RT-MAE-9013

SCHOCK FLUCTUATIONS IN ASYMMETRIC SIMPLE EXCLUSION

by

Pablo A. Ferrari

Palavras Chaves: Asymmetric simple exclusion. Burgers equation.

(Key words) Shock wave solutions. Shock fluctuations

Classificação AMS: 60K35 (AMS Classification)

Shock fluctuations in asymmetric simple exclusion

Pablo A. Ferrari

Universidade de São Paulo

The one dimensional nearest neighbors asymmetric simple exclusion process is used as a microscopic approximation to the Burgers equation. We study the process with rates of jumps p>q to the right and left, respectively, and with initial product measure with densities $\rho<\lambda$ to the left and right of the origin, respectively (with shock initial conditions). We prove that a second class particle added to the system at the origin at time zero identifies microscopically the shock for all later times. If this particle is added at another site, then it describes the behavior of a characteristic of the Burgers equation. For vanishing left density ($\rho=0$) we prove, in the scale $t^{1/2}$, that the position of the shock at time t depends only on the initial configuration in a region depending on t. The proofs are based on laws of large numbers for the second class particle.

Key words and phrases. Asymmetric simple exclusion. Burgers equation. Shock wave solutions. Shock fluctuations.

AMS 1980 Subject Classification. Primary 60K35.

Introduction.

The inviscid Burgers equation

(1.1.a)
$$\frac{\partial u}{\partial t} + \theta \frac{\partial [u(1-u)]}{\partial r} = 0$$

with $\theta > 0$ admits travelling wave (weak) solutions u(r - vt), where, for $\rho < \lambda$,

(1.1.b)
$$u(r) = \rho 1\{r < 0\} + \lambda 1\{r \ge 0\}$$
$$v = \theta(1 - \rho - \lambda)$$

These solutions are called the entropic solutions. In this paper we continue the study of Ferrari, Kipnis and Saada [fks] of the microscopic approximation of these solutions by the asymmetric simple exclusion process. This is a Markov process on the state space $X := \{0.1\}^{\mathbb{Z}}$. For configurations $\eta \in X$ we say that there is a particle at x if $\eta(x) = 1$, otherwise x is empty, so that at each site of the one dimensional lattice \mathbb{Z} there is at most one particle. Informally the process is described by saying that if there is a particle at site x, then it jumps to site x + 1 (respectively x - 1) with rate p (resp. q) if x + 1 (resp. x - 1) is empty and with rate 0 if it is occupied. We assume p + q = 1 and p > q. The generator of the process is given by

$$Lf(\eta) = \sum_{x \in \mathbb{Z}} \sum_{y = x + 1} p(x, y) \eta(x) (1 - \eta(y)) [f(\eta^{x, y}) - f(\eta)]$$

where f is a cylindric function, $\eta^{x,y}$ is the configuration obtained when the values of η at x and y are interchanged, p(x,x+1)=p, p(x,x-1)=q=1-p and p(x,y)=0 if |x-y|>1. We call η_t the resulting Markov process and S(t) the semigroup generated by L. Liggett proved that all the translation invariant and (time) invariant measures for this process are convex combinations of the product measures ν_{α} , $0 \le \alpha \le 1$, for which the probability that a given site is occupied is given by α . Under the invariant measure ν_{α} the average velocity of the particles is $(p-q)(1-\alpha)$. There are also so called "blocking" invariant measures $\nu^{(n)}$, $n \in \mathbb{Z}$. These measures are also product, have marginals

(1.2)
$$\nu^{(n)}(\eta(x)) = \frac{(p/q)^{x-n}}{1 + (p/q)^{x-n}}$$

and are even reversible for the process. They approach exponentially fast the densities 0 and 1 to the left and right of the origin respectively [L], [l]. We consider these measures as a first example of a microscopic shock: at any time the process with initial measure $\nu^{(n)}$ has a measure (which is the same $\nu^{(n)}$) which, if shifted by x, approaches ν_0 as $x \to -\infty$ and ν_1 as $x \to \infty$. This corresponds to the case $\rho = 0$ and $\lambda = 1$ in the Burgers equation. The explicit formula for $\nu^{(n)}$ plays a crucial role in this paper as it did in [fks]: we use (1.2) to find shocks for others values of ρ and λ .

In order to derive equations (1.1) in the general case one starts with the product measure $\nu_{\rho,\lambda}$ with densities ρ and λ to the left and right of the origin respectively, $\rho < \lambda$. Under this measure the particles initially to the left of the origin have average velocity $(p-q)(1-\rho)$ which exceeds the initial velocity of the particles to the right of the origin $(p-q)(1-\lambda)$. This together with the exclusion interaction is the reason of the formation of shocks in this model. In fact it has been proven by Benassi and Fouque [bf] and Andiel and Vares [av] that the hydrodynamical limit of this process is given by (1.1) with $\theta = p - q$. They proved that $\tau_{\varepsilon^{-1}r} \nu_{\rho,\lambda} S(\varepsilon^{-1}t)$ converges, as $\varepsilon \to 0$, to ν_{ρ} if r < vt and to ν_{λ} if r > vt, where $v = (p - q)(1 - \lambda - \rho)$ and τ_x is the translation by x. We call v the shock velocity. At r = vtit is expected to see what Wick calls a "dynamical phase transition", i.e. a convex combination of ν_{ρ} and ν_{λ} . This was in fact proven by Wick [w] and De Masi, Kipnis, Presutti and Saada [dkps] for the case $\rho = 0$ and by Andjel, Bramson and Liggett [abl] for the case $\lambda + \rho = 1$. Notice however that this is not true when $\rho = 0$ and $\lambda = 1$, as $\nu^{(n)}$ are invariant and not a convex combination of ν_1 and ν_0 . Some of these results were reviewed by Bramson [b].

The question that arises naturally then is what does the shock look like? The hydrodynamic limit shows that it is rigid in the scale ε^{-1} . Is there another scale such that it is smooth? [fks] answered this question negatively. Indeed they proved that the shock is rigid on the microscopic level by defining a random position X(t) and a measure $\mu \sim \nu_{\rho,\lambda}$ such that at any time t the system as seen from X(t) is distributed according to μ , where $\mu \sim \nu_{\rho,\lambda}$ means that for all cylindric f on X,

(1.3)
$$\lim_{x\to-\infty}\tau_x\mu f=\nu_\rho f \text{ and } \lim_{x\to\infty}\tau_x\mu f=\nu_\lambda f.$$

In this paper we show that the microscopic shock is also described by

a "second class particle". One of the advantages of this approach is that the shock can be shortly described and we proceed to do that now. We use the graphic construction and the basic coupling. We refer to Liggett's book [L] for both techniques, widely used in interacting particle systems. The graphic construction of the simple exclusion process η_t is determined by the following rules. At each pair of sites (x, x + 1) associate two Poisson point processes (Ppp), one with rate p and the other with rate q. Each of this Ppp is a sequence of times on \mathbb{R}^+ . We say that an arrow going from x to x+1 is present at each of these times for the Ppp with rate p and a left arrow going from x+1 to p for the Ppp with rate p. These Ppp are mutually independent. When an arrow occurs going from p to p if p is occupied and p is empty, then the particle jumps to the empty site. Otherwise nothing happens. In this way, for each realization of the arrows and each initial configuration we construct a version of p.

The basic coupling consists in realizing jointly two or more versions of the process with different initial configurations using the same realization of the arrows. In this way each marginal has the distribution of the simple exclusion process and we can learn other properties by comparing the same realization with different initial configurations. In particular, consider two initial configurations that differ at only one site, say the origin. The reader can check that the coupling has the property that at later times the two marginals also differ at only one site. This site is called a second class particle. The name comes from the way this "particle" interacts with the other particles that we call first class: First and second class particles at rate p jump to the right site if it is empty and at rate q do the same to the left. None of them jump to sites occupied by first class particles. But, when a first class particle tries to jump to a site occupied by the second class, the jump is realized and the two particles interchange positions.

