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Chapter 9 )
Starch Nanomaterials as Functional Gecie
Packaging Ingredients

Pedro Augusto Invernizzi Sponchiado, Samile Bezerra de Aguiar,
Carla Arias Ivonne La Fuente, and Bianca Chieregato Maniglia

9.1 Introduction

In recent times, the field of nanotechnology has provided valuable information on
the synthesis of materials, leading to the development of new substances with
desired properties. Using nanoscience techniques, traditional functional properties
have been improved, in addition to revealing new features and functionality. This
breakthrough paved the way for manufacturing nanomaterials from natural and
sustainable sources, thus expanding the potential applications of nanotechnology
in the packaging sector.

Nanotechnology involves the production and characterization of materials with at
least one dimension ranging from 1 to 100 nm in length [1]. In the realm of
packaging and other sectors, nanomaterials integrated into the matrix phase must
possess not only these nanoscale dimensions but also exhibit distinct physical and
chemical properties that differ significantly from their macroscale counterparts
[2]. This distinction has significant implications and offers various applications.
Typically, organic additives offer several advantages, such as a positive environ-
mental impact due to their low energy consumption during manufacturing, as well as
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ease of combustion and recycling [3]. In addition, their relatively simple process-
ability and non-abrasive nature contribute to notable cost savings [3].

In this context, starch nanomaterials have emerged as promising functional
packaging ingredients in recent years, offering a range of benefits for the develop-
ment of sustainable and efficient packaging solutions. Derived from renewable
resources, such as corn, potatoes, and cassava, starch nanomaterials (SNMts) possess
unique properties at the nanoscale, making them highly desirable for enhancing
packaging performance [4]. With advancements in nanotechnology, these materials
have demonstrated remarkable potential in improving the barrier properties,
mechanical strength, and biodegradability of packaging materials. In addition,
SNMts have shown promise in addressing food safety concerns through their
antimicrobial and oxygen-scavenging capabilities.

There are two main types of nanostarches: starch nanocrystals (SNCs) and starch
nanoparticles (SNPs). SNCs are crystalline portions formed by the breakdown of the
amorphous regions within starch granules [5]. In contrast, SNPs are derived from
gelatinized starch and may contain both amorphous and crystalline regions
[5]. These SNMts can be obtained using methods such as acid and enzymatic
hydrolysis, antisolvent precipitation, high-pressure homogenization, ultrasound,
electrospinning, self-assembly, and emulsification [6, 7].

This chapter discusses the use of SNMts as functional packaging ingredients,
highlighting their role in enabling eco-friendly and innovative packaging solutions
that extend the shelf life of products while reducing environmental impact. In
addition, this chapter explores how starch modification from the microscale to the
nanoscale helps in the mechanical and biological properties (antimicrobial and
release of bioactive compounds) of packaging.

9.2 Fundamentals of Starch

Starch is a granular homopolysaccharide mainly composed of two natural polymers
known as amylose and amylopectin, as represented in Fig. 9.1. These polymers are
both composed of D-glucose residues linked together through a(l — 4) glycosidic
bonds, differing from each other in molecular size and structural disposition: while
amylose has a size distribution of approximately 10°~10° Da and generally exhibits a
linear chain organized in a helical structure, amylopectin is approximately 4—5 times
larger than amylose (10’~10% Da) and has a branched chain with a branching level of
4-5% with (1 — 6) linkages [8]. This homopolysaccharide is normally composed
of 70-80% amylopectin, which comprises the semicrystalline regions of starch
granules, and approximately 20-30% of amylose in amorphous zones. However,
the proportion of amylose can range from less than 1% in some waxy starches to
more than 70% in the high-amylose type [9], with the amylose content varying
according to the botanical origin [10].

In terms of its biological functions, there are two types of this polysaccharide:
transitory and storage starch [11]. Transitory starch, also known as temporary or
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transient starch, is synthesized and accumulated during the day in photosynthetic
tissues such as leaves, to be subsequently used during the night for respiration. It has
a relatively simple structure with smaller granules [12, 13]. In plants, the transient
starch serves two main functions: (a) as an alternative carbon source for the photo-
synthesis (faster than by sucrose synthesis); and (b) as a carbon supply at the night.
On the other hand, storage starch is synthesized and found in non-photosynthetic
tissues such as roots, tubers, and seeds, and is stored for long periods and has a
complex structure with different proportions of amylose and amylopectin
[14]. Owing to its characteristics, abundance, and multiple functionalities, this
type of starch has a significant commercial value and finds application in various
industrial sectors [14]. These applications range from being an additive in the food
industry [15, 16] to serving as a raw material for biodegradable plastics production
[4, 16].

As a storage carbohydrate in plants, starch is quantitatively one of the most
abundant materials in nature and can be obtained from many resources such as
cassava, potato, sweet potato, corn, and cereal grains [17]. The different sources of
starch can directly influence their functional properties, including gelatinization
temperature, paste viscosity, and retrogradation speed. This is because starches
obtained from different botanical sources may undergo some structural variations,
such as differences in the granule size, composition, and molecular architecture of
amylose and amylopectin [18]. Once amylopectin comprises the crystalline region, a
higher proportion of this polymer leads to starches with greater crystallinity
[19]. Moreover, the gelatinization properties (represented by transition temperatures)
depend on the molecular structure of amylopectin and the amylose-amylopectin
ratio. Once that gelatinization initiates in the amorphous regions, it slowly spreads to
the periphery, causing strain and tearing the crystalline zone. High transition tem-
peratures correspond to a high degree of crystallinity and stability of the granule to
gelatinization [20]. Naturally, starch granules can exhibit different shapes and sizes,
ranging from spherical or polygonal to elongated, and they can have sizes ranging
from submicron to approximately 100 pm, depending on their source [21]. For
example, cassava starch has an amylose content (AC) of approximately 15% and
flake-shaped, irregular granules with a mean size of 20 pm. Potato starch, on the
other hand, has a mean AC of 21% and irregular, oval-shaped granules with a mean
size of 35 pm. Corn starch contains 28% of amylose and angular granules with
16 pm [22-24].

