





Introduction.
The inviscid Burgers equation

(1.1.0) % ¥ 06———["(‘19: u)

with 8 > 0 admits travelling wave (weak) solutions u(r — vt), where, for
p <A

=0

u(r) = p1{r < 0} + A1{r > 0}
(1.1.b)
v=0(1—-p—1X)

These solutions are called the entropic solutions. In this paper we continue
the study of Ferrari, Kipnis and Saada [fks] of the microscopic approxima-
tion of these solutions by the asymmetric simple exclusion process. This
is a Markov process on the state space X := {0.1}%. For configurations
n € X we say that there is a particle at z if 9(z) = 1, otherwise z is empty,
so that at each site of the one dimensional lattice ZZ there is at most one
particle. Informally the process is described by saying that if there is a
particle at site z, then it jumps to site z + 1 (respectively = — 1) with rate
p (resp. q) if 2 4-1 (resp. z — 1) is empty and with rate 0 if it is occuppied.
We assume p+ ¢ = 1 and p > ¢g. The generator of the process is given by

Lfm) =Y. Y ple,u)n@)Q—n@)fn™) - F(m)]

z€X y=2+1

where f is a cylindric function, n*¥ is the configuration obtained when the
values of 77 at # and y are interchanged, p(z,z + 1) = p, p(z,z — 1) =
g=1-pand p(x,y) = 0if |zt — y| > 1. We call 5, the resulting Markov
process and S(t) the semigroup generated by L. Liggett proved that all
the translation invariant and (time) invariant measures for this process are
convex combinations of the product measures vq, 0 < a < 1, for which the
probability that a given site is occupied is given by a. Under the invariant
measure v, the average velocity of the particles is (p— ¢)(1 — @). There are
also so called “blocking” invariant measures ("), n € Z. These measures
are also product, have marginals

(12) S nfe)) = T
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and are even reversible for the process. They approach exponentially fast
the densities 0 and 1 to the left and right of the origin respectively [L],
[]. We consider these measures as a first example of a microscopic shock:
at any time the process with initial measure ¥(") has a measure (which is
the same (™)) which, if shifted by z, approaches v as £ — —oo0 and 1

“as ¢ — oo. This corresponds to the case p = 0 and A = 1 in the Burgers
equation. The explicit formula for (*) plays a crucial role in this paper as
it did in [fks]: we use (1.2) to find shocks for others values of p and A.

In order to derive equations (1.1) in the general case one starts with
the product measure v, with densities p and A to the left and right of
the origin respectively, p < A. Under this measure the particles initially to
the left of the origin have average velocity (p — q)(1 — p) which exceeds the
initial velocity of the particles to the right of the origin (p —¢)(1 — ). This
together with the exclusion interaction is the reason of the formation of
shocks in this model. In fact it has been proven by Benassi and Fouque [bf]
and Andjel and Vares [av] that the hydrodynamical limit of this process is"
given by (1.1) with = p—gq. They proved that 7,-1,,1S(e~1t) converges,
ase€ — 0, to v, if r < vt and to v if r > vt, where v = (p— ¢)(1 — A~ p)
and 7. is the translation by 2. We call v the shock velocity. At r = vt
it is expected to see what Wick calls a “dynamical phase transition”, i.e.
a convex combination of v, and v). This was in fact proven by Wick [w]
and De Masi, Kipnis, Presutti and Saada [dkps] for the case p = 0 and by
Andjel, Bramson and Liggett [abl] for the case A + p = 1. Notice however
that this is not true when p = 0 and X = 1, as v(®) arc invariant and not
a convex combination of v; and vy. Some of these results were reviewed by
Bramson [b].

The question that arises naturally then is what does the shock look
like? The hydrodynamic limit shows that it is rigid in the scale 7. Is
there another scale such that it is smooth? [fks] answered this question
negatively. Indeed they proved that the shock is rigid on the microscopic
level by defining a random position X(t) and a measure p ~ v, x such that
at any time ¢ the system as seen from X (%) is distributed according to p,
where u ~ v, » means that.for all cylindric f on X, |

(1.3) z_lir_gwr,pf = v,f and zlizgorzpf = vy f.
In this paper we show that the microscopic shock is also described by
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a “second class particle”. One of the advantages of this approach is that
the shock can be shortly described and we proceed to do that now. We
use the graphic construction and the basic coupling. We refer to Liggett’s
book [L] for both techniques, widely used in interacting particle systems.
The graphic construction of the simple exclusion process 7; is determined
by the following rules. At each pair of sites (z,z + 1) associate two Poisson
point processes (Ppp), one with rate p and the other with rate ¢. Each of
this Ppp is a sequence of times on IR*. We say that an arrow going from =
to z + 1 is present at each of these times for the Ppp with rate p and a left
arrow going from z+1 to z for the Ppp with rate ¢. These Ppp are mutually
independent. When an arrow occurs going from z to y if z is occupied and
y is empty, then the particle jumps to the empty site. Otherwise nothing
happens. In this way, for each realization of the arrows and each initial
configuration we construct a version of 7.

