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Abstract
A Nash equilibrium is a strategy profile of a game in which none of the players involved has any gain by changing alone his/her
own strategy. Given a two-player game, we show a codification of all of its Nash equilibria into Łukasiewicz infinitely-valued
logic, that is, we derive a propositional theory in this logic whose models codify all the Nash equilibria. Based on such
propositional theory, we derive a polynomial reduction from the problem of computing a Nash equilibrium to the problem of
satisfiability of (sets of) formulas of Łukasiewicz infinitely-valued logic. These applications of logic to game theory lead to
new methods for computing Nash equilibria.
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1 Introduction

Game theory deals with the scenarios, called games, where two or more players have two or more
choices of actions on how to behave. The utility or gain for each individual may be measured in
accordance with the possible action profiles by all of them. The aim of game theory is to study the
solutions of such games by, for instance, establishing what are the action profiles that have some
kind of balance, called equilibrium.

A well-known notion of balance is Nash equilibrium. First, a pure Nash equilibrium is an action
profile for which no player would gain by changing alone his/her choice of action. Unfortunately,
such concept of equilibrium lacks universality, since not all games are guaranteed to have such
an equilibrium. To work around this f law, another concept of equilibrium is proposed. Instead of
looking solely at the actions, a strategy for the behavior of a player is considered to be a probability
distribution over his/her possible actions. In this way, the player is expected to randomly choose an
action in each instance of the game that he/she faces according to such a probability assignment.
The player’s utilities or gains are now the probabilistic averages of the utilities of action profiles.
Then, a (mixed) Nash equilibrium is a (probabilistic) strategy profile where no player would gain by
changing alone his/her probabilities over actions. The famous result from John Nash establishes that
any game has at least one Nash equilibrium [20].

From the perspective of complexity theory, the problem of computing an ε-Nash equilibrium,
which is a strategy profile where a player would gain at most the value ε by changing his/her
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2 Nash meets Łukasiewicz: computing equilibria through logic

probabilities over actions, is PPAD-complete [5]. The class PPAD is the subclass of (the search
version1 of) NP that contains the search problems for which (i) all instances have a solution
(differing, for instance, from the problems of finding a satisfiable assignment for logical formulas);
and (ii) the proof of existence of solution uses the non-constructive parity argument for directed
graphs: ‘If a directed graph has an unbalanced node (a vertex with different in-degree and out-
degree), then it must have another’.

As far as (non ε-) Nash equilibria are concerned, their approximate computation for games with
two players is PPAD-complete [2]. However, for games with three or more players, a result that
places the computation of an approximate Nash equilibrium in NP would imply a breakthrough
in complexity theory since it would also place in NP the square root sum problem: given positive
integers d1, . . . , dn and k, is it the case that

∑n
i=1

√
di ≤ k? Whether the square root sum problem is

solvable in NP is an open problem since the 1970s [7].
Many algorithms have been proposed for computing Nash equilibria for two-player games. An

important one is the Lemke–Howson Algorithm that proceeds by following a path of vertices
standing for strategies in a pair of polytopes until it reaches a vertex that codifies a Nash equilibrium
[14]. Such approach is possible due to the linearity of the constraints that determine Nash equilibria
in two-player games.

In this work, we exploit such a linear nature of Nash equilibria in order to codify them into
Łukasiewicz infinitely-valued logic (Ł∞), a propositional logical system that is arguably one of
the best studied many-valued logics [3]. Łukasiewicz infinitely-valued logic has several interesting
properties such as a continuous truth-functional semantics, whose truth values lie in the unit interval
[0, 1], classical logic as a limit case and well developed proof-theoretical and algebraic presentations.

Given a two-player game G, we show how to build a set ΦG of formulas of Ł∞ such that a
valuation v satisfies ΦG if, and only if, v codifies a Nash equilibrium of G; in other words, ΦG
is the Ł∞-propositional theory whose models encode the Nash equilibria of G. In Section 3, we
codify probability distributions and a mechanism for guaranteeing that a strategy profile satisfies the
conditions in a characterization of Nash equilibria. In order for such conditions to be fully expressed
in the language of Ł∞, linear equations and inequalities with rational coefficients need to be codified
in this logical system. The exact codification of such equations and inequalities is postponed to
Section 4.

For codifying probability distributions in Section 3, we interpret probability values as truth values
of propositional variables in the language of Ł∞. Such an approach is not novel, translations
from probability statements to fresh propositional variables in the language of Ł∞ were already
used to show the completeness of probability logic systems, as FP(Ł) and FP(Ł,Ł), with respect
to probability models [9, 10, 13]. More recently, these translations were also employed in the
codification of de Finetti’s coherence criterion in Ł∞ [11].

The problem of finding a satisfiable valuation for a set of formulas in Ł∞, if some exists
(Ł∞-Satisfiability), is NP-complete [18]. Thus, as computing a Nash equilibrium for two-player
games is a problem in NP (because PPAD ⊆ NP), the Cook–Levin Theorem states that there is a
polynomial reduction from this problem to Ł∞-Satisfiability [4]. Indeed, we show in Section 5 that
the codification of Nash equilibria into Ł∞ yields such a polynomial reduction.

Other proposals for encoding Nash equilibria into Łukasiewicz logics are found in the literature.
Marchioni and Wooldridge [15] show how to encode pure Nash equilibria in finitely and infinitely-
valued Łukasiewicz logics and some extensions of these systems. Moreover, Běhounek et al.

