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Abstract

A Nash equilibrium is a strategy profile of a game in which none of the players involved has any gain by changing alone his/her
own strategy. Given a two-player game, we show a codification of all of its Nash equilibria into Lukasiewicz infinitely-valued
logic, that is, we derive a propositional theory in this logic whose models codify all the Nash equilibria. Based on such
propositional theory, we derive a polynomial reduction from the problem of computing a Nash equilibrium to the problem of
satisfiability of (sets of) formulas of Lukasiewicz infinitely-valued logic. These applications of logic to game theory lead to
new methods for computing Nash equilibria.
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1 Introduction

Game theory deals with the scenarios, called games, where two or more players have two or more
choices of actions on how to behave. The utility or gain for each individual may be measured in
accordance with the possible action profiles by all of them. The aim of game theory is to study the
solutions of such games by, for instance, establishing what are the action profiles that have some
kind of balance, called equilibrium.

A well-known notion of balance is Nash equilibrium. First, a pure Nash equilibrium is an action
profile for which no player would gain by changing alone his/her choice of action. Unfortunately,
such concept of equilibrium lacks universality, since not all games are guaranteed to have such
an equilibrium. To work around this flaw, another concept of equilibrium is proposed. Instead of
looking solely at the actions, a strategy for the behavior of a player is considered to be a probability
distribution over his/her possible actions. In this way, the player is expected to randomly choose an
action in each instance of the game that he/she faces according to such a probability assignment.
The player’s utilities or gains are now the probabilistic averages of the utilities of action profiles.
Then, a (mixed) Nash equilibrium is a (probabilistic) strategy profile where no player would gain by
changing alone his/her probabilities over actions. The famous result from John Nash establishes that
any game has at least one Nash equilibrium [20].

From the perspective of complexity theory, the problem of computing an e-Nash equilibrium,
which is a strategy profile where a player would gain at most the value ¢ by changing his/her
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probabilities over actions, is PPAD-complete [5]. The class PPAD is the subclass of (the search
version! of) NP that contains the search problems for which (i) all instances have a solution
(differing, for instance, from the problems of finding a satisfiable assignment for logical formulas);
and (ii) the proof of existence of solution uses the non-constructive parity argument for directed
graphs: ‘If a directed graph has an unbalanced node (a vertex with different in-degree and out-
degree), then it must have another’.

As far as (non &-) Nash equilibria are concerned, their approximate computation for games with
two players is PPAD-complete [2]. However, for games with three or more players, a result that
places the computation of an approximate Nash equilibrium in NP would imply a breakthrough
in complexity theory since it would also place in NP the square root sum problem: given positive
integers di, . ..,d, and k, is it the case that Zl'.;l Jd; < k? Whether the square root sum problem is
solvable in NP is an open problem since the 1970s [7].

Many algorithms have been proposed for computing Nash equilibria for two-player games. An
important one is the Lemke—Howson Algorithm that proceeds by following a path of vertices
standing for strategies in a pair of polytopes until it reaches a vertex that codifies a Nash equilibrium
[14]. Such approach is possible due to the linearity of the constraints that determine Nash equilibria
in two-player games.

In this work, we exploit such a linear nature of Nash equilibria in order to codify them into
Lukasiewicz infinitely-valued logic (L), a propositional logical system that is arguably one of
the best studied many-valued logics [3]. Lukasiewicz infinitely-valued logic has several interesting
properties such as a continuous truth-functional semantics, whose truth values lie in the unit interval
[0, 1], classical logic as a limit case and well developed proof-theoretical and algebraic presentations.

Given a two-player game G, we show how to build a set @g of formulas of Lo, such that a
valuation v satisfies @ if, and only if, v codifies a Nash equilibrium of G; in other words, @¢
is the Loo-propositional theory whose models encode the Nash equilibria of G. In Section 3, we
codify probability distributions and a mechanism for guaranteeing that a strategy profile satisfies the
conditions in a characterization of Nash equilibria. In order for such conditions to be fully expressed
in the language of Lo, linear equations and inequalities with rational coefficients need to be codified
in this logical system. The exact codification of such equations and inequalities is postponed to
Section 4.

For codifying probability distributions in Section 3, we interpret probability values as truth values
of propositional variables in the language of L. Such an approach is not novel, translations
from probability statements to fresh propositional variables in the language of L, were already
used to show the completeness of probability logic systems, as FP(L) and FP(L,L), with respect
to probability models [9, 10, 13]. More recently, these translations were also employed in the
codification of de Finetti’s coherence criterion in £.o [11].

The problem of finding a satisfiable valuation for a set of formulas in L, if some exists
(Loo-Satisfiability), is NP-complete [18]. Thus, as computing a Nash equilibrium for two-player
games is a problem in NP (because PPAD C NP), the Cook—Levin Theorem states that there is a
polynomial reduction from this problem to L,-Satisfiability [4]. Indeed, we show in Section 5 that
the codification of Nash equilibria into £, yields such a polynomial reduction.