The basic coupling consists in realizing jointly two or more versions of
the process with different initial configurations using the same realization
of the arrows. In this way each marginal has the distribution of the simple
exclusion process and we can learn other properties by comparing the same
realization with different initial configurations. In particular, consider two
initial configurations that differ at only one site, say the origin. The reader
can check that the coupling has the property that at later times the two
marginals also differ at only one site. This site is called a second class
particle. The name comes from the way this “particle” interacts with the
other particles that we call first class: First and second class particles at
rate p jump to the right site if it is empty and at rate g do the same to
the left. None of them jump to sites occupied by first class particles. But,
when a first class particle tries to jump to a site occupied by the second
class, the jump is realized and the two particles interchange positions.

We describe now our results. We show in Section 2 that starting with
the second class particle at the origin and distributing the other particles
according to v, , the process as seen from that particle at time ¢ has a
distribution ~ v, x uniformly in ¢, where ~ is defined in (1.3). Furthermore,
as t — 0o, this process converges weakly to an invariant measure /i ~ v, .
The process as seen from the second class particle is a Markov process.

This is an improvement over the process as seen from the random position
described by [fks}.



In Section 3 we show laws of large numbers for the second class particle:
call R(t) the position at time ¢ of the second class particle (R(0) = 0).
We prove that R(t)/t converges almost surely to v = (p — ¢)(1 — A — p)
when the initial measure is either the product measure v,  or the invariant
measure ji. To prove these laws we use and improve laws of large numbers
of [fks]. Furthermore we show that if the first class particles are distributed
according to the (translation invariant) mesure v,, then R(t)/t converges
almost surely to (p — ¢)(1 — 2a).

In Section 4 we consider the situation when the second class particle
starts at the position £~ > 0 and study its motion in the hydrodynamic
limit described above. We prove that its macroscopic motion can be de-
scribed as follows: it starts at r and has velocity (p — ¢)(1 — 2A) up to the
moment that it meets the shock that started at the origin and has velocity
(p — qg)(1 — X — p). At this moment the second class particle adopts the ve-
locity of the shock. On the other hand, when the initial point is e~1r < 0,
the velocity is (p — g)(1 — 2p) up to the moment it meets the shock. This
is the behavior that the characteristics of the Burgers equation have.

The fluctuations of the shock are at least diffusive. In fact we prove in
Section 6 that

p)+A(1 - 1)
A=p

?

(14 lpind e By, () - ) 2 (- )20

where E, is the expectation of the process with initial measure v; the
measure D, 3 is the measure that puts a second class particle at the origin
and the first class particles are distributed according to v, »; finally, in this
paper we write E(.)? for E[(.)?].

Equation (1.4) proves half of the conjecture of Spohn ([lps} [S]), who has
heuristic arguments that justify the existence of the limit and the identity in
(1.4). Also Boldrighini et al. performed computer simulations that support
the conjecture [bcfg]. The proof of (1.4) is based on a result shown in
Section 5: if a particle is added to the system at time zero at any site, then,
as t — oo, the shock shifts to a random position that differs in average
—(X = p)~1 from the original position.

More can be said when p = 0. In Section 6 we show that the fluc-
tuations of the shock depend only on the initial distribution. We prove
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that

2
(1.5) Jim ¢ / dios(0)E; (R(t) - M) -0

where no(n,y) := Y.Y_,(1 — n(z)) is the number of empty sites of the
configuration 7 between the origin and y and r* = (p — g)A. This extends
a result by Gardner and Presutti [gp] who proved (1.5) for p = 1. Equation
(1.5) implies a central limit theorem for R(t) because no(n,r¥t) is a sum
of independent identically distributed random variables. In Remark 6.6 we
show that for the tagged particle ([f], [k], [df]), i.e. a regular particle, (1.5)
is also true substituting vp by v». For any p and A we conjecture that the
following is true

@ i . /dz‘/,,,,\(r))Eq (R () - no/(\ﬂ_,_r:t) . n1£ﬂirl\‘t))’ =0

where n;(n,z) is minus the number of particles between the origin and
z<0and rt = —r~ = (p—q)(A - p).

Finally let us mention that the second class particle is conjectured to
have the “1/f noise” behavior. The conjecture is that when A = p = « the
fluctuations are superdiffusive:

Jim. t=43E;, . (R(t) — ER(t))* = constant > 0

See [S] and [vb] for a heuristic justification and [bcfg] for computer simula-
tions.



2. A second class particle identifies the shock.

We define the process with a second class particle described in the
introduction. Define (n;, R(t)) on the state space X x Z as the process
with generator

2.1)
L'fr)=) > p@ya@) - @) n™,r) - f(n.r)]

zEry=zti#tr

+ Y (e, )n(@) + p(ry2)(1 = (=) [F(r™", ) - £(n,7)]

r=r*l

Consider also %; := TR(t)M, the process as seen from the second class
particle. The state space for this process is X := {0,1}%\ x {0}, the space
with a second class particle at the origin and with first class particles and
empty sites on the other sites. Call L and S(t) the corresponding generator
and semigroup. Let i, » be the product measure on X for which the density
of first class particles to the right of the origin is A and the density to the
left of the origin is p. The symbol ~ is defined in (1.3) above.

Theorem 2.2. The following holds uniformly in t
l7:),»\5' (t) ~ Vo

Furthermore, 9, ,5(t) converges weakly, as t — oo, to an invariant measure
ﬁ o~ VPvA'

In the remainder of this section we prove Theorem 2.2. The proof uses
the identification of the interface given by [fks]. They proved that there
exists a position X(t) such that if 7o is v, distributed, then the process
Tx(y)M has distribution ~ v, uniformly in t. We will prove here that
there exists a coupling for which E|R(t) — X(t)| € C for all t. The major
diference between X(t) and R(t) is that the process Tg(yn: is Markovian
while Tx (47 is not.

