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Abstract. The use ofthe boundary element method (BEM) to analyse non-linear problems is

interesting ifeld of research with many possible applications.. For the particular case of

elastoplastic boundary element analysis the formulation is known since the seventies. On this

matter, many woks have been published sofar emphasising possible practical applications of

the technique and pointing out its accuracy. For any BEM non-linear formulation, the

required integral representations for displacements and stresses are characterised by

exhibiting domain integral terms, which are used to correct the stress field according to the

adopted non-linear criterion.
In this paper the elastoplastic boundary element formulation is extended to incorporate the

analysis of bodies where the localisation phenomenon occurs. The plastic multiplier is

assumed to be govemed by the gradient theory, from which new integral representations are

derived. After discretizing this new integral representation, for which boundary and cell

meshes are required, the plastic multiplier field associated with the proper plastic region

appears algebraically represented to be coupled together with the classical set of equations

derivedfor the plastic problem. Numerical examples are then solved to illustrate the proposed

formulation.
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1 INTRODUCTION

The Boundary Element Method (BEM) is nowadays a well established technique to deal

with a large number of practical applications in engineering. In particular, the use of BEM to

analyse non-linear problems has deserved special attention by BEM community. Fracture

mechanics, just to mention one example, is a very suitable kind of problem to apply the BEM

techniques, because only the crack lines have to be discretized, saving Computer time and also

increasing the accuracy of the results and the eonfidence in the global solution'^ Another field
of applications in engineering where the method has shown to be efficient is related to

problems exhibiting infinite or large domains, in whieh only a small region concentrates the

desired solution, soil-structure interactions, plate bending with concentrated loads, problems
with stress concentration in general and others Some non-linear phenomena assumed smeared

over the domain, for instance plasticity or visco-plasticity, can also be tackled by the

techniquel Specially for those cases exhibiting stress or strain concentration, the boundary

elements can be recommended. In general, the technique is able to represent weU high

gradients.
Strain loealization may be seen among those cases. Thus, the BEM would be an efficient

alternative for that kind of numerical analysis and therefore could be recommended. It is

worth to stress that this problem exhibits small areas of interest inside the body, where the

dissipation of energy occurs, as well as rather large displaeement gradients, for whieh the

method is expected to be efficient. Thus, for this case, using BEM requires the discretization

of very small regions, consequently reducing the number of variables to be handled. In

addition, the formulation could be further extended to include problems where plasticity is

foliowed by the definition of crack surfaces.
Analysis of strain locahzation has been an important subject in the attempt to improve the

numerical simulation of strueture failures. The presence of strain softening in the constitutive

laws brings great difficulties to classical (local) continuum theories'*'^’^’^ The problem is no
longer mathematicallywell posed after the onset of loealization in strain-softening materiais,

because local continuum allows for an infinitely smaU band width in shear or in front of a

crack tip’’*. At the numerical levei, these difficulties translate in mesh dependence of

solutions^’“. Different approaches have been proposed to overcome these difficulties. (see

Armero & Garikipati”). One idea is to enrich the continuum with non conventional

constitutive relations in such way that an internai or characteristic length scale is introduced.
Non-loeal theories like that are the Cosserat continuum‘^’‘^ the higher gradient theories^'*, the
integral theory or the gradient theory‘^’‘®'”.

In this paper a gradient plasticity model is adopted together with the boundary element

method. In finite element context, gradient plasticity has received a good amount of attention

in the last years

to analyse this kind of problem’, but without result published so far^\
The objective of the present work is to show the main steps of numerical formulations to

deal with loealization phenomena using the boundary element method. The only theory

discussed here is the so caUed gradient plasticity adopted to define the plastic zone for strain

17,18,19,20

. Apparently, the boundary element method has been very rarely adopted
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softening materiais. The yield function, written in terms of the hardening or softening

parameter, as weU as in terms of its gradient, will give origin to a second order partial

differential equation, which can also be transformed into an integral equation.