Other proposals for encoding Nash equilibria into Lukasiewicz logics are found in the literature.
Marchioni and Wooldridge [15] show how to encode pure Nash equilibria in finitely and infinitely-
valued Lukasiewicz logics and some extensions of these systems. Moreover, Béhounek et al.

Deciding if instances of these problems have a solution is trivial, since it is assumed that they have. For a detailed
treatment of the search version of NP, see [12].
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[1] propose an encoding of (mixed) Nash equilibria in infinitely-valued product Lukasiewicz
logic and its extensions. Such logical systems express real numbers product in addition to the
traditional Lukasiewicz operators. While such expressiveness allows codifications for games with
any number of players, it also leads to an increase in the complexity of Satisfiability. Note that
solving Satisfiability for infinitely-valued product Lukasiewicz logic might involve finding roots for
multivariate polynomials of any degree. The codification of Béhounek [1] is discussed in Section 6.

Then, this work shows an explicit reduction from the problem of computing Nash equilibria in
two-player games to L.o-Satisfiability, even though L., lacks a numbers product operator. Also,
such is a reduction to a problem in the same complexity class as the reduced one (that is, NP).

Moreover, the results in this work advance the study of Nash equilibrium since new methods
for computing it for two-player games might be derived resting on methods for deciding t-
Satisfiability. And approximation techniques for L., as the one in [8], immediately lead to
approximations of Nash equilibria for two-player games.

In addition to the aforementioned sections, we also introduce the necessary background about
Lukasiewicz infinitely-valued logic and game theory in Section 2 and draw some conclusions in
Section 7.

2 Preliminaries

2.1 Games and nash equilibrium

In this work, we call a game” a triple G = (P, 4,u), where P = {1,...,n} is a set of n players,
A = A4y x---x A, is aset of action profiles, in which each 4; is a finite set of all the possible actions
for player i, and u = (u, . .., u,) is a sequence of utility functions, in which u; : A — Q is the utility
function for player 7 (that assigns the player’s gain to each possible action profile).

A (mixed) strategy for player i is a probability distribution o; over the set 4; of actions for player
iand ¥ = X x --- x X, is the set of strategy profiles, in which each X; is the set of all possible
strategies for player i. The set of actions with non-zero probability in a strategy o; is its support. We
call pure strategy a strategy whose support is a singleton and we abuse the notation by identifying
actions with pure strategies. We also identify strategy profiles that only have pure strategies with
action profiles.

It is assumed that each player’s choice of strategy is independent from all other players’ choices,
so the expected utility function U; for player i is given by

Uilo) = >_ui(@) [ [ oi(ap,

aeA jepP
where o € X and a = (ay,...,a,), with a; € 4;.
A strategy profile o = (01,...,0i,...,0y) is a Nash equilibrium if, for every player i,

Ul(a) Z l]i(ala- . '90'1'/7' . 7Gn)7

for every o] € Xj; each o in o is called a best response for player i in relation to the other players’
strategies in o because no player would gain by changing alone his/her strategy. Then, a strategy
profile is a Nash equilibrium if, and only if| it is composed by best responses for all players. A game
G always has at least one Nash equilibrium [20].

2These kind of games are usually referred to as strategic-form games. Since these are the only games we address in this
work, we refer to them simply as games.
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TABLE 1  Utility functions for game G,

a @
aj 3,2 0,0
a? 0,0 2,3

EXAMPLE 1.
Table 1 has the values of the utility functions u; and u; in the two-player game G, = (P, 4, u), where
P ={1,2},4 = 4 x 4y = {al,a?} x {a},a3} and u = (u1,u). The lines in Table 1 stand for
player 1 and the columns for player 2; for each action profile (a’i , a’z), the corresponding entry has
the utility for player 1 followed by the utility for player 2. Game G, has three Nash equilibria, two
of which are pure strategy profiles: (a{ , aé) and (a%, a%). The other Nash equilibrium is the strategy
profile (o1, 02), where
1 _ 3 2 _ 2 1, _ 2 d 2 _ 3 1
U1(a1) = ga Gl(al) = g, 02(02) = g an 52(612) = g (D

Leto = (o1,...,0,) € X be a strategy profile and U;(o|a;) be player i’s expected utility for the
strategy profile o’ = (o01,...,a;,...,0,), where action a; € A; acts as a pure strategy (remember
that we identify actions with pure strategies). It is easy to see that the following equation holds:

Ui(o) = D, oi(a)Ui(o|ay). )
a,-EA[
Then, the following result highlights the combinatorial nature of the problem of computing Nash
equilibria.

PROPOSITION 1. (Papadimitriou [21], Theorem 2.1)
A strategy is a best response if, and only if, all actions in its support are best responses.