1Deciding if instances of these problems have a solution is trivial, since it is assumed that they have. For a detailed
treatment of the search version of NP, see [12].
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[1] propose an encoding of (mixed) Nash equilibria in infinitely-valued product Łukasiewicz
logic and its extensions. Such logical systems express real numbers product in addition to the
traditional Łukasiewicz operators. While such expressiveness allows codifications for games with
any number of players, it also leads to an increase in the complexity of Satisfiability. Note that
solving Satisfiability for infinitely-valued product Łukasiewicz logic might involve finding roots for
multivariate polynomials of any degree. The codification of Běhounek [1] is discussed in Section 6.

Then, this work shows an explicit reduction from the problem of computing Nash equilibria in
two-player games to Ł∞-Satisfiability, even though Ł∞ lacks a numbers product operator. Also,
such is a reduction to a problem in the same complexity class as the reduced one (that is, NP).

Moreover, the results in this work advance the study of Nash equilibrium since new methods
for computing it for two-player games might be derived resting on methods for deciding Ł∞-
Satisfiability. And approximation techniques for Ł∞, as the one in [8], immediately lead to
approximations of Nash equilibria for two-player games.

In addition to the aforementioned sections, we also introduce the necessary background about
Łukasiewicz infinitely-valued logic and game theory in Section 2 and draw some conclusions in
Section 7.

2 Preliminaries

2.1 Games and nash equilibrium

In this work, we call a game2 a triple G = 〈P, A, u〉, where P = {1, . . . , n} is a set of n players,
A = A1 ×· · ·×An is a set of action profiles, in which each Ai is a finite set of all the possible actions
for player i, and u = 〈u1, . . . , un〉 is a sequence of utility functions, in which ui : A → Q is the utility
function for player i (that assigns the player’s gain to each possible action profile).

A (mixed) strategy for player i is a probability distribution σi over the set Ai of actions for player
i and Σ = Σ1 × · · · × Σn is the set of strategy profiles, in which each Σi is the set of all possible
strategies for player i. The set of actions with non-zero probability in a strategy σi is its support. We
call pure strategy a strategy whose support is a singleton and we abuse the notation by identifying
actions with pure strategies. We also identify strategy profiles that only have pure strategies with
action profiles.

It is assumed that each player’s choice of strategy is independent from all other players’ choices,
so the expected utility function Ui for player i is given by

Ui(σ ) =
∑
a∈A

ui(a)
∏
j∈P

σj(aj),

where σ ∈ Σ and a = 〈a1, . . . , an〉, with aj ∈ Aj.
A strategy profile σ = 〈σ1, . . . , σi, . . . , σn〉 is a Nash equilibrium if, for every player i,

Ui(σ ) ≥ Ui(σ1, . . . , σ ′
i , . . . , σn),

for every σ ′
i ∈ Σi; each σi in σ is called a best response for player i in relation to the other players’

strategies in σ because no player would gain by changing alone his/her strategy. Then, a strategy
profile is a Nash equilibrium if, and only if, it is composed by best responses for all players. A game
G always has at least one Nash equilibrium [20].

2These kind of games are usually referred to as strategic-form games. Since these are the only games we address in this
work, we refer to them simply as games.
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TABLE 1 Utility functions for game Ge

a1
2 a2

2

a1
1 3, 2 0, 0

a2
1 0, 0 2, 3

EXAMPLE 1.
Table 1 has the values of the utility functions u1 and u2 in the two-player game Ge = 〈P, A, u〉, where
P = {1, 2}, A = A1 × A2 = {a1

1, a2
1} × {a1

2, a2
2} and u = 〈u1, u2〉. The lines in Table 1 stand for

player 1 and the columns for player 2; for each action profile 〈ai
1, aj

2〉, the corresponding entry has
the utility for player 1 followed by the utility for player 2. Game Ge has three Nash equilibria, two
of which are pure strategy profiles: 〈a1

1, a1
2〉 and 〈a2

1, a2
2〉. The other Nash equilibrium is the strategy

profile 〈σ1, σ2〉, where

σ1(a
1
1) = 3

5
, σ1(a

2
1) = 2

5
, σ2(a

1
2) = 2

5
and σ2(a

2
2) = 3

5
. (1)

Let σ = 〈σ1, . . . , σn〉 ∈ Σ be a strategy profile and Ui(σ |ai) be player i’s expected utility for the
strategy profile σ ′ = 〈σ1, . . . , ai, . . . , σn〉, where action ai ∈ Ai acts as a pure strategy (remember
that we identify actions with pure strategies). It is easy to see that the following equation holds:

Ui(σ ) =
∑
ai∈Ai

σi(ai)Ui(σ |ai). (2)

Then, the following result highlights the combinatorial nature of the problem of computing Nash
equilibria.

PROPOSITION 1. (Papadimitriou [21], Theorem 2.1)
A strategy is a best response if, and only if, all actions in its support are best responses.

PROOF. Suppose that some action in the support of a best response strategy is not itself a best
response as a pure strategy. Then, in view of equation (2), the player would have a better expected
utility by decreasing the probability of such an action and proportionally increasing the probability
of another action in the support that is a best response. Conversely, if all actions in a strategy support
are best responses, each one as a pure strategy has the same expected utility. This expected utility is
the same for the strategy with such actions in its support. �

It follows that, to compute a Nash equilibrium, one may search the possible supports for a strategy
profile that satisfies the best response constraints. That is, if A is the set of actions available for
a player, one may search for a subset of actions S ⊆ A such that: the expected utilities for all
actions in S are equal; and the expected utilities for the actions in S are, at least, the expected
utilities for the actions in A \ S. Such a set S satisfying such conditions is the support of a best
response.

