
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lssp20

Communications in Statistics - Simulation and
Computation

ISSN: 0361-0918 (Print) 1532-4141 (Online) Journal homepage: https://www.tandfonline.com/loi/lssp20

Global and local tests to assess stationarity of
Markov transition models

Idemauro Antonio Rodrigues de Lara, John Hinde & Cesar Augusto Taconeli

To cite this article: Idemauro Antonio Rodrigues de Lara, John Hinde & Cesar Augusto Taconeli
(2019) Global and local tests to assess stationarity of Markov transition models, Communications in
Statistics - Simulation and Computation, 48:4, 1019-1039, DOI: 10.1080/03610918.2017.1406504

To link to this article:  https://doi.org/10.1080/03610918.2017.1406504

Published online: 09 Feb 2018.

Submit your article to this journal 

Article views: 43

View Crossmark data



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION®
https://doi.org/./..

Global and local tests to assess stationarity of Markov
transition models

Idemauro Antonio Rodrigues de Lara, John Hinde, and Cesar Augusto Taconeli

Exact Sciencies Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba,
São Paulo, Brazil

ARTICLE HISTORY
Received  September 
Accepted  November 

KEYWORDS
Generalized linear models;
Longitudinal categorical
data; Simulation study;
transition probabilities

MATHEMATICS SUBJECT
CLASSIFICATION
F; J

ABSTRACT
We present global and local likelihood-based tests to evaluate
stationarity in transition models. Three motivational studies are
considered. A simulation study was carried out to assess the perfor-
mance of the proposed tests. The results showed that they present
good performance with the control of the type-I error, especially
for ordinal responses, and control of the type-II error, especially for
the nominal case. Asymptotically they are close to the classical test
performance. They can be executed in a single framework without
the need to estimate the transition probabilities, incorporating both
categorical and continuous covariates, and used to identify sources of
non-stationarity.

1. Introduction

The class of transition models are based on the Generalized Linear Model (GLM). This
methodology is useful for the analysis of longitudinal data, especially, with categorical data.
In these cases, the possible dependence within longitudinal data is incorporated through
a Markov-type stochastic process, where the response categories form the state-space, i.e.,
S = {1, 2, 3, . . . , k}, for a k-category response. Additionally, for an ordinal response, the
state-space is considered to have the natural ordering of the integers. Here, we consider
a discrete-time process, where τ = {0, 1, 2, . . . ,T}, corresponds to the set of specific time
points at which the data are observed. The first-order Markov assumption for responses {Yτ }
is described by the conditional probability:

P(Yt = b | Y(t−1) = a,Y(t−2) = c, . . . ,Y(0) = u) = P(Yt = b | Y(t−1) = a) = πab(t − 1, t )
(1)

with a, b, c, . . . , u ∈ S = {1, 2, . . . , k} and t ∈ τ = {0, 1, . . . ,T}. This assumption (1)
defines the transition probabilities in a Markov chain and it means that an individual’s state
at the time t does not depend the complete history of the process but only on the state at time
t − 1 (Jones and Smith 2001). These probabilities may be represented in a one-step k × k
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transition matrix:

P(t − 1, t ) =

⎛
⎜⎜⎜⎝

π11(t − 1, t ) π12(t − 1, t ) . . . π1k(t − 1, t )
π21(t − 1, t ) π22(t − 1, t ) . . . π2k(t − 1, t )

...
... . . .

...
πk1(t − 1, t ) πk2(t − 1, t ) . . . πkk(t − 1, t )

⎞
⎟⎟⎟⎠ .

In order to simplify the mathematical notation we hereafter write πab(t − 1, t ) = πab(t )
and P(t − 1, t ) = P(t ), where the argument t indicates time dependence of the transition
probabilities. Also, if these transition probabilities are homogeneous over time, we have
πab(t ) = πab for all t ∈ τ . In this case we can say the process is stationary and there is a unique
transition matrix, P. This assumption is very important in transition models because it sim-
plifies the matrix of transition probabilities as well as the number of unknown parameters.
Hence, general hypotheses of interest are:

H0 : πab(t ) = πab for all t = 1, 2, . . .T, for all a, b ∈ S = {1, 2, . . . , k};
H1 : πab(t ) �= πab(s) for some t �= s and some a, b ∈ S. (2)

In matrix notation, the hypotheses (2) are H0 : P(t ) = P, for all t = 1, 2, . . .T against H1 :
P(t ) �= P(s), for some t �= s. To evaluate these hypotheses, Anderson and Goodman (1957)
presented the test:

ξ =
T∑
t=1

k∑
a=1

k∑
b=1

na(t − 1)[π̂ab(t ) − π̂ab]2

π̂ab
, (3)

where na(t − 1) is the number of individuals that are in category a at time t − 1, and π̂ab

and π̂ab(t ) are estimates of transition probabilities under H0 and H1, respectively. It is shown
that, asymptotically, the ξ statistic has a χ 2

v distribution, for some appropriate degrees of free-
dom v . This test (3) was originally proposed for nominal data from homogeneous popu-
lations (see Anderson and Goodman 1957), i.e., without the effect of stratifications, giving
v = k(k − 1)(T − 1). Sometimes, the number of states that influence the present individual
state is greater than one and this leads to a q-order Markov chain, q > 1. For more details
on Markov chains and stochastic processes, see Stirzaker (2005) and Jones and Smith (2001).
For the estimation of the transition matrix elements, Good (1955), Anderson and Goodman
(1957), Goodman (1962), Lindsey (1995, 2004) and Agresti (2012) describe the likelihood
estimation procedure, where the estimators π̂ab(t ) and π̂ab coincide with the observed rela-
tive frequencies of specific contingency tables.