PROOF. Suppose that some action in the support of a best response strategy is not itself a best
response as a pure strategy. Then, in view of equation (2), the player would have a better expected
utility by decreasing the probability of such an action and proportionally increasing the probability
of another action in the support that is a best response. Conversely, if all actions in a strategy support
are best responses, each one as a pure strategy has the same expected utility. This expected utility is
the same for the strategy with such actions in its support. O

It follows that, to compute a Nash equilibrium, one may search the possible supports for a strategy
profile that satisfies the best response constraints. That is, if 4 is the set of actions available for
a player, one may search for a subset of actions S € A such that: the expected utilities for all
actions in S are equal; and the expected utilities for the actions in S are, at least, the expected
utilities for the actions in 4 \ S. Such a set § satisfying such conditions is the support of a best
response.

Let k; be the number of actions in the support of o;. For each player i, the equations

Ui(olay) = Ui(olay), A3)

for a; and a] in o;’s support, state that player i’s k; expected utilities U;(o'|a;), for all actions g; in
the support of o;, are equal. And the inequalities:

Ui(ola)) < U(olay), “4)
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for a; outside 0;’s support and @/ in o;’s support, state that player i’s k; expected utilities U;(o|a;),
for all actions a; in the support of o;, have value at least as the |4;| — k; expected utilities U;(o |a;),
for the actions a; not in o;’s support.

Then, for o to be a Nash equilibrium, the probability values in o must satisfy

e Asystemof >, p ki2 equations as (3), which we call utility equations; and
o A system of >, p(|4;| — k;) - k; inequalities as (4), which we call utility inequalities.

Therefore, a search procedure for finding a Nash equilibrium comes down to jointly solving such
systems of utility equations and inequalities for each possible support configuration. When a solution
for the systems is found, its values are the probabilities in a strategy profile that is a Nash equilibrium.

Note that, in case the game has only two players, such systems are linear, which guarantees
that there are polynomially bounded equilibria comprehending rational distributions. Therefore, the
problem of computing a Nash equilibrium is placed in NP.

As our results are about two-player games, from now on we use the notation ¢ and b instead of 1
and 2 to name the players. Thus, we also use the cleaner notation &’ and #/ instead of a"l and a’2 to
refer to player’s actions.

EXAMPLE 2.

For the game G, in Example 1, a strategy o = (o,, 0p) for which the supports for players a and b are
the entire sets of actions 4, and 45 must satisfy the following system of equations and inequalities
(the notation for game G, is already adapted to the newly introduced convention):

Usola) =3-0p(0") = 2-04(b) = Us(o|a®)
Up(o|b') =2 04a") = 3-04(a®) = Uy(o|b?)
ou(@) + o, = 1
op() +op(?) = 1

oa(a@),04(a?),05(b"),05(b*) = 0

The last three lines force probability distributions. The values given in the strategy in (1) satisfy the
system. Note that we have omitted the trivial and redundant equations; also, as the supports in o are
maximal, there are no utility inequalities.

2.2 Lukasiewicz infinitely-valued logic

The basic language of Lukasiewicz infinitely-valued logic (L) is built from a countable set of
propositional symbols P and the disjunction (@) and negation (—) operators. For the semantics,
define a valuation v : P — [0, 1], which maps propositional symbols to a value in the unit interval
[0, 1]. Then v is extended to all formulas as follows:

v(p @ ¥) = min(1,v(p) + v(¥));
v(—p) =1 —v(p).

The semantics of formulas of L, represent all the [0, 1]-valued continuous piecewise linear func-
tions with integer coefficients over some unit cube [0, 1]"—the so-called McNaughton functions—
and only those, as stated by McNaughton’s Theorem [17, 19]. From the basic operators, one usually

Gz0z Aenuep £z uo Jasn 4sn-seosjolqig op opelbau| ewalsiS Aq 282/ /87 /€ .08ex8/wodB0l/€601 "0 | /I0p/a|01e-80uBAPE/WOo260|/Woo dno olwapese//:sdiy Wol) papeojumod
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derives the following:

Conjunction : ¢ © ¥ =ger —(—¢ & —Y),
V(g © ¥) = max(0,v(p) +v(¥) — 1);
Implication : ¢ — ¥ =gor =@ @ ¥,
v(g = ) =min(1, 1 —v() +v(¥));
Maximum : ¢ V ¥ =gor (=@ ® ¥) ® ¥,
V(g V ) = max(v(p), v(¥));
Minimum : ¢ A ¥ =ger =(—@ V =),
V(e A Y) =min(v(e), v(¥));
Bi — implication : ¢ <> ¥ =der (¢ — ¥) A (¥ — @),
Vg < ¥) =1—[v(g) —v(h)l.

Note that v(p — ) = 1 iff v(p) < v(¥) and v(p < ) = 1 iff v(p) = v(¥). Let x be a
propositional variable, then v(x ® —x) = 0, for any v € Val; we define the constant 0 by x ©® —ux.
We also define 0¢p =qor 0, 19 =qer @ and ngp =gor ¢ ® -+ @ @, n times, for n € N\ {0, 1}; and
Dico #i =der 0.