9.3 Starch-Based Nanomaterials and Their Production

In addition to the traditional modifications applied to this polysaccharide at the
microscale, such as physical [25-27] and chemical [28—-30] methodologies, starch
at the nanoscale has emerged as a new type of changed starch with the advantages
associated with size reduction and increased surface area, along with the quantum
effects relative to the nanoscale [31]. In the food industry, nanomaterials can act as a
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reinforcement for packaging materials, enhancing their mechanical and thermal
properties. In this context, starch nanomaterials can be used to improve the thermal
and mechanical resistance of food packaging, additionally with the potential to
incorporate biocompatibility, biodegradability, and non-toxicity into materials
[32-34].

SNMts can be categorized as follows:

(a) nanocrystals (SNCs), which are crystalline sheets produced from the disruption
and disorganization of the semicrystalline structure of starch granules [33, 34];

(b) nanoparticles (SNPs), defined as nanosized amorphous solid particles with less
than 10% of crystallinity degree [35, 36];

(c) nanovesicles (SNVs), or nanoliposomes, are lipid vesicles coated with starch
nanomaterials [37];

(d) nanofibers (SNFs), which are cylindrical nanosized structures [38];

(e) nanomicelles (SNMs), which are defined as colloidal dispersions consisting of a
hydrophobic core and a hydrophilic shell based on starch nanomaterials [5].

However, some authors distingue the SNMts into only two major groups in terms of
crystallinity, namely nanocrystals (SNCs), and nanoparticles (SNPs). This categori-
zation is based on the distinct structural characteristics and degree of crystallinity
exhibited by these two nanomaterials: while SNCs possess a crystalline platelet-like
structure with defined and ordered crystalline regions, the SNPs are amorphous solid
particles with less structural definition and unorganized regions [4, 34].

In general, starch nanomaterials can be obtained through two main approaches:
“top-down” and “bottom-up”. In the first approach, the starch-based nanomaterials
are produced by breaking down starch granules using methods such as acid and
enzymatic hydrolysis (AH and EH, respectively), and physical treatments
[5]. Although these methods are usually simple and inexpensive, they are less
effective for starch granules with irregular shapes and tiny sizes [39]. In contrast,
in the “bottom-up” approach, the starch nanomaterials are generated through phys-
ical and/or chemical interactions and the accumulation of starch chain precursors
(monomers and oligomers), such as nanoprecipitation, electrospinning, and self-
assembly [40]. These methods are capable of producing nanostructured starch with a
controllable shape and size [39]. The production of starch nanomaterials using some
of the methods mentioned above is presented in Table 9.1.

As a “top-down” approach, acid hydrolysis (AH) is a typical methodology for the
production of SNCs and is based on the use of acids such as sulfuric acid,
hydrochloric acid, and citric acid, which penetrate the amorphous regions of starch
granules to break the glycosidic bonds of the polymers while leaving the crystalline
zones undamaged [4]. In general, the AH occurs in three steps: (i) surface granule
erosion; (ii) radial diffusion of the acid, which causes a collapse of the granule wall;
and (iii) fragmentation of the regions [31]. To ensure an effective procedure, it is
important to consider factors such as temperature (below the gelatinization point of
starch), acid and starch concentrations, time of reaction, and rotation
[46]. Velasquez-Castillo et al. [47] showed that varying the temperature of acid
hydrolysis of quinoa starch (30, 35, and 40 °C) affected the physical properties of the
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nanocrystals produced. The SNCs developed at 30 °C exhibited micrometric dimen-
sions and an irregular shape, unlike those developed at 35 and 40 °C, which
presented better morphologies and properties suitable for use as reinforcement
materials. In addition, acid hydrolysis also has been combined with other methods.
Amini and Razavi [48] used simultaneous ultrasound and sulfuric acid hydrolysis to
prepare corn SNCs. By adjusting the temperature, acid/starch concentration, and
duration of the process, the researchers obtained the best nanocrystals within 45 min
of reaction (using both methods, ultrasound, and hydrolysis), yielding up to a 22%
and resulting in particle sizes smaller than 100 nm.

In addition to chemical hydrolysis, the use of enzymes such as «-amylase,
B-amylase, and pullulanase to break and de-branch starch chains is also an interest-
ing pathway. Similar to acid hydrolysis, the enzymatic method (EH) proceeds in two
stages: initially attacking the starch chains in the amorphous regions, rapidly,
followed by a slower action on the crystalline lamella [39]. Owing to this similarity
in mechanisms, EH, and chemical hydrolysis, also tends to result in the development
of starch nanomaterials with high crystallinity. However, according to Marta et al.
[39], the use of enzymes to produce SNMts has the advantage of being carried out in
a shorter production time compared with AH, along with generally yielding a higher
amount of SNMts. Dukare et al. [49] developed nanostarches from three different
sources (maize, potato, and cassava) using the EH technique with a-amylase, an
enzyme that catalyzes the cleavage of o-1,4-glycosid bonds in starch. The
researchers achieved an improved yield compared with the nanomaterials obtained
by AH (18, 29, and 41% compared to 16, 25, 35%, respectively). However, the size
of the nanostarches produced by EH was significantly larger than that obtained by
AH, and this difference may be attributed to the larger molecular size of a-amylase
compared to the acid molecules, which could difficult its penetration and the attack
on starch granule regions. Moreover, a combination of acid and enzymatic technique
can also be employed to improve the properties of starch nanomaterials developed.
Hao et al. [50] prepared SNCs from waxy potato starch by glucoamylase hydrolysis
followed by acid hydrolysis. The results demonstrated enhanced stability of SNCs
with the combination of these two methods, along with improved crystallinity and
reduced time required for acid hydrolysis. This improvement was attributed to the
prior enzymatic attack, which possibly created pores facilitating acid penetration into
the granules.

