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Abstract. Some mixtures, such as colloids like milk, blood, and gelatin, have homogeneous
appearance when viewed with the naked eye, however, to observe them at the nanoscale is
possible to understand the heterogeneity of its components. The same phenomenon can occur
in pattern recognition in which it is possible to see heterogeneous patterns in texture images.
However, current methods of texture analysis can not adequately describe such heterogeneous
patterns. Common methods used by researchers analyse the image information in a global way,
taking all its features in an integrated manner. Furthermore, multi-scale analysis verifies the
patterns at different scales, but still preserving the homogeneous analysis. On the other hand
various methods use textons to represent the texture, breaking texture down into its smallest
unit. To tackle this problem, we propose a method to identify texture patterns not small as
textons at distinct scales enhancing the separability among different types of texture. We find
sub patterns of texture according to the scale and then group similar patterns for a more refined
analysis. Tests were performed in four static texture databases and one dynamical one. Results
show that our method provide better classification rate compared with conventional approaches
both in static and in dynamic texture.

1. Introduction
Pattern recognition is the identification and interpretation of patterns in images, in order to
extract relevant information on the image to identify and classify your content. Classification
of patterns can be used in a variety of applications in different fields such as nanotechnology
[1, 2], biology [3, 4], medicine [5] and computer science [6, 7]. Different approaches are developed
according to the application, however, most of them analyze the information in a global way,
using all the features in an integrated manner. One side in the pattern classification approach
uses multi-scale analysis of patterns, that is, different scales of observation are used to perform
the analysis and find similar patterns, because important structures in an image usually occur
at different spatial scales [8] [9]. Methods based on textons [10, 11] represent each pixel of a
texture as the convolution of a multi-scale and multi-orientation filter bank producing a texton
vocabulary. Thus, these methods of texture analysis characterize the image homogeneously on
the scale to be analyzed. Both the overall analysis, such as multi-scale approach is appropriate
for the vast majority of problems in image analysis and pattern recognition. However, in some
problems, due to the heterogeneous nature of the composition of the objects under consideration,
is needed one more step in the process of pattern recognition, analysis of heterogeneous patterns.
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The aim of this paper is to demonstrate how can apply heterogeneous analysis to improve
results regarding the homogeneous analysis. To validate our proposal experiments were
performed on four static e one dynamic texture databases using the same texture descriptor
but with different approaches. In all tests, heterogeneous analysis proved to be better than the
homogeneous analysis enhancing the rate classification.

This paper is organized as follows: Section 2 describes the heterogeneous pattern analysis.
Section 3 shows the results and discussions and in Section 4 the conclusions.

2. Method
Heterogeneous pattern arises when the object under analysis presents combined patterns in
its composition. Similar to the classic definition of heterogeneous compositions in chemical
compounds [12], which is the characteristic of presenting a different appearance or composition
when analyzed in parts. The same analogy can be applied in recognizing patterns in images. In
each image can be found heterogeneous patterns, i. e., it is possible to distinguish the different
patterns in each of the texture images. Figure 1(a) shows an image from Brodatz, which analyzed
by conventional methods, would be defined only a pattern for this image. Using the approach
of heterogeneous patterns, two different types of texture patterns are identified in its formation.

This new view to analyze the various patterns requires a new approach for analysis of
similarity between images. The first step is to segment the texture by defining regions where
the image belong to a given pattern while defining the patterns in the image. Figures 1(b) and
1(c) illustrate the segmentation of the image of Figure 1(a) in two of patterns.

(a) (b) (c)

Figure 1. Segmentation according to the heterogeneous patterns. (a) Original image. (b) and
(c) Two patterns obtained from (a).