A formula ¢ is satisfiable if there exists a valuation v such that v(p) = 1; otherwise it is
unsatisfiable. A set of formulas @ is satisfiable if there exists a valuation v such that v(p) = 1,
for all ¢ € @. We also call a set of formulas @ a propositional theory; the valuations that satisfy @
are the models of @.

The computational problem of exhibiting a valuation that satisfies a formula (or a set of formulas)
or pointing out that it is unsatisfiable is the £..o-Satisfiability problem, which is an NP-complete
problem [18].

3 Codifying Nash equilibria in L,

In this section, we begin to develop the construction of a set of formulas @ from a two-player game
G = (P, 4, u) such that the valuations that satisfy @ encode all the Nash equilibria of G.

Let P = {a, b} be the set of two players, 4 = A, x Ap be a set of action profiles, where 4, =
{al, ...,a% and 4 = {bl, ... ,bﬂ} are the sets of actions for players a and b, and u = (u,, up) be the
pair of utility functions, where u, : 4 — Q and up : 4 — Q are utility functions for players a and b.
Let o = (0,4, 0p) be a generic strategy profile, where o, : A, — [0,1]NQand o}, : 4p — [0,1]NQ
are generic strategies for the players a and b.

To each probability value o,(a’) and o5 (b/), we associate propositional variables p¢ and pj]? . Thus,

the formulas in @¢ have p{,...,p§, p]f, e, pg among their propositional variables; the valuations
that satisfy @¢ are intended to represent strategy profiles in Nash equilibrium by assigning to such
propositional variables truth values standing for their associated probability values.

In the following, we build the formulas of @3 according to player a. The formulas according to
player b are analogous and also belong to @ . Moreover, we state and prove results concerning these
formulas for player a, which are completely analogous for player b.
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3.1 Probability distributions

To assure that the propositional variables actually represent probability distributions, we add to @¢
the formulas:

i) P& ®pg;

(i) =] OpY, —[@i®p) Ol ....-[@i®- - &p,_) Opryl

A valuation v satisfying item (i) guarantees that the represented probability values add up to at
least 1. If a valuation v satisfies a formula =[(p{ & - -- @ p{) © p{, ;] in item (ii), it guarantees that
the values v(p{ @ - - - @ pf) and v(p{, ;) add up to at most 1, fori € {1,...,a — 1}.
LEMMA 1.
Formulas in items (i) and (ii) are jointly satisfied by a valuation v if, and only if, values
v(p{),...,v(p4) stand for a probability distribution.

PROOF. First, note that v(p{®- - -@pg) = 1iff min(1, v(p{)+- - -+v(pg)) = Liftv(p)+ - -+v(ps) =
1. Now, let ¢ and i be formulas; v(—(¢ O ¥)) = 1 iff v(p © ) = 0 iff max(0, v(p) +v(¥)—1) =0
iff v(e) + v(¥) < 1. More generally, a valuation v satisfies formulas in item (ii) if, and only if,
v(p]) + - +v(P§) < 1. Therefore, as a valuation assigns only nonnegative values, v satisfies (i)
and (ii) if, and only if, v(p{), ..., v(p§) determine a probability distribution. O

3.2 Utility equations

Let us abbreviate by "U, (o |a’) = U, (o |a®)7 the formula that only is satisfied by a valuation v that
encodes a strategy profile o for which the player a’s expected utilities U, (o'|a’) and U, (o|d¥) are
equal. Such type of formulas will be explicitly defined in Section 4. Then, for each player a’s action
a', we build the following formula:

P "Uaold) = Uulold) 0 p¢ | 01,

which we abbreviate by £,(a’).

LEMMA 2.

Let v be a valuation satisfying formulas (i) and (i) for both players a and b, therefore representing a
strategy profile o. Then, formula £,(a’) is evaluated by v with the exact same value as p?, if one of
the following two excluding cases occurs:

e d' is not in the strategy o,,’s support;
e d' is in the strategy o,’s support, in which case the expected utility U, (o|a") for pure strategy
a' is equal to the expected utilities U, (o |a¥), for all a* in o,’s support.

And, if none of the above cases occurs, v evaluates £,(a’) strictly less than it evaluates pi.
PROOF. First, let us fix the notation:

Yk = "Ua(old’) = Us(old);

ok = "Uy(old") = Us(od) " 0 ps

o= P Uiold) = Uulold") 0 p.
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8 Nash meets Lukasiewicz: computing equilibria through logic
In case &' is not in o,,’s support, v(p¢) = 0and
v(Ea(a')) = max(0,v(p) +v(pf) — 1) = 0= v(p{).

In case @' is an action in o,’s support and U, (o |a’) = U, (o |a¥), for all a* in o,’s support, we have
that v(y¥x) = 1, when d*isino,’s support, and v(pZ) = 0, when a* is not in o,’s support. Then,

v(pP), " isino,’s support;

v = . .
(¢x) 0 =v(@p, a" is not in o,,’s support.