We describe now our results. We show in Section 2 that starting with the second class particle at the origin and distributing the other particles according to $\nu_{\rho,\lambda}$, the process as seen from that particle at time t has a distribution $\sim \nu_{\rho,\lambda}$ uniformly in t, where \sim is defined in (1.3). Furthermore, as $t\to\infty$, this process converges weakly to an invariant measure $\hat{\mu}\sim\nu_{\rho,\lambda}$. The process as seen from the second class particle is a Markov process. This is an improvement over the process as seen from the random position described by [fks].

In Section 3 we show laws of large numbers for the second class particle: call R(t) the position at time t of the second class particle (R(0) = 0). We prove that R(t)/t converges almost surely to $v = (p - q)(1 - \lambda - \rho)$ when the initial measure is either the product measure $\nu_{\rho,\lambda}$ or the invariant measure $\hat{\mu}$. To prove these laws we use and improve laws of large numbers of [fks]. Furthermore we show that if the first class particles are distributed according to the (translation invariant) mesure ν_{α} , then R(t)/t converges almost surely to $(p-q)(1-2\alpha)$.

In Section 4 we consider the situation when the second class particle starts at the position $\varepsilon^{-1}r > 0$ and study its motion in the hydrodynamic limit described above. We prove that its macroscopic motion can be described as follows: it starts at r and has velocity $(p-q)(1-2\lambda)$ up to the moment that it meets the shock that started at the origin and has velocity $(p-q)(1-\lambda-\rho)$. At this moment the second class particle adopts the velocity of the shock. On the other hand, when the initial point is $\varepsilon^{-1}r < 0$, the velocity is $(p-q)(1-2\rho)$ up to the moment it meets the shock. This is the behavior that the characteristics of the Burgers equation have.

The fluctuations of the shock are at least diffusive. In fact we prove in Section 6 that

(1.4)
$$\liminf_{t\to\infty} t^{-1} E_{\hat{\nu}_{\rho,\lambda}}(R(t)-vt)^2 \ge (p-q) \frac{\rho(1-\rho)+\lambda(1-\lambda)}{\lambda-\rho},$$

where E_{ν} is the expectation of the process with initial measure $\hat{\nu}$; the measure $\hat{\nu}_{\rho,\lambda}$ is the measure that puts a second class particle at the origin and the first class particles are distributed according to $\nu_{\rho,\lambda}$; finally, in this paper we write $E(.)^2$ for $E[(.)^2]$.

Equation (1.4) proves half of the conjecture of Spohn ([lps] [S]), who has heuristic arguments that justify the existence of the limit and the identity in (1.4). Also Boldrighini et al. performed computer simulations that support the conjecture [bcfg]. The proof of (1.4) is based on a result shown in Section 5: if a particle is added to the system at time zero at any site, then, as $t \to \infty$, the shock shifts to a random position that differs in average $-(\lambda - \rho)^{-1}$ from the original position.

More can be said when $\rho = 0$. In Section 6 we show that the fluctuations of the shock depend only on the initial distribution. We prove

that

(1.5)
$$\lim_{t\to\infty} t^{-1} \int d\hat{\nu}_{0,\lambda}(\eta) E_{\eta} \left(R(t) - \frac{n_0(\eta, r^+t)}{\lambda} \right)^2 = 0$$

where $n_0(\eta, y) := \sum_{x=1}^y (1 - \eta(x))$ is the number of empty sites of the configuration η between the origin and y and $r^+ = (p-q)\lambda$. This extends a result by Gärdner and Presutti [gp] who proved (1.5) for p=1. Equation (1.5) implies a central limit theorem for R(t) because $n_0(\eta, r^+t)$ is a sum of independent identically distributed random variables. In Remark 6.6 we show that for the tagged particle ([f], [k], [df]), i.e. a regular particle, (1.5) is also true substituting $\nu_{0,\lambda}$ by ν_{λ} . For any ρ and λ we conjecture that the following is true

$$(1.6) \qquad \lim_{t \to \infty} t^{-1} \int d\hat{\nu}_{\rho,\lambda}(\eta) E_{\eta} \left(R(t) - \frac{n_0(\eta, r^+ t)}{\lambda - \rho} - \frac{n_1(\eta, r^- t)}{\rho - \lambda} \right)^2 = 0$$

where $n_1(\eta, x)$ is minus the number of particles between the origin and x < 0 and $r^+ = -r^- = (p-q)(\lambda - \rho)$.

Finally let us mention that the second class particle is conjectured to have the "1/f noise" behavior. The conjecture is that when $\lambda = \rho = \alpha$ the fluctuations are superdiffusive:

$$\lim_{t\to\infty} t^{-4/3} E_{\hat{\nu}_{\alpha,\alpha}}(R(t) - ER(t))^2 = \text{constant} > 0$$

See [S] and [vb] for a heuristic justification and [bcfg] for computer simulations.

2. A second class particle identifies the shock.

We define the process with a second class particle described in the introduction. Define $(\eta_t, R(t))$ on the state space $X \times Z$ as the process with generator (2.1)

$$L^* f(\eta, r) = \sum_{x \neq r} \sum_{y = x \pm 1 \neq r} p(x, y) \eta(x) (1 - \eta(y)) [f(\eta^{x, y}, r) - f(\eta, r)]$$

$$+ \sum_{x = r \pm 1} (p(x, r) \eta(x) + p(r, x) (1 - \eta(x))) [f(\eta^{x, r}, x) - f(\eta, r)]$$

Consider also $\hat{\eta}_t := \tau_{R(t)} \eta_t$, the process as seen from the second class particle. The state space for this process is $\hat{X} := \{0,1\}^{\mathbb{Z}\setminus\{0\}} \times \{0\}$, the space with a second class particle at the origin and with first class particles and empty sites on the other sites. Call \hat{L} and $\hat{S}(t)$ the corresponding generator and semigroup. Let $\hat{\nu}_{\rho,\lambda}$ be the product measure on \hat{X} for which the density of first class particles to the right of the origin is λ and the density to the left of the origin is ρ . The symbol \sim is defined in (1.3) above.

Theorem 2.2. The following holds uniformly in t

$$\hat{\nu}_{\rho,\lambda}\hat{S}(t) \sim \nu_{\rho,\lambda}$$

Furthermore, $\hat{\nu}_{\rho,\lambda}\hat{S}(t)$ converges weakly, as $t\to\infty$, to an invariant measure $\hat{\mu}\sim\nu_{\rho,\lambda}$.

In the remainder of this section we prove Theorem 2.2. The proof uses the identification of the interface given by [fks]. They proved that there exists a position X(t) such that if η_0 is $\nu_{\rho,\lambda}$ distributed, then the process $\tau_{X(t)}\eta_t$ has distribution $\sim \nu_{\rho,\lambda}$ uniformly in t. We will prove here that there exists a coupling for which $E|R(t)-X(t)| \leq C$ for all t. The major difference between X(t) and R(t) is that the process $\tau_{R(t)}\eta_t$ is Markovian while $\tau_{X(t)}\eta_t$ is not.

Now we recall the results of [fks]. The position X(t) is obtained from the basic coupling described in the introduction between two copies of the simple exclusion process. The first copy has initial (marginal) measure ν_{ρ} and the second ν_{λ} . Under the initial measure the configuration of the first

copy is coordinatewise less or equal than the configuration of the second one. We call second class particles those occupied sites of the second copy that do not have a corresponding particle in the first copy, and we call first class particles the common occupied sites. This nomenclature is justified in the introduction. The resulting process is denoted (σ_t, ξ_t) , where the σ particles are the first class and the ξ particles are the second class. We say as in [ak] that the σ particles have priority over the ξ particles and denote this priority $\sigma_t \vdash \xi_t$. By construction σ_t is the simple exclusion process with initial measure ν_ρ while $\sigma_t + \xi_t$ (coordinatewise) is the simple exclusion process with initial measure ν_λ . Call ν_2 the initial measure for the process (σ_t, ξ_t) and $\nu'_2 := \nu_2(.|\xi(0) = 1)$, so that under ν'_2 there is a second class particle at the origin. Let X(t) be the position of that particle at time t.