In this paper, these transition probabilities are estimated using a GLM, which is more flex-
ible as it allows the inclusion of covariates. These corresponds to the so-calledMarkov transi-
tion models (see Diggle et al. 2002 and Molenberghs and Verbeke 2005), and allow the study
of what happens to a response category from onemoment of time to another, as well as assess-
ing the effects of covariates on the transition probabilities. The aim of this work is to present
a new test to assess stationarity in such transition models and also to identify sources of non-
stationarity. This is particularly relevant becausewhen the stationarity assumption ismet there
are fewer parameters to be estimated and the model is more easily interpreted, but, often in
practice, this important condition is not checked.
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2. Examples andmethods

2.1. Examples

We present three experimental studies as motivational examples in which transition models
can be applied.

... Example : Respiratory data
This study assessed the individual respiratory condition of 111 patients with respiratory prob-
lems, at baseline and four further visits during the study period. The patients were followed
up by two medical centres and were randomized to receive either an active or placebo treat-
ment. The respiratory condition of each patient was classified according to a set of five ordinal
classes, which reflects a response scale of the less favourable to more favourable (1 = terrible,
2 = bad, 3 = moderate, 4 = good, 5 = excellent). The covariates for this study were sex and
age. More details are given by Koch et al. (1990).

... Example : Pig behaviour data
This data set was a part of a study developed by Castro (2016), with 124 animals measured
monthly over 4 time occasions, from March to July 2014. The design was completely ran-
domized with a 2 × 4 factorial treatment structure, corresponding to combinations of two
environmental enrichment levels (E1: with nvironmental enrichment and E2: without envi-
ronmental enrichment) and four genetic lineages (L1; L2; L3; L4). In this experiment, envi-
ronmental enrichment consists of the use of simple objects in the pens (suspended chains and
plastic containers of two different sizes). The response variable of interest is a scoremeasuring
the degree of lesions at the front of the animal, that were classified as: 1: absence of lesions; 2:
moderate degree of lesions; and 3: serious lesions. The lesion degree is an indicator of aggres-
sive behaviour among the animals. More details on this data set and design are available in
Castro (2016).

... Example : Agronomic data
The research studies from Pereira et al. (2015a, b), involve an experiment on an elephant
grass pasture grazed by dairy cows. The experiment was a complete randomized block design
with a 2 × 2 factorial treatment structure, corresponding the combinations of two pre-grazing
conditions and two post-grazing heights. The response variable was the type of vegetation
observed in the field, which was classified as 1: bare ground, 2: tussocks, and 3: weeds. Obser-
vations were taken at 40 points in each one of the four paddocks present in each block over six
seasons, from January 2011 to April 2012. As there are always 40 points observed in each pad-
dock we have repeated measures and there were, initially, 40 × 16 = 640 points per season.
However, in early spring, one of the paddocks was lost and so the total number of observations
was 600. In this work, we used this study as motivation and the original data set was used to
obtain simulated data with first order stochastic dependence, but without block effects for the
sake of simplicity.

2.2. Methods

... Transitionmodels
When Yt represents a response at time t , which depends on the previous responses, i.e.,
{y0, y1, . . . , yt−1}, as well as a set of covariates, we have the so called transition models. If
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f (y0, y1, . . . , yT ) is a joint distribution of the vector (Y0,Y1, . . . ,YT ), disregarding the covari-
ate effects, these models use the factorization:

f (y0, y1, . . . , yT ) = f (y0) f (y1 | y0) f (y2 | y0, y1) . . . f (yT | y0, y1, . . . , yT−1), (4)

and are, therefore, conditional models (Agresti 2012). Considering the first-order Markov
assumption (1) the expression (4) reduces to

f (y0, y1, . . . , yT ) = f (y0) f (y1 | y0) f (y2 | y1) . . . f (yT | yT−1). (5)

while for general order q dependence we can write (4) as

f (y0, y1, . . . , yT ) = f (y0, . . . , yq−1) f (yq | yq−1, . . . , y0) . . . f (yT | yT−1, . . . , yT−q)

= f (hq) f (yq | hq) f (yq+1 | hq+1) . . . f (yT | hT ), (6)

where ht = (yt−1, yt−2, . . . , yt−q).
These concepts can be extended to longitudinal data with covariates by using GLMs and

extensions, in which the parameters that relate to covariates and previous responses are
defined in the linear predictor (see, for example, Zeger and Liang 1992; Diggle et al. 2002;
Molenberghs and Verbeke 2005). Due to the decomposition in (6), conditional transition
models (conditioning on the initial history hq) can be fitted to data by standard techniques
for GLMs with independent data. The data dependence is incorporated by the presence of the
previous responses (history) in the linear predictor.

In this context, let yi = (yi0, yi2, . . . , yiT )′ be the ((T + 1) × 1) vector of response variables
for the i-th individual (i = 1, 2, . . . ,N), xit = (xit1, . . . , xit p)′ an associated (p× 1) vector
of covariates and hit = (yi(t−1), yi(t−2), . . . , yi(t−q)) the (q × 1) vector of previous responses,
i.e., the q-step history for individual i at time t . According to Diggle et al. (2002), a Markov
transition model specifies a generalized linear model for the random variable Yit | hit , that
is assumed to have a distribution that belongs to the canonical exponential family and the
conditional expectation, μC

it = E(Yit | hit ), is defined as:

g(μC
it ) = ηit = x′

itβ +
s∑

r=1

αr f ∗
r (hit ), (7)

where g(μC
it ) is a link function and f ∗

r are functions that define the structure of the transition
model in the linear predictor (stochastic dependence). Also, the conditional variance is given
by vCit = Var(Yit | hit ) = φv(μC

it ), where v(.) is a variance function and φ a known dispersion
parameter. The vector δ = (β, α) represents the weights that the explanatory variables have
on transition probabilities, in which β, of dimension p× 1, is associated with the covariates,
andα is associatedwith the history (the previous responses) and has a dimension that depends
on both the order q and the specific form of the functions f ∗

r . These parameters are estimated
by maximum likelihood and when the model is assumed to be stationary, only one model
is fitted using a sum of individual contributions to the likelihood function (Azzalini 1983;
Diggle et al. 2002; Molenberghs and Verbeke 2005). Thus, considering a stationary transition
model of order q, from (6) the contribution to the likelihood function of the i-th individual
is given by:

f (yi0, . . . , yi(q−1))