In addition to the mentioned “top-down” approaches, various physical methods
can also be used to produce SNPs, including gamma irradiation (GI), high-pressure
homogenization (HPH), and ultrasonication. These physical methods offer several
advantages over other “top-down” techniques, as they are less expensive, time-
efficient, and require a reduced use of chemical reagents [39]. In this context,
gamma irradiation is widely employed since is a fast and convenient method that
is independent of catalysts. Gamma radiation is a form of electromagnetic radiation
with high energy and short wavelength, and it is used in GI methodology to generate
free radicals that can cleave the glycosidic linkages of starch polymers, mostly in the
amorphous region, leading to the formation of smaller fragments [41, 51]. Despite
being a radical-based mechanism, it is important to emphasize that the free radicals
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involved in this process are easily recombined in water, resulting in final solutions
with free radicals [52]. Lamanna et al. [41] employed gamma radiation to prepare
SNPs from cassava and waxy maize starches, using a dose of 20 kGy. The authors
obtained nanoparticles with an average size of approximately 20 and 30 nm. Addi-
tionally, they observed that incorporating waxy maize starches-gamma radiated as a
reinforcement in the cassava matrix led to the formation of starch nanocomposites
with improved mechanical properties (an increase of 102% in storage modulus).

As mentioned previously, two other advantageous physical methods used to
produce SNPs are high-pressure homogenization (HPH) and ultrasonication. HPH
is considered a “green” technique that enables the production of smaller particles
with better homogeneity. It involves the flow of a fluid such as a starch suspension,
through a small orifice (throttle valve) under high pressure [53]. The reduction in
particle size to the nanoscale can be explained as a result of the disruption of linkages
inside the granules, especially the hydrogen bonds, induced by the mechanical shear
forces generated during the flow [51]. Ahmad et al. [54] developed SNPs from sago
starch using the environmentally friendly HPH procedure, at a pressure of 250 MPa.
Ultrasonication was used at the end to ensure the proper dispersion of the produced
nanoparticles. The obtained SNPs exhibited a highly narrow size distribution, and
when incorporated as reinforcement material in starch films, they effectively reduced
the water vapor permeability and improved the transparency of the films.

In addition to HPH, ultrasonication is a rapid and environmentally friendly
physical method for producing SNPs through the application of high-frequency
waves. The process involves the formation of gas bubbles in the medium, at a
process called as cavitation, which subsequently collapse, generating a high local
pressure and shockwaves that will break down the starch granules into smaller
nanoparticles [39]. To maintain the integrity of the modification during the process,
it is important to control certain parameters such as starch dispersion, frequency of
ultrasound, temperature, and total time [51]. SNPs from waxy maize and standard
maize starches were produced using ultrasonication at low temperatures (8—10 °C).
After 75 min of ultrasonication, the SNPs were obtained with an average size
between 100 and 200 nm and exhibited a decrease in crystallinity [48]. Alternatively,
this method can also be used combined with another “top-down” method, such as
Bajer [55] who developed SNPs from corn and waxy corn starches using both AH
and ultrasonication. Applying only one of these methods it was obtained
nanoparticles with an average size of around 3—4 nm. However, by employing
both methods, even smaller particles were formed, with average sizes of up to
3 nm, without the formation of aggregates.

A second approach to producing SNPs is known as the “bottom-up”” approach and
is based on the principle of building the nanoparticles from smaller components and
gradually assembling them into the desired nanomaterials. Therefore, they are
methods that have the advantage of developing particles with precise control over
their size and composition [7]. Among the various “bottom-up” approaches, in
recent years, the most used methods explored as alternatives for producing SNPs
are nanoprecipitation, electrospinning, and self-assembly [5]. In this context,
nanoprecipitation is a simple and scalable technique that involves the rapid addition
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of a non-solvent, such as ethanol, propanol, or acetone, into a starch solution under a
vigorous agitation. Rapid addition leads to the formation of a supersaturated starch
solution, resulting in nucleation and growth of particles, culminating in the precip-
itation of nanoscale particles [4, 56]. Factors such as polymer concentration, mixing
speed, and temperature can affect the size and morphology of the SNPs. Further-
more, Wu et al. [57] reported that the proportion of solvent/non-solvent used in the
nanoprecipitation process can affect the size of the nanoparticles, as an increase in
the amount of non-solvent usually leads to a decrease in particle size. In addition, the
source of starch also can influence the formation of SNPs, as shown by Qin et al.
[58]. In their work, SNPs were prepared from seven native starches, including waxy
corn, normal corn, high-amylose corn, potato, tapioca, sweet potato, and pea, by
precipitating with ethanol. This process leads to the formation of nanoparticles with
a mean particle size ranging from 30 to 75 nm, and a positive correlation was
observed between the size of the native starch granule and the resulting SNP. In
other words, the smaller the starch granules in the source material, the smaller the
resulting nanoparticles were produced.