To recover the original process η_t [fks] define yet a new process (σ_t , γ_t , ζ_t) where $\gamma_t + \zeta_t = \xi_t$ with priorities $\sigma_t \vdash \gamma_t \vdash \zeta_t$. This means that the particles follow the arrows to jump either to empty sites or to sites occupied by another particle of lower priority interchanging positions. The initial distribution of $(\sigma_t, \gamma_t, \zeta_t)$ is given as follows. Pick (σ_0, ξ_0) from the distribution ν'_2 , and label the n-th ξ particle counted from the origin a γ particle with probability $(p/q)^n/(1+(p/q)^n)$, otherwise a ζ particle. Do this independently for each n. Call ν'_3 the resulting distribution of $(\sigma_0, \gamma_0, \zeta_0)$. The notable property of this construction is that the γ_t and ζ_t labeling is the same for all $t \ge 0$. In Lemma 3.26 of [fks] it is proved that the shifted process $\tau_{X(t)}(\sigma_t, \gamma_t, \zeta_t)$ has measure $\nu_3' S_3'(t)$ with the property that the $\sigma + \gamma$ marginal has distribution $\sim \nu_{\rho,\lambda}$ uniformly in t. Using compactness, [fks] proved that there exists an invariant measure μ_3' with the same properties. The original process is recovered by defining $\eta_t = \sigma_t + \gamma_t$ but with a different initial distribution. In fact note that at time zero the projection of ν_3 over the η coordinate is not exactly $\nu_{\rho,\lambda}$ but a measure equivalent to it. Hence $\tau_{X(t)}\eta_t$ has distribution $\sim \nu_{\rho,\lambda}$ uniformly in t. Projecting the invariant measure μ'_3 over $\sigma + \gamma$ one obtains a measure $\mu \sim \nu_{\rho,\lambda}$ such that, starting with μ , $\tau_{X(t)}\eta_t$ is distributed according to μ for all t.

Now we establish the relationship between R(t) and X(t). For p=1 we simply label the ξ -particles to the right of the origin at time 0 as γ particles and those to the left as ζ particles. In this case notice that X(t) is just a second class particle with respect to the η_t process (which is the

same as $\sigma_t + \gamma_t$). So in this case $R(t) \equiv X(t)$, and $\hat{\mu} = \mu$.

When p < 1 we have the following

Proposition 2.3. There exists a coupling between $(\eta_t, R(t))$ with initial measure $\hat{\nu}_{\rho,\lambda}$ and $(\sigma_t, \xi_t, X(t))$ with initial measure ν'_2 such that for all $t \geq 0$

$$(2.4) E|R(t) - X(t)| \le C < \infty$$

Proof. At time t = 0 distribute (σ_0, ξ_0) according to ν'_2 and set $(\eta_0, R(0))$ as follows

(2.5)
$$R(0) = X(0) = 0$$
$$\eta_0(x) = \sigma_0(x), \quad \text{for } x < 0$$
$$\eta_0(x) = \sigma_0(x) + \xi_0(x), \quad \text{for } x > 0$$

Now call γ and ζ the ξ particles to the right and left of the origin respectively. For later times consider the following priorities:

$$\sigma_i \vdash \gamma_t \vdash R(t) \vdash \zeta_t$$

(we identify R(t) with the configuration with a particle at R(t) and no particles elsewhere). Hence $(\eta_t, R(t)) = (\sigma_t + \gamma_t, R(t))$ and $(\sigma_t, \xi_t, X(t)) = (\sigma_t, (\gamma_t + \zeta_t) \cup R(t), X(t))$ have the right distribution. (We identify the configuration η with the set of occupied sites $\{x : \eta(x) = 1\}$ and abuse notation by writing R(t) for $\{R(t)\}$.)

We now study the process $\tau_{X(t)}(\sigma_t, \gamma_t, \zeta_t, R(t))$. For the initial distribution of this process it is convenient to consider a new measure ν'_4 for which $\nu'_4(\cdot | \mathbf{A})$ satisfies (2.5), with $\mathbf{A} := \{R(0) = 0; \gamma(x) = 0, x < 0; \zeta(x) = 0, x > 0\}$. To define ν'_4 , put the σ and ξ particles according to ν'_2 . Define $x_i := \text{position of } i\text{-th } \xi \text{ particle } (x_0 = X(0) = 0)$. Choose R(0) to be equal to x_i with probability

(2.6)
$$m(i) := \left((p/q)^{i/2} + (q/p)^{i/2} \right)^{-2}$$

independently of the configuration (σ, ξ) . (The value of m(i) is chosen so that (2.16) below holds.) Finally decide which ξ particles different from

R(0) are γ particles: label the *i*-th ξ particle as a γ particle with probability $(p/q)^i/(1+(p/q)^i)$ independently of everything, otherwise as a ζ particle. (A formal definition is given in (2.11) below.)

Now, calling $x_i(t)$ the position at time t of the *i*-th ξ_t particle $(x_0(t) \equiv X(t))$, we prove below that for all $t \geq 0$,

(2.7)
$$P_{\nu_{A}^{\prime}}(R(t) = x_{i}(t)|\mathcal{F}_{2,i}) = m(i)$$

where $\mathcal{F}_{2,t}$ is the sigma algebra generated by $\{(\sigma_s, \xi_s) : 0 \le s \le t\}$. Before proving (2.7) we finish the proof of the proposition. Equation (2.7) implies that $\{R(t) = x_i(t)\}$ is independent of (σ_t, ξ_t) . Hence (2.8)

$$E_{\nu_4'}|R(t) - X(t)| = E_{\nu_4'} \left(|R(t) - X(t)| \mid R(t) = x_i(t) \right) P(R(t) = x_i(t))$$

$$= \sum_{i \in \mathcal{T}} \frac{|i|}{\lambda - \rho} m(i) = \text{constant} < \infty$$

where in the second identity we used that for all i and all $t \ge 0$, $E_{\nu'_4}(x_i(t) - x_{i-1}(t)) = 1/(\lambda - \rho)$. This proves (2.4) when the initial measure is ν'_4 . In fact our initial measure is $\nu'_4(.|A)$. Since ν'_4 gives positive mass to A, (2.8) implies the proposition.

Proof of (2.7). The process $\tau_{X(t)}(\sigma_t, \gamma_t, \zeta_t, R(t))$ has generator $L'_4 := L''_2 + L''_3 + L''_4$, where L''_2 is the generator of the motion of the σ and ξ particles and the translations due to the jumps of X(t): (2.9)

$$\begin{split} L_{2}^{(2,3)} f(\sigma,\gamma,\zeta,r) \\ &= \sum_{x \neq 0} \sum_{y = x \pm 1 \neq 0} \left(\sigma(x)(1-\sigma(y)) \ p(x,y) \right. \\ &\times \left[f(\sigma^{x,y},\gamma^{x,y},\zeta^{x,y},r^{x,y}) - f(\sigma,\gamma,\zeta,r) \right] \\ &+ (\gamma(x) + \zeta(x) + 1\{r = x\})(1-\sigma(y) - \gamma(y) - \zeta(y) - 1\{r = y\}) \ p(x,y) \\ &\times \left[f(\sigma,\gamma^{x,y},\zeta^{x,y},r^{x,y}) - f(\sigma,\gamma,\zeta,r) \right] \right) \\ &+ \sum_{y = \pm 1} \left(\sigma(y) \ p(y,0) \ \left[f(\tau_{y}\sigma^{0,y},\tau_{y}\gamma^{0,y},\tau_{y}\zeta^{0,y},r^{0,y} - y) - f(\sigma,\gamma,\zeta,r) \right] \right. \\ &+ \left. (1-\sigma(y) - \gamma(y) - \zeta(y) - 1\{r = y\}) \ p(0,y) \right. \\ &\times \left[f(\tau_{y}\sigma,\tau_{y}\gamma^{0,y},\tau_{y}\zeta^{0,y},r^{0,y} - y) - f(\sigma,\gamma,\zeta,r) \right] \right) \end{split}$$

where $r^{x,y} = r$ for $r \neq x$ and $r^{x,y} = y$ if r = x; L_3'' is the generator of the exchange between γ and ζ particles: (2.10)

$$\begin{split} & \hat{L}_3''f(\sigma,\gamma,\zeta,r) \\ &= \sum_{x \neq r} \sum_{y=x \pm 1 \neq r} \gamma(x) \zeta(y) \ p(x,y) \ [f(\sigma,\gamma^{x,y},\zeta^{x,y},r) - f(\sigma,\gamma,\zeta,r)] \end{split}$$

and L_4'' is the generator which describes the motion of R(t) on the ξ particles:

$$\begin{split} L_4''f(\sigma,\gamma,\zeta,r) \\ &:= (p\gamma(r-1) + q\zeta(r-1))[f(\sigma,\gamma^{r-1,r},\zeta^{r-1,r},r-1) - f(\sigma,\gamma,\zeta,r)] \\ &+ (q\gamma(r+1) + p\zeta(r+1))[f(\sigma,\gamma^{r+1,r},\zeta^{r+1,r},r+1) - f(\sigma,\gamma,\zeta,r)] \end{split}$$

The point here is that the generators L_3'' and L_4'' do not affect the position of the σ and ξ particles as they describe interchanges of ξ particles. On the other hand, L_2'' does not affect the γ , ζ and R labeling of $x_i(t)$.