To obtain this result the image was divided into smaller sized windows of 8 × 8 pixels,
for windows with texture sufficiently homogeneous, that is, where only one pattern is found.
Furthermore, there was obtained a characteristic to represent each window. Windows with
similar characteristics remain the same pattern, and those with distinct characteristics were
separated into different patterns. Figures 1(b) and 1(c) show the windows stayed grouped using
k-means algorithm according to their pattern with the remaining windows in each pattern.
Textural features from Haralick [13] descriptors were used to characterize each window. Contrast,
Correlation, Energy and Homogeneity were computed from resulting co-occurrence matrices to
obtain a set of 32 descriptors for each window. Distances of 1 and 2 pixels with angles of 0◦,
45◦, 90◦ and 135◦ were used.

After the windows were divided into patterns, we performed a survival analysis of windows,
25% of the windows with features farthest from the group average were discarded making the
representation of pattern more consistent. Each pattern was characterized by a feature vector
average that is the average of the characteristics of all windows belonging to the pattern. The
next step is to find the best matching among the patterns to define the image similarity as
Figures 2(a) and 2(b) exemplify. They show two examples where it has an optimal matching
among the image patterns of the same class. When you find the best fit among all the patterns

IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences IOP Publishing
Journal of Physics: Conference Series 410 (2013) 012033 doi:10.1088/1742-6596/410/1/012033

2



in each image, we have the degree of similarity, defining whether the images belong to the same
class. Figure 2(c) shows an example where it is not possible to perform the fitting patterns and
all possibilities of fitting are tested. That’s why the images belong to different classes.

(a) (b)

(c)

Figure 2. Matching patterns. (a) and (b) matching of two images from the same class. (c)
Matching of patterns can not be made because the images belong to different classes.

3. Results and Discussions
To validate the method of analysis for heterogeneous patterns, this technique was applied in four
different texture databases, each with its peculiarities: Brodatz, USPTex, Vistex and Outex and
one dynamic texture database: Dyntex. Figure 3 shows some samples of these databases. The
classification method k-Nearest Neighbor (k − NN) with 10-fold cross-validation scheme was
used in all experiments.

Brodatz [14] contains 1110 natural textures of 200 × 200 pixels divided into 111 classes.

Vistex [15] contains 864 images of 128 × 128 pixels size with 54 texture classes.

USPTex has 3984 natural texture images of 128 × 128 pixels size divided into 332 classes.

Outex [16] has 1360 images of 128 × 128 pixels size divided into 68 classes.

Dyntex [17] consists of 1230 videos with 250 frames with 400 × 300 pixels size divided into
123 classes of dynamic texture.

(a) (b) (c) (d)

Figure 3. (a) Brodatz. (b) Vistex. (c) Usptex. (d) Outex.

The method used as classical approach was Haralick descriptors with the same configurations
of characterization of windows. This way we can compare the same descriptor but with different
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Table 1. Accuracy rate by comparing the traditional method of analysis with the heterogeneous
method.

Database Brodatz Vistex Usptex Outex Dyntex

Classical approach 88.92 89.47 69.58 76.62 76.89
Heterogeneous pattern 93.06 93.63 78.49 76.99 98.29

perspectives. One of the most important parameters is the window size that directly interferes
in the results. Large windows remain with the general representation of the image, preserving
the homogeneous analysis of patterns. However, becomes more homogeneous window, or small
windows, the classification rate increases, as the representative pattern of the window increases.
For this experiment two patterns were analyzed in each image. Table 1 shows the results
obtained when using the conventional method in comparison with heterogeneous patterns, in all
cases heterogeneous pattern method improved the classification rate proving to be better than
the standard approach in which only one pattern is established for the entire image.

4. Conclusions
Usually, analysis in texture pattern recognition using the homogeneous approach taking all the
image information in a global way, that is, the entire image is defined as one pattern. However, it
is possible to find more than one texture pattern on the image that we called here, heterogeneous
pattern. It is necessary to map the patterns in each image and then check the similarity of
patterns among them. This method improved the accuracy rate of classification using the same
method to characterize the image showing robustness to assess patterns heterogeneous image.
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