with the Haar transform and use
Manhattan distance as a representative similarity measure, focusing on range queries as
the primary query type.

When determining whether a search operation should descend into a child, the
Slim-tree (like most hierarchical MAMs) considers three objects: the query center O,,
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the representative of the current node O,,, and the representative of the candidate child
O,. Additionally, four relevant distance values are involved: the search radius R, the
distance between the query center and the current node representative D,,,, the distance
between the current node and the child node representatives D,,,,, and the covering radius
of the child node R,, as shown in Figure 1. Notice that not all of these distances require
approximation: the search radius R, is provided directly by the user and is exact, and D,
is computed before entering the current node, so it is precisely known.
(¢]

n

Figure 1. Representation of objects and distances in the query

However, D, and R, are precomputed and stored within the MAM structure.
After a transformation is applied to the data, these values are no longer valid in the trans-
formed space. As a result, it becomes necessary to employ a heuristic to ensure that the
pruning process remains safe; that is, it must guarantee that no potentially relevant data is
mistakenly excluded. A heuristic that satisfies this condition can be formulated as follows:

Dcn - -Dm) S Rb + Rv (3)

Therefore, if R, is overestimated, the pruning condition remains valid in all cor-
rect cases, but potentially admits additional false positives that increase processing. The
same rationale applies to D,,,,. Thus, by computing guaranteed over-approximations of 2,
and D,,,, we ensure that no relevant results are missed, thereby preserving query integrity
of the query response while safely operating in the transformed data space.

Under those conditions, the less accurate the approximation, the more false posi-
tives will be introduced, and thus the higher the likelihood of failing to prune nodes that
could otherwise be safely discarded. Therefore, the quality of the approximation is critical
to the efficiency of this approach.

To find a good approximation to the Haar transform used with the Manhattan
distance, consider two vectors of dimensionality e:
A =lay,ag,as3,a4, ... Ge_1,ae 4)
B = [by,bg,b3,by, ... be_1,bc] (5)

The Manhattan distance (D,,.,1,) between A and B is given by Equation 6:
Dmanh(AaB):|a1_b1‘+|a2_b2|+-~-+|ae_be| (6)
After applying the Haar transform, two new vectors A; and By, are obtained as the

transformed versions of the original vectors A and B, concatenating both approximation
(a) and detail (d) coefficients.

(a). 4(d) ap+az az+ay (e—1 + Qe
Ah:[Ah)7Ah ]:[ 9 5 9 RS} 92 )
a1 — G2 az —aq Qe—1 — Ue

2 ) 2 PIRRRR] 2 ] (7)
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by +by b3+ by befl"_be.
2 ) 2 PR 2 I
by —by b3 —by  be—1 — b,
2 ) 2 DRRRR] 2 ] (9)
For compression using the Haar transform, only the approximation coefficients
are used. Thus, considering only the approximation coefficients from AEL“) and B,(l“), we
can compute a safe upper bound for the Manhattan distance between A and B.
a a + ao b1+b2 as + ay b3+b4
Dot (AW By — (4 _ _
(0@71 + Qe - befl + be)
2 2

a d
By =B\ B = |

1
25(‘a1—51+62—52| +"'+|a671_befl+a6_be|> (10)

For any real numbers x and y, the triangle inequality states:
|2+ yl <[] + [y (1D

Applying this inequality to each term of 10. For each pair of indices (2i — 1, 21),
let x = ag;_1 — by;—1 and y = ag; — by;. Applying the inequality gives:
’(a2i71 — boi1) + (agi — b)) | < lagi—1 — boi1| + azi — b (12)
Summing all the pairs from i = 1 to ¢/2, we have:
lay — by + ag — bo| + ... + |@e—1 — be—1 + ae — be| <
<lar — b1 + a2 — bo| + ... + |ac—1 — be—1| + |ac — b (13)

This implies that:
2 X Diann(An, Br) < Dpann(A, B) &
Dinann(A, B)
2
Since D,ann(An, Br) > 0, we have shown that the distance in the transformed
domain — considering only the Haar transform’s approximation coefficients — is upper-
bounded by half of the original distance. This property allows us to safely estimate upper
bounds in the transformed space using the original distances stored in the index, enabling
an adaptation of the Slim-tree’s pruning heuristic. As a result, we ensure the heuris-
tic remains safe, because no relevant data is mistakenly discarded during pruning. This
approach provides a practical method to reuse an existing Slim-tree structure for multi-
resolution similarity queries, eliminating the need for index rebuilding.