T∏
t=q

f (yit | yi(t−1), yi(t−2), . . . , yi(t−q)).
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Conditioning on the initial history hit , a conditional likelihood for the regression parameters
δ in a generalised linear model is given by

L(δ) ∝
N∏
i=1

f (yiq, . . . , yiT | yi(q−1), . . . , yi0) =
N∏
i=1

T∏
t=q

f (yit | hit ) =
T∏
t=q

N∏
i=1

f (yit | hit ),

(8)
which preserves the relation of stochastic dependence through the vector hit . To maximize
the conditional likelihood function (8), a Newton-Raphson iterative method can be used that
reduces to iteratively reweighted least squares, for regressing Yit , t = q, . . . ,T , against the
(p+ s) covariates (xit , f ∗

1 (hit ), . . . , f ∗
s (hit )) in theGLM framework. As noted, this procedure

is analogous to the estimation of GLMs for independent data, except for the fact that we now
have additional parameters and terms in the linear predictor for the stochastic dependence.
Diggle et al. (2002) givemore details about this procedure, as well as its close relationship with
the classic procedure for GLM. If all parameters in themodel are non-stationary, i.e. vary over
t = q, . . . ,T , then δt can be found from just the t-th factor in the full product likelihood (8), as
was done by Anderson andGoodman (1957), but if any parameter components are stationary
then it is necessary to use the full likelihood over all times t = q, . . . ,T .

For the non-stationary case, differing from the proposal of Diggle et al. (2002), Ware,
Lipsitz, and Speizer (1988) suggest to fit amodel for each occasion as in a cross-sectional study.
To fit a first-order transitionmodel we need to add the response category at the preceding time
as an additional covariate in the regressionmodel, i.e. xit = (xit1, xit2, . . . , xit p, xit(p+1))

′ repre-
sents the vector of (p+ 1) covariates associated with the i-th individual at the t-th transition,
and xit(p+1) is the previous state. For example, if τ = {0, 1, 2, 3, 4, 5} then there are 6 time
occasions, which corresponds to 5 first-order transition models. For the first transition, we
consider the response at time t = 0 as an additional covariate. In the second transition, the
additional covariate is the response at time t = 1 and so on. Then, the vectors δt are speci-
fied for each occasion and are obtained through the separate maximization of the likelihood
functions, one for each transition. Ware, Lipsitz, and Speizer (1988) presented this theory,
originally for ordinal data, but it is also applicable to nominal responses. For more general
q-order dependent models we simply needs to incorporate the q previous responses as addi-
tional covariates. However, as we have noted above this requires conditioning on the first q
transitions and is only feasible ifT is sufficiently large. Also, rather that simply using the previ-
ous states as transitions we could consider functions of these f ∗

r , r = 1, . . . , s, as in (7), which
allows for more flexible modelling of potential time dependence in the transitions.

It is important to note that in this paper, when we discuss stationarity, we are referring to
homogeneous transition probabilitiesmatrices over time, otherwise it is understood that these
matrices vary over time (hence the parameter notation with argument t). Thus, assuming that
the process is stationary of first order, the fitted singlemodel allows us to estimate, δ̂, and by the
invariance principle of likelihood we can estimate the transition probabilities matrix, P̂. On
the other hand, assuming no stationarity or non-homogeneity of transition probabilities over
time, but still first order dependence, the T fitted models give esitimates δ̂(t ), and therefore,
allow us to estimate separate matrices of transition probabilities, P̂(t ), t = 1, 2, . . . ,T .

Some classical references for the binary case are Cox (1970), Korn andWhittemore (1979),
Azzalini (1983), Bonney (1987), Zeger and Liang (1992), Fitzmaurice and Laird (1993) and
Heagerty (2002). For multinomial response (nominal or ordinal) the procedure is similar
when we consider extensions of the GLM through generalized logits and proportional odds
models (Ware, Lipsitz, and Speizer 1988; Lee and Daniels 2007; De Rooij 2011). In both
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cases, the response of the i-th individual on the t-th occasion becomes a (k × 1) vector,
yit = (yit1, yit2, . . . , yitk)′, where {yit j} represent a set of index variables for the response cat-
egories, with yit j = 1 if the i-th individual is in the j-th category at the time t , and yit j = 0
otherwise, corresponding to a multivariate response.

In the following Sections (2.2.2 and 2.2.3) we show themodels that can usually be usedwith
first order dependence, with obvious simple extension to higher order. Also, in the Section
2.2.4, we present a new procedure to assess stationarity in which we do not use separate
models for the assumption of non-stationarity, instead we incorporate into a single struc-
ture (linear predictor) additional parameters to explore the dependence, or not, with respect
to t . However, in the simulation study, we use the two fitting approaches, since the classical
test requires the fitted model under stationarity and the individual fitted models under non-
stationarity. When necessary we use a partition of the explanatory vector xit to separate the
parts that refer only to the covariates, x∗

it = (xit1, xit2, . . . , xit p)′, and the previous response(s)
giving xit = (x∗

it , xit(p+1))
′. Also, note that we can write xit = (x∗

it , xit(p+1))
′ = (x∗

it , y(t−1))
′,

where y(t−1) is the observed response at time t − 1.