Therefore, as Z‘,le v(p}) = 1, we have v(p) = 1 and

V(E4(a)) = max(0,v(g) +v(p?) — 1) = v(p?).

Finally, if none of the above cases occurs, da' is in o,’s support, but U, (o |a’) # U,(o|d), for some
@ also in o, s support. Then, v(¥;) < 1 and

v(g) = max(0,v(y;) +v(p!) — 1) < v(p!).
For k # j, we have
vigr) = max(0,v(¥r) +v(pf) — 1) < v(p)).
Therefore, v(¢) < 1 and
V(Ea(a)) = max(0,v(p) +v(p{) — 1) < v(p}).

In view of the above result, we add to @¢ the following formula:
(iii) Ea(al) D DE(a),

which is only satisfied by a valuation satisfying the formulas in items (i) and (ii) if all the actions @’
fall into one of the two cases highlighted in Lemma 2.

LEMMA 3.

Let v be a valuation satisfying formulas in items (i)-(ii) for both players a and b. Then, v satisfies
the formula in item (iii) if, and only if, the probabilities encoded by v satisfy player a’s utility
equations (3).

PROOF. Suppose v satisfies the formulas in items (i)-(iii). By Lemmas 1 and 2, in order to satisfy
(iii), we must have v(£,(d")) = v(p?), fori =1,...,a. However, such values may only be achieved
if one of the two cases stated by Lemma 2 holds. Now, again by Lemma 2, we have that U, (o' |d’) =
U, (o |d¥), for all ' and a* in o,’s support. Conversely, suppose that the strategy profile codified by
a valuation v is such that player a’s utility equations hold. Then, by Lemma 2, v(&,(d’)) = v(p?), for
i=1,...,u,and formula (iii) is satisfied. [l

3.3 Utility inequalities

Now, we abbreviate by "U, (o |a’) < U, (o |a¥)7 the formula that is only satisf@ed by a valuation v
that encodes a strategy profile o for which player a’s expected utility U,(c|a"') is at most his/her
expected utility U, (o |a¥). We will also explicitly define these formulas in Section 4. Then, we build
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Nash meets Lukasiewicz: computing equilibria through logic 9

the following formula, for each player a’s action a':

P "Uuold) < Ualold) 0 pf,
k=1,...«

which we abbreviate by x,(a’).
LEMMA 4.
Let v be a valuation satisfying all the formulas in items (i)-(iii) for both players a and b. Then,
fqrmula Xa(ad') is satisfied by v if, and only if, player a’s expected utility U, (o |a') for pure strategy
a' is, at most, the expected utilities U, (o |a*), for all his/her pure strategies a* in o,’s support.
PROOF. First, let us fix the notation:

Yk = "U(old) < Uy(old)

ok = "Ua(old') < Us(old") 0 pf.
Let Uy(o|d) < U, (o|ak), for all ¢* in o4’s support. Then, for such ak, v(Y) = 1 and

v(pr) = max(0,v(yk) +v(py) — 1) = v(p)).
Now, for action a* not in o,’s support, v(py) = 0 and
v(gr) = max(0,v(¥x) +v(pp) — 1) = 0 = v(p}).

Therefore, as > §_, v(p) = 1, we have v(xq4 (a')) = 1. Conversely, assume that there is an action a
in 0,’s support such that U(o'|a’) > U(o|a¥). Then, v(yy) < 1 and

v(gr) = max(0,v(¥i) +v(pi) — 1) < v(p)).

k

Therefore, v(xq(a)) < 1.
We also add to @ the following formulas:

(IV) Xd(a1)3 cet Xll(aa)'

COROLLARY 1.
Let v be a valuation satisfying formulas in items (i)-(iii) for both players a and b. Then, v satisfies
the formulas in item (iv) if, and only if, player a’s utility inequalities (4) hold.

3.4 Codification

By the development of the set @ and the discussion in Section 2, if a valuation v encoding a strategy
o = (0,4, 0p) satisfies @g, o, is a best response. As we analogously add to @¢ all the formulas (i)-
(iv) concerning player b, o} is also a best response. In such case, o is a Nash equilibrium and we
state the following result.

THEOREM 1.
Given a two-player game G and a strategy profile o encoded by a valuation v, o is a Nash equilibrium
if, and only if, v satisfies @g.

COROLLARY 2.
Given a two-player game G, @¢ is a propositional theory whose models encode all of its Nash
equilibria.
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10 Nash meets Lukasiewicz: computing equilibria through logic
EXAMPLE 3.
Formulas in items (i)—(iv) for player a; in the game G, in Example | are
L. pi®py;
2. =(p] ©Op);

3. { [ ("Udola)) =Usola)T0p?) @
(Ua(old)) = Ua(ola®>) ' @py) 1 © pf } @&
{ [ (Udold®) =Ui(ola) 0p?) @
("Ua(ola®) = Ua(ola®)0p%) 1 © p§ &

4. (TUy(ola") < Uslola) o p)) @
(TUu(ola") < Uylola®) T @ p3),

("Uy(ola®) < Uylola)T0pl) @
(TUu(ola®) < Uglola®) " © p3).