Recently, the electrospinning technique, also known as electrospraying, has been
widely used to produce starch nanomaterials, particularly starch nanofibers with
diameters of up to 100 nm, depending on the parameters used [5]. With the
advantage of developing SNFs with precise control over fiber diameter and mor-
phology, the nanofibers produced by this method show several advantageous prop-
erties, such as high surface-area-to-volume ratio, high porosity with small pore size,
and superior mechanical properties depending on the source material [59]. In this
“bottom-up” method, a polymer solution is extruded through a small opening called
a spinneret, while a high voltage (usually between 100 and 500 kV/m) is applied
between this solution and a collector. As the voltage increases, the droplet of the
solution undergoes deformation, changing from a pointed shape to a conical shape,
and is then ejected from the syringe pump toward the collector, where it is deposited
as randomly oriented nanofibers [60, 61]. Among the various applications of starch
nanofibers, including biomedical delivery systems and materials for tissue engineer-
ing [61, 62], SNFs have also been developed for the production of films in the food
packaging industry. For example, Cai et al. [62] synthesized SNF-based films for
food packaging, that were coated with a hydrophobic surface made of stearic acid.
SNFs were obtained using 25% of starch with a mean diameter of 365 + 97 nm and
uniform distribution, exhibiting a smooth surface and random orientation. Moreover,
the films prepared from these SNFs exhibited excellent flexibility, making them
suitable for use in food packaging.

In addition to the mentioned “bottom-up” approaches, self-assembly is a versatile
method that allows obtaining different types of SNMts, such as nanoparticles and
nanovesicles [5]. In general, self-assembly is a process in which molecules, such as
starch, organize themselves into stable nanostructures spontaneously, driven by
intermolecular interactions such as hydrophobic and Van der Waals interactions,
hydrogen bonding, electrostatic forces, and n- © aromatic stacking [63]. In order to
enhance the properties of starch chains and facilitate self-assembly, in some cases, a
pretreatment of starch is applied. This can involve the use of combined methods,
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such as chemical or enzymatic hydrolysis. From this perspective, a starch-based film
of pea starch composed of SNPs derived from potato starch was prepared by Jiang
et al. [42]. The process involved the self-assembly of short amylose combined with
prior enzymatic treatment of the potato starch. The SNPs obtained through the self-
assembly displayed a globular shape with particle sizes ranging from 15 to 30 nm
under optimized conditions. In addition, the incorporation of SNPs into the
pea-starch films decreased water vapor permeability and an improvement in the
mechanical properties of the materials.

9.4 Applications in Food Packaging and Coating
9.4.1 Thermal Stability Agents

To develop improved food packaging, several film parameters can influence the final
quality of the packaging, such as optical, mechanical, barrier, and thermal properties
[64]. In this case, the thermal characteristics of materials are crucial for their use as
commercial products, considering diverse aspects ranging from the transportation
process to their storage and final usage of these manufactured items.

In general, during film characterization, the thermal stability can be determined
by a simple method known as thermogravimetric analysis (TGA), which is based on
the measurement of the mass variation of a sample upon heating over time. In other
words, TGA allows for obtaining information about the thermal degradation behav-
ior of materials [65]. In addition to TGA, differential scanning calorimetry (DSC)
can also be used to investigate how the materials respond to heating, providing
information about the melting point (7,) of the films and their enthalpy change
(AH) [45].

As an alternative to improving the thermal properties of films to be used in food
packaging, different types of nanomaterials can be used in their matrices. According
to Basavegowda and Baek [64], the presence of nanomaterials in polymeric films,
for example, can act as an obstacle to heat and mass transfer, thus reducing the
molecular mobility of polymers in the matrix and preventing heat-induced polymer
degradation. In addition to the applications of starch nanomaterials in the food
packaging systems, such as reinforcement materials and antimicrobial agents,
these nanoscale starches can also be used to optimize the thermal properties of
nanocomposite films. Hakke et al. [45] produced SNPs from maize corn starch
and used them as nanofillers to improve several of properties of polyurethane
(PU) films. TGA and DSC analysis of the SNP-PU nanocomposite films revealed
an increase in AH values (ranging from 3.34 to 17.33 J/g for the pure PU film and the
30% SNP-PU material, respectively), and a decrease in thermal degradation as the
SNP concentration increased (for the first state of weight loss of 10%: in a temper-
ature below of 100 °C for PU film, compared to 200-300 °C for the SNP-PU films).
Moreover, the difference between the melting (7,,) and glass transition (7},)
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temperatures of the nanocomposite film with the incorporation of 30 wt% of SNPs
was higher than that of the PU film (7, = 64.7 °C and 93.3 °C, T, = 33.6 °C and
51.2 °C, respectively for pure PU and PU with 30 wt% of SNPs). All these
observations were attributed to the presence of SNPs in the PU films. According
to the authors, the overall increase in the operating range of temperature with the
addition of SNPs will help to improve the thermal resistance of the nanocomposite
films in coating applications.

In the research of Jiang et al. [42], the gradual addition of potato SNPs synthe-
sized by enzymatic hydrolysis to the pea starch-based films was also correlated with
an improvement in the thermal properties of the nanocomposite film. When com-
pared to the control material, the melting temperature of all films with SNPs was
increased (ranging from T, of 226.91 to 235.81 °C for materials with 3 to 12 wt%
content of SNPs; and T, of 225.81 °C for the control). According to the authors, this
observed improvement in the thermostability of starch films can be attributed to the
presence of strong interactions between nanoparticles and the film matrix.