Now we recall the results of [fks]. The position X(t) is obtained from
the basic coupling described in the introduction between two copies of the
simple exclusion process. The first copy has initial (marginal) measure v,
and the second »y. Under the initial measure the configuration of the first
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copy is coordinatewise less or equal than the configuration of the second
one. We call second class particles those occupied sites of the second copy
that do not have a corresponding particle in the first copy, and we call first
class particles the common occupied sites. This nomenclature is justified
in the introduction. The resulting process is denoted (o%,§;), where the o
particles are the first class and the £ particles are the second class. We
say as in [ak] that the o particles have priority over the £ particles and
denote this priority o; F &. By construction oy is the simple exclusion
process with initial measure v, while ¢ + £ (coordinatewise) is the simple
exclusion process with initial measure vy. Call v, the initial measure for
the process (oy,&:) and vh = v(.[¢(0) = 1), so that under »; there is a
second class particle at the origin. Let X(t) be the position of that particle
at time &.

To recover the original process 7; [fks] define yet a new process (o,
71, ¢:) where 7 + {; = & with priorities o, I 7, I ;. This means that
the particles follow the arrows to jump either to empty sites or to sites
occupied by another particle of lower priority interchanging positions. The
initial distribution of (o4,71,(t) is given as follows. Pick (0p,&) from the
distribution 4, and label the n-th £ particle counted from the origin a y
particle with probability (p/q)"/(1+(p/q)"), otherwise a ( particle. Do this
independently for each n. Call v} the resulting distribution of (00,%0,¢o)-
The notable property of this construction is that the v; and (; labeling is
the same for all t > 0. In Lemma 3.26 of [fks] it is proved that the shifted
process Tx(1)(01, 7t,{t) has measure 3 55(t) with the property that the o+
marginal has distribution ~ v, uniformly in ¢. Using compactness, [fks]
proved that there exists an invariant measure pj with the same properties.
The original process is recovered by defining 1, = o,+; but with a different
initial distribution. In fact note that at time zero the projection of v3 over
the 5 coordinate is not exactly v, but a measure equivalent to it. Hence
Tx(ym has distribution ~ v, uniformly in ¢. Projecting the invariant
measure 4 over o + 7 one obtains a measure p ~ v, ) such that, starting
with g, Tx(¢)7: is distributed according to p for all .

Now we establish the relationship between R(t) and X(¢). For p =1
we simply label the £-particles to the right of the origin at time 0 as vy
particles and those to the left as { particles. In this case notice that X(t)
is just a second class particle with respect to the 1, process (which is the



same as 0; +;). So in this case R(t) = X(t), and i = p.
When p < 1 we have the following

Proposition 2.3. There exists a coupling between (n:, R(t)) with initial
measure D, » and (0, &, X (t)) with initial measure v4 such that for allt > 0

(2.4) E|R(t) - X(£)] € C <

Proof. At time ¢t = 0 distribute (09, &) according to v} and set (15, R(0))
as follows

R(0)=X(0)=0
(2.5) no(z) = oo(z), forz <0
no(z) = go(z) + &o(z), forz >0

Now call 7 and { the £ particles to the right and left of the origin respec-
tively. For later times consider the following priorities:

a; |"7¢|’"R(t)|‘(g

(we identify R(t) with the configuration with a particle at R(t) and no
particles elsewhere). Hence (¢, R(t)) = (¢ + 71, R(t)) and (04, &, X(1)) =
(o1, (7 + ) U R(t), X(t)) have the right distribution. (We identify the
configuration 7 with the set of occupied sites {z : (z) = 1} and abuse
notation by writing R(t) for {R(t)}.)

We now study the process Tx(:)(c1,71, (i, R(t)). For the initial distri-
bution of this process it is convenient to consider a new measure v for
which v4( . |A) satisfies (2.5), with A := {R(0) = 0;7(z) = 0,z < 0;{(z) =
0,z > 0}. To define v}, put the o and £ particles according to v;. Define
z; := position of i-th £ particle (zo = X(0) = 0). Choose R(0) to be equal
to z; with probability
(26) m(i) == ((p/a)'1* + (a/p)""?),
independently of the configuration (4,£). (The ‘value of m(i) is chosen
so that (2.16) below holds.) Finally decide which £ particles different from
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R(0) are vy particles: label the i-th ¢ particle as a v particle with probability
(p/9)'/(1 + (p/q)) independently of everything, otherwise as a { particle.
(A formal definition is given in (2.11) below.) '

Now, calling x;(t) the position at time ¢ of the i-th & particle (zo(t) =
X(t)), we prove below that for all t > 0,

2.7 P, (R(t) = z;(t)| Fa,1) = m(d)

where F,, is the sigma algebra generated by {(04,£) : 0 < 8 < t}. Before
proving (2.7) we finish the proof of the proposition. Equation (2.7) implies
that {R(t) = z;(t)} is independent of (oy, £;). Hence
(2.8)

E,;|R(t) = X()| = B,; (|R(2) - X(1)| |R(®) = 2:(2)) P(R(t) = z(1))