2 CONSTITUTIVE EQUATIONS FOR GRADIENT PLASTICITY

The small strain gradient plasticity model taken for this work is a simple modification of

the flow theory of plasticity* '®. This classical approach is given by the following relations:
- The Cauchy stress tensor increment

ã = E(é-é‘’) (1)

where é is the total strain rate, è'’ stands for the plastic strain and E is the elastic modulus
tensor;

- The yield criterion
f(G,R(p)) = 0

where R is the size of the yield snrface and p the cumulated plastic strain defined by:

p = V2éPèP

(2)

(3)

- The flow arle

dF
è^=X (4)

da
iT

with F(a, R) denoting the plastic potential and À the plastic multiplier;

- The hardening arle
■

(5)

The plastic multiplier in equations (4) and (5) satisfies the Kuhn-Tucker conditions:

À>0,

being X obtained when strictly positive and taking into account the consistency condition

Xf=0

Xf = 0 (6a,b,c)f <0,

(7)

Using relations (l)-(5) one obtains:
df

Eã
(8)3o

X =
3f ^ 3F
3o 3o

h +

with

3f 3R 3F
(9)h = -

3R 3p 3R
i
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The small strain gradient plasticity is obtained just by modifying equation (2), to make r

dependent on p, as well as on its successive gradients. For the sake of simplicity, we consider

that R depends just on p and its Laplacian Ap, therefore the yield criterion becomes;

f(o,p,Ap) = 0

Thus, an explicit form for A, similar to equation (8) can not be derived. From the

consistency condition, one is able to derive the foUowing partial differential equation

(10)

df
Eé-HA + (oAA = 0 (11)

do

where (dF/ dR) is assumed constant and

^ dR 3F

da^da (12a,b)H = h + ú} =

dR t?(Ap) áR

From equation (11) one can reaüse that the dimension of (O is H times squared length,

which gives: co = , being l a characteristic length and a a material parameter.

3 BOUNDARYELEMENTFORMULATION

BEM formulations to deal with non-linear problems are nowadays well established. The

simplest approach is based on integral representations written for particular collocation points

defined along the boundary and inside the domain^^’“. The formulation adopted here is the one

that deals with smeared non-linearities, which are properly taken into account by the initial

stress approach.
Let us first consider the elastic case, for which the BEM integral equations are derived by

applying the Betti's principie (Green's second identity) taking into account two elastic States

satisfying the Navier's equations, given here for completeness.

Á-

G

= b. (13)(-LyUi) = -Gu u
i ’ikk ’ü

l-2v

where u^represents displacements, G is the shear modulus, v is the Poisson’s ratio and L the

Navier’s operator.

For a domain Q with boundary F, the following displacement and stress integral

representations are easily derived“’“.

CikUk = -J pikUkdF +J u^p.dF +Ju;b,dQ (14)
r r £2

(15)= -J Sy,U,dr +J Dy,P,dr + J Dy,b,dí2
r
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where and are traction and body force components; the symbol stands for the

fundamental values; the free terms Cjj, and P are dependent upon the boundary geometry;

Dy,^ and 8^,^ are kemels derived from the corresponding ones in equation (14).

For non-linear problems, Betti's principie can not be directly applied. Moreover, in

plasticity the State variables are functions of time. In this case, operator L is equivalent to the

foUowing equations satisfied by the State variable rates:

1

= ãy+ã? -ò.. (16)

where è*’ and c| are the plastic strain and stress rates, having the same meaning of initial

strains and stresses in linear theory; and Cy^ are the elastic constants.

In the initial stress formulation è'’ is zero, therefore equation (16) becomes:

biy.j

(17)Lkiüi—bj. õyi

Thus, the Somigliana's identity for plasticity with initial stress approach is:

^ü.dr+íu^MÍ^ + Jei^jkdíííp;
r

Cikúk =. u^PkdF- (18)
o

As for elasticity, the integral representation of stress rates can be obtained by

differentiating (18) and applying Hooke's law, noting that in this case the relations between

stresses and displacements are given by (16). Thus, one obtains,

. Syi,ü^^dr +jDy]^bd£2 +jEy^^õ^dQ + gy(õn,^)
r r a £J

(19)

comes from the differentiation of the plastic integral and ««(*-) is
the free-term that appeared due to the strong singularity of the original kernel.