... Proportional odds transitionmodel
For ordinal responseswe can use the proportional oddsmodel (McCullagh 1980), that reduces
the number of estimated parameters because it assumes the same δt effects for each logit. The
proportional odds transition model provides estimates of cumulative probabilities through:

γab(t )(x) = exp(λbt + δ′
tx)

1 + exp(λbt + δ′
tx)

, with b = 1, 2, . . . , k − 1 and t = 1, 2, . . . ,T, (9)

where γab(t )(x) = P(Yjt ≤ b | Ya(t−1))(x) = πa1(t )(x) + · · · + πab(t )(x) and when using
the canonical link function,

ηt = log
(

γab(t )(x)
1 − γab(t )(x)

)
= λbt + δ′

tx, (10)

in which λbt is an intercept (there will be one for each level of response), x is set of the covari-
ates values, δ′

t = (βt1, . . . , βt p, αt ) is the vector of the unknown parameters of interest and
the index t is to denote the non-stationary process, in which there are T models of first-order.
For stationary processes the structure of the model is the same but without the index t .

In this work model (10) is used to analyse and simulate data related to examples 1 and 2,
in which we consider a first-order Markov chain and the following linear predictor:

ηt = λbt + [βt treatment + αt previous response], (11)

where treatment represents the “drug” or “enrichment” effect, as is the case. There are other
possibilities for the linear predictor (11), including interaction terms, but these were not sig-
nificant in this study.

... Generalized logits transitionmodel
For nominal responses, we can adapt the generalized logits model, that is useful to describe
all logits of pairs of response categories with a common reference level (Agresti 2012). Now,
let δ′

bt = (βbt1, . . . , βbt p, αbt ) be the vector of unknown parameters that is associated with the
category b and let k be the reference response category. Then the generalized logits transition
model is written as:

ηt = log
(

πab(t )(x)
πak(t )(x)

)
= λbt + δ′

btx, (12)

I. A. RODRIGUES DE LARA ET AL.1024



in which b = 1, 2, . . . , k − 1; t = 1, 2, . . . ,T and λbt is an intercept as defined for model (9)
but here the vector δ′

bt varies with each category of response level as well as depending on the
transition t .

Model (12) gives the effect of each covariate on the (k − 1) logits and the transition prob-
abilities are given by:

πab(t )(x) = exp(λbt + δ′
btx)

1 + ∑k−1
b=1 exp(λbt + δ′

btx)
.

We used model (12) to analyse the simulated data-sets derived from example 3, with the fol-
lowing functional structure:

ηt = λbt + [βbt1 pre-grazing + βbt2 post-grazing + αbt previous response], (13)

i.e., the linear predictor includes the effects of the factorial treatment structure (without inter-
action) and previous response.

... The proposed test to assess stationarity
To apply the test proposed by Anderson and Goodman (1957) it is necessary to fit (T + 1)
models, the T first order transition models under non stationarity and the transition model
supposing stationarity. Moreover, the transition probabilities need to be estimated. In this
paper, we propose another approach to assess stationarity in transition models. This strategy
is a simple technique, since it can be done by analysing appropriate interaction parameters
in the transition model using a stacked structure of the data and calculation of the transition
probabilities, under stationarity and non-stationarity, is not required. Working with the con-
ditional likelihood function (8), the idea consists of including an additional covariate for the
transition time occasion in the linear predictor (7), i.e. t∗ = (1, 2, . . . ,T )′, and checking its
interaction with other covariates, especially with the previous response. In this context, let

ηo = log
(

γab(x)
1 − γab(x)

)
= λb + δ′x (14)

be the proportional odds transition model for ordinal data and

ηn = log
(

πab(x)
πak(x)

)
= λb + δ′

bx, (15)

the generalized logits transition model for nominal data, both with longitudinal structure
(stacked data). The inclusion of the indices o and n is to differentiate the ordinal and nominal
cases, respectively.

Next, we consider models with additional terms in Equations (14) and (15), giving nested
models in both cases. Then, for the ordinal case, we can consider the following different mod-
els to reflect alternative hypotheses of time dependence :

ηo(1) = λb + δ′x + β∗′
t∗, (16)

ηo(2) = λb + δ′x + β∗′
t∗ + γ ′(t∗ : yt−1), (17)

ηo(3) = λb + δ′x + β∗′
t∗ + ϑ′(t∗ : x∗), (18)

ηo(4) = λb + δ′x + β∗′
t∗ + γ ′(t∗ : yt−1) + ϑ′(t∗ : x∗). (19)

where themodels (14), (16), (17) and (19) are nested, as also are themodels (14), (16), (18) and
(19). Equation (14) corresponds to the predictor of amodel under stationarity, while the struc-
tures (16), (17), (18) and (19) are variations of this model, in which we incorporate possible
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sources of non-stationarity related to the dependence on the vector t∗ = (1, 2, . . . ,T )′. If the
process is non-stationary, that is, the transition probabilities are non-homogeneous in time,
then the parameters of model are not homogeneous in time, and there will be one or more
causes of variations of these parameters under transitions. The sequences of nested models
evaluate some possibilities.

Inmodel (16)we evaluated the possibility of the non-stationarity cause due to only the vari-
ation of the vector of regression parameters (β∗) over time, the effect of theMarkov covariate is
considered to be the same across all transitions. Inmodel (18), we also considered the possibil-
ity of interaction of the covariates with transition time, again except for theMarkov covariate.
The variation of the Markov covariate over transition is evaluated through the inclusion of
the interaction term, in the model (17). Therefore, in the models (17) and (18) there are two
sources of non-stationarity.Model (19) is amore general (complete) form in which all sources
of possible non-stationarity are considered.