Let π_2 be a measure on X^2 with the good marginals, i.e. $\int d\pi_2(\sigma,\xi) f(\sigma) = \nu_\rho f$ and $\int d\pi_2(\sigma,\xi) f(\sigma+\xi) = \nu_\lambda f$. Let $\pi'_2 := \pi_2(.|\xi(0) = 1)$. Define the measure π'_4 on $X^3 \times Z$ as follows. Let $A \cap B \cap C \cap \{r\} = \emptyset$ and $f_{A,B,C,r}(\sigma, \gamma, \zeta, R) := \prod_{x \in A} \sigma(x) \prod_{x \in B} \gamma(x) \prod_{x \in C} \zeta(x) 1\{R = r\}$. The fourth coordinate states for the position of R(t) - X(t).

(2.11)
$$\pi'_{4}f_{A,B,C,r} := \int d\pi'_{2}(\sigma,\xi) \prod_{x \in A} \sigma(x) \prod_{x \in B} \xi(x) \frac{(p/q)^{n(\xi,x)}}{1 + (p/q)^{n(\xi,x)}} \times \prod_{x \in C} \xi(x) \frac{1}{1 + (p/q)^{n(\xi,x)}} \times \xi(r) \left((q/p)^{n(\xi,r)/2} + (p/q)^{n(\xi,r)/2} \right)^{-2}$$

where $n(\xi,x)$ is the signed number of ξ particles between the origin and x:

$$n(\xi, x) := \begin{cases} \sum_{y=1}^{x} \xi(y) & \text{if } x > 0 \\ -\sum_{y=x}^{-1} \xi(y) & \text{if } x < 0 \end{cases}$$

Call S_i' the semigroup corresponding to the generator L_i' . We shall prove that $\nu_4' S_4'(t)$ can be constructed from $\nu_2' S_2'(t)$ as π_4' is constructed from π_2'

in (2.11). To do that we shall prove that if π'_4 is defined as in (2.11) then it is reversible for L''_4 :

(2.12)
$$\pi'_4(gL''_4f) = \pi'_4(fL''_4g)$$

for all f and g cylindric. Or equivalently, we need to prove that

(2.13)
$$\pi'_{4} (1\{R=r\} (p\zeta(r+1) + q\gamma(r+1))) = \pi'_{4} (1\{R=r+1\} (p\gamma(r) + q\zeta(r)))$$

Notice however that π'_4 is not even invariant for L'_4 , the generator of the whole process. By the definition of π'_4 , (2.13) is equivalent to the following identity when integrated with respect to π'_2 :

(2.14)
$$\xi(r)\xi(r+1)m(n(\xi,r)) \ Q(n(\xi,r),n(\xi,r+1)) \\ = \xi(r)\xi(r+1)m(n(\xi,r+1)) \ Q(n(\xi,r+1),n(\xi,r))$$

where

(2.15)
$$Q(i, i+1) := p \frac{1}{1 + (p/q)^{i+1}} + q \frac{(p/q)^{i+1}}{1 + (p/q)^{i+1}}$$
$$Q(i+1, i) := p \frac{(p/q)^i}{1 + (p/q)^i} + q \frac{(p/q)^i}{1 + (p/q)^i}$$
$$Q(i, j) := 0 \quad \text{if } |i-j| > 1$$

Now (2.14) holds if $\xi(r) = 0$ or $\xi(r+1) = 0$. Otherwise $n(\xi, r+1) = n(\xi, r) + 1$. Hence it suffices to check that

$$(2.16) m(i)Q(i,i+1) = m(i+1)Q(i+1,i)$$

which is left to the reader. This proves (2.12). Since the motion related to the generators L_2'' and L_3'' does not affect the distribution of the label of the ξ particle chosen by R(t), Equation (2.7) is then a consequence of the Trotter-Kurtz formula.

Remark. In the same way as (2.7) one can prove that $\nu_4' S_4'(t)$ is reversible for $L_3'' + L_4''$ and letting $J, K \subset \mathbb{Z}, i \in \mathbb{Z}, \{i\} \cap J \cap K = \emptyset$,

$$P_{\nu_4^i}(R(t) = x_i(t); \ \gamma_t(x_j(t)) = 1, \ j \in J; \zeta_t(x_k(t)) = 1, \ k \in K \mid \mathcal{F}_{2,t})$$

$$= m(i) \prod_{i \in J} \frac{(p/q)^j}{1 + (p/q)^j} \prod_{k \in K} \frac{1}{1 + (p/q)^k}$$

or, in other words, using the notation of (2.11), for all $t \geq 0$, (2.17)

$$\nu_{4}'S_{4}'(t)f_{A,B,C,r} = \int d\nu_{2}'S_{2}'(t)(\sigma,\xi) \prod_{x \in A} \sigma(x) \prod_{x \in B} \xi(x) \frac{(p/q)^{n(\xi,x)}}{1 + (p/q)^{n(\xi,x)}}$$

$$\times \prod_{x \in C} \xi(x) \frac{1}{1 + (p/q)^{n(\xi,x)}}$$

$$\times \xi(r) \left((q/p)^{n(\xi,r)/2} + (p/q)^{n(\xi,r)/2} \right)^{-2}$$

The next proposition is used to prove the convergence to an invariant measure in Theorem 2.2. Its proof uses again the basic coupling, but now between two copies of the process (η_t, ξ_t) which was constructed itself using that coupling. What we mean for basic couplig is again the fact that the two copies use the same realization of arrows. This guarantees that each marginal has the correct distribution. The same remark is valid for the future, where we will copy up to three processes each with different priorities.

Proposition 2.18. Let π_2 be a measure on X^2 with the good marginals, i.e. $\int d\pi_2(\sigma,\xi) f(\sigma) = \nu_\rho f$ and $\int d\pi_2(\sigma,\xi) f(\sigma+\xi) = \nu_\lambda f$, and let $\pi_2' := \pi_2(.|\xi(0)| = 1)$. Let μ_2 be an invariant measure for $S_2(t)$ with the good marginals (its existence is proven in [fks]). Then $\pi_2 S_2(t)$ converges weakly to μ_2 and $\pi_2' S_2'(t)$ converges weakly to $\mu_2' := \mu_2(.|\xi(0)| = 1)$.