A similar expression can be obtained for initial strain approach assuming ã? null in

equation (16).

Equation (19) was derived only for internai points. For boundary nodes one must find the

limit when q, internai collocation point, goes to Q, on the boundary. For this case, a similar

integral representation is obtained. Altematively, one can use a very often employed

procedure, that consists of approaching the boundary stresses using boundary conditions to

compute the normal and shear components, while the normal component in the boundary

direction is achieved numerically by differentiating the displacements in this direction, after

approaching them using shape functions and nodal values. This scheme is widely adopted and

has proved to give good results, but the integral equation would be the exact representation for

this value. In this work we preferred obtaining the exact integral representation of the

boundary stresses; as we intend to use this formulation to solve another class of problems, the

results have to be as accurate as possible.

where the kernel E
ijmk
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In order to solve a gradient plasticity problem one has to take into consideration equation

(11) to govem the plastic multiplier. In this case, the scalar value X, is not dependent only

upon the local State of stress, as the classical procedure, equation (8), but is defined by a scalar

partial differential equation which is coupled with the equilibrium equations.

Transforming equation (11) into an integral representation is not difficult. On must only

foUow the usual steps given in well known references\ For this work, we are going to use the

well known collocation formulation. Even choosing this simple formulation we could have

several representations hy adopting different fundamental Solutions. Using a particular
fundamental solution, that takes into account the hnear term in equation (11), one may get rid
of some undesirable domain integrais, hut the term due to the strain field, the first term in

equation (11), certainly remains. The most simple fundamental solution choice to derive an

integral representation is given by the solution of the Laplacian equation for the infinite 2D
domain with an unit load applied at a single point which given by^

ax* 11
x* = ln(r) (20a,b)

an271 2n

where X* and aXVdn are potential and flux fields due to the applied unit load; r is the distance
between load and field points, respectively, and n stands for the outward normal vector.

From equation (11) one is able to derive an integral representation of potentials, X, the
plastic multiplier, using properly the fundamental values given in equations (20).

f an

af*ax
dr--fx*XdQ+-ÍX*

coi toicX = J X EédQ (21)
aaP an n £2

where c is the free term similar the one in equation to (18).

An altemative representation is could be derived if one finds itie fundamental solution from

the following equation;

— AX + X = ô (22)
03

where ô is the Dirac distribution.

In this case the integral representation of X is given by;

fl—
•. ah"* iãi

As it has already been mentioned one domain integral remains, requiring therefore domain

discretization and internai value approximation.

Equationl (21) and (23) govem the plastic multiplier field of the body plastic zone, i.e.

over the region where the plastic phenomenon takes place. Thus, F, in equations (21) and (23)

represents the plastic zone boundary, which can move during loading process, leading to a

moving boundary problem.

À^EédQrM 1
c;i= Àdr+— (23)dT-

dacoi
Q
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One important point to discuss is about the boundary conditions to be assumed to solve the

this potential problem. There are clearly two types of boundaries to consider, the actual

boundary of the body and the internai contours defined by the plastic zones. For the first case,

the boundary conditions to be assumed at any node are very clear: the plastic zone can not

move forward, therefore the outward normal flux must be zero, while the plastic multiplier

boundary value will be unknown. Note that the plastic zone is physically limited by the actual

boundary. In the second case, the boundary represents the plastic zone end, what enables us to

assume that potential values are zero, i.e. plastic multipliers are zero. On the contrary, flux is

the unknown boundary value. This value is related with the boundary velocity (the plastic
zone is allowed to move forward).