For examples 1 and 2, we have that:
i. (14) corresponds to the stationary model with additive effects of treatment and previ-
ous response, which is referred to as “OTM0” (Ordinal transition model 0);

The models that incorporate sources of non-stationarity are:
ii. (16) corresponds to the additive effects of treatment, previous response and time factor,

which is referred to as “OTM1” (Ordinal transition model 1);
iii. (17) corresponds to the additive effects of treatment, previous response and time factor

and the interaction between the previous response and time factor, which is referred
to as “OTM2” (Ordinal transition model 2);

iv. (18) corresponds to the additive effects of treatment, previous response and the time
factor and the interaction between treatment and time factor, which is referred to as
“OTM3” (Ordinal transition model 3);

v. (19) corresponds to the additive effects of treatment, previous response and the time
factor as well as the interactions between previous response and time factor and treat-
ment and time factor, which is referred to as “OTM4” (Ordinal transition model 4).

For nominal case, we define a similar set of models with the same interpretation as above,
but now denoted the models for non-stationary processes by NTM1, NTM2, NTM3 and
NTM4,with the stationarymodel denoted byNTM0 (15) and respective linear predictorswith
suffix n instead of o. Again, themodels NTM0, NTM1, NTM2 andNTM4 are nested as well as
themodels NTM0,NTM1,NTM3 andNTM4. Reiterating thatOTM0 andNTM0 correspond
to stationary structures and the others form (OTM1, OTM2, OTM3, OTM4 and NTM1,
NTM2, NTM3, NTM4) are non-stationary structures. In this context, let ϕ = (β∗, γ, ϑ) and
ϕb = (β∗

b, γb, ϑb) be the vectors of additional parameters for ordinal and nominal response,
respectively. Then, based on Equations (14) and (19), we can rewrite the hypotheses (2) for a
global test for the ordinal case as:

H0 : (δ, ϕ) = (δ, 0) and H1 : (δ, ϕ) �= (δ, 0), (20)

and for the nominal case

H0 : (δb, ϕb) = (δb, 0), ∀ b ∈ S and H1 : (δb, ϕb) �= (δb, 0), for some b ∈ S. (21)

For nominal response, the sum of the logarithms of the likelihood functions of T separate
transitions, as well as the number of parameters, correspond exactly to the values for model
NTM4. In the ordinal case, the structure of the proportional odds model does not allow for
this identity to hold due to different cut points (thresholds), but the results are quite close, jus-
tifying the proposed method. Moreover, comparing model OTM0 (14) (or NTM0 (15)) with
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Figure . Scheme for global and local tests.

models (OTM1, OTM2, OTM3 and OTM4) (or NTM1, NTM2, NTM3, NTM4) corresponds
to testing the stationary structure against the different potential non-stationary forms.

First, we can perform the global likelihood ratio test to evaluate hypotheses (20) and (21).
If the null hypothesis is not rejected it is indicative that the process is stationary, since the
transition probabilities will not change over time, the intrinsic assumption of stationarity for
transition models. If the process is stationary, the likelihood test for the sequence of nested
models will select models (14) or (15), because the additional parameters due to t∗ will not
significantly contribute to the log-likelihoods.

However, when the process is non-stationary and we are led to the selection of models
involving t∗, in addition to the general time-varying structures, OTM4 and NTM4, there will
be several possibilities to explore for how additional time-related parameters may influence
the transition process. Local tests of the nested hypotheses are useful to select a parsimo-
nious model with fewer parameters, especially for nominal responses where for each addi-
tional covariate we have (k − 1) additional parameters, and to try to identify the form/source
of non-stationarity. Figure 1 represents this scheme for global and local tests. It describes in
the vertical direction, that is, from top to bottom, the global test, i.e, tests to compare themod-
els OTM0 (or NTM0) and OTM4 (or NTM4). In the circular direction, any combination of
two nested models corresponds to a local test.

... Simulation study
Two sets of real data served as the basis for the initial simulation process (examples 1 and 3). To
generate newdatawe started by using the estimates of the parameters and the probability tran-
sition matrices obtained from these examples. Note that from a non-stationary base, we can
generate data for a stationary process, using only a single transition matrix. Also from a sta-
tionary base we may obtain data for a non-stationary process. We established some quantiles
from the distribution of the test statistic proposed byAnderson andGoodman (1957) to select
the first sets with different patterns of stationarity. To simulate data for the non-stationary
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process, we decided to work with an average level of non-stationarity, which approximately
corresponds to the 25th percentile.

From these first sets we then implemented new simulations to get new categorical data
(ordinal and nominal) under two scenarios: stationary and non-stationary processes, for
which we varied the number of time occasions, T = 4, T = 5 and T = 6 as well as the sample
size, N = 100, N = 200 N = 500 and N = 1000. For each scenario we performed 10,000 sim-
ulations. In all cases we considered a first-order Markov chain and for the ordinal case, the
linear predictor included the effects of treatment and previous response, as described by the
Equations (11) and (13).

After that, the proposed test as described in Section 2.2.4 and the classical test (Anderson
and Goodman 1957) based on Equation (3) were applied. The degree of agreement between
the tests was assessed by means of correlation measures. Additionally, for each scenario, we
computed the rejection rates of the tests for significance levels of 1%, 5%, and 10% in order
to assess type-I and type-II error rates. The computational implementation was made using
the R system (R Core Team 2015), with the aid of packages nnet (Ripley and Venables 2016)
and ordinal (Christensen 2011) to fit transition models and the package markovchain
(Spedicato 2015) to assist in the data simulation process.

3. Results and discussion

3.1. Respiratory data analysis

Figure 2 shows the observed transition frequencies of individuals on respiratory condition
with 5 states: terrible, bad, moderate, good and excellent. At each time occasion there are 111
individuals and the total number of first-order transitions is 444. This indicates that there is
an increase in the number of individuals in terrible, good and excellent condition.