Nevertheless, it is important to consider that not only the presence of starch
nanomaterials that can improve the thermal properties of the materials, but also the
amount of starch nanomaterials used as nanofillers can influence them. As reported
in the study of Li et al. [66], a gradual improvement in the thermal properties of a
film with an increased amount of starch nanomaterials is not always observed. In this
study, pea starch-based films (PS) with glycerol were produced, and SNCs devel-
oped by acid hydrolysis of waxy maize starch were used as nanofillers. Results
obtained from TGA and DSC measurements revealed that the nanocomposite films
with 1, 3, and 5 wt% of SNCs showed higher values of AH (ranging from
24.34 t0 26.76 J/g for 1 and 5 wt% SNCs in the films, respectively; and 23.51 J/g
for the native PS material) and higher thermal decomposition temperatures com-
pared to the pure PS film. However, with the addition of 7 and 9 wt% of SNCs, the
SNC-PS films showed poorer thermal performance and lower AH values (around
22 J/g for both materials), which was attributed to the catalyzed depolymerization of
the materials due to the presence of a large number of sulfate groups on the surface of
the SNCs. In this case, it was evident that the addition of SNCs could improve the
thermal stability of the pea starch-based films when suitable amounts of SNCs were
used, i.e., less than 5 wt%.

The main advantages of using SNPs as thermal stability agents are their biocom-
patibility, biodegradability, and low toxicity compared with synthetic alternatives.
However, it is essential to note that the effectiveness of SNPs as thermal stability
agents depends on the specific application and the processing techniques used to
incorporate them into the desired materials or products. Research in this field is
ongoing, and further advancements may lead to even more diverse and efficient
applications of SNPs in thermal stability enhancement, such as heat-resistant coat-
ings, thermal stabilizers in food applications, and flame-retardant materials.
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9.4.2 Reinforcing Material and Mechanical Properties

SNMts have been described as an excellent option as one reinforcing material; when
well dispersed on the matrix, they increase the interfacial area between matrix/fillers,
and thus influences the material properties [67]. Mainly, SNPs and SNCs have
attracted the attention of food packaging researchers [5].

The selection of the matrix depends on some parameters, such as the compatibil-
ity between components, the operation process, the cost, and the final application
[68]. Common functional groups of nanomaterials could form links with the surface
of the matrix material, holding the percolating network together [69]. In fact,
nanoparticles are likely to bond with hydroxyl groups, strengthening the molecular
forces between nanoparticles and starch [70].

From an industrial perspective, certain industries have already begun manufactur-
ing nanoparticles. For instance, Novamont (Novara—Italy), collaborated with Good-
year Tire and Rubber to develop materials using nanoparticles derived from
cornstarch. These nanoparticles have been used to partially substitute conventional
carbon black and silica particles in their products [71]. This development showcases
the growing trend of incorporating sustainable and renewable resources in industrial
applications, leading to more eco-friendly and innovative materials.

The literature has reported that these materials improve the mechanical, thermal,
and WVP properties, as a result of the formation of a filler-matrix interface [5]. The
hierarchical organization of starch with its semicrystalline structure has been a key
factor in the preparation of nanocrystals through different processes, i.e., controlled
acid hydrolysis, as in the case of potato and waxy maize starch granules [71].

Several studies conducted have compared SNCs and SNPs. In one particular
study [72], researchers examined the morphological, structural, and thermal charac-
teristics of SNCs obtained via acid hydrolysis and compared them with SNPs
derived from the same waxy maize starch, using ultrasound treatment. The findings
revealed distinct differences between the two materials. The SNPs were observed to
be completely amorphous, slightly smaller, and lacked any surface charge. On the
other hand, the SNCs exhibited the expected platelet-like morphology and possessed
anegative surface charge. Despite these variations in morphology and structure, both
materials demonstrated excellent potential as reinforcing agents.

Table 9.2 summarizes some of the recent research on SNPs and SNCs from
different sources and their effect on the mechanical properties of films produced
from different matrices.

Although most of the studies reported increased mechanical performance due to
the addition of these nanomaterials, the effect of SNPs on the mechanical properties
has a strong concentration dependance. Indeed, Santana et al. [43] pointed out that
low concentrations of SNPs (1 wt%) are probably unable to significantly increase the
tensile strength. Moreover, Limin Dai et al. [81] reported that the aggregation of
SNCs at higher concentrations, could weaken the interface adhesion between starch
and nanocrystals. Therefore, and optimum concentrations must be determined to
achieve the desired results.
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Table 9.2 Representative studies of starch nanoparticles
polymeric matrices and its effect on mechanical properties

P. A. L. Sponchiado et al.

and starch nanocrystals reinforcing

Polymer Nanocomposite
matrix Nanomaterial production Major findings Reference
Cassava Quinoa SNCs obtained | Casting 5 wt% of quinoa SNCs | [44]
starch by acid hydrolysis at was the best concentra-
concentrations of tion regarding the ten-
0, 2.5,5.0,7.5 and sile strength and
10%w/w) Young’s modulus.
These properties were
lower for the quinoa
SNCs concentrations
above or below 5 wt%
Sago powder | Sago SNPs from sago | Casting Sago SNPs enhanced [70]
(Metroxylon Sagu) the tensile strength of
starch at films up to only 4%
concentration of 0-8% (w/w) loading of
(w/w) nanoparticles
Corn starch Taro SNPs content of Casting Taro SNPs enhanced [73]
0.5-15 wt% the tensile strength of
films from
1.11 to 2.87 MPa
Maize starch | Corn SNPs content of | Casting With 10% of corn [74]
10-15 wt% SNPs, the tensile
strength of films
increased about 45%
and the Young’s mod-
ulus about 72%.
Green Acetylated banana Casting Nanoparticle concen- [75]
banana SNPs at concentrations tration increased the
starch of 0.01%, 0.05%, and tensile strength and
0.1% (w/w) reached the highest
values at higher con-
centration of
nanopatrticles.
Native water | Water chestnut SNPs Casting In nano starch compos- | [76]
chestnut prepared by acid ite films, more force
starch hydrolysis in concen- was required to burst
trations of 0.5, 1, 2, the film samples
5 and 10 wt%
PPC Core—shell SNPs con- | Melt-blending | With 20 wt% of SNPs, | [77]
centrations between the tensile strength of
10 and 40 wt% the composite reached
21.5 MPa, which was
3.2 times that of neat
PPC
PLA Corn SNPs Melt-blending | PLA nanocomposites [78]

synthesized via gelati-
nization of the esteri-
fied starch in
concentration

10-30 wt%

reinforced with corn
SNPs resulted in a
favorable balance
between high tensile
strength and elongation
at break