s Dmanh(Ahth) S (14)

4. Experiments

4.1. Experimental Setup

We experimentally validated our proposed multiresolution indexing strategy by perform-
ing range similarity queries using the Manhattan distance (L;) across multiple image
datasets. In this Section, we show the results obtained only for 256-bin grayscale image
histogram vectors derived from the complete Stanford Dogs Dataset [Khosla et al. 2011,
Cazzolato et al. 2022] (20,580 images), as results from the other datasets are similar. Each
object is composed of a name (a string attribute with a maximum of 200 bytes) and its
full-resolution histogram (256 64-bit floats, 2048 bytes). Query objects were represented
at various resolutions, generated by applying the Haar Wavelet Transform to reduce di-
mensionality before each search execution.
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The experiments take the dataset’s sequential scan as the baseline compared to our
proposed approach. The latter utilizes a single index structure (an adapted Slim-tree) built
using the original, full-resolution data (256 bins). For queries posed at lower resolutions,
the same index is reused, employing safe pruning logic based on estimated distance upper
bounds derived from the multiresolution properties of the Haar transform. Performance
was evaluated by averaging results over 500 queries for each experimental configuration,
with each query centered on a randomly selected object from the dataset. Key perfor-
mance indicators measured are: average query time, average disk page accesses, average
number of distance calculations, and average number of objects returned satisfying the
query radius.

A preliminary analysis was conducted to optimize disk page size, evaluating pages
sizes of 32, 64, 128, and 256 KB, measuring the number of disk accessed to answer
queries at full resolution (256 bins) and at reduced resolution (128 bins, 1 Haar applica-
tion) over all pages, using a radii selected to return approximately 15 objects. As shown
in Figure 2, increasing page size yields diminishing returns after 128 KB. Thus, a 128 KB
page size was adopted for all subsequent experiments to optimize 1/O efficiency.
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Figure 2. Percentage of disk accesses

4.2. Performance Evaluation

We evaluated the core performance aspects of the proposed index against the sequential
scan baseline across different query radii and data resolutions.

Disk Accesses: A critical factor in database performance is the I/O cost. Our
indexed approach substantially reduces the average number of disk pages accessed per
query compared to a full sequential scan, which must read the entire dataset. As illustrated
in Figure 3, the reduction exceeds 34% in favorable scenarios. The overhead compared to
a hypothetical Slim-tree used only at its native resolution is minimal, demonstrating the
efficiency of the multiresolution adaptation for I/O.

Distance Calculations: This metric counts the number of times a full distance
comparison is performed between the query object and either a data object or an index
node’s representation. This metric counts the number of comparisons but does not weigh
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Figure 3. Average disk accesses vs. query radius at different Haar transform
levels.
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Figure 4. Average distance calculations vs. query radius at different Haar trans-
form levels.

them by their computational cost; the cost of applying the necessary Haar transform steps
to match the query resolution before the L, calculation increases with the compression
level. The impact of this varying computational cost is captured with the Total Execution
Time analysis, as follows. Figure 4 shows that the index’s pruning mechanism signif-
icantly reduces the number of these calculations compared to the sequential scan (over
68% reduction observed), which must compare the query against every object. While
the count is higher than an ideal single-resolution index would achieve, the gain over the
baseline clearly shows the effectiveness of the pruning strategy.

Total Execution Time: This metric offers a comprehensive view of performance,
accounting for both I/O costs (e.g., disk access) and CPU costs (e.g., distance compu-
tations, Haar transformations, and index traversal). Although execution time can be af-
fected by system-level factors, which introduce some variability, Figure 5 clearly shows
substantial average time savings achieved by the proposed approach compared to sequen-
tial search. These gains become even more significant at higher compression levels (i.e.,
more Haar transform steps). This is because sequential search must apply the compu-
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tationally expensive Haar transform to every object in the dataset to match the query
resolution, leading to high overhead. In contrast, our indexed method performs trans-
formations selectively — only for relevant nodes and candidate objects identified through
pruning — resulting in significantly faster query execution. The proposed method consis-
tently achieves around a 3 times speedup for queries retrieving up to 3% of the data when
using compression rates of 2 and 4 times.