Table 1 shows the models that were used to assess stationarity in the first example, with
the respiratory data. The structure ηo, with the effects of drug and previous response was

Figure . Observed total frequency of respiratory condition ever time.
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Table . Analysis of the nested models to assess stationarity in the respiratory study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (OTM) −507.17 
ηo(1) (OTM) −504.72   .
ηo(2) (OTM) −500.06   .
ηo(4)

(OTM) −494.44   .

ηo (OTM) −507.17 
ηo(1) (OTM) −504.72   .
ηo(3) (OTM) −499.20   .
ηo(4)

(OTM) −494.44   .

selected at a significance level of 1%. As this study involved 5 times, there are 4 tran-
sitions of first order,with a sum of log-likelihoods of −491.06 (on 36 degrees of free-
dom), quite close the value −494.44 for the combined single general non-stationary model
OTM4. The result for the global likelihood-ratio test is 25.47 on 18 degrees of freedom,
and is not significant (p = 0.1124). In fact, the classical test statistic (Anderson and
Goodman 1957) for this example is 36.55, on 27 degrees of freedom is also not signifi-
cant (p = 0.1037). The structure ηo was selected by local tests applied in the upper and
lower parts of Table 1, in both directions (forward or backward), using a 5% significance
level.

The results show that in this example the process is stationary, i.e., the transition proba-
bilities are homogeneous over time. Table 2 shows the parameters estimates, standard errors
and p-values of the first order stationary transition model in this respiratory condition study.
Apart from the intercepts, all parameters are significant in this model.

Note the increasing values of α. This result is very common in transition models, in which
the previous response is more important to explain the transition of the individuals (Diggle
et al. 2002). Using the coefficients of the parameters available in Table 2, we can estimate the
transition probability matrices for the groups Active (A) and Placebo (P), that are shown in
Figure 3.

The first row from bottom to top of the Figure 3 describes the transition probabilities from
state 1 (terrible) for the conditions: 1 (terrible), 2 (bad), 3 (moderate), 4 (good) and 5 (excel-
lent). The second line describes the transition probabilities from state 2 (bad) for the others
conditions and so until the last line that describes transitions from state 5 for others. As the
effect of treatment is significant (see Table 2) , thematrices are statistically different. In general,

Table . Parameter estimates of the proportional odds stationary transitionmodel of first order fitted to the
respiratory condition study data.

Parameters Estimates Standard errors p-value

λ2 . .
λ3 . .
λ4 . .
λ5 . .

β (Placebo) − . . .
α() . . <.
α() . . <.
α() . . <.
α() . . <.
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Figure . Transition probabilities for the respiratory data, in which = terrible, = bad, =moderate, =
good, = excellent.

the transition probabilities for states good and excellent (two last columns) aremore favorable
for the active treatment group.

3.2. Pig behaviour data analysis

Figure 4 illustrates the frequency of animals in the states 1 (absence), 2 (moderate) and 3
(serious), on each occasion of the study period. On each time occasion there are 124 animals
and the total number of first-order transitions is 372. A drop in the frequency of animals with
serious lesions over time was observed.

Table 3 shows the sequences of nested models for the second example, on pig behaviour.
There are 4 times and 3 transitions of first order, with log-likelihood sum of −317.90 (on
15 degrees of freedom), close of the log-likelihood for model OTM4 that is −322.71 (on 13

Figure . Observed total frequency of lesions in pigs over time.
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Table . Analysis of the nested models to assess stationarity in the pig behavior study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (OTM) − . 
ηo(1) (OTM) − .   <.
ηo(2) (OTM) − .   .
ηo(4)

(OTM) −.   .

ηo (OTM) − . 
ηo(1) (OTM) − .   <.
ηo(3) (OTM) − .   .
ηo(4)

(OTM) − .   .

degrees of freedom). The statistic for the global likelihood-ratio test is 82.34 on 8 degrees of
freedom is significant (p < 0.01). This result is in agreement of the classical test of Anderson
andGoodman (1957), whose statistic is 78.32, on 10 degrees of freedom (p< 0.01). Therefore,
the process is non-stationary andOTM0was not selected. However, this result does not mean
that the OTM4 is the best model. Note that only the inclusion of a time factor is significant
in the local tests, and model ATM1 gives a more parsimonious non-stationary structure. In
some applications wewill require the full model OTM4, but this can be verified by performing
the step-by-step local tests for specific aspects of time dependence.

Specifically, since the transitions in the pig behavior study are not homogeneous over time,
we select the linear predictor structure through the local tests. From the upper part of Table 3,
the first local test comparing for OTM4 vs. OTM2, is significant (L.R. statistic= 8.88 on 2 d.f.
and p= 0.0117). Subsequently, a test ofOTM4 vs. OTM1, is not significant for the interactions
with the time factor (L.R. statistic = 10.15 on 6 d.f. and p = 0.1185). When we compare the
models OTM1 vs. OTM0, the result is significant for the time factor (L.R. statistic= 62.56 on
2 d.f, p< 0.001), i.e., the model OTM1 is selected in the first part a the simplest parsimonious
model.

From the lower part of Table 3, comparing OTM4 vs. OTM3, is not significant (L.R.
statistic = 0.7012 on 4 d.f. and p = 0.9512). Finally, comparing OTM1 vs. OTM3, the likeli-
hood ratio local tests is significant (L.R. statistic = 9.44 on 2 d.f and p = 0.0088). Therefore
the selected final linear predictor, that represents non-stationary process in the pig behaviour
study is themodelOTM3, that includes the additive effects of treatment and previous response
and the interaction between treatment and time factor. The samemodel would be established
if we used the forward direction.