= E lm(i) = constant < oo
A=p
i€X
where in the second identity we used that for all i and all ¢ > 0, E,; (zi(t) —
zi_1(t)) = 1/(A — p). This proves (2.4) when the initial measure is ;. In
fact our initial measure is ¥4(.]A). Since v} gives positive mass to A, (2.8)
implies the proposition.&
Proof of (2.7). The process Tx(1)(0¢, e, (e, R(t)) has generator Ly :=
LY + LY + LY, where L is the generator of the motion of the o and §{ -
particles and the translations due to the jumps of X(t):
(2.9)
Ly f(o,7,¢,7)
=Y ¥ (c@1-0@) p)
z#0 y=z+1#0
X [f(az’yr 73,:,1(3’”’ rz,y) = f(U, Vs C! 7‘)]
+ (1(2) + ¢(@) + 1{r = 2})(1 — o (y) = 7(¥) — () = Hr =y}) p(2,¥)

x [f(o,v®Y, (5, roV) - f(o,7,¢, r)])

* Z (a(y) p(y,0) [f(,-yaodl, Ty’ro"', TuCo’", o~ y) — f(o,7,¢7)]
y=%1 ’

+(1=0(y) =) - ((¥) - H{r =}) p(0,)
X [f("v"a 1-”70-7, TyCo’”, ’.O,y & y) = f(d, 7 C) 1‘)])
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where r®V = r for r # z and r®¥ = y if r = z; L] is the generator of the
exchange between v and ( particles:
(2.10)

L’a’f(a, 77 C’ r)
=Y Y. A=W p(z,y) [flo,7™7,¢5Y,r) = f(o,7,¢,7)]

T#r y=zrtl#r

and L is the generator which describes the motion of R(t) on the { particles:

Lgf(o',")’,(,f)
= (py(r — 1) + ¢{(r = D)[f (0,7 """ r = 1) = £(0,7,¢,7)]
+(gv(r + 1) + pC(r + DY[f (0,77, (T 4+ 1) = f(o,7,6,7)]
The point hére is that the generators L§ and LY do not affect the position

of the o and £ particles as they describe interchanges of £ particles. On the
other hand, LY does not affect the v, ¢ and R labeling of z;(t).

Let 72 be a measure on X? with the good marginnls ie. [dm(o,€)
f(o)=v,f and fd7r2(a E)f(o+&) = vaf. Let w5 := m3(.|{(0) = 1). Define
the measure 7} on X3 x Z as follows. Let ANBNCN{r} = 0 and

fA B C',r(o" 7 € R) = H:EA 0’(:27) HzeB 7(:”) H:GC C(I)I{R = T} The
fourth coordinate states for the position of R(t) — X (¢).

n(§,x)
W;fA.B,C’,r i ‘/d";(aa é) H O'(I) H 6(3;)__@___

z€A zeB 1+ (p/g)™&)-
2.11 z
( ) X ’£IC£( )1+(PIQ)n(€’:)

-2
x () ((a/p)"¢772 + (pfq)mE12)
where n(£; z) is the signed number of { particles between the origin and z:

yF L €y) ifz>0
iidn {- T e iz<0

Call S} the semigroup corresponding to the generator L. We shall provc
that V4S' (t) can be constructed from v;55(t) as g is constructed from 5
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in (2.11). To do that we shall prove that if #} is defined as in (2.11) then
it is reversible for Lj:

(2.12) 73(gLyf) = m(fL4g)

for all f and g cylindric. Or equivalently, we need to prove that

g ({R =r} (p{(r +1) +g7(r +1)))
=g ({R=r+1} (pr(r) + &(r)))
Notice however that =} is not even invariant for L}, the generator of the

whole process. By the definition of 7}, (2.13) is equivalent to the following
identity when integrated with respect to 75:

E(r)é(r + 1)m(n(€,r)) Q(n(§, ) n(ér +1))

(2.13)

. = £(r)E(r + Dm(n(€,r + 1)) QlE,r +1),n(€, 7))
where
e (p/q)'*!
i+ 1) =P gy ¥ 114 (/g
(2.15) (p/a) (o/a)

QLY =PTy /ey T T+ G/
Q(,5) =0 ifli—j|>1
Now (2.14) holds if £(r) = 0 or &(r + 1) = 0. Otherwise n({,r +1) =
n(€,r) + 1. Hence it suffices to check that
(2.16) m(:)Q(i,i 4+ 1) = m(i + 1)Q(i + 1,1)

which is left to the reader. This proves (2.12). Since the motion related
to the generators LY and LY does not affect the distribution of the label of
the £ particle chosen by R(t), Equation (2.7) is then a consequence of the
Trotter-Kurtz formula. &

Remark. In the same way as (2.7) one can prove that v§S}(t) is reversible
for Ly + Ly and letting J, K C Z,i € Z, {i}NJNK =0,

Pyz(R(t) =z;(t); 1(zj(®)) =1, j € J;u(zk(t)) =1, k€ K | Fay)

S (v/0)
w0 [ 2w I tvorar

j€J keK
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or, in other words, using the notation of (2.11), for all ¢ > 0,
(2.17)

= [ a5:(0(0,8) TT o) TT £@)— 2L
iSi0innor= [a451006:0 [Lo@ [L €@ 7T

1
X zEICQ(x)IW

x &) (/)" €2 + (pfgycer?) ™

The next proposition is used to prove the convergence to an invariant
measure in Theorem 2.2. Its proof uses again the basic coupling, but now
between two copies of the process (n;,£;) which was constructed itself us-
ing that coupling. What we mean for basic couplig is again the fact that
the two copies use the same realization of arrows. This guarantees that
each marginal has the correct distribution. The same remark is valid for
the future, where we will copy up to three processes each with different
priorities.