On the body boundary and on the plastic zone interface one has the following boundary

conditions, respectively:
dX

(24a,b)= 0 X = 0
dn

The proposed formulation do deal with the potential problem that represents the plastic
multiplier problem requires a very skilful numerical approach. One may have only boundary

moving in the outward direction. This is the case of problem where only monotonic crescent
plastic zone problems are present. The scheme to identify the plastic zone must be more

general. We may have boundaries moving in the inward direction; we may also fmd internai

thin zones over which the plastic multiplier can go to zero. In order to overcome these

difficulties, we are proposing another procedure that does not require finding the plastic zone
boundary in the domain. Ones has to modify equation (22) to be possible to prescribe

potentials at internai points. This is made by considering, in equation (11) and consequenüy in

equation (21), the presence of a fictitious body force field represented by b, that will play the

role of displacement conjugate field. These fictitious body forces have no physical meaning.

They are unknowns when the potentials are prescribed inside the domain, but their values are

not used in the gradient plasticity solution model.
After introducing the body force term equation (11) becomes:

- df

0

E8-HÀ. + (dAA, = 0 (25)b +
da

As a consequence the potential representation, equation (21), modifies to:

Xdr--\x*Xãn+-^
rdX*

a):L da

r,.dX
dn

- X,*bdQEédQ + (26)cX = dr-

í to;',

Note that equation (34) represents potential (plastic multiplier ) at internai points as weU,

for which independem term c is one.
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4 NUMERICAL BMPLEMENTATION

As it is well known, equations (18) and (19) of the precedent section can be transformed
into algebraic representations by approximating and p^ along the boundary duly divided

into elements, as well as b and over the domain now divided into cells. One can write as

many algebraic representations as needed. Similarly, we can write an appropriate number of

algebraic stress equations, the ones where the stress values are required to solve the problem.

Thus, assuming boundary and domain divided into elements and cells respectively, as well as

shape functions to approximate aU variables, equations (18) and (19) become

Ht= GP+TB + E^

ã = -A'X + F'+T'B + E‘^

where Ü and P are vectors containing the nodal values for displacements and tractions,

respectively; à and ^ are the stress and the initial stress vectors; H , H*, G, G‘, T, T',

G and G‘ are the influence matrices computed by integrating elements and ceUs.

Applying the boundary conditions, equations (27) and (28) become

AX = F + õ‘’

(27)

(28)

(29)

à = -A‘X+F'+T‘B + E'^

where A and A* contain the coefficients due to the unknown boundary values and F and F‘
are independent vector due to the prescribed boundary conditions and body forces.

As it is well known equations (29) and (30) can be reduced to;

X = M + R^ à = N + S^

where M and N contain the elastic solution due to the prescribed values and R and S contain

the influences of the applied initial stresses.

This can be apphed to solve any non-linear problem where the non-linearities can be

assumed smeared over the domain.

In order to solve a plastic problem one has to consider the algebraic solution in terms of

displacements and stresses given by equations (31), taking into account that the plastic stress

must be appropriately computed by using the plastic multiplier governed by equation (8).

Thus, taking into account that matrix equations (31) can be adopted for one increment and the

plastic multiplier is given locally by equation (8), the presented formulation is appropriate for

classical plasticity. In order to apply it to gradient plasticity, however, equation (21) or (26)

must be used to describe the plastic multiplier field inside the plastic zone.

Expression (21) is the integral representation equivalent to equation (11), which govems

the plastic multiplier in gradient plasticity. The discretized form of expression (21) can also be

written assuming that boundary values, X and 9X,/3n, are approximated along elements. In

addition, the domain integrais can be transformed as well into algebraic terms by dividing the

(30)

(31a,b)
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domain into cells and adopting convenient shape functions to approximate the plastic

multiplier X, and the independent term (3f/8a)E8 .Similarly to the displacement algebraic

representation one can find the algebraic representation of equation (21).

iTBaf ABA

SJ ^ +LSa sjHpA = G, (32)
BXBn j

where A and (BA/Bn) are the plastic multiplier nodal vector for boundary nodes and the

corresponding flux vector; X represents the plastic multiplier at internai points; Hp and Gp

are the classical matrices of potential problems to consider the boundary values; and

Sa s,

vectors, either A X]* or
Similarly, expression (26) can be transformed into an algebraic representation. For this case

the fictitious body force values have to be approximated over the domain ceUs. Thus, when

domain unknown body forces are required to solve the problem equation (32) becomes:

is the matrix to take into account the domain fields represented by their nodal
Tt

BJ-

BaA

-h[Sj^ ^ +Pa + S,B (33)HpA = G BX^Bnj

Note that the body force values h are only taken at inside nodes. For boundary nodes,

fluxes are the conjugate potential variable, therefore we do not require another the definition
of a new value.