Table . Parameter estimates and standard errors (s.e.) for the three first order proportional odds transition
models, under a non-stationary process, fitted to the pig behaviour data.

Parameters Estimates Standard errors p-value

λ2 − . .
λ3 . .

β(E) − . . .
β∗(t∗) − . . <.
β∗(t∗) − . . <.
α() . . .
α() . . <.
ϑ (E:t∗) . . .
ϑ (E:t∗) . . .
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Figure . Transition probabilities for the pig behaviour data, in which : absence of lesions; : moderate
degree of lesions; and : serious lesions.

Table 4 shows the estimates for the parameters of the selected non-stationary model
(OTM3). Note that the effects of the time factor, interaction between treatment (enrichment)
and time factor and previous response are significant. It means that previous response has a
strong influence on pig behaviour and, under transition (time factor) the environment enrich-
ment is important as well. In fact, the enrichment effect is significant in the second transition.
According to Castro (2016) there is an explanation for this: At the beginning of the experi-
ment the pigs were learning to play with the objects and the end of study they lost interest.
The transition probability matrices are given in Figure 5.

The first rows from bottom to top of the Figure 5 describe the transition probabilities from
state 1 (absence of lesions) for the conditions: 1 (absence of lesions), 2 (moderate) and 3 (seri-
ous). The second line describes the transition probabilities from state 2 (moderate) to the
other conditions and the third line describes transitions from state 3 to others. Focussing
attention on the first column of these matrices, at the second and third transitions, it is possi-
ble to note that the transition probabilities for the state “absence of lesions” are higher for the
treated group (with environment enrichment).

3.3. Agronomic data analysis

Figure 6 shows the frequency of points in the three categories: tussocks, bare ground and
weeds, on each time occasion. There are 600 points and the total number of first-order transi-
tions is 3000. The number of units classified as “tussocks” is greater than those classified “bare
ground” and “weeds”.

The structure of the data appears to have a pattern with few changes of state, in contrast
to the two first examples. This is not a serious problem for the simulation process, because
it is still possible to get new data with different patterns of stationarity and dependence. In
Table 5 we present the sequences of nested models for this motivational example with simu-
lated data. In this study, there are 5 transitions of first order, whose sum of the log-likelihoods
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Figure . Observed total frequency of type of vegetation observed in the field over time.

is−2163.83 (on 50 degree of freedom),whose value is the same formodelηo(4), as herewe have
no cut-points to be estimated and so both forms of the full model are the equivalent. Thus, the
result for the global likelihood-ratio test (ηo versus ηo(4)) is 43.28 (p= 0.3330). Here, the inclu-
sion of time is not significant in all possible sequences (local tests), which guides the choice
of the stationary structure, ηo, with the effects of treatment and previous response. Moreover,
the classical test statistic of Anderson andGoodman (1957) is 43.17, on 40 degrees of freedom
and also not significant (p = 0.3371).

Finally, Table 6 shows the parameter estimates for the first order stationary transitionmodel
for the agronomic data. The effects of treatment and previous response were significant.

The transition matrices for each combination of pre-grazing and post-grazing are shown
in Figure 7. For each combination, the space was occupied by the types 1 (bare ground) and
2 (tussocks), the transition probability for it coming to be occupied by 3 (weeds) is smaller.
Indeed spaces occupied by vegetation 1 (bare ground) as well as those occupied by 3 (weeds)
have a greater probability of moving to condition 2 (tussocks).

Table . Analysis of the nested models to assess stationarity in the agronomic study.

Models Log-likelihood Number of parameters D.F. p-value

ηo (NTM) − . 
ηo(1) (NTM) − .   .
ηo(2) (NTM) − .   .
ηo(4)

(NTM) − .   .

ηo (NTM) − . 
ηo(1) (NTM) − .   .
ηo(3) (NTM) − .   .
ηo(4)

(NTM) − .   .
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Table . Parameter estimates for the generalized logits transition model of first order fitted to the agro-
nomic data.

Parameters Estimates Standard errors p-value

λ2 . . <.
λ3 . . <.

β21 (pre) . . .
β31 (pre) . . .
β22 (post) . . <.
β32 (post) . . .
α2() −0.0217 . .
α2() − . . .
α3() − . . .
α3() − . . <.

Figure . Transition probabilities for the agronomic data, in which : tussocks, : bare ground and : weeds.

3.4. Results from simulation study

Next we present the results of the simulation studies. We start by discussing the number of
times each model was selected in all scenarios, using the local tests with the significance level
of 5%. Also, we consider the two possible sequences of nested models as presented in Section
2.2.4, i.e., (OTM0, OTM1, OTM2, OTM4) or (OTM0, OTM1,OTM3, OTM4) for the ordi-
nal case, and, (NTM0, NTM1, NTM2, NTM4) or (NTM0, NTM1, NTM3, NTM4) for the
nominal case.
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For the stationary scenario, for ordinal and nominal data, in more than 80% of the simula-
tions, OTM0 or NTM0 were selected in both sequences. There is an effect of sample size and
the number of occasions because as they increase this percentage increases to values close to
85%. In contrast, for the non-stationary scenario, smaller percentages of selection of OTM0
and NTM0 were observed, specifically, for N = 500 or N = 1000, where these numbers are
less than 0.07%.Also, for these sample sizes the highest percentages of selectionwere toOTM2
andOTM4 (orOTM3 andOTM4) for ordinal response andNTM2 andNTM4 (orNTM3 and
NTM4) for nominal response, corresponding to more than 95% of selections. For N = 200,
less than 22% of the simulations selected the models OTM0 or NTM0. Finally, for N = 100,
we observed the highest percentages of OTM0 or NTM0, but smaller than 48%, and these

Table . Rejection rates for the classical and proposed tests, resulting from , simulations, for the sce-
nario  (test size).