(continued)
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Table 9.2 (continued)

Polymer Nanocomposite
matrix Nanomaterial production Major findings Reference
Mango seeds | SNCs from 0 to 10 wt% | Casting The optimized condi- [79]
starch tions (8.5 wt% of
SNCs) resulted in a
film with enhanced
strength, modulus,
although the elongation
has been impaired
Commercial | SNCs concentrations Casting Film with 6% SNCs [80]
cross-linked | of 2-8 wt% showed the best
cassava mechanical
starch performance
Waxy maize | SNCs prepared with Casting ‘When the SNCs con- [81]
starch heat-moisture treat- tent reached 10%, the
ment and acid hydro- nanocomposite film
lysis at concentrations had the best overall
of 0-12 wt% performance
Corn starch: | Corn SNCs in concen- | Casting Tensile strength was [82]
chitosan bio- | trations of 2, 4 directly related to the
polymers and 6 wt% corn SNCs ratio
mixes

PLA poly (lactic acid), PPC poly(propylene carbonate), SNCs starch nanocrystals, SNPs starch
nanoparticles

Nanomaterials have also been employed to improve the properties of coating
materials [83], resulting in an interesting tool for addressing changes in packaging
materials and improving the quality, shelf life, safety, and security of food products
[84]. Indeed, Bizymis and Tzia [85] reported that starch nanomaterials can increase
the barrier and the mechanical properties of edible coatings, in which natural
ingredients with antimicrobial and antioxidant activity can be incorporated to
increase their beneficial effects on the fresh produce quality [86]. Wang et al. [87]
cited that SNPs added to polydimethylsiloxane were used to fabricate coatings; their
results indicate the promising application of SNPs in super wettability systems and
show the potential of the coating. In another study, cross-linked starch—-BTCAD-
NHS (starch—butane tetracarboxylic acid dianhydride—N-hydroxysuccinimide) was
used to modify gelatin film to be used as a coating; the nanoparticles increased the
tensile strength and the elongation at break (50-300%, respectively) [88].

Limin Dai, Zhang, and Cheng [80] produced a starch-based nanocomposite film/
coating made from cross-linked cassava starch reinforced by SNCs from 0 to 8 wt%
of starch. The coatings based on 6 wt% showed the best mechanical and best coating
to preserve pears, and maintain the color, texture, cell membrane permeability, total
phenolic, soluble solids, and titratable acid contents of the fruit.

In general, SNPs, when used as reinforcing materials, can significantly affect the
mechanical properties of the materials in which they are incorporated. It is also
essential to optimize the concentration and dispersion of SNPs within the material to
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achieve the desired mechanical enhancements effectively. In addition, factors such
as particle size, shape, and surface modification can also influence the overall
mechanical performance of the composite material. SNPs show promising potential
as sustainable and biodegradable reinforcements for various applications, including
bioplastics, coatings, and composites, where improved mechanical properties are
sought.

9.4.3 Biodegradability

It is relevant to mention new approaches that have been explored, such as the
addition of nanosized materials as a tool to improve the biodegradation rate, in
which the structure and composition of the biomaterials significantly influence this
rate in different stages. The common claim is that these nanomaterials are biode-
gradable and make materials more biodegradable, which makes them even more
attractive. However, data to confirm this assumption are missing [84]. Synthetic
nanoparticles have already been discovered in the aquatic environment. Therefore,
knowledge of their biodegradability is of maximum importance for risk
estimation [84].

Few studies in the literature have reported the effect on biodegradation behavior
of different fillers in different matrices. For example, in the PLA matrix was
observed that fillers enhanced the hydrophilicity of the composite material, promot-
ing the polymer hydration capacity and the degradative action of microorganisms
[89]. Likewise, these additives might inhibit the crystallization of the polymer,
promoting the degradation rate of the PHBV polymer [89]. According to Mehmood
et al. [90], low-density polyethylene (LDPE) was reinforced with titanium
nanoparticles in concentrations of containing 5% (w/w), and the addition of titanium
nanoparticles increased the degree of biodegradation. However, although the major
studies related increased in the biodegradability due to the action of these
nanomaterials, the contrary effect is also valid. Babaee et al. [91] related that a
dense structure was obtained in films prepared with plasticized starch (PS)/Chitosan
nanoparticles (CNPs) loaded at 1, 2, 3, and 4 wt.% and that their complete biodeg-
radation occurred in more days than neat PS.

Regarding nanomaterials produced from starch, the literature reports that
nanoparticles and nanocrystals are found to degrade faster than their macroscopic
counterparts due to their higher surface area [92]; however, few studies have
reported the effect of these fillers on different polymeric matrices, some of which
are shown in Table 9.3.