Proof. Consider the basic coupling between two copies of (σ_t, ξ_t) :

$$(\sigma_t^0, \xi_t^0)$$
 with initial measure π_2
 (σ_t^1, ξ_t^1) with initial measure μ_2

Since the σ and the $\sigma + \xi$ marginals are the same for π_2 and μ_2 , we can assume that under our coupling, at time 0 (and hence for all later times), $\sigma_0^0 + \xi_0^0 = \sigma_0^1 + \xi_0^1$. In that way the marginal (σ_0^0, σ_0^1) has a translation invariant measure and we can apply Lemma 3.2 of Chapter VII of Liggett [L] to the marginal coupling (σ_t^0, σ_t^1) to obtain that any weak limit $\tilde{\mu}$ of $(\sigma_t^0, \sigma_t^1, \xi_t^0, \xi_t^1)$ satisfies $\tilde{\mu}(\sigma^0(x) = \sigma^1(y) = 1, \sigma^0(y) = \sigma^0(x) = 0) = 0$ for all x, y. Hence $\tilde{\mu}(\sigma^0 \geq \sigma^1)$ or $\sigma^0 \leq \sigma^1$ or $\sigma^0 \leq \sigma^1$. Suppose now that $\tilde{\mu}(\sigma^0 \geq \sigma^1, \sigma^0 \neq \sigma^0)$

 σ^1) > 0. Then, by translation invariance, $\tilde{\mu}(\sigma^0(x) > \sigma^1(x)) = c > 0$ for all x and

(2.19)
$$\tilde{\mu}\left(\frac{1}{n}\sum_{x=1}^{n}(\sigma^{1}(x)-\sigma^{0}(x))\right)=c>0$$

But this leads to a contradiction because the first two marginals of $\tilde{\mu}$ are ν_{ρ} , and the law of large numbers imply that the limit as $n \to \infty$ of the left hand side of (2.19) is zero. Then $\tilde{\mu}(\sigma^0 = \sigma^1) = 1$. Since $\sigma_t^1 + \xi_t^1 = \sigma_t^0 + \xi_t^0$ for all t, this implies that $\pi_2 S_2(t)$ converges to μ_2 . This and the fact that $\pi'_2 S'_2(t) = \pi_2 S_2(t)(.|\xi(0)| = 1)$ (Lemma 3.6 of [fks]) imply that $\pi'_2 S'_2(t)$ converges to μ'_2 .

Proof of Theorem 2.2. Proposition 2.3 guarantees that since ν'_2 has the good marginals, then, under initial measure ν'_4 , X(t) - R(t) is tight. This and the fact that the projection over $\sigma + \gamma$ of $\nu'_4 S'_4(t)$ is $\sim \nu_{\rho,\lambda}$ uniformly in t (Lemma 3.26 of [fks]) imply that $\tau_{R(t)}\eta_t$ has distribution $\sim \nu_{\rho,\lambda}$ uniformly in t. This proves the first part of the theorem.

For the second part, we observe that Proposition 2.18 and equation (2.17) imply that $\nu_4' S_4'(t)$ converges to a unique invariante measure for the process as seen from X(t). This implies that X(t) - R(t) converges in distribution. Since E|X(t) - R(t)| is uniformly bounded, $\tau_{R(t)}\eta_t = \tau_{R(t)-X(t)}\tau_{X(t)}(\sigma_t + \gamma_t)$ converges in law to the invariant measure $\hat{\mu}$.

3. Laws of large numbers.

In this section we prove laws of large numbers for R(t) and others microscopic shocks. We start with a strong law of large numbers for X(t) when the initial measure is any measure with the good marginals. This extends the results of [fks], who proved a weak law when the initial measure is product and a strong law when the initial measure is the invariant measure μ'_2 . We give here an easy and unified proof. Let $v = (p-q)(1-\lambda-\rho)$.

Theorem 3.1. Let π_2 be a measure with the good marginals as in Proposition 2.18, and $\pi'_2 = \pi_2(.|\xi(0) = 1)$. Then

$$\lim_{t\to\infty}\frac{X(t)}{t}=v,\ \ P_{\pi_2'}\ \ \text{almost surely}.$$

Proof. Let $U(t) \in \mathbb{Z}$ and define $F(\xi_t, U(t)) :=$ number of ξ particles that at time zero were to the left of the origin and at time t are to the right of U(t) minus the number of ξ particles that at time zero were to the right of the origin and at time t are to the left of U(t). In other words, $F(\xi_t, U(t))$ is the net flux of ξ particles throught the space time line [(0,0),(U(t),t)]. Notice that $F(\xi_t, X(t)) \equiv 0$. Define analogously $F(\sigma_t, U(t))$ for the process σ_t and $F(\sigma_t + \xi_t, U(t))$ for the process $\sigma_t + \xi_t$. Now assume that U(t) is a random walk on \mathbb{Z} that jumps to the right neighbor at rate w independent of (σ_t, ξ_t) and study the process $\tau_{U(t)}\sigma_t$. Using the techniches of Liggett [1], it can be proven that all invariant measures for this process are translation invariant and that ν_{α} , $0 \leq \alpha \leq 1$, are extremal invariant for this process. Notice that $F(\tau_{U(t)}\sigma_t, 0) = F(\sigma_t, U(t))$. Now we can use the martingale decomposition of $F(\tau_{U(t)}\sigma_t, 0)$ and the fact that ν_{α} is extremal for $\tau_{U(t)}\sigma_t$ to prove –as in the proof of Theorem 6 of [k] or Theorem 1 of [s] – that

$$\lim_{t\to\infty}\frac{F(\sigma_t,U(t))}{t}=(p-q)\rho(1-\rho)-w\rho,\ \ P_{\pi_2'}\ \text{a.s.}$$

where we used that the σ marginal of π'_2 is absolutely continuous with respect to ν_ρ . Analogously using the fact that $\sigma_i + \xi_i$ is also the simple exclusion process with measure (absolutely continuous with respect to) ν_λ ,

$$\lim_{t\to\infty}\frac{F(\sigma_t+\xi_t,U(t))}{t}=(p-q)\lambda(1-\lambda)-w\lambda,\ P_{\pi_2'}\text{ a.s.}$$

from where, using the fact that $F(\xi_t, U(t)) = F(\sigma_t + \xi_t, U(t)) - F(\sigma_t, U(t))$,

$$\lim_{t\to\infty}\frac{F(\xi_t,U(t))}{t}=(p-q)(\lambda(1-\lambda)-\rho(1-\rho))-w(\lambda-\rho),\ \ P_{\pi_2'}\ \text{a.s.}$$

Now check that this limit is negative for $w > v = (p-q)(1-\lambda-\rho)$ and positive for w < v. On the other hand, $\lim_{t\to\infty} U(t)/t = w$ a.s. because U(t) is a Poisson random variable with mean wt. Also $F(\xi_t, x)$ is a non increasing function of x. Hence, since $F(\xi_t, X(t)) \equiv 0$,

$$\limsup_{t\to\infty}\frac{X(t)}{t}\leq \lim_{t\to\infty}\frac{U(t)}{t}=w, \ P_{\pi_2'} \ \text{a.s.}$$

for all w > v, and analogously,

$$\liminf_{t\to\infty}\frac{X(t)}{t}\geq \lim_{t\to\infty}\frac{U(t)}{t}=w,\ \ P_{\pi_2'}\ \ \text{a.s.}$$

for all w < v. This proves the Theorem.

The next lemma is a corollary to Proposition 2.3.

Lemma 3.2. Let G(t) be the position of the leftmost particle of γ_t and Z(t) the position of the rightmost particle of ζ_t . Then for all $t \geq 0$

(3.3)
$$E_{\nu_4'}|R(t) - G(t)| = E_{\nu_4'}|R(t) - Z(t)| < C < \infty, \text{ and}$$

(3.4)
$$E_{\nu_4'}(R(t) - X(t)) = 0.$$

Proof. When the initial measure is ν'_4 , the average distance between ξ particles is $(\lambda - \rho)^{-1}$ for all times. Furthermore the way of choosing which ξ particles are γ particles and the R particle is independent of the position of the ξ particles. This implies that

$$(3.5) \quad E_{\nu_3'}|X(t) - G(t)| = (\lambda - \rho)^{-1} \sum_{k \in \mathbb{Z}} |k| \frac{(p/q)^k}{1 + (p/q)^k} \prod_{l > k} \frac{1}{1 + (p/q)^l} < \infty$$

This and $E|X(t) - R(t)| < C < \infty$ (Proposition 2.3) imply (3.3). Equation (3.4) is a consequence of the symmetry of m(i) with respect to the origin.

In the next theorem we show that the different positions of the shock satisfy laws of large numbers.