T=  T=  T= 

Time Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Sample Size Tests Ordinal Data

Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .

Sample Size Tests Nominal Data

Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 1035



were considered within the usual variation expected for the simulation process with a mod-
erate degree of non-stationarity.

In fact, as already mentioned in Section 2.2.5, our simulations for the non-stationary sce-
nario were made with a moderate degree of non-stationarity in order to assess the perfor-
mance of the test in not-so-favourable conditions, in contrast with the situation of motiva-
tional example 2, in which the degree of non-stationarity is very high. Under this condition
we would have inevitably a power function close to 1, even in small samples and T = 4. As an
illustration, in the scenario with an ordinal response and a strong degree of non-stationarity
(10,000 simulations, N = 100 and T = 4), we had the numbers 736, 83, 2163 and 7018 for
models OTM0, OTN1, OTM2, and OTM4, and 705, 75, 2251 and 6969 for models OTM0,
OTN1, OTM3, and OTM4, respectively.

Table . Rejection rates for the classical () and proposed () tests, resulting from , simulations, for the
scenario  (test power).

T=  T=  T= 

Time Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Sample Size Tests Ordinal Data

Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .

Sample Size Tests Nominal Data

Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
Classical . . . . . . . . .
Local  . . . . . . . . .

 Local  . . . . . . . . .
Local  . . . . . . . . .
Global . . . . . . . . .
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Table 7 shows the rejection rates for the classical test and the proposed tests (global and
local tests) for scenario 1 (assuming stationarity) with ordinal and nominal data. The global
likelihood ratio test involves the models OTM0 and OTM4 for ordinal response (or NTM0
and NTM4 for nominal response) and we present three local tests: (1) that involving models
OTM0 and OTM1 for ordinal response (or NTM0 and NTM1 for nominal response), (2)
that for OTM0 and OTM2 for ordinal response (or NTM0 and NTM2 for nominal response)
and (3) that for OTM0 and OTM3 for ordinal response (or NTM0 and NTM3 for nominal
response). In this case it is possible to study the test size (type-I error). For nominal responses,
the classical test was a little more conservative than the global test. However, for some local
tests, especially the local test 1, we observe lower nominal levels than the classical test. Also,
as the samples size increases, all tests tend to maintain the level of significance, i.e., they have
equivalent performance asymptotically. On the other hand, for ordinal responses, in most
cases, the proposed tests are more conservative than the classical test.

Table 8 shows the rejection rates for scenario 2 (non-stationarity process). It was possi-
ble to study the power of each test. There was clearly an effect of sample size on the power
of the tests. Note, for example, at T = 4 and N = 100, in both scenarios, there is a higher
propensity to type-II error, but it decreases as we consider larger sample sizes and/or more
time occasions. Specifically, in the ordinal case, for N = 100 and N = 200, the power of
the global test is smaller than the classical one, a likely consequence of the different han-
dling of cut-point estimation for the ordinal scale. On the other hand, in the nominal case,
the power of the proposed global test is greater than the classical, but, asymptotically, they
are equivalent. From the Table 8 it is possible to notice that local tests also have a good
power function, in some cases very close to their global competitors, which shows their
efficiency.

We also consider agreement in terms of correlation between the test statistics (classical and
global), as measured by the usual Pearson correlation coefficient. For ordinal responses, the
correlation values increased with the values of N (sample size) in both scenarios (stationary
or not), all correlations were greater than 0.80 at T = 4 and T = 5 and all correlations were
larger than 0.77 at T = 6. Also, for nominal responses, the correlation values increased with
the values of N (sample size) in both scenarios (stationary or not), and all correlations were
larger than 0.97 for all time occasions. It shows there is a strong association between the tests.

4. Conclusion

The assumption of stationarity is important in the use of transition models. When it is sat-
isfied the model is simpler and therefore, there are fewer parameters. However, sometimes,
this is not true. In this article we presented an alternative method to assess stationarity in
these models for a categorical response. The procedure has been illustrated with three appli-
cations, one being a study with a nominal response. Our goal was to show that the procedure
is very simple, composed of local and global tests, applied to a nominal or ordinal response but
without the necessity of computing the transition probabilities matrices. Also, there are some
advantages of the proposed procedure: it can be carried out in a single modelling framework
using the stacked form of the data and, therefore, demands less computational effort and it
can be applied to evaluate stationarity in longer-range chains. Also, it allows categorical and
continuous covariates and the local tests can be used for the selection of a linear predictor that
corresponds to a specific non-stationary model.

We verified that when the process is stationary, local tests for the inclusion of an additional
covariate for time are not significant. In this case, the global test also selects the stationary
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model. However, if the process is non-stationary, some local tests are significant for additional
parameters, showing that the inclusion of time is important and the global test rejects the null
hypothesis. There is a difference between the nominal and ordinal case, because in the latter
the number of parameters involved changes a little for global test, but this is not a problem, it
is a consequence of the use of the proportional odds model with estimated cut-points.

It is important to note that both tests are valid asymptotically. However, in some situations,
for example, with small sample sizes or a large amount of missing data, the convergence of the
model fitting can be difficult, especially in non-stationary cases that involve more parameters.
For the classical test, the problem is greater because the successive stratification leads to sparse
tables and this test cannot applied.

The simulation studies showed that the proposed test presented good performance with
the control of type-I and type-II error rates and the results were quite close to the classical test
available in the literature (Anderson and Goodman 1957). It is noteworthy that the studies
for scenario 2 were carried out with a moderate degree of non-stationarity, since we wanted
to assess the proposed test under not-so-favourable conditions. With a high degree of non-
stationarity, the proposed test has the best performance, even for small sample sizes.
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