Proposition 2.18. Let 7 be a measure on X? with the good marginals,
i.e. [dmy(0,€) f(o) = vof and [dnz(0,8)f(0 + &) = vaf, and let 7} :=
72(.]J€(0) = 1). Let pp be an invariant measure for So(t) with the good
marginals (its existence is proven in [fks]). Then w2S(t) converges weakly
to pa and 74 S5(t) converges weakly to py = pa(.J¢(0) = 1).

~
~

Proof. Consider the basic coupling between two copies of (o¢,&;):

(0?,€7) with initial measure

(01 ,€}) with initial measure po

Since the o and the o + £ marginals are the same for 7, and u2, we can
assume that under our coupling, at time 0 (and hence for all later times),
0 + € = o} + £}. In that way the marginal (¢6§,04) has a translation
invariant measure and we can apply Lemma 3.2 of Chapter VII of Liggett
[L] to the marginal coupling (¢,0}) to obtain that any weak limit ji of
(09’ 011,529 Etl) satisfies ﬂ(ao(z) =gl (v) = l’ao(y) = 0.0(_,,:) = 0) = 0 for all
z,y. Hence ji(o® > o' or 0° < 0') = 1. Suppose now that ji(6? > o*,0° #
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01) > 0. Then, by translation invariance, ji(0%(z) > ¢'(z)) = ¢ > 0 for all
z and

(2.19) 1 (% S (e ta)- ao(z))) =c>0

z=1

But this leads to a contradiction because the first two marginals of i are
v,, and the law of large numbers imply that the limit as n — co of the left
hand side of (2.19) is zero. Then fi(0® = o') = 1. Since o} + £} = 00 + &
for all ¢, this implies that m3S5(t) converges to pp. This and the fact that
7L S(t) = maSa(t)(.|€(0) = 1) (Lemma 3.6 of [fks]) imply that 7555(t)
converges to j5. &

Proof of Theorem 2.2. Proposition 2.3 guarantees that since v; has the
good marginals, then, under initial measure v, X () — R(t) is tight. This
and the fact that the projection over o+ of ¥4 S}(t) is ~ v, » uniformly in
t (Lemma 3.26 of [fks]) imply that 7g(;y7m: has distribution ~ v, uniformly
in t. This proves the first part of the theorem.

For the second part, we observe that Proposition 2.18 and equation
(2.17) imply that v{S;(f) converges to a unique invariante measure for
the process as seen from X(f). This implies that X(f) — R(t) converges .
in distribution. Since E|X(t) — R(?)| is uniformly bounded, 7gr(ym =
TR()-x()TX(1)(0t + 71) converges in law to the invariant measure . &
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3. Laws of large numbers.

In this section we prove laws of large numbers for R(t) and others
microscopic shocks. We start with a strong law of large numbers for X(t)
when the initial measure is any measure with the good marginals. This
extends the results of [fks], who proved a weak law when the initial measure
is product and a strong law when the initial measure is the invariant measure
pt. We give here an easy and unified proof. Let v = (p—¢)(1 - A - p).

Theorem 3.1. Let 3 be a measure with the good marginals as in Propo-
sition 2.18, and 75 = w2(.[{(0) = 1). Then

lim &t—)

=v, Py almost surely.
t—oo ¢ 3

Proof. Let U(t) € Z and define F({;,U(t)) := number of £ particles that
at time zero were to the left of the origin and at time ¢ are to the right of
U(t) minus the number of £ particles that at time zero were to the right of
the origin and at time t are to the left of U(t). In other words, F(&,U(t))
is the net flux of £ particles throught the space time line [(0,0), (U(2), )]
Notice that F'(§, X(t)) = 0. Define analogously F(oy,U(t)) for the process
oy and F(oy + &, U(t)) for the process oy + £. Now assume that U(t) is a
random walk on Z that jumps to the right neighbor at rate w independent
of (1, &) and study the process Ty(y)o. Using the techniches of Liggett (1},
it can be proven that all invariant measures for this process are translation
invariant and that v,, 0 € a < 1, are extremal invariant for this process.
Notice that F(7yo1,0) = F(o:,U(t)). Now we can use the martingale
decomposition of F(ry(yot,0)) and the fact that v, is extremal for Ty()0t
to prove —as in the proof of Theorem 6 of [k] or Theorem 1 of [s]- that

lim F(o,U() = (p—q)p(1 — p) — wp, P,;a2 a.s.