As new internai unknown values have been introduced, new representation must be written

to have equalised the numbers of equations and unknowns. Thus, the plastic multiplier

integral representation written for internai nodes are used to complete the final system of

equations. Thus, ones can write

BaABA
“ + S' Sl
X L A + S{Bx = -h|,a+g; (34) •

B.

where the matrices Hj,, Gj,, and Sa S|^j are the same ones given in equation (34)

represented by different notation to indicate that they are refereed to internai collocation

points.

Equations (33) and (34) can be assembled together to give:

SaGp Sa -
« B (35)

Hp 0 A Sa S, BaABA
-h +

sULÜ’^lsàSa SULBJ Ll Bn j

The vector B with the fictitious body nodal values for internai points is evaluated by

solving equation (35) for all internai points where the plastic multipliers are prescribed. The

9
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values obtained, as well as the fluxes along the boundaries, play no role for the plastic

solution, although they necessarily appear when solving a mixed boundary condition problem.

Now, one can follow the steps required to find the plastic solution using the coupled

System of equations (35). Due to the incrementai nature of the plastic problem, equation (35)
is written into its incrementai form, dÀ. For an increment of load, the problem is solved

elastically and the elastic increment, N, is added to the actual stresses. For points that reaches

the plastic stage the plastic, stress increment is computed ffom Hooke's law, equation (16).

Note that the plastic strain increment is given by equation (4); dA, comes from equation (8) in

classical plasticity or from (11) in gradient plasticity. The actual stress increment is the

difference between the elastic and the plastic increments. If the plastic increment values are

sufficiently smaU another increment of load can be taken; otherwise, another iteration is

carried out taking as new elastic increment the product of the matrix S , equation (31b) by the
plastic stress increments.

Two different approaches have been implemented: one considering the coupled system of

equations given equation (35), where X equal to zero is specified over the elastic zone, the

second scheme implemented the boundary conditions have been specified only along the body

actual boundaries, and the plastic multipher values have been taken only over the plastic zone;

In this case double boundary conditions have been assumed along the elastic boundary. Both

developed scheme have given identical results.

5 EXACT INTEGRAL REPRESENTATION FOR BOUNDARY STRESSES

Obtaining the exact representation for stresses along the boundary is not an easy task, due

to the presence of strongly singular integrais (there are kernels of singularity order of: l/ in

2D problems and 1/ in 3D problems). Several contributions on this subject can be found

in the literature^'^’^^’^^’^^. Flere the approach given in reference 24 will be followed. In order to

obtain an expression similar to equation (19) vaUd for boundary points, one must pay attention

on the new singularities involved. As it has been show for equation (19), one has to start by

differentiating (18) and then apply Hooke's law (16). Note that the differentiation is taken with

reference to the load point now on the boundary. Thus, this differentiation will not give

equation (19) again. A new free term will be achieved and the boundary integrais are now

singular, requiring therefore a special treatment.

One can consider that the singularities are always at smooth points along the boundary.

Even for elements situated at non smooth parts, one can avoid nodes at non smooth points,

moving them from their position along the element. In 2D problems, the neighbourhood of a

node is always a semi circle.

After considering the new position of the singular points, the free term g^ for smooth

points can be obtained (2D problems only):

(õL) = --^(2(l + v)áP +(l-3v)ãPôy) (46)êij

10
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The domain integral of the plastic stress term has to be evaluated in the Cauchy's principal

value sense. One can differentiate the other integrais (elastic ones) in the same way used to

find the equation (19). Rigorously, one must carry out those differentiations before

transforming the Betti’s principie into the Somigliana's identity (18).