Let ki be the number of actions in the support of σi. For each player i, the equations

Ui(σ |a′
i) = Ui(σ |a′′

i ), (3)

for a′
i and a′′

i in σi’s support, state that player i’s ki expected utilities Ui(σ |ai), for all actions ai in
the support of σi, are equal. And the inequalities:

Ui(σ |a′
i) ≤ Ui(σ |a′′

i ), (4)
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Nash meets Łukasiewicz: computing equilibria through logic 5

for a′
i outside σi’s support and a′′

i in σi’s support, state that player i’s ki expected utilities Ui(σ |ai),
for all actions ai in the support of σi, have value at least as the |Ai| − ki expected utilities Ui(σ |ai),
for the actions ai not in σi’s support.

Then, for σ to be a Nash equilibrium, the probability values in σ must satisfy

• A system of
∑

i∈P k2
i equations as (3), which we call utility equations; and

• A system of
∑

i∈P(|Ai| − ki) · ki inequalities as (4), which we call utility inequalities.

Therefore, a search procedure for finding a Nash equilibrium comes down to jointly solving such
systems of utility equations and inequalities for each possible support configuration. When a solution
for the systems is found, its values are the probabilities in a strategy profile that is a Nash equilibrium.

Note that, in case the game has only two players, such systems are linear, which guarantees
that there are polynomially bounded equilibria comprehending rational distributions. Therefore, the
problem of computing a Nash equilibrium is placed in NP.

As our results are about two-player games, from now on we use the notation a and b instead of 1
and 2 to name the players. Thus, we also use the cleaner notation ai and bj instead of ai

1 and aj
2 to

refer to player’s actions.

EXAMPLE 2.
For the game Ge in Example 1, a strategy σ = 〈σa, σb〉 for which the supports for players a and b are
the entire sets of actions Aa and Ab must satisfy the following system of equations and inequalities
(the notation for game Ge is already adapted to the newly introduced convention):

Ua(σ |a1) = 3 · σb(b
1) = 2 · σb(b

2) = Ua(σ |a2)

Ub(σ |b1) = 2 · σa(a
1) = 3 · σa(a

2) = Ub(σ |b2)

σa(a
1) + σa(a

2) = 1

σb(b
1) + σb(b

2) = 1

σa(a
1), σa(a

2), σb(b
1), σb(b

2) ≥ 0

The last three lines force probability distributions. The values given in the strategy in (1) satisfy the
system. Note that we have omitted the trivial and redundant equations; also, as the supports in σ are
maximal, there are no utility inequalities.

2.2 Łukasiewicz infinitely-valued logic

The basic language of Łukasiewicz infinitely-valued logic (Ł∞) is built from a countable set of
propositional symbols P and the disjunction (⊕) and negation (¬) operators. For the semantics,
define a valuation v : P → [0, 1], which maps propositional symbols to a value in the unit interval
[0, 1]. Then v is extended to all formulas as follows:

v(ϕ ⊕ ψ) = min(1, v(ϕ) + v(ψ));

v(¬ϕ) = 1 − v(ϕ).

The semantics of formulas of Ł∞ represent all the [0, 1]-valued continuous piecewise linear func-
tions with integer coefficients over some unit cube [0, 1]n—the so-called McNaughton functions—
and only those, as stated by McNaughton’s Theorem [17, 19]. From the basic operators, one usually
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6 Nash meets Łukasiewicz: computing equilibria through logic

derives the following:

Conjunction : ϕ 
 ψ =def ¬(¬ϕ ⊕ ¬ψ),

v(ϕ 
 ψ) = max(0, v(ϕ) + v(ψ) − 1);

Implication : ϕ → ψ =def ¬ϕ ⊕ ψ ,

v(ϕ → ψ) = min(1, 1 − v(ϕ) + v(ψ));

Maximum : ϕ ∨ ψ =def ¬(¬ϕ ⊕ ψ) ⊕ ψ ,

v(ϕ ∨ ψ) = max(v(ϕ), v(ψ));

Minimum : ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ),

v(ϕ ∧ ψ) = min(v(ϕ), v(ψ));

Bi − implication : ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ),

v(ϕ ↔ ψ) = 1 − |v(ϕ) − v(ψ)|.

Note that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ) and v(ϕ ↔ ψ) = 1 iff v(ϕ) = v(ψ). Let x be a
propositional variable, then v(x 
 ¬x) = 0, for any v ∈ Val; we define the constant 0 by x 
 ¬x.
We also define 0ϕ =def 0, 1ϕ =def ϕ and nϕ =def ϕ ⊕ · · · ⊕ ϕ, n times, for n ∈ N \ {0, 1}; and⊕

i∈∅ ϕi =def 0.
A formula ϕ is satisfiable if there exists a valuation v such that v(ϕ) = 1; otherwise it is

unsatisfiable. A set of formulas Φ is satisfiable if there exists a valuation v such that v(ϕ) = 1,
for all ϕ ∈ Φ. We also call a set of formulas Φ a propositional theory; the valuations that satisfy Φ

are the models of Φ.
The computational problem of exhibiting a valuation that satisfies a formula (or a set of formulas)

or pointing out that it is unsatisfiable is the Ł∞-Satisfiability problem, which is an NP-complete
problem [18].

3 Codifying Nash equilibria in Ł∞
In this section, we begin to develop the construction of a set of formulas ΦG from a two-player game
G = 〈P, A, u〉 such that the valuations that satisfy ΦG encode all the Nash equilibria of G.

Let P = {a, b} be the set of two players, A = Aa × Ab be a set of action profiles, where Aa =
{a1, . . . , aα} and Ab = {b1, . . . , bβ} are the sets of actions for players a and b, and u = 〈ua, ub〉 be the
pair of utility functions, where ua : A → Q and ub : A → Q are utility functions for players a and b.
Let σ = 〈σa, σb〉 be a generic strategy profile, where σa : Aa → [0, 1] ∩Q and σb : Ab → [0, 1] ∩Q

are generic strategies for the players a and b.
To each probability value σa(ai) and σb(bj), we associate propositional variables pa

i and pb
j . Thus,

the formulas in ΦG have pa
1, . . . , pa

α , pb
1, . . . , pb

β among their propositional variables; the valuations
that satisfy ΦG are intended to represent strategy profiles in Nash equilibrium by assigning to such
propositional variables truth values standing for their associated probability values.