Theorem 3.6. The following holds

(3.7)
$$\lim_{t\to\infty}\frac{R(t)}{t}=v,\ P_{\hat{\nu}_{\rho,\lambda}}\ \text{and}\ P_{\hat{\mu}}\ \text{almost surely};$$

(3.8)
$$\lim_{t\to\infty} \frac{G(t)}{t} = \lim_{t\to\infty} \frac{Z(t)}{t} = v, \ P_{\nu_3'} \text{ and } P_{\mu_3'} \text{ almost surely.}$$

Proof. By Theorem 3.1, X(t)/t converges $P_{\mu'_2}$ a.s. and $P_{\nu'_2}$ a.s. to v. Proposition 2.3 says that X(t) - R(t) is tight. Hence R(t)/t converges $P_{\hat{\mu}}$ a.s. and $P_{\hat{\nu}_{\rho,\lambda}}$ a.s. to v. This and Lemma 3.2 imply that both G(t)/t and Z(t)/t converge $P_{\mu'_3}$ a.s. and $P_{\nu'_3}$ a.s. to v.

Now we prove a law of large numbers for a single second class particle when the initial distribution of first class particles is ν_{α} . We consider the process $(\eta_t, D(t))$ on $X \times Z$, with priority $\eta_t \vdash D(t)$ and initial measure $\hat{\nu}_{\alpha}$, the product measure of density α with the second class particle at the origin.

Theorem 3.9. Let D(0) = 0, $\eta_t \vdash D(t)$. Then

$$\lim_{t\to\infty}\frac{D(t)}{t}=(p-q)(1-2\alpha),\ P_{\hat{\nu}_{\alpha}}\ \text{a.s.}$$

Proof. Couple the process $(\eta_t, D(t))$ and the process $(\sigma_t, \gamma_t, \zeta_t)$ with initial distribution ν_3' , with $\lambda > \rho = \alpha$, in such a way that at t = 0, D(0) = 0, $\eta_0(0) = 0$ and $\eta_0(x) = \sigma_0(x)$ for $x \neq 0$. This gives $(\eta_0, D(0))$ distribution $\hat{\nu}_{\alpha}$ and the correct distribution for later times. Letting G(t) to be the position of the leftmost γ_t particle,

(3.10)
$$\gamma_0(0) = 1 \text{ implies } D(t) \ge G(t).$$

To prove (3.10) observe that it holds trivially for t = 0. Then observe that if G(t) = D(t), a right jump of G(t) implies a right jump of D(t) while a left jump of D(t) implies a left jump of G(t). From (3.10) we get that, for any $\lambda > \rho$, in $\{\gamma_0(0) = 1\}$,

(3.11)
$$\limsup_{t\to\infty} \frac{D(t)}{t} \ge \lim_{t\to\infty} \frac{G(t)}{t} = (p-q)(1-\rho-\lambda), \quad \text{a.s.}$$

where the identity is (3.8). Since this holds for all $\lambda > \rho$,

(3.12)
$$\limsup_{t\to\infty} \frac{D(t)}{t} \ge (p-q)(1-2\alpha), \quad P_{\hat{\nu}_{\alpha}} \text{ a.s.}$$

where we have used that $\nu_3'(\gamma(0) = 1) > 0$.

On the other hand, couple again $(\eta_t, D(t))$ with $(\sigma_t, \gamma_t, \zeta_t)$ but now with initial distribution ν_3' with $\rho < \lambda = \alpha$. At time t = 0:

$$D(0) = 0, \ \eta_0(0) = 0$$

$$\eta_0(x) = \sigma_t(x) + \gamma_t(x) + \zeta_t(x) \text{ for } x \neq 0$$

Letting Z(t) to be the rightmost ζ_t particle, analogously to (3.10),

$$\zeta_0(0) = 1$$
 implies $D(t) \le Z(t)$, $t \ge 0$, and

$$\liminf_{t\to\infty}\frac{D(t)}{t}\leq (p-q)(1-2\alpha),\quad P_{\hat{\nu}_{\alpha}}\text{ a.s.}$$

This and (3.12) finish the proof. \$\\$

4. Second class particle and characteristics.

In this section we prove that the macroscopic motion of a second class particle coincides with a characteristic of the Burgers equation. The characteristic corresponding to $r \in \mathbb{R}$ is the curve w(r,t) in the space time satisfying w(r,0) = r and u(w(r,t),t) = constant, where u is a solution of (1.1). In our case $\theta = p - q$ and

(4.1)
$$w(r,t) = \begin{cases} (p-q)(1-2\lambda)t + r & \text{for } r > 0\\ (p-q)(1-2\rho)t + r & \text{for } r < 0 \end{cases}$$

Since $\lambda > \rho$, the characteristics to the right are slower than the ones to the left. Hence they meet, developing a shock. The shock is travelling at velocity $v = (p-q)(1-\lambda-\rho)$. The characteristics starting at r and -r respectively meet the shock at time

$$(4.2) t(r) := |r| \frac{p-q}{\lambda - \rho}.$$

In the next theorem we abuse notation. The measure $\nu_{\rho,\lambda}$ states for a measure on $X \times Z$, being a product measure on X for all but one site: at (the integer part of) $\varepsilon^{-1}r$ there is a second class particle.

Theorem 4.3. Let Y(x,t) be the position at time t of a second class particle that at time zero is at site x. Then as $\varepsilon \to 0$, $\varepsilon Y(\varepsilon^{-1}r, \varepsilon^{-1}t)$ converges $P_{\nu_{\rho,\lambda}}$ a.s. to w(r,t) for t < t(r) and to vt for $t \ge t(r)$.

Proof. For each pair (ε, r) , r > 0 couple the processes $(\eta_t, Y(\varepsilon^{-1}r, t))$, with priority $\eta_t \vdash Y(., t)$; $(\sigma_t, \gamma_t, \zeta_t, R(t))$ with priorities $\sigma_t \vdash \gamma_t \vdash R(t) \vdash \zeta_t$ and $(\bar{\eta}_t, D(\varepsilon^{-1}, t))$ with priority $\bar{\eta}_t \vdash D(\varepsilon^{-1}, t)$. At time t = 0 set R(0) = 0 and distribute $(\sigma_0, \gamma_0, \zeta_0)$ on the other sites according to ν_3' . Set $\eta_0 = \sigma_0 + \gamma_0$, $\bar{\eta}_0 = \sigma_0 + \gamma_0 + \zeta_0$ and $Y(\varepsilon^{-1}r, 0) = D(\varepsilon^{-1}r, 0) = [\varepsilon^{-1}r]$. Define

$$T_1(\varepsilon,r) := \inf\{t: \ \dot{D}(\varepsilon^{-1}r,t) \neq Y(\varepsilon^{-1}r,t) \text{ or } Y(\varepsilon^{-1}r,t) = R(t)\}$$

$$T_2(\varepsilon,r) := \inf\{t: \ Y(\varepsilon^{-1}r,t) = R(t)\}$$

if those first times do not exist, we set $T_i = \infty$. Under this coupling, D(.,t) = Y(.,t) up to the first moment that they meet a ζ particle. By the laws of large numbers for D(t) and Z(t) (the position of the rightmost ζ particle), (Theorems 3.9 and 3.6)

(4.4)
$$\lim_{\varepsilon \to 0} \varepsilon T_1(\varepsilon, r) = t(r), \quad \text{a.s.}$$

After T_2 , $Y(.,t) \equiv R(t)$. Hence it suffices to prove that $\lim_{\varepsilon \to 0} \varepsilon T_2(\varepsilon,r) = t(r)$. Let $\Omega' := \{\lim_{\varepsilon \to 0} \varepsilon T_1(\varepsilon,r) = t(r)\}$. Since $T_2 \geq T_1$, it suffices to show that $P(\limsup_{\varepsilon \to 0} \varepsilon (T_2 - T_1) > 0, \Omega') = 0$. But, after T_1 , $Y(\varepsilon^{-1}r,t) \leq \max\{Z(t), R(t)\}$ by the same argument to prove (3.10). Hence

$$(4.5) \quad P(\limsup_{\epsilon \to 0} \varepsilon(T_2 - T_1) > 0, \Omega') \le P(Z(t) - R(t) > 0, \ \forall t > t(r)).$$

By Lemma 3.2, $E(Z(t)-R(t)) < C < \infty$. Then Chevichev inequality implies that, for all $\delta > 0$, there exists M > 0 such that $P(Z(t)-R(t) \ge M) \le \delta$, for all $t \ge 0$, which implies, for $n \in I\!\!N$, P(Z(n)-R(n) < M, infinitely often) $\ge 1-\delta$. But each time that Z(n)-R(n) < M, they have a uniformly bounded above zero probability of meeting in a time interval of length 1. Hence

(4.6)
$$P(Z(n) = R(n), \text{ for some } n) \ge 1 - \delta$$

Since (4.6) holds for all δ , this implies that the right hand side of (4.5) vanishes. A similar argument works for r < 0, by defining $\bar{\eta}_0 = \sigma_0$.