/ t—oo t

where we used that the o marginal of =} is absolutely continuous with
respect to v,. Analogously using the fact that oy + & is also the simple
exclusion process with measure (absolutely continuous with respect to) v,

lim Floi+

i—o0

t&, U@) _ (- gM1—A)—w), Pu as.
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from where, using the fact that F(&,U(t)) = F(o:+&,U(t)) = F(o4, U(2)),

F ,U t
tim ZETO) _ )01 2= p(1 = p) = w(A=p), Puy as.
Now check that this limit is negative for w > v = (p—¢)(1 — A~ p) and
posxtlve for w < v. On the other hand, lim;_, o, U(t)/t = w a.s. because

U(t) is a Poisson random variable with mean wt. Also F(§,) is a non
increasing function of z. Hence, since F(&, X(t)) =0,

limsup —* S00] < lim ylt) =w, Py as.
i—o0 i t—o0 .
for all w > v, and analogously,
liminf ()> lim ~U—(Q=w, P, as.
1—oco t—oco ¢ 3

for all w < v. This proves the Theorem.d
The next lemma is a corollary to Proposition 2.3.

Lemma 3.2. Let G(t) be the position of the leftmost particle of v, and
Z(t) the position of the rightmost particle of ;. Then for allt > 0

(3.3) E,|R(t) - G(t)| = E,;|R(t) - Z(t)] < C < o0, and
(3.4) B, (R(t) - X(2)) = 0.

Proof. When the initial measure is v/}, the average distance between §
particles is (A — p)~! for all times. Furthermore the way of choosing which
£ particles are 7 particles and the R particle is independent of the position
of the £ particles. This implies that

E (p/0)*
(35) E4lX(t)-G@®I=(A=p)" ) I I1 r <
; 2 M e LTy o7
This and E|X(¢) — R(t)| < C < oo (Proposition 2.3) imply (3.3). Equation
(3.4) is a consequence of the symmetry of m(#) with respect to the origin.
&

In the next theorem we show that the different positions of the shock
satisfy laws of large numbers.
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Theorem 3.6. The following holds

(3.7) tlir{.xo @ =uv, P;,, and P; almost surely; .
(3.8) Jin @ Jim ggt—) =v, P, and P, almost surely.

Proof. By Theorem 3.1, X(t)/t converges P, @.s. and F,; a.s. to v.
Proposition 2.3 says that X(t) — R(t) is tight. Hence R(t)/t converges P;
a.s. and P;,, a.s. to v. This and Lemma 3.2 imply that both G(¢)/t a.nd
Z(t)/t converge Py a.s. and P,y a.s. to v.é

Now we prove a law of large numbers for a single second class particle
when the initial distribution of first class particles is v,. We consider the
process (n;, D(t)) on X x Z, with priority n; F D(¢) and initial measure
¥4, the product measure of density a with the second class particle at the
origin.

Theorem 3.9. Let D(0) =0, n; - D(t). Then
D(t)

Jim —= = r—q)(1-20), P, as.
Proof. Couple the process (1, D(t)) and the process (o, 71,(;) with initial
distribution 14, with A > p = @, in such a way that at ¢ = 0, D(0) = 0,
70(0) = 0 and no(z) = oo(z) for = # 0. This gives (1, D(0)) distribution 74
and the correct distribution for later times. Letting G(t) to be the position
of the leftmost 7 particle,

(3.10) 70(0) = 1 implies D(t) > G(t).

To prove (3 10) observe that it holds trivially for ¢ = 0. Then observe that
if G(t) = D(t), a right jump of G(t) implies a right jump of D(t) while a
left jump of D(t) implies a left jump of G(t). From (3.10) we get that, for
any A > p, in {70(0) =1},

(3.11) limsup ——= D( ) > lim Giltr)

{—o00 t—oo 1

=(p-g-p-2), as
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where the identity is (3.8). Since this holds for all A > p,
(3.12) limsupg-t(t—) >(p-9(1-2a), P, as.
t—oc
where we have used that v3(7(0) =1) > 0.
On the other hand, couple again (n:, D(t)) with (o1,7:,(t) but now
with initial distribution v} with p < A =0a. At time t =0:
D(0) =0, n0(0) =
no(z) = oy(z) + vu(z) + i(2) for 2 # 0
Letting Z(¢) to be the rightmost ¢; particle, analogously to (3.10),
¢o(0) = 1 implies D(t) < Z(t), t 20, and

hmmf ( ) <(p-9(1-2a), P, as.
This and (3.12) finish the proof. &

4. Second class particle and characteristics.

In this section we prove that the macroscopic motion of a second class
particle coincides with a characteristic of the Burgers equation. The char-
acteristic corresponding to r € IR is the curve w(r,t) in the space time
satisfying w(r,0) = r and u(w(r,t),t) = constant, where u is a solution of
(1.1). In our case # = p — g and

—q)(1-2\)t+r forr>0
(4.1) w(rit)={((z_gg§1—2p))t+r forr <0

Since A > p, the characteristics to the right are slower than the ones to
the left. Hence they meet, developing a shock. The shock is travelling at
velocity v = (p — ¢)(1 — XA — p). The characteristics starting at r and —r
respectively meetr the shock at time

—P—a
(4.2) t(r) = Iri3 =

In the next theorem we abuse notation. The measure v, states for a
measure on X X Z, being a product measure on X for all but one site: at
(the integer part of) e~ 1r there is a second class particle.
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Theorem 4.3. Let Y(z,t) be the position at time t of a second class
particle that at time zero is at site z. Then as € — 0, €Y (e r,e™ 1)
converges P, , a.s. to w(r,t) for t < t(r) and to vt for t > t(r).