In the following, we build the formulas of ΦG according to player a. The formulas according to
player b are analogous and also belong to ΦG. Moreover, we state and prove results concerning these
formulas for player a, which are completely analogous for player b.
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Nash meets Łukasiewicz: computing equilibria through logic 7

3.1 Probability distributions

To assure that the propositional variables actually represent probability distributions, we add to ΦG
the formulas:

(i) pa
1 ⊕ · · · ⊕ pa

α;
(ii) ¬(pa

1 
 pa
2), ¬[(pa

1 ⊕ pa
2) 
 pa

3], . . . , ¬[(pa
1 ⊕ · · · ⊕ pa

α−1) 
 pa
α].

A valuation v satisfying item (i) guarantees that the represented probability values add up to at
least 1. If a valuation v satisfies a formula ¬[(pa

1 ⊕ · · · ⊕ pa
i ) 
 pa

i+1] in item (ii), it guarantees that
the values v(pa

1 ⊕ · · · ⊕ pa
i ) and v(pa

i+1) add up to at most 1, for i ∈ {1, ..., α − 1}.
LEMMA 1.
Formulas in items (i) and (ii) are jointly satisfied by a valuation v if, and only if, values
v(pa

1), . . . , v(pa
α) stand for a probability distribution.

PROOF. First, note that v(pa
1⊕· · ·⊕pa

α) = 1 iff min(1, v(pa
1)+· · ·+v(pa

α)) = 1 iff v(pa
1)+· · ·+v(pa

α) ≥
1. Now, let ϕ and ψ be formulas; v(¬(ϕ
ψ)) = 1 iff v(ϕ
ψ) = 0 iff max(0, v(ϕ)+v(ψ)−1) = 0
iff v(ϕ) + v(ψ) ≤ 1. More generally, a valuation v satisfies formulas in item (ii) if, and only if,
v(pa

1) + · · · + v(pa
α) ≤ 1. Therefore, as a valuation assigns only nonnegative values, v satisfies (i)

and (ii) if, and only if, v(pa
1), . . . , v(pa

α) determine a probability distribution. �

3.2 Utility equations

Let us abbreviate by �Ua(σ |ai) = Ua(σ |ak)� the formula that only is satisfied by a valuation v that
encodes a strategy profile σ for which the player a’s expected utilities Ua(σ |ai) and Ua(σ |ak) are
equal. Such type of formulas will be explicitly defined in Section 4. Then, for each player a’s action
ai, we build the following formula:⎛

⎝ ⊕
k=1,...,α

�Ua(σ |ai) = Ua(σ |ak)� 
 pa
k

⎞
⎠ 
 pa

i ,

which we abbreviate by ξa(ai).

LEMMA 2.
Let v be a valuation satisfying formulas (i) and (ii) for both players a and b, therefore representing a
strategy profile σ . Then, formula ξa(ai) is evaluated by v with the exact same value as pa

i , if one of
the following two excluding cases occurs:

• ai is not in the strategy σa’s support;
• ai is in the strategy σa’s support, in which case the expected utility Ua(σ |ai) for pure strategy

ai is equal to the expected utilities Ua(σ |ak), for all ak in σa’s support.

And, if none of the above cases occurs, v evaluates ξa(ai) strictly less than it evaluates pa
i .

PROOF. First, let us fix the notation:

ψk
.= �Ua(σ |ai) = Ua(σ |ak)�;

ϕk
.= �Ua(σ |ai) = Ua(σ |ak)� 
 pa

k ;

ϕ
.=

⊕
k=1,...,α

�Ua(σ |ai) = Ua(σ |ak)� 
 pa
k .
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8 Nash meets Łukasiewicz: computing equilibria through logic

In case ai is not in σa’s support, v(pa
i ) = 0 and

v(ξa(a
i)) = max(0, v(ϕ) + v(pa

i ) − 1) = 0 = v(pa
i ).

In case ai is an action in σa’s support and Ua(σ |ai) = Ua(σ |ak), for all ak in σa’s support, we have
that v(ψk) = 1, when ak is in σa’s support, and v(pa

k) = 0, when ak is not in σa’s support. Then,

v(ϕk) =
{

v(pa
k), ak is in σa’s support;

0 = v(pa
k), ak is not in σa’s support.

Therefore, as
∑α

k=1 v(pa
k) = 1, we have v(ϕ) = 1 and

v(ξa(a
i)) = max(0, v(ϕ) + v(pa

i ) − 1) = v(pa
i ).

Finally, if none of the above cases occurs, ai is in σa’s support, but Ua(σ |ai) �= Ua(σ |aj), for some
aj also in σa’s support. Then, v(ψj) < 1 and

v(ϕj) = max(0, v(ψj) + v(pa
j ) − 1) < v(pa

j ).

For k �= j, we have

v(ϕk) = max(0, v(ψk) + v(pa
k) − 1) ≤ v(pa

k).

Therefore, v(ϕ) < 1 and

v(ξa(a
i)) = max(0, v(ϕ) + v(pa

i ) − 1) < v(pa
i ).

�
In view of the above result, we add to ΦG the following formula:

(iii) ξa(a1) ⊕ · · · ⊕ ξa(aα),

which is only satisfied by a valuation satisfying the formulas in items (i) and (ii) if all the actions ai

fall into one of the two cases highlighted in Lemma 2.