5. Initial perturbations produce shock translations.

In this section we show that, as $t \to \infty$, a perturbation at one site of the initial measure $\nu_{\rho,\lambda}$ produces a translation of the shock of the order of $(\lambda - \rho)^{-1}$. This behavior can also be observed in the Burgers equation with shock initial conditions. Denote $R(\eta,t)$ the (random) position at time t of a second class particle that at time 0 is at the origin when the initial configuration is η . For any configuration η , a site $y \in \mathbb{Z}$, let $\eta^{y|i}$ be defined by $(i \in \{0,1\})$

 $\eta^{y|i}(x) = \begin{cases} \eta(x) & \text{for } x \neq y \\ i & \text{for } x = y. \end{cases}$

Define $r^+ := (\lambda - \rho)(p - q), r^- := (\rho - \lambda)(p - q).$

Theorem 5.1. For all $\varepsilon > 0$ it holds (5.2)

 $\lim_{t\to\infty}\sup_{(r^-+\epsilon)t<\nu<(r^+-\epsilon)t}\left|E_{\nu_{\rho,\lambda}}(R(\eta^{\nu|0},t)-R(\eta^{\nu|1},t))-(\lambda-\rho)^{-1}\right|=0$

(5.3)
$$\lim_{t \to \infty} \frac{1}{t} \sum_{\nu=0}^{r+t} E_{\nu_{\rho,\lambda}}(R(\eta^{\nu|0}, t) - R(\eta^{\nu|1}, t)) = p - q$$

(5.4)
$$\lim_{t \to \infty} \frac{1}{t} \sum_{y=r^{-t}}^{0} E_{\nu_{\rho,\lambda}}(R(\eta^{y|0}, t) - R(\eta^{y|1}, t)) = p - q$$

In order to prove this Theorem we need the following Lemma

Lemma 5.5. Let $R_{-1}(t)$ be a particle such that $\eta_t \vdash R(t) \vdash R_{-1}(t)$. Then the initial distribution of $(\eta_t, R(t), R_{-1}(t))$ can be chosen such that, for all $t \geq 0$, both $\tau_{R_{-1}(t)}(\eta_t \cup R(t))$ and $\tau_{R(t)}\eta_t$ have distribution $\hat{\nu}_{\rho,\lambda}\hat{S}(t)$. Furthermore, with respect to the chosen initial distribution, $E(R(t)-R_{-1}(t)) = (\lambda - \rho)^{-1}$, $t \geq 0$.

Proof. First observe that $R_{-1}(t)$ is a second class particle with respect to $\eta_t \cup R(t)$. Consider the coupling $(\sigma_t, \gamma_t, \zeta_t, R(t), R_{-1}(t))$ with priorities γ_t

 $\vdash \zeta_t \vdash R(t) \vdash R_{-1}(t)$. To define the initial distribution pick (σ, ξ) from the product measure $\nu_2' = \nu_2(.|\xi(0) = 0)$ and call x_i the position of the *i*-th ξ particle, $x_0 = 0$. Set $\zeta(x_i) = 1$ for $i \leq 2$, $\gamma(x_i) = 1$ for $i \geq 1$, $R(0) = x_0 = 0$, $R_{-1}(0) = x_{-1}$. Under the resulting distribution, $\tau_{R_{-1}(t)}(\sigma_t, \gamma_t \cup R(t), \zeta_t)$ and $\tau_{R(t)}(\sigma_t, \gamma_t, \zeta_t \cup R_{-1}(t))$ are identically distributed for all $t \geq 0$. The projections $\tau_{R_{-1}(t)}(\sigma_t \cup \gamma_t \cup R(t))$ and $\tau_{R(t)}(\sigma_t \cup \gamma_t)$ are both distributed according to $\hat{\nu}_{\rho,\lambda}\hat{S}(t)$. Hence, denoting $\eta_t = \sigma_t + \gamma_t$, we have proven the first part of the Lemma.

By (3.4) E(R(t)-X(t))=0 and $E(R_{-1}(t)-x_{-1}(t))=0$, where $x_i(t)$ is the position of the *i*-th particle of ξ $(x_0(t)\equiv X(t))$. This implies that $E(R(t)-R_{-1}(t))=E(X(t)-x_{-1}(t))=(\lambda-\rho)^{-1}$.

Proof of Theorem 5.1. Couple $(\eta^{y|1})_t$ and $(\eta^{y|0})_t$ -the processes with initial configurations $\eta^{y|1}$ and $\eta^{y|0}$, respectively—according to the basic coupling. Let Y(y,t) be the site where $(\eta^{y|1})_t$ and $(\eta^{y|0})_t$ are different. Then Y(y,t) behaves like a second class particle with respect to η , i.e. $(\eta^{y|0})_t \vdash Y(y,t)$. Now, $R(\eta^{y|0},t) = R(\eta^{y|1},t)$ until $T_1(y) :=$ first time that $Y(y,t) = R(\eta^{y|0},t)$. After T_1 , $R(\eta^{y|1},t) = Y(y,t)$. Define $T_2(y) :=$ first time that $Y(y,t) = R_{-1}(t)$. After T_2 , $Y(y,t) = R_{-1}(t)$. Then (5.6)

 $E_{\nu_{\rho,\lambda}}(R(\eta^{\nu|0},t)-R(\eta^{\nu|1},t))$ $=E_{\nu_{\rho,\lambda}}(R(t)-R_{-1}(t),t\geq T_{2}(y))+E_{\nu_{\rho,\lambda}}(R(t)-Y(y,t),T_{1}\leq t\leq T_{2}(y))$

A coupling argument shows that the processes can be constructed in such a way that $\{t \geq T_i(y)\}$ is non decreasing for positive y and non increasing for negative y. Hence, as in the proof of Theorem 4.3,

$$P(\lim_{t\to\infty}\sup_{(r^-+\epsilon)t< y<(r^+-\epsilon)t}t-T_2(y)\geq 0)=1$$

The first term in the right hand side of (5.6) is bounded by $E|R(t) - R_{-1}(t)| < C < \infty$. Hence, by dominated convergence it converges to $(\lambda - \rho)^{-1}$. The second term in the same equation converges to zero by an argument analogous to the one we used to prove Theorem 4.3.

Since $E(|R(t) - Y(y,t)|, T_1 \le t \le T_2) < C < \infty$, equation (5.6) also implies that $E_{\nu_{\rho,\lambda}}(|R(\eta^{y|0},t) - R(\eta^{y|1},t)|) < C < \infty$. Hence, by dominated convergence (5.2) imply (5.3) and (5.4).

6. Dependence on the initial configuration.

We prove here a formula relating the diffusion coefficient of the shock R(t) to the conjectured diffusion coefficient. We call, as before, $v = (p-q)(1-\rho-\lambda)$. Define

$$ar{D} := (p-q) rac{
ho(1-
ho) + \lambda(1-\lambda)}{\lambda -
ho}.$$
 $F(t) := E_{\dot{\nu}_{
ho},\lambda}(R(t) - vt)^2,$

$$I(t) := \int d\hat{\nu}_{\rho,\lambda}(\eta) E\left(R(\eta,t) - \frac{n_0(\eta,r^+t)}{\lambda - \rho} - \frac{n_1(\eta,r^-t)}{\rho - \lambda}\right)^2,$$

where $R(\eta, t)$ and r^{\pm} are defined at the beginning of Section 5 and $n_0(\eta, x) := \sum_{y=0}^{x} (1 - \eta(y))$ is the number of empty sites of η between 0 and x and $n_1(\eta, x) := -\sum_{y=x}^{0} \eta(y)$ is minus the number of η particles between the origin and x < 0.