As shown in Table 9.3, all the studies related to biodegradation in compost or soil
media. To our knowledge, no biodegradation studies in aquatic environments have
been reported in the literature, which highlights the importance of these type of
studies.
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9.4.4 Encapsulating Agents

The SNPs can be applied in encapsulation systems, which are an attractive alterna-
tive for bioactive compounds [31, 99]. The use of nanoamide as a superior encap-
sulation material is due to its biocompatibility, low viscosity at high concentrations,
large surface area, non-toxicity, low cost, and optimal entrapment of bioactive
materials [5, 100]. Thus, we have examples of various food ingredients and phar-
maceutical application materials that have been encapsulated using SNPs by various
encapsulation methods with different efficiencies in the encapsulation process.

According to Ahmad and Gani [101], encapsulation efficiency (EE) determines
the amount of core material trapped in the carrier material, and the percentage
depends on the number of compounds initially loaded during the encapsulation
process. Some studies showed that the highest percentage of EE in starch without
modification treatment was shown in vitamin E, with soluble SNPs reaching
91.63%; this finding also indicated that most vitamin E can be retained in SNPs
[102]. The highest proportion of EE, above 97%, was produced in conjugated
linoleic acid encapsulation using waxy corn starch nanoparticle encapsulation
agents; conjugated linoleic acid was effectively trapped in nanostructured particles
and can be absorbed with the initial modification treatment, which will effectively
increase the absorption efficiency [103]. Similarly, the acetylation of banana starch
nanoparticles shows better curcumin encapsulation ability than the nanoparticles
without acetylation [104].

Ultrasonication assisted with acid hydrolysis of starch has currently been used to
encapsulate antioxidant compounds such as L-ascorbic acid and oxalic acid with
high encapsulation efficiency [105]. Horse chestnut, water chestnut and lotus, and
lotus starch nanoparticles treated by hydrolysis with sodium hydroxide increased the
stability and antioxidant activity of catechin, with the encapsulation efficiency
reaching up to 59% and the degradation of catechin encapsulated in SNPs being
lower than of unencapsulated catechin, both under digestion conditions [106]. These
same starches can also efficiently release resveratrol to specific sites and exhibit
higher anti-obesity and anti-diabetic activity than free resveratrol after digestion.

Quinoa SNPs loaded with piroxicam can improve anti-inflammatory activity
in vitro, showing around 78% drug release in 0.1 M HCI after 2 h [107]. Unramified
starch successfully incorporated epigallocatechin gallate (EGCG) into the
nanoparticles with the highest encapsulation efficiency of 84.4%. Furthermore, the
resulting nanoparticles showed a controlled release of EGCG in simulated gastric
and intestinal fluids. The authors speculated that the developed SNPs could have
good prospects as oral release nanocarriers for active compounds or drugs [108]. In
recent studies, Escobar-Puentes et al. [109], used succinylated SNPs for the encap-
sulation of anthocyanins and observed that these systems could be used for the
controlled release of bioactive compounds targeting applications such as biodegrad-
able food packaging or as antioxidant additives in the food industry.

In general, results from the literature suggest that SNPs hold significant promise
in enhancing the stability, solubility, and availability of bioactive compounds.
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Moreover, they exhibit the potential to protect these valuable compounds during
food processing and storage, thereby aiding in the development of functional foods.

9.4.5 Antimicrobial Agents

Starch has the remarkable ability to produce a diverse array of SNMits that can
effectively stabilize bioactive compounds with antimicrobial properties against
foodborne pathogens [110]. These starch-based nanomaterials, which act as stabi-
lizers for antimicrobial compounds, exhibit superior characteristics compared with
other natural polymers used as wall materials. They demonstrate faster diffusion
rates, higher water solubility, enhanced absorption capacity, and superior penetration
rates through biological barriers [110]. Incorporating these nanoparticles as antimi-
crobial agents in food products can significantly enhance food safety by inhibiting
the growth of pathogenic microorganisms. Because of their large surface area,
nanoparticles can efficiently attract and immobilize a higher number of microorgan-
isms, leading to increased antimicrobial effectiveness [111].

Furthermore, the development of SNPs allows for the compartmentalization of
active substances, particularly stabilizing antimicrobial compounds known for their
efficacy [110, 112]. This opens new possibilities for the creation of safer and more
stable functional foods with enhanced antimicrobial properties.

Potassium sorbate is considered a GRAS additive (generally recognized as safe)
and is known for its antimicrobial properties against yeasts, molds, and various
bacteria. However, it is vulnerable to oxidation when exposed to environmental
conditions. On the other hand, carvacrol serves as another food preservative and is
the primary component found in oregano or thyme oils. It exhibits strong antimi-
crobial activity against both pathogenic microorganisms and foodborne diseases
[110]. Alzate et al. [110], have found that starch-based micro- and nanoparticles,
created through antisolvent precipitation (AP), offer a viable method for incorporat-
ing potassium sorbate. In another study by the same authors [113], potassium sorbate
was successfully stabilized using esterification-modified SNPs. The results showed
that the retention capacity of the stabilized potassium sorbate ranged from
41.5 to 90 mg/g, indicating that it is a highly promising antimicrobial agent for
food systems. Notably, this approach effectively inhibited potassium sorbate oxida-
tion even under ambient conditions. Fonseca et al. [114] used SNFs to stabilize
carvacrol through electrowinning. They prepared solutions containing different
concentrations of carvacrol (0%, 20%, 30%, and 40% v/v) with SNFs. The results
showed that starch nanofibers loaded with 30% carvacrol led to significant reduc-
tions in various pathogens: 89% for Listeria monocytogenes, 68.0% for Salmonella
Typhimurium, 62% for Escherichia coli, and 49.0% for Staphylococcus aureus.
Based on their findings, the authors concluded that starch nanofibers (SNFs) hold
immense promise as a vehicle for the controlled release of carvacrol in antimicrobial
and antioxidant food packaging applications. Nieto-Suaza et al. [75] employed
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acetylated SNPs loaded with curcumin, which were then incorporated into films
based on banana starch and aloe vera. The resulting films demonstrated a controlled
release of curcumin when applied to various food products. The researchers
suggested that these films have the potential to effectively manage microbial growth
in food items, making them promising candidates for food preservation and safety
applications.