Proof. For each pair (g, r), r > 0 couple the processes (1, Y(e~1r, t)), with
priority 0y F Y(., £); (01, e, Gty R(t)) with priorities oy F v F R(t) F (; and
(71, D(e1, t)) with priority 7; - D(e~1,t). At time ¢ = 0 set R(0) = 0 and
distribute (o9,0,(o) on the other sites according to v4. Set 5y = 0o + 70,
flo = 0o + 70 + (o and Y(e~1r,0) = D(e~1r,0) = [~ 1r]. Define

Ti(e,r) :=inf{t: D(e7 r,t) # V(e r,t) or Y(e~1r,t) = R(t)}
Ta(e,r) :=inf{t: Y(e™ r,t) = R(1)}

if those first times do not exist, we set T; = oo. Under this coupling,
D(.,t) =Y(.,t) up to the first moment that they meet a { particle. By the
laws of large numbers for D(t) and Z(t) (the position of the rightmost {
particle), (Theorems 3.9 and 3.6)

(4.4) P_H.(I)ETI (e,r) =1t(r), as.

After T3, Y(.,t) = R(t). Hence it suffices to prove that lim,_.geT3(e, r) =
t(r). Let Q' := {lim,,oeTi(e,r) = t(r)} . Since Tz > T3, it suffices to
show that P(limsup,_,o (T2 —~T1) > 0,9Q') = 0. But, after 7, Y (e~ 'r,t) <
max{Z(t), R(t)} by the same argument to prove (3.10). Hence

(45)  P(imsup e(Ty — Ty) > 0,) < P(Z(1) - BE#) > 8, ¥t > 1(r)).

By Lemma 3.2, E(Z(t) — R(t)) < C < co. Then Chevichev inequality
implies that, for all § > 0, there exists M > 0 such that P(Z(t) — R(t) >
M) < 6, for all t > 0, which implies, for n € IV, P(Z(n) — R(n) <
M, infinitely often) > 1 — 6. But each time that Z(n) — R(n) < M, they
have a uniformly bounded above zero probability of meeting in a time in-
terval of lenght 1. Hence

(4.6) P(Z(n) = R(n), forsomen)>1~6

Since (4.6) holds for all §, this implies that the right hand side of (4.5)
vanishes. A similar argument works for r < 0, by defining o = 0. &
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5. Initial perturbations produce shock translations.

In this section we show that, as ¢ — oo, a perturbation at one site of
the initial measure v, produces a translation of the shock of the order
of (A — p)~1. This behavior can also be observed in the Burgers equation
with shock initial conditions. Denote R(n,t) the (random) position at time
t of a second class particle that at time 0 is at the origin when the initial
configuration is 5. For any configuration 7, a site y € Z, let 7YV be defined
by (i € {0,1})
ﬂyli(z) — {’7(3’) for z # Y

i for z=1y.
Define r+ := (A= p)(p—q), ™ = (p = A)(p — 9)-
Theorem 5.1. For all e > 0 it holds

(5.2)

lim sup |E-'. LR, ) = R, 8) — (A= p)t| =0
t=00 (p— fe)t<y<(rt—e)t '

rti
1 '
(5.3) Jlim = E,, (R(@°,t) - R(p?", 1)) =p—gq
=0
1 0
(5.4) Jim = 3 B, (R@Y,t) - R(p*", 1)) =p—1q
y=r—t

In order to prove this Theorem we need the following Lemma

Lemma 5.5. Let R_1(t) be a particle such that n, - R(t) = R_,(t). Then
the initial distribution of (n;, R(t), R—1(t)) can be chosen such that, for all
t > 0, both Tp_,(5y(n U R(t)) and Tr(yyn: have distribution D,28(t). Fur-
thermore, with respect to the chosen initial distribution, E(R(t)—R-1(t)) =
(A = p)-l) t20.

Proof. First observe that R_;(t) is a second class particle with respect to
1: U R(t). Consider the coupling (o¢,7:,Cs, R(%), R-1(t)) with priorities ¢
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F ¢ + R(t) F R_y(t). To define the initial distribution pick (o,£) from the
product measure v} = v2(.](0) = 0) and call z; the position of the i-th £
particle, o = 0. Set {(z;) = 1for i < 2, y(z;) = 1fori > 1, R(0) = 2o = 0,
R_1(0) = z_;. Under the resulting distribution, Tr_,¢(oe, 7t U R(2), (i)
and Tr(1)(0't, Y1, (e U R-1(t)) are identically distributed for all £ > 0. The
projections Tg_,(y(0y Uv: U R(t)) and Trsy(o¢ Uv:) are both distributed
according to ﬁp,;\g(t). Hence, denoting n; = 01 + <, we have proven the
first part of the Lemma.

By (3.4) E(R(t)— X(t)) = 0 and E(R_,(t) — z—1(t)) = 0, where z;(t)
is the position of the i-th particle of £ (zo(t) = X(t)). This implies that
B(R(t) - Ra(8) = E(X(t) = 2-1(8) = (A= ). &

Proof of Theorem 5.1. Couple (7¥!'); and (p¥I°), —the processes with
initial configurations n¥!' and 7%/, respectively— according to the basic
coupling. Let Y(y,t) be the site where (p¥I'); and (1¥!°), are different.
Then Y(y,t) behaves like a second class particle with respect to 7, t.e.
(7Y% F Y (y,). Now, R(y¥1°,t) = R(n*I",2) until T} (y) := first time that
Y(y,t) = R(p¥I°,t). After T, R(p¥',t) = Y(y,t). Define T5(y) := first
time that Y(y,t) = R_1(t). After T3, Y(y,t) = R—1(2). Then