The integral of equation (18) requires special care due to the singularity order. The

singularities arising when differentiating first and third integrais are weaker.

In order to differentiate the boundary integrais we can apply the approach proposed in
reference 24. Essentially, it consists in removing a vanishing neighbourhood at the singular

point. Then, the integral can therefore be performed on the boundary of the new domain

without the part containing the singularity. After that the limit is carried out. Note that the

integral must be performed as well along the boundary of the removed part that contains the

singular point. They are treated separately, resulting into two free-terms and dy^. (One

can also perform those integrais after expanding displacements and tractions into Taylor series

centred at the singular point and then adding and subtracting the relevant terms to the

corresponding functions in that integrais). Cy^ can be obtained in the same way Cjj. appeared

in equation (18). dy^ is the new part that deserves to be properly evaluated. For two

dimensional problems it gives an unbounded term, when f > 0, which will be cancelled out

with one of the terms resulting from the py ,^ integral over the original boundary. Thus, after

performing properly all limits involved is this formulation, no unbounded term remains in the

final stress representation. All the remaining integrais can be transformed into regular ones to

be evaluated using standard gaussian quadrature rules, by simply expressing their kemels in

polar co-ordinates centred at the singular points. In general, the main step before performing

the limit is to expand the kemels, written in polar co-ordinates, using Lament series (at the

singular point) and expanding the polar co-ordinates of the singular point in Taylor series as
weU.

6 EXAMPLES

In order to illustrate the formulation we have only veiy preliminary results obtained by

running a classical example aheady investigated by other authors who have implemented the

localization phenomenon together with finite elements'^ Thus, we have analysed the classical

rectangle with displacements prescribed along to opposite sides as indicated in figure 1. In

this figure, the solid geometric characteristics are specified together with the boundary
internai discretizations. Several meshes have been tested, always using equal spaced boundary
and domain sub-divisions. The discretization exhibited in Figure 1, the basic configuration
used, has 128 internai cells and 24 boundary elements. Meshes with 256 and 512 cells

generated from the basic one have been tested as well. The boundary values of displacements

prescribe along the right end is equal to 0.036mm, enough to produce rather large plastic
strains inside the solid. The material data are characterised by: Flastic modulus

F=2000kN/mm^ Poisson’s ratio v = 0.0, yield stress, = 2.0kN/mm^ softening slope h = -

11
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0.05E and the localization parameter (O = 5000 N. A weaker region, shaded in figure 1, has

been considered to start the localization process assuming, the yield stresses reduced by 10%.

The results displayed in Figure 2 have been computed by using the 256 cell mesh. They
remain almost the same when the finer mesh has been adopted, with maximum changes

around 1%. No significant differences appears in the end bar reactions when running the local

and non-local plastic formulations. The non-local formulation shown a more smooth

distributions of plastic strain, but not enough to modify the displacement x end reaction curve
shown in figure 2.

120 mm

60mm

A

(j = 2 N/ mm ^

Figure 2. Plastic rectangle under analysis. Geometry and discretizations.

(ü = 5000 N

R(N)

120

I

80

40

0

0.00360.0216 0.02880 0.0072 0.0144

5 (mm)

Figure 2. Displacements xsolid end reactions
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7 CONCLUSION

A boundary element formulation for gradient plasticity has been presented. The proper

integral representation to govern the plastic multiplier field has been derived from the

corresponding differential equation. Boundary conditions of the plastic multiplier potential

problem have been discussed, which gave origin to a simple scheme to solve the problem, not

using moving boundaries but prescribing internai values of the potential field prescribing

double boundary conditions along the elastic boundary. The two set of BEM algebraic

relations for a single increment of load have been coupled to be solve the gradient plasticity

problem. The exact stress integral representation has been derived to avoid inaccurate

evaluation of the stress field. A simple example is presented to illustrate the preliminary
results obtained as far.
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