LEMMA 3.
Let v be a valuation satisfying formulas in items (i)-(ii) for both players a and b. Then, v satisfies
the formula in item (iii) if, and only if, the probabilities encoded by v satisfy player a’s utility
equations (3).

PROOF. Suppose v satisfies the formulas in items (i)-(iii). By Lemmas 1 and 2, in order to satisfy
(iii), we must have v(ξa(ai)) = v(pa

i ), for i = 1, . . . , α. However, such values may only be achieved
if one of the two cases stated by Lemma 2 holds. Now, again by Lemma 2, we have that Ua(σ |ai) =
Ua(σ |ak), for all ai and ak in σa’s support. Conversely, suppose that the strategy profile codified by
a valuation v is such that player a’s utility equations hold. Then, by Lemma 2, v(ξa(ai)) = v(pa

i ), for
i = 1, . . . , α, and formula (iii) is satisfied. �

3.3 Utility inequalities

Now, we abbreviate by �Ua(σ |ai) ≤ Ua(σ |ak)� the formula that is only satisfied by a valuation v
that encodes a strategy profile σ for which player a’s expected utility Ua(σ |ai) is at most his/her
expected utility Ua(σ |ak). We will also explicitly define these formulas in Section 4. Then, we build
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Nash meets Łukasiewicz: computing equilibria through logic 9

the following formula, for each player a’s action ai:⊕
k=1,...,α

�Ua(σ |ai) ≤ Ua(σ |ak)� 
 pa
k ,

which we abbreviate by χa(ai).

LEMMA 4.
Let v be a valuation satisfying all the formulas in items (i)-(iii) for both players a and b. Then,
formula χa(ai) is satisfied by v if, and only if, player a’s expected utility Ua(σ |ai) for pure strategy
ai is, at most, the expected utilities Ua(σ |ak), for all his/her pure strategies ak in σa’s support.

PROOF. First, let us fix the notation:

ψk
.= �Ua(σ |ai) ≤ Ua(σ |ak)�;

ϕk
.= �Ua(σ |ai) ≤ Ua(σ |ak)� 
 pa

k .

Let Ua(σ |ai) ≤ Ua(σ |ak), for all ak in σa’s support. Then, for such ak , v(ψk) = 1 and

v(ϕk) = max(0, v(ψk) + v(pa
k) − 1) = v(pa

k).

Now, for action ak not in σa’s support, v(pa
k) = 0 and

v(ϕk) = max(0, v(ψk) + v(pa
k) − 1) = 0 = v(pa

k).

Therefore, as
∑α

k=1 v(pa
k) = 1, we have v(χa(ai)) = 1. Conversely, assume that there is an action ak

in σa’s support such that U(σ |ai) > U(σ |ak). Then, v(ψk) < 1 and

v(ϕk) = max(0, v(ψk) + v(pa
k) − 1) < v(pa

k).

Therefore, v(χa(ai)) < 1.
�

We also add to ΦG the following formulas:

(iv) χa(a1), . . . , χa(aα).

COROLLARY 1.
Let v be a valuation satisfying formulas in items (i)-(iii) for both players a and b. Then, v satisfies
the formulas in item (iv) if, and only if, player a’s utility inequalities (4) hold.

3.4 Codification

By the development of the set ΦG and the discussion in Section 2, if a valuation v encoding a strategy
σ = 〈σa, σb〉 satisfies ΦG, σa is a best response. As we analogously add to ΦG all the formulas (i)-
(iv) concerning player b, σb is also a best response. In such case, σ is a Nash equilibrium and we
state the following result.

THEOREM 1.
Given a two-player game G and a strategy profile σ encoded by a valuation v, σ is a Nash equilibrium
if, and only if, v satisfies ΦG.

COROLLARY 2.
Given a two-player game G, ΦG is a propositional theory whose models encode all of its Nash
equilibria.
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10 Nash meets Łukasiewicz: computing equilibria through logic

EXAMPLE 3.
Formulas in items (i)–(iv) for player a1 in the game Ge in Example 1 are

1. pa
1 ⊕ pa

2;

2. ¬(pa
1 
 pa

2);

3. { [ (�Ua(σ |a1) = Ua(σ |a1)� 
 pa
1) ⊕

(�Ua(σ |a1) = Ua(σ |a2)� 
 pa
2) ] 
 pa

1 } ⊕
{ [ (�Ua(σ |a2) = Ua(σ |a1)� 
 pa

1) ⊕
(�Ua(σ |a2) = Ua(σ |a2)� 
 pa

2) ] 
 pa
2 };

4. (�Ua(σ |a1) ≤ Ua(σ |a1)� 
 pa
1) ⊕

(�Ua(σ |a1) ≤ Ua(σ |a2)� 
 pa
2),

(�Ua(σ |a2) ≤ Ua(σ |a1)� 
 pa
1) ⊕

(�Ua(σ |a2) ≤ Ua(σ |a2)� 
 pa
2).

4 Equations and inequalities in Ł∞
To completely determine the set of formulas ΦG developed in the former section, we still need to
explicitly write formulas like �Ua(σ |ai) = Ua(σ |ak)� and �Ua(σ |ai) ≤ Ua(σ |ak)�; in this section,
such constructions are done based on the work about function representation by Preto and Finger
[22, 23]. We continue to consider only player a since the formulas for player b are analogous. Player
a’s expected utilities Ua(σ |ai), for actions ai, are given by

Ua(σ |ai) =
β∑

j=1

ua(a
i, bj)σb(b

j).

Thus, our goal is to represent linear equations and inequalities in Ł∞ with variables standing for
σb(bj) and rational coefficients ua(ai, bj). By representing an equation (or an inequality) in Ł∞, we
mean building a formula or a set of formulas that is satisfiable by a valuation v if, and only if, v
encodes a solution to the equation (or inequality). Let us treat the general case of an equation

γ1x1 + · · · + γnxn = 0 (5)

with variables xi and non simultaneously zero rational fractions γi, for which we are interested in
solutions in [0, 1]n.