(5.6)

EV,.A(R(’I'AO! t) — R(,’ull’ t))

= By (R(8) = Rea(8),t 2 o)) + Bu, o (R() = Y (3,), Ts < £ < To(0)

A coupling argument shows that the processes can be constructed in such
a way that {t > Ti(y)} is non decreasing for positive y and non increasing
for negative y. Hence, as in the proof of Theorem 4.3,

P(lim sup t—-Th(y)=20)=1
t—oo (r=+e)i<y<(rt—e)t

The first term in the right hand side of (5.6) is bounded by E|R(t) —
R_i(t)] < C < oo. Hence, by dominated convergence it converges to
(A = p)~1. The second term in the same equation converges to zero by
an argument analogous to the one we used to prove Theorem 4.3. L

Since E(|R(t) — Y(y,t)|,T1 < t < Tz) < C < 00, equation (5.6) also
implies that E,,’,,‘(IR(nVI", t) — R(n¥I1,?)|) < C < oo. Hence, by dominated
convergence (5.2) imply (5.3) and (5.4).4
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6. Dependence on the initial configuration.

We prove here a formula relating the diffusion coefficient of the shock R(t) to
the conjectured diffusion coefficient. We call, as before, v = (p—g)(1—p—A).

Bigites 1 M1=-2
E:=(p_q)p( _pltp( - ).

F(t) := E;, ,(R(t) - vt)?,

- 2
1(t) == / do,A(n)E (R(n,t) _ nogn—,-r:t) & mf,ner t)) )

where R(1,t) and r* are defined at the begining of Section 5 and ng (n,2) :=
Y =01 = n(y)) is the number of empty sites of 7 between 0 and z and

n(n,z) = — E::: n(y) is minus the number of 7 particles between the
origin and = < 0.

Theorem 6.1. The following holds

(6.2) lim Ey =D+ lim 1(t)

t—oo ¢ t—oo

if the limits exist. If not (6.2) holds with lim substituted by either limsup
or liminf.

Proof. Summing and substracting vt, I(t) equals
(6.3)

[ naB Ry =t + [ oo (2D - - 91 - )

# [ ooata) (270~ o) =2 [ aspatr)

8 (R (5270 - - 1 - e+ P - - ) )

where we have used that no(n,rt) and ny(yr~t) are independent under
7p.2- Dividing by ¢ and taking ¢ — oo, the first term gives lim(F(t)/t), and
the second and third terms give D. Then it suffices to show that dividing
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by t and taking ¢t — oo the last term equals —2D. Using the definition of
ni(.,.), the expectation in the last term in (6.3) equals

(6:4) (rZR(n,t)(l n(z) - (1-A)+ Z R(n,t)(n(z) P))

z=0 z=r—1

Integrating the first term of (6.4),

rte

- / du,,x(n)ZE (R(m,t)(n(=) — X))

2—0

S / d5,,7(n) 2 [E (B(n, B)in(z) = 1) A

z=0

— A(E (R(n,t)|n(z) = 1) A + E (R(n, t)In(z) = 0) (1 = X))

6.5
©9 -,\—f_;x(l - [[d0pr(0)
rte
2 x 3 [B(R(n,9)n(=) = 1) — E(R(n, t)ln(z) = 0)]
z=0
r¥t
=52 A= [d5nat0 B (R0 - Ro0)
z=0

Dividing by t and taking the limit as ¢ — oo of the first term of (6.4), we
get using (5.3) on (6.5) that

z=0

Jlim 5= [ dopaln) (Z R(n, )(-n(z) + A») (-0 2=
and analogously using (5.4),

lim ~—— f dip\() Z R(n, t)(n(z) — p) = (p— q)p (1 p)

o A z=r"1
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This implies the Theorem.& I thank Errico Presutti for telling me the above
proof.

Remarks 6.6. From Theorem 6.1 we conclude: 1. The diffusion coefficient
of the shock is the same as the conjectured diffusion coefficient if and only
if the position of the shock at time ¢ is given —in the scale Vi-by (A=p)}
times the number of holes between 0 and r¢ minus the number of particles
between 0 and r—¢. In any case, I(£) is non negative, then D is always a
lower bound for the lim inf of F(t)/t as announced in (1.4).

2. Tightness of R(t) — X(t) and R(t) — G(t) imply that Theorem 6.1
also holds for X(t) and G(t). When p = 0, X(t) has the distribution
of a plain tagged particle in the simple exclusion process with density A
and G(t) has the distribution of the leftmost particle in simple exclusion
with initial distribution v, . In the case p = 0, it is known that D :=
limi— oot 1 E(X(t) ~ EX(t))2 = D = (p — q)(1 — A) [fd]. This implies that
limy—oo I(t)/t = 0, hence in the scale v/ the position of R(t) is determined
by the initial configuration in the sense discussed above. This was proved
for G(t) when p = 1 by Géardner and Presutti [gp]. This and the previous
remark imply that we get for free the central limit theorem of [k] for the
tagged particle and of [dkps] for the leftmost particle. Unfortunately one
needs to use the precise computation of [df] for the diffusion coefficient.
An independent proof that lim I(t)/t = 0 would give a direct proof of the -
central limit theorems for all these objects.
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