4 Equations and inequalities in L.

To completely determine the set of formulas @ developed in the former section, we still need to
explicitly write formulas like " U, (co'|d’) = U,(o|d®) 7V and "Uy,(o|d') < Uy(o|a)™; in this section,
such constructions are done based on the work about function representation by Preto and Finger
[22, 23]. We continue to consider only player a since the formulas for player b are analogous. Player
a’s expected utilities U, (o |a’), for actions a', are given by

B
Ua(old) = D" ua(d', b)op (V).

J=1

Thus, our goal is to represent linear equations and inequalities in Lo, with variables standing for
op(P) and rational coefficients u,(a’, /). By representing an equation (or an inequality) in £, we
mean building a formula or a set of formulas that is satisfiable by a valuation v if, and only if, v
encodes a solution to the equation (or inequality). Let us treat the general case of an equation

Vixt+ -+ yuxp =0 (%)

with variables x; and non simultaneously zero rational fractions y;, for which we are interested in
solutions in [0, 1]".

Before building the representation, we put this equation in an equivalent normal form defined in
two steps. First we turn (5) into

iel jeJ

wherei € [,ify; > 0,andj € J,if y; < 0, with /UJ = {1,. .., n}; m is the least common multiple of
all denominators in fractions y, fork = 1,...,n; % are equivalent fractions to y;, for i € I; and %
are equivalent fractions to —y;, for j € J. Note that y; and m are positive integers, fork = 1,...,n.
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Nash meets Lukasiewicz: computing equilibria through logic 11

The second step consists in turning (5) into

iel jeJ

where M = y1 + - -+ + 7, # 0. In the final normal form, both sides of the equation take values in
[0, 1] for any vector (x{,...,x,) € [0, 1]".

We associate to equation variables x; propositional variables with same name x, fork = 1,...,n,
and we build the following set of formulas that represents (5), using the auxiliary propositional
variables cr andx;, fork=1,... n:

@ ViXi < @ ViXps (6)

iel jeJ
c1 < ~(M—1ci; (7
M M
ik%Cﬁ,fOIkZI,...,}’l; (8)
X < Mxy, fork=1,...,n. )

LEMMA 5.
Let v be a valuation satisfying formulas (7)-(9). Then, v(x;) = %

PROOF. First, suppose that v satisfies formula (7). Then, if v(c L ) > %, we have that v(—(M —
De L ) < %, which contradicts the satisfiability of bi-implication. An analogous contradiction is
achieved by supposing v(c L ) < % Then, as v(c i ) = % satisfies (7), this is the only possibility
for such a valuation v. We already know that if v satisfies (8), then v(X;) < v(c L ). Thus, if v
simultaneously satisfies (7)-(9), we have that v(x;) < % and v(xg) = min(1, M - v(xX)) = M - v(Xp).
Therefore, v(x;) = % [l

THEOREM 2.
Let v be a valuation satisfying formulas (7)-(9). Then, v satisfies formula (6) if, and only if,
(v(x1),...,v(x,)) satisfies equation (5).

PROOF. A valuation v satisfies (6) if, and only if,
min (1, Z )7,-v(5c,-)) =min | 1, Z yiv(x;)
iel jeJ
But, if v satisfies (7)-(9), such equation is equivalent to

min(l,Zfz‘v;};))=min L }vj(\);)
Jje

iel
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12 Nash meets Lukasiewicz: computing equilibria through logic

Now, by the definition of M, y; and ¥, fori € I and j € J, we have that >, 7 Vﬁ’fl") < 1 and

Dy )7]% < 1. Therefore, the last equation is equivalent to

j
Zfiv](\);) = 2)7]‘)53)

iel jeJ
Then, we have that a valuation v satisfies (6)-(9) if, and only if, (v(x1),...,v(x,)) is a solution to the
normal form of equation (5), which is equivalent to (5). O

In view of the above theorem, we are able to explicitly write formulas " U, (o |a’) = U,(o|d¥)?
using the above representation technique for equation (5) remembering that we have already
identified the equation variables o5(b) with the propositional variables p;’ . For that, we may use
the minimum (A) of the formulas (6)-(9) as "Uy(o'|a’) = U,(c'|a¥)™ or even only use the formula
(6) and add the formulas (7)-(9) to the set @¢.

To explicitly write formulas "U, (o |a’) < Uy,(o|d®) 7, we use mutatis mutandis this very same
technique considering

Y1X1 +"'+ann SO

instead of equation (5) and using

B~ D

iel jeJ
instead of formula (6).

The drawback in the representations just presented is that formulas (6), (7) and (9) have

exponential size in the binary representation of yx, M — 1 and M due to the several times (y,
M — 1 and M) we need to add Lukasiewicz disjunctions of the same propositional variable.