Before building the representation, we put this equation in an equivalent normal form defined in
two steps. First we turn (5) into

∑
i∈I

γ̃i

m
xi =

∑
j∈J

γ̃j

m
xj,

where i ∈ I , if γi ≥ 0, and j ∈ J , if γj < 0, with I ∪J = {1, . . . , n}; m is the least common multiple of

all denominators in fractions γk , for k = 1, . . . , n; γ̃i
m are equivalent fractions to γi, for i ∈ I ; and γ̃j

m
are equivalent fractions to −γj, for j ∈ J . Note that γ̃k and m are positive integers, for k = 1, . . . , n.
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The second step consists in turning (5) into

∑
i∈I

γ̃i

M
xi =

∑
j∈J

γ̃j

M
xj,

where M = γ̃1 + · · · + γ̃n �= 0. In the final normal form, both sides of the equation take values in
[0, 1] for any vector 〈x1, . . . , xn〉 ∈ [0, 1]n.

We associate to equation variables xk propositional variables with same name xk , for k = 1, . . . , n,
and we build the following set of formulas that represents (5), using the auxiliary propositional
variables c 1

M
and x̃k , for k = 1, . . . , n:

⊕
i∈I

γ̃ix̃i ↔
⊕
j∈J

γ̃jx̃j; (6)

c 1
M

↔ ¬(M − 1)c 1
M

; (7)

x̃k → c 1
M

, for k = 1, . . . , n; (8)

xk ↔ Mx̃k , for k = 1, . . . , n. (9)

LEMMA 5.
Let v be a valuation satisfying formulas (7)-(9). Then, v(x̃k) = v(xk)

M .

PROOF. First, suppose that v satisfies formula (7). Then, if v(c 1
M

) > 1
M , we have that v(¬(M −

1)c 1
M

) < 1
M , which contradicts the satisfiability of bi-implication. An analogous contradiction is

achieved by supposing v(c 1
M

) < 1
M . Then, as v(c 1

M
) = 1

M satisfies (7), this is the only possibility

for such a valuation v. We already know that if v satisfies (8), then v(x̃k) ≤ v(c 1
M

). Thus, if v

simultaneously satisfies (7)-(9), we have that v(x̃k) ≤ 1
M and v(xk) = min(1, M · v(x̃k)) = M · v(x̃k).

Therefore, v(x̃k) = v(xk)
M . �

THEOREM 2.
Let v be a valuation satisfying formulas (7)-(9). Then, v satisfies formula (6) if, and only if,
〈v(x1), . . . , v(xn)〉 satisfies equation (5).

PROOF. A valuation v satisfies (6) if, and only if,

min

(
1,

∑
i∈I

γ̃iv(x̃i)

)
= min

⎛
⎝1,

∑
j∈J

γ̃jv(x̃j)

⎞
⎠ .

But, if v satisfies (7)-(9), such equation is equivalent to

min

(
1,

∑
i∈I

γ̃i
v(xi)

M

)
= min

⎛
⎝1,

∑
j∈J

γ̃j
v(xj)

M

⎞
⎠ .
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12 Nash meets Łukasiewicz: computing equilibria through logic

Now, by the definition of M , γ̃i and γ̃j, for i ∈ I and j ∈ J , we have that
∑

i∈I γ̃i
v(xi)
M ≤ 1 and∑

j∈J γ̃j
v(xj)

M ≤ 1. Therefore, the last equation is equivalent to

∑
i∈I

γ̃i
v(xi)

M
=

∑
j∈J

γ̃j
v(xj)

M
.

Then, we have that a valuation v satisfies (6)-(9) if, and only if, 〈v(x1), . . . , v(xn)〉 is a solution to the
normal form of equation (5), which is equivalent to (5). �

In view of the above theorem, we are able to explicitly write formulas �Ua(σ |ai) = Ua(σ |ak)�
using the above representation technique for equation (5) remembering that we have already
identified the equation variables σb(bj) with the propositional variables pb

j . For that, we may use

the minimum (∧) of the formulas (6)-(9) as �Ua(σ |ai) = Ua(σ |ak)� or even only use the formula
(6) and add the formulas (7)-(9) to the set ΦG.

To explicitly write formulas �Ua(σ |ai) ≤ Ua(σ |ak)�, we use mutatis mutandis this very same
technique considering

γ1x1 + · · · + γnxn ≤ 0

instead of equation (5) and using ⊕
i∈I

γ̃ix̃i →
⊕
j∈J

γ̃jx̃j

instead of formula (6).
The drawback in the representations just presented is that formulas (6), (7) and (9) have

exponential size in the binary representation of γ̃k , M − 1 and M due to the several times (γ̃k ,
M − 1 and M) we need to add Łukasiewicz disjunctions of the same propositional variable.

This situation may be circumvented by taking advantage of binary representation in writing these
disjunctions. Thus, instead of formula Nx, for N ∈ N \ {0, 1} and x a propositional variable, we write

⊕
k∈K

x2k ,

where x2k , for k = 0, . . . , �log N�, are new propositional variables and, for n2k ∈ {0, 1} coming from
the binary expansion

N =
�log N�∑

k=0

2kn2k ,

we define the set

K =
{

k ∈ {0, . . . , �log N�}
∣∣∣ n2k = 1

}
.

We also need to define the new propositional variables by adding the following �log N�+1 formulas
to the original collection (6)-(9):

x20 ↔ x; (10)

x2k ↔ x2k−1 ⊕ x2k−1 , for k = 1, . . . , �log N�. (11)
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In view of all the discussion in this section, we are able to state the following general result.