Average Query Time vs. Query Radius
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Figure 5. Average query time vs. query radius at different Haar transform levels.

4.3. Performance at High Compression Levels

A key aspect of our proposal is the ability to reuse an index built on full-resolution data
to support queries at potentially much lower resolutions. To assess the robustness of the
index under such stress conditions, we evaluated its performance across multiple levels
of Haar transform application, ranging from O to 7 steps, corresponding to dimensionality
reduction factors from 1 to 27 = 128.
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Figure 6. Disk accesses vs. radius rank across increasing Haar transform levels.

To enable fair comparisons across different resolutions — where absolute distance
values can vary significantly — we used query radii normalized by selectivity. Instead
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of fixed radii, we defined 10 rank levels, each representing a relative query selectivity.
For each compression level ¢, we first determine a reference radius 7{ that, on average,
retrieves 10% of the dataset; this corresponds to Rank 1. Then, for each compression
level ¢, we define 10 radii 73, where k is the Rank from 1 to 10, varying linearly between
radius O (corresponding to Rank 10) and radius r{. For example, if r{ = 90 for a given
compression level ¢, then the radii for Ranks 1 through 10 would be r{ = 90, 7§ = 80 and
SO on.
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Figure 7. Distance calculations vs. radius rank across increasing Haar transform
levels.

Figures 6 (disk accesses) and 7 (distance calculations) show that index efficiency,
in terms of these metrics, begins to degrade more noticeably after approximately four
Haar transform steps (i.e., 16 X dimensionality reduction). However, the total execution
time analysis in Figure 8 provides a more comprehensive view. As compression increases,
each distance computation becomes costlier, as additional Haar transformation steps are
required. Sequential search must perform these costly computations for all 20,580 objects,
leading to a significant runtime increase. In contrast, while the indexed approach also
incurs some increase in distance calculations and node accesses, its pruning capability
allows avoiding most of the unnecessary computations. As a result, our method achieves
significant speedups — often exceeding 50% — even at high compression levels and for
queries retrieving a substantial portion of the dataset. This confirms the practicality and
effectiveness of reusing the index across wide variations in data resolution.

The implemented software files are available at GitHub: https://github.com/rodri-
go-arboleda/reuse_of_metric_indexes.

5. Conclusion

This work targets the challenge of performing efficient similarity queries on complex data
after they have undergone resolution transformations, a common scenario in distributed
systems and resource-constrained applications. The incompatibility of similarity mea-
surements between indices built over the original data and their transformed versions rep-
resents a significant obstacle, often forcing inefficient sequential scans. We demonstrated
that it is possible to overcome this limitation by reusing the original indexing structure
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Figure 8. Average query time vs. radius rank across increasing Haar transform
levels.

(exemplified using a Slim-tree in this case study) by adapting its pruning heuristic. By
employing safe upper bounds for distances in the transformed domain (using the Haar
Transform and Manhattan distance in this study), our approach ensures the correctness of
query results, avoiding index reconstruction or performing sequential searches. Experi-
mental results confirmed the effectiveness of the proposed solution, revealing substantial
performance gains over the sequential scan method in terms of disk accesses, distance
calculations, and total execution time. The proposed approach remains efficient even at
high compression levels, validating the robustness of adaptively reusing metric indices
for multi-resolution queries. We conclude that this strategy offers a practical and reliable
means to balance resource savings in data transmission and storage with the need for effi-
cient similarity search. Significantly, the proposed method is general and flexible. Its core
idea is not tied to the specific use of the Haar transform or the Manhattan distance, but
rather to the principle that adaptive index reuse is feasible whenever a safe mathematical
bound can be established between distances in the transformed and original spaces. This
bound is the only requirement for adapting the pruning heuristic, ensuring both correct-
ness and efficiency of the search. Future work will explore generalizing this strategy to
other transformation techniques and indexing structures, as well as investigating the use
of deep learning models to learn mappings between transformed and original distances,
extending the approach beyond the Haar transform.
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