This situation may be circumvented by taking advantage of binary representation in writing these
disjunctions. Thus, instead of formula Nx, for N € N\ {0, 1} and x a propositional variable, we write

D

keK
where x,¢, for k =0, ..., [log N |, are new propositional variables and, for n,c € {0, 1} coming from
the binary expansion

[log V]

N = Z 2k ny,
k=0

we define the set
K= {ke 0,..., llog N} ‘ nyk = 1}.

We also need to define the new propositional variables by adding the following [log N] + 1 formulas
to the original collection (6)-(9):

X0 < X (10)

Xok <> Xok—1 @ xp-1, fork=1,...,|logN]. (11)
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In view of all the discussion in this section, we are able to state the following general result.

THEOREM 3.
Linear equations and inequalities with rational coefficients may be represented in Lo, by formulas
with polynomial size in the size of the binary representation of such equations and inequalities
coefficients.

EXAMPLE 4.
We build the formula "U, (o |a!) = U,(o|a®) 7 in Example 2 related to game G, in Example 1 in the
following. Let ab(bl) =pp and ab(bz) = p2, so we need to represent in Lo, the equation

3p1 =2py,
whose normal form is

3.2

5}71 = sz.

Note that the propositional variables pll’ and plz’ stand for the equational variables p; and p;,
respectively, in the representation. Thus, "U,(c|a') = U,(o|a®)7 is the minimum (A) of the
following formulas:
> ~b T
L4 pl,20 eapl’zl (_>p2’21:
~b ~b ~b ~b ~b .
L4 pljzo (_)pppl’zl epl,z() ®p],20’
~b ~b ~b ~b ~b .
L4 pzjzo (_)p25p2’21 (_>p2720 Gapz)zo’
o c1L < —CLp;
5 52 69 @ c
e Cl <~ Cl1,Cl <> C1 Cl Cl <~ C1 L5l
g’zo §;) §>21 g’20 §>20’ §,22 g,21 g’213
e P —> ci,p7 —> Ci;
p; g P b ’ b b b
b4 p] <_>p120 eapl’szz <_>p220 ®p2’22;
~b ~b ~b .
L4 p1’22 epl’zl @p1,21’
° ~b < ~b ey ~b
Pyp2 <> Pyp1 @Py o1

5 From Nash equilibrium to L..-Satisfiability

Two-player games are also known as bimatrix games because they may be represented by two
matrices whose entries are the player’s utilities standing for a table representation like Table 1
in Example 1. In such example, the game G, has the following matrices for players a and b,

respectively:
30 2 0
A:[02:|andB:|:O3j|.

Thus, a two-player game G may be encoded for algorithmic purposes by two matrices with entries
given in binary representation; we assume that the values of entries are given in the format of
fractions. We write |G| for the size of such representation.

In this way, for players a and b in the bimatrix game G assumed in Sections 3 and 4, the formulas
in (1) may be, respectively, built in times O(«) and O(8) and the formulas in (ii) may be, respectively,
built in times O(«’?) and O(B?).
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14 Nash meets Lukasiewicz: computing equilibria through logic

Let us assume that formulas like "U, (o |d’) = U,(c|a®)™ and "U,(o|a)) < Uy(o|d)™ may be
built in time p(]G|). Then, both the formula in (iii) and the formulas in (iv) may be built in times
O(e? - p(|G))) and O(B? - p(|G|)), for players a and b, respectively.

By the discussion above, building the set @ from a game G may be done in polynomial time as
long as formulas like "U, (o |d’) = U,(o|d®) ™ and "Uy(o'|a’) < U,(o|a¥)™ may also be computed
in polynomial time. The equations and inequalities necessary for building representations in £
may surely be computed from a bimatrix game G in polynomial time. Given a linear equation (or
inequality), its transformation to the normal form may as well be computed in polynomial time.
From an equation (or inequality) in normal form, the version of formulas (6)-(9) where multiple
disjunctions are written using the technique given by (10)-(11) may also be built in polynomial time.

Therefore, on the one hand, we have associated to each bimatrix game G a polynomial time
computable set @. On the other hand, from any valuation v that satisfies @g, it is easy to compute
in polynomial time a strategy profile o, that is a Nash equilibrium in G. We have established the
following result.

THEOREM 4.
The problem of computing a Nash equilibrium in a two-player (or bimatrix) game is polynomial time
reducible to L.,.-Satisfiability.

6 Related work: Nash equilibria in product Lukasiewicz logics

Béhounek et al. [1] express Nash equilibria in systems that extend Lo, with a product operator. Let
us present such approach focusing in the case of product Lukasiewicz infinitely-valued logic (PLoo)
[6], however other logics that extend Lo, with a product operator may be employed as well. The
language of PL, extends the language of Lo, with the product operator (®) and PL,,-semantics
generalizes £ -semantics adding the following rule for ®:

vip @ ¥) =v(p) - v(¥),

where v : P — [0, 1] is a PLyo-valuation.