THEOREM 3.
Linear equations and inequalities with rational coefficients may be represented in Ł∞ by formulas
with polynomial size in the size of the binary representation of such equations and inequalities
coefficients.

EXAMPLE 4.
We build the formula �Ua(σ |a1) = Ua(σ |a2)� in Example 2 related to game Ge in Example 1 in the
following. Let σb(b1) = p1 and σb(b2) = p2, so we need to represent in Ł∞ the equation

3p1 = 2p2,

whose normal form is
3

5
p1 = 2

5
p2.

Note that the propositional variables pb
1 and pb

2 stand for the equational variables p1 and p2,
respectively, in the representation. Thus, �Ua(σ |a1) = Ua(σ |a2)� is the minimum (∧) of the
following formulas:

• p̃b
1,20 ⊕ p̃b

1,21 ↔ p̃b
2,21 ;

• p̃b
1,20 ↔ p̃b

1, p̃b
1,21 ↔ p̃b

1,20 ⊕ p̃b
1,20 ;

• p̃b
2,20 ↔ p̃b

2, p̃b
2,21 ↔ p̃b

2,20 ⊕ p̃b
2,20 ;

• c 1
5

↔ ¬c 1
5 ,22 ;

• c 1
5 ,20 ↔ c 1

5
, c 1

5 ,21 ↔ c 1
5 ,20 ⊕ c 1

5 ,20 , c 1
5 ,22 ↔ c 1

5 ,21 ⊕ c 1
5 ,21 ;

• p̃b
1 → c 1

5
, p̃b

2 → c 1
5
;

• pb
1 ↔ p̃b

1,20 ⊕ p̃b
1,22 , pb

2 ↔ p̃b
2,20 ⊕ p̃b

2,22 ;

• p̃b
1,22 ↔ p̃b

1,21 ⊕ p̃b
1,21 ;

• p̃b
2,22 ↔ p̃b

2,21 ⊕ p̃b
2,21 .

5 From Nash equilibrium to Ł∞-Satisfiability

Two-player games are also known as bimatrix games because they may be represented by two
matrices whose entries are the player’s utilities standing for a table representation like Table 1
in Example 1. In such example, the game Ge has the following matrices for players a and b,
respectively:

A =
[

3 0
0 2

]
and B =

[
2 0
0 3

]
.

Thus, a two-player game G may be encoded for algorithmic purposes by two matrices with entries
given in binary representation; we assume that the values of entries are given in the format of
fractions. We write |G| for the size of such representation.

In this way, for players a and b in the bimatrix game G assumed in Sections 3 and 4, the formulas
in (i) may be, respectively, built in times O(α) and O(β) and the formulas in (ii) may be, respectively,
built in times O(α2) and O(β2).
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14 Nash meets Łukasiewicz: computing equilibria through logic

Let us assume that formulas like �Ua(σ |ai) = Ua(σ |ak)� and �Ua(σ |ai) ≤ Ua(σ |ak)� may be
built in time p(|G|). Then, both the formula in (iii) and the formulas in (iv) may be built in times
O(α2 · p(|G|)) and O(β2 · p(|G|)), for players a and b, respectively.

By the discussion above, building the set ΦG from a game G may be done in polynomial time as
long as formulas like �Ua(σ |ai) = Ua(σ |ak)� and �Ua(σ |ai) ≤ Ua(σ |ak)� may also be computed
in polynomial time. The equations and inequalities necessary for building representations in Ł∞
may surely be computed from a bimatrix game G in polynomial time. Given a linear equation (or
inequality), its transformation to the normal form may as well be computed in polynomial time.
From an equation (or inequality) in normal form, the version of formulas (6)-(9) where multiple
disjunctions are written using the technique given by (10)-(11) may also be built in polynomial time.

Therefore, on the one hand, we have associated to each bimatrix game G a polynomial time
computable set ΦG. On the other hand, from any valuation v that satisfies ΦG, it is easy to compute
in polynomial time a strategy profile σv that is a Nash equilibrium in G. We have established the
following result.

THEOREM 4.
The problem of computing a Nash equilibrium in a two-player (or bimatrix) game is polynomial time
reducible to Ł∞-Satisfiability.

6 Related work: Nash equilibria in product Łukasiewicz logics

Běhounek et al. [1] express Nash equilibria in systems that extend Ł∞ with a product operator. Let
us present such approach focusing in the case of product Łukasiewicz infinitely-valued logic (PŁ∞)
[6], however other logics that extend Ł∞ with a product operator may be employed as well. The
language of PŁ∞ extends the language of Ł∞ with the product operator (⊗) and PŁ∞-semantics
generalizes Ł∞-semantics adding the following rule for ⊗:

v(ϕ ⊗ ψ) = v(ϕ) · v(ψ),

where v : P → [0, 1] is a PŁ∞-valuation.
Let G = 〈P, A, u〉 be a game that is called a finite expressible logical PŁ∞-game, which means

that, in addition to P being a set of n players, A = A1 × · · · × An is a set of action profiles in which
the set of actions for player i

Ai =
{

vj
i : Vi → [0, 1]

∣∣∣ j = 1, . . . , |Ai|
}

is a finite set of assignments to the propositional variables in a finite set Vi = {x1
i , . . . , x|Vi|

i }. We must
have Vi ∩ Vj = ∅, if i �= j; then, we define V

.= ⋃n
i=1 Ai. Also, each utility function ui : A → Q is

given by a PŁ∞-formula ϕi over variables from V in a way that

ui(v1, . . . , vn) = v(ϕi),

where vj ∈ Aj, for j ∈ P, and v is a PŁ∞-valuation such that v(p) = vj(p), if p ∈ Vj. Such a game
is said to be finite because sets of actions are finite and expressible because constant values may be
represented in the language of PŁ∞; given c ∈ [0, 1] ∩Q, let c̄ be the truth constant that is evaluated
as c.