9.5 Future Trends

Biomass is one of the most promising renewable energy sources, demonstrating its
potential as a valuable resource in producing competitive nanomaterials [115]. These
nanomaterials are derived from diverse sources such as agricultural waste, forest
residues, industrial byproducts, and sewage sludge [115]. Indeed, rice and wheat
straws, cotton and corn stalks, sugarcane bagasse, bamboo biomass, shaddock,
banana, and rice husk [116], stems, pulp, stem, shell, straw, seeds, husk, peel,
stubble, roots, livestock slurry, waste generated during the maintenance of wood-
lands, and waste from vegetables and fruits hold potential as valuable raw materials
to be used in various applications, making them a potential solution for economic,
social, and environmental problems [117, 118].

One example pertains to the significant environmental burden posed by potato
peel waste, with accumulations reaching several tons per year, resulting in substan-
tial negative impacts [119], minor quantities are sold for supplementary animal feed
at very low cost and the rest is discarded as waste [SO]. SNPs produced from potato
peels have unique properties that are suitable for large-scale applications
[119]. Hence, the development of cost-effective techniques for transforming waste
potato peel into valuable products is crucial [120]. Another example is cassava starch
nanoparticles that could be produced from peels and stems and used in the pharma-
ceutical industry as a novel drug vehicle [121], which resulted in major advantages
such as biocompatibility, biodegradability, easy modification, efficient carrier, and
potential targeting [115].

The primary emphasis of incorporating innovative nanomaterials in food pack-
aging has been to enhance the overall quality and safety of products, promote
healthier lifestyles, and improve well-being [122]. The advantages of these
nanomaterials have been widely studied, but their health implications with it are
still in the process of feasibility and verification [122], mainly because of the
toxicological effect [123] of nanomaterials due to the risk of migration from pack-
aging to food matrix [122, 123]. Thus, the employment of these materials in the field
of food packaging has yet to be allowed due to security concerns.

Consequently, to assess the potential risks, researchers should thoroughly inves-
tigate the interactions and stability of nanomaterials in food and feed, as well as their
behavior within gastrointestinal systems and biological tissues. In addition, compre-
hensive studies on the toxicity evaluation of nanomaterials, encompassing chronic
exposure and carcinogenicity, are imperative [124].
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Another point is related to the use of unconventional starches in the production of
nanoparticles, which is a promising and innovative strategy that aims to avoid
competition with the food sector while taking advantage of the unique properties
of these starches to create materials with diverse applications. To overcome this
competition, researchers have explored non-conventional starches, which are
obtained from alternative sources, such as agro-industrial residues, non-food plants,
and even microorganisms [125].

These unconventional starches can be an abundant and affordable source for the
production of nanoparticles with various industrial and medical applications
[126]. Different unconventional starches have been explored for nanoparticle pro-
duction such, as pine seed [127], lotus seed [128], quinoa [47], and pine [129]. By
using unconventional starches to produce nanoparticles, several advantages can be
achieved: sustainability, low cost, abundance, versatility, and non-food applications.

The production of nanoparticles from unconventional starches is still in the
research and development phase. Challenges include optimizing starch extraction
and modification processes to obtain the desired characteristics in nanoparticles and
ensuring the safety and stability of the final products. In short, the use of unconven-
tional starches in the production of nanoparticles is a promising and sustainable
approach that allows exploration of new technological opportunities without
compromising the food supply. This approach can contribute to the development
of advanced materials with innovative applications in different sectors, thus boosting
the economy and scientific research.

9.6 Conclusions

In conclusion, starch nanomaterials (SNMts) offer a promising and innovative
solution for functional packaging ingredients in various industries. Starch is one of
the most abundant biopolymers on earth, and its nanoscale presents exciting oppor-
tunities to enhance packaging material’s performance and sustainability.

The unique properties of SNMts, including their biodegradability, renewable
nature, and biocompatibility, make them an attractive alternative to conventional
packaging additives derived from fossil fuels. These nanomaterials can improve
packaging properties, such as barrier performance, mechanical strength, and mois-
ture resistance, while also enabling the controlled release of active compounds for
food preservation and other applications.

Moreover, the facility of modification and functionalization of SNMts allows for
tailoring their characteristics to meet specific packaging requirements, thereby
addressing the diverse needs of different products and industries. By incorporating
SNMts into packaging formulations, companies can move toward greener and more
sustainable practices, thereby reducing their environmental impact and promoting
circular economy principles.

However, challenges related to large-scale production, cost-effectiveness, and
compatibility with existing packaging processes must be addressed to fully realize
the potential of SNMts in functional packaging applications. Continued research and
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development efforts are crucial to optimize processing techniques and ensure the
safety and regulatory compliance of these novel ingredients.

In conclusion, SNMts represent a promising frontier in the field of functional
packaging ingredients. Their eco-friendly nature, versatile properties, and potential
for widespread applications make them an essential component in driving the future
of sustainable packaging solutions, benefiting both industries and the environment
alike. As advancements continue and adoption increases, starch nanomaterials are
set to revolutionize the packaging landscape, ushering in a new era of greener, more
efficient, and safer packaging materials.
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