Let G = (P,A,u) be a game that is called a finite expressible logical PL~o-game, which means
that, in addition to P being a set of n players, A = 41 X - -- X Ay, is a set of action profiles in which
the set of actions for player i

Aiz{\/lf:V,-—>[o,1] j:l,...,lA,-l}

is a finite set of assignments to the propositional variables in a finite set V; = {x}, ... ,xLM|}. ‘We must
have V; N V; = @, if i # j; then, we define V = U?:l A;. Also, each utility function u; : 4 — Q is
given by a PL..-formula ¢; over variables from V' in a way that

ui(vla e 7V}’l) = v(‘/)i):

where v; € 4;, for j € P, and v is a PL,-valuation such that v(p) = v;(p), if p € V;. Such a game
is said to be finite because sets of actions are finite and expressible because constant values may be
represented in the language of PLoo; given ¢ € [0, 11N @Q, let ¢ be the truth constant that is evaluated
as c.

Logical games as the ones defined above are said to realize a compact representation of games.
That is because, in many cases, the necessary space for representing formulas ¢; is way smaller than
explicit table representations for the utility functions u;.

The codification of equilibria in PL, is based on the following result.
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PROPOSITION 2. ([16], Corollary 5.8)
Let G = (P, A,u) be a game. A strategy profile o is a Nash equilibrium if, and only if,

Ui(olai) = Uj(o),
for every player i € P and every pure strategy a; € 4;.

The codification proceeds as follows: let a = (v‘f‘,...,v‘,’l‘") be an action profile, where o; €
{1,...,14;|}; we denote by ¢;(a) the PL,-formula obtained from ¢; by replacing each occurrence of
a propositional variable x; € V; by the truth constant representing value vj% (x)). Leto = (o1,...,04)
be a strategy profile; to each probability value o;(vY), for all v¥ € 4;, we associate the propositional
variable p},. Then, formula

@ (pi(a) by ®p10l, 5

aed jep

which we abbreviate by ¢;, evaluates to player i’s utility U;(o) by PL-valuation v such that v(p{xj) =
o (v;").

Now, for an action (pure strategy) v; € 4;, let A’ C A be a set of strategy profiles where player i
only uses pure strategy v;. Then, formula

P le@we X vy |-

acA’ jeP\{i}

which we abbreviate by n;(v;), evaluates to player i’s utility U;(o |v;) by PLyo-valuation v such that
j o . .
V(ploy) = 0(v;), forj € P\ {i}.
Finally, by Proposition 2, game G has a Nash equilibrium encoded by PL,-valuation v if, and
only if, v satisfies formula

/\ prob; (P, ..., pl,,) A /\ mivi) = &) |, (12)
ieP Vi€d;
where prob;(p}, ..., pf ;) 18 satisfied by a PLo-valuation v iff the values v assign to Pl pf 4

represent a probability distribution [1, Theorem 4.7].

Note that expression prob; might be based, for instance, in the techniques in Section 3.1. Also,
despite finite expressible logical PL,,-games being a compact representation for games, formula
(12) has occurrences of all formulas ¢;(a), foralli € Pand a € A4.

For two-player games, formula 11 (v;) comes down to

@ (901(61) ®P§2) :
aeA’

As ¢1(a) has constant value under any valuation v, let such value be % € Q. Then, ¢1(a) ® pgz may
be replaced by

pe, A (c) < =(d —Dey) A (P, — c1) A (%, < dpg,),

in an approach based on Lemma 5. In this way, formulas n;(v;) may be replaced by formulas without
the product operator. This is the case because such formulas express a multiplication of a constant
value by a variable value in the setting of two-player games.
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16  Nash meets Lukasiewicz: computing equilibria through logic

However, even for two-player games, the same technique is not available for formulas ¢;, which
express the multiplication of, at least, two variable values.

7 Conclusions

We have presented a recipe to build a £, -propositional theory @ whose models encode all the Nash
equilibria of a given two-player game G. Such theory @ has polynomial size in the representation
of G and may be built in polynomial time from G.

From an algebraic point of view, we have provided equational constraints for Nash equilibria over
the MV-algebra ([0, 1], @, —, 0), that is the algebraic structure where the unit interval [0, 1] is the
domain, @ and — are the truncated sum and the complement operations over the unit interval and 0
is the identity element of the truncated sum.

Computationally, we have provided a specific polynomial reduction from the problem of com-
puting a Nash equilibrium to L,-Satisfiability, which was guaranteed to exist by the Cook—-Levin
Theorem. Thus, new algorithms for computing Nash equilibria through methods for computing
satisfiable valuations to formulas may be derived. Also, the study of approximation of Nash
equilibria might take advantage of approximation techniques for £, [8].

The comparison in practice of the performances of implementations of such new algorithms (cou-
pling the reduction discussed in this work and methods for £.o,-Satisfiability) with implementations
of the already known ones (e.g. the Lemke—Howson Algorithm) is a possible path to pursue in the
future. Also, the discussed reduction may be used for generating benchmarks intended for testing
implementations of methods for L,-Satisfiability.
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