Logical games as the ones defined above are said to realize a compact representation of games.
That is because, in many cases, the necessary space for representing formulas ϕi is way smaller than
explicit table representations for the utility functions ui.

The codification of equilibria in PŁ∞ is based on the following result.
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PROPOSITION 2. ([16], Corollary 5.8)
Let G = 〈P, A, u〉 be a game. A strategy profile σ is a Nash equilibrium if, and only if,

Ui(σ |ai) ≤ Ui(σ ),

for every player i ∈ P and every pure strategy ai ∈ Ai.

The codification proceeds as follows: let a = 〈vα1
1 , . . . , vαn

n 〉 be an action profile, where αi ∈
{1, . . . , |Ai|}; we denote by ϕi(a) the PŁ∞-formula obtained from ϕi by replacing each occurrence of
a propositional variable xj ∈ Vj by the truth constant representing value v

αj
j (xj). Let σ = 〈σ1, . . . , σn〉

be a strategy profile; to each probability value σi(vα
i ), for all vα

i ∈ Ai, we associate the propositional
variable pi

α . Then, formula

⊕
a∈A

⎛
⎝ϕi(a) ⊗

⊗
j∈P

pj
αj

⎞
⎠ ,

which we abbreviate by ζi, evaluates to player i’s utility Ui(σ ) by PŁ∞-valuation v such that v(pj
αj) =

σj(v
αj
j ).

Now, for an action (pure strategy) vi ∈ Ai, let A′ ⊆ A be a set of strategy profiles where player i
only uses pure strategy vi. Then, formula

⊕
a∈A′

⎛
⎝ϕi(a) ⊗

⊗
j∈P\{i}

pj
αj

⎞
⎠ ,

which we abbreviate by ηi(vi), evaluates to player i’s utility Ui(σ |vi) by PŁ∞-valuation v such that
v(pj

αj) = σj(v
αj
j ), for j ∈ P \ {i}.

Finally, by Proposition 2, game G has a Nash equilibrium encoded by PŁ∞-valuation v if, and
only if, v satisfies formula

∧
i∈P

⎛
⎝probi(p

i
1, . . . , pi

|Ai|) ∧
∧

vi∈Ai

(ηi(vi) → ζi)

⎞
⎠ , (12)

where probi(p
i
1, . . . , pi

|Ai|) is satisfied by a PŁ∞-valuation v iff the values v assign to pi
1, . . . , pi

|Ai|
represent a probability distribution [1, Theorem 4.7].

Note that expression probi might be based, for instance, in the techniques in Section 3.1. Also,
despite finite expressible logical PŁ∞-games being a compact representation for games, formula
(12) has occurrences of all formulas ϕi(a), for all i ∈ P and a ∈ A.

For two-player games, formula η1(v1) comes down to⊕
a∈A′

(
ϕ1(a) ⊗ p2

α2

)
.

As ϕ1(a) has constant value under any valuation v, let such value be c
d ∈ Q. Then, ϕ1(a) ⊗ p2

α2
may

be replaced by

cp̃2
α2

∧ (c 1
d

↔ ¬(d − 1)c 1
d
) ∧ (p̃2

α2
→ c 1

d
) ∧ (p2

α2
↔ dp̃2

α2
),

in an approach based on Lemma 5. In this way, formulas ηi(vi) may be replaced by formulas without
the product operator. This is the case because such formulas express a multiplication of a constant
value by a variable value in the setting of two-player games.
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16 Nash meets Łukasiewicz: computing equilibria through logic

However, even for two-player games, the same technique is not available for formulas ζi, which
express the multiplication of, at least, two variable values.

7 Conclusions

We have presented a recipe to build a Ł∞-propositional theory ΦG whose models encode all the Nash
equilibria of a given two-player game G. Such theory ΦG has polynomial size in the representation
of G and may be built in polynomial time from G.

From an algebraic point of view, we have provided equational constraints for Nash equilibria over
the MV-algebra 〈[0, 1], ⊕, ¬, 0〉, that is the algebraic structure where the unit interval [0, 1] is the
domain, ⊕ and ¬ are the truncated sum and the complement operations over the unit interval and 0
is the identity element of the truncated sum.

Computationally, we have provided a specific polynomial reduction from the problem of com-
puting a Nash equilibrium to Ł∞-Satisfiability, which was guaranteed to exist by the Cook–Levin
Theorem. Thus, new algorithms for computing Nash equilibria through methods for computing
satisfiable valuations to formulas may be derived. Also, the study of approximation of Nash
equilibria might take advantage of approximation techniques for Ł∞ [8].

The comparison in practice of the performances of implementations of such new algorithms (cou-
pling the reduction discussed in this work and methods for Ł∞-Satisfiability) with implementations
of the already known ones (e.g. the Lemke–Howson Algorithm) is a possible path to pursue in the
future. Also, the discussed reduction may be used for generating benchmarks intended for testing
implementations of methods for Ł∞-Satisfiability.

Funding

This work was carried out at the Center for Artificial nce (C4AI-USP), with support by the São Paulo
Research Foundation (FAPESP) [grant #2019/07665-4] and by the IBM Corporation. This study
was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES) [Finance Code 001]; the São Paulo Research Foundation (FAPESP) [grants #2021/03117-
2 to S.P., #2015/21880-4 and #2014/12236-1 to M.F.]; and the National Council for Scientific and
Technological Development (CNPq) [grant PQ 303609/2018-4 to M.F.].

References
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