Theorem 6.1. The following holds

(6.2)
$$\lim_{t \to \infty} \frac{F(t)}{t} = \bar{D} + \lim_{t \to \infty} \frac{I(t)}{t}$$

if the limits exist. If not (6.2) holds with lim substituted by either lim sup or liminf.

Proof. Summing and substracting vt, I(t) equals (6.3)

$$\int d\hat{\nu}_{\rho,\lambda}(\eta)E\left(R(\eta,t)-vt\right)^{2} + \int d\hat{\nu}_{\rho,\lambda}(\eta)\left(\frac{n_{0}(\eta,r^{+}t)}{\lambda-\rho}-(p-q)(1-\lambda)t\right)^{2} + \int d\hat{\nu}_{\rho,\lambda}(\eta)\left(\frac{n_{1}(\eta,r^{-}t)}{\rho-\lambda}-(p-q)\rho t\right)^{2} - 2\int d\hat{\nu}_{\rho,\lambda}(\eta) \times E\left(R(\eta,t)\left(\frac{n_{0}(\eta,r^{+}t)}{\lambda-\rho}-(p-q)(1-\lambda)t+\frac{n_{1}(\eta,r^{-}t)}{\rho-\lambda}-(p-q)\rho t\right)\right)$$

where we have used that $n_0(\eta, r^+t)$ and $n_1(\eta r^-t)$ are independent under $\hat{\nu}_{\rho,\lambda}$. Dividing by t and taking $t \to \infty$, the first term gives $\lim_{t \to \infty} (F(t)/t)$, and the second and third terms give \bar{D} . Then it suffices to show that dividing

by t and taking $t \to \infty$ the last term equals $-2\bar{D}$. Using the definition of $n_i(.,.)$, the expectation in the last term in (6.3) equals

(6.4)
$$E\left(\sum_{x=0}^{r+t} R(\eta,t)(1-\eta(x)-(1-\lambda)) + \sum_{x=r-t}^{0} R(\eta,t)(\eta(x)-\rho)\right)$$

Integrating the first term of (6.4),

$$-\frac{1}{\lambda - \rho} \int d\hat{\nu}_{\rho,\lambda}(\eta) \sum_{x=0}^{r+t} E\left(R(\eta,t)(\eta(x) - \lambda)\right)$$

$$= -\frac{1}{\lambda - \rho} \int d\hat{\nu}_{\rho,\lambda}(\eta) \sum_{x=0}^{r+t} \left[E\left(R(\eta,t)|\eta(x) = 1\right) \lambda - \lambda \left(E\left(R(\eta,t)|\eta(x) = 1\right) \lambda + E\left(R(\eta,t)|\eta(x) = 0\right) (1 - \lambda) \right) \right]$$

$$= -\frac{1}{\lambda - \rho} \lambda (1 - \lambda) \int d\hat{\nu}_{\rho,\lambda}(\eta)$$

$$\times \sum_{x=0}^{r+t} \left[E\left(R(\eta,t)|\eta(x) = 1\right) - E\left(R(\eta,t)|\eta(x) = 0\right) \right]$$

$$= -\frac{1}{\lambda - \rho} \lambda (1 - \lambda) \int d\hat{\nu}_{\rho,\lambda}(\eta) \sum_{x=0}^{r+t} E\left(R(\eta^{x|1},t) - R(\eta^{x|0},t)\right)$$

Dividing by t and taking the limit as $t \to \infty$ of the first term of (6.4), we get using (5.3) on (6.5) that

$$\lim_{t\to\infty}\frac{1}{\lambda-\rho}\frac{1}{t}\int d\hat{\nu}_{\rho,\lambda}(\eta)\left(\sum_{x=0}^{r^+t}R(\eta,t)(-\eta(x)+\lambda))\right)=(p-q)\frac{\lambda(1-\lambda)}{\lambda-\rho}$$

and analogously using (5.4),

$$\lim_{t\to\infty}\frac{1}{\lambda-\rho}\int d\hat{\nu}_{\rho,\lambda}(\eta)\sum_{x=r-1}^{0}R(\eta,t)(\eta(x)-\rho)=(p-q)\frac{\rho(1-\rho)}{\lambda-\rho}$$

This implies the Theorem. I thank Errico Presutti for telling me the above proof.

Remarks 6.6. From Theorem 6.1 we conclude: 1. The diffusion coefficient of the shock is the same as the conjectured diffusion coefficient if and only if the position of the shock at time t is given –in the scale \sqrt{t} by $(\lambda - \rho)^{-1}$ times the number of holes between 0 and r^+t minus the number of particles between 0 and r^-t . In any case, I(t) is non negative, then \bar{D} is always a lower bound for the lim inf of F(t)/t as announced in (1.4).

2. Tightness of R(t) - X(t) and R(t) - G(t) imply that Theorem 6.1 also holds for X(t) and G(t). When $\rho = 0$, X(t) has the distribution of a plain tagged particle in the simple exclusion process with density λ and G(t) has the distribution of the leftmost particle in simple exclusion with initial distribution $\nu_{o,\lambda}$. In the case $\rho = 0$, it is known that $D := \lim_{t\to\infty} t^{-1}E(X(t) - EX(t))^2 = \bar{D} = (p-q)(1-\lambda)$ [fd]. This implies that $\lim_{t\to\infty} I(t)/t = 0$, hence in the scale \sqrt{t} the position of R(t) is determined by the initial configuration in the sense discussed above. This was proved for G(t) when p=1 by Gärdner and Presutti [gp]. This and the previous remark imply that we get for free the central limit theorem of [k] for the tagged particle and of [dkps] for the leftmost particle. Unfortunately one needs to use the precise computation of [df] for the diffusion coefficient. An independent proof that $\lim I(t)/t = 0$ would give a direct proof of the central limit theorems for all these objects.

Acknowledgements.

I thank Errico Presutti and Herbert Spohn for illuminating discussions. I also thank Claude Kipnis and Ellen Saada, coauthors of the first part of this work. Finally I would like to thank Frank den Hollander for reading part of this manuscript and giving useful suggestions. Part of this work was realized while the author was visiting the Dipartimento di Matematica dell'Università di Roma Tor Vergata to whom friendly hospitality is acknowledged.

The author acknowledges support by Consiglio Nazionale per la Ricerca (CNR), Italia, and travel expenses by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP), Brasil. Partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil, Grant # 311074-84 MA.

References.

- [abl] E.D.Andjel, M.Bramson, T.M.Liggett (1988). Shocks in the asymmetric simple exclusion process. *Probab. Th. Rel. Fields* 78 231-247.
- [ak] E.D.Andjel, C.Kipnis (1984). Derivation of the hydrodynamical equations for the zero-range interaction process: a nonlinear Euler equation. Ann. Probab. 12 325-334.
- [av] E.D.Andjel, M.E.Vares (1987). Hydrodynamic equations for attractive particle systems on Z. J. Stat. Phys. 47 265-288.
- [bf] A.Benassi, J.-P.Fouque (1987). Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab. 15 546-560.
- [bcfg] C. Boldrighini, C. Cosimi, A. Frigio, M. Grasso-Nunes (1989). Computer simulations of shock waves in completely asymmetric simple exclusion process. J. Stat. Phys 55, 611-623.
 - [b] M. Bramson (1988) Front propagation in certain one dimensional exclusion models. J. Stat. Phys. 51, 863-869
 - [df] A. De Masi, P.A. Ferrari (1985) Self diffusion in one dimensional lattice gases in the presence of an external field. J. Stat. Phys. 38, 603-613.
- [dkps] A. De Masi, C. Kipnis, E. Presutti, E. Saada (1988). Microscopic structure at the shock in the asymmetric simple exclusion. Stochastics

- 27, 151-165.
- [f] P. A. Ferrari (1986). The simple exclusion process as seen from a tagged particle. Ann. Probab. 14 1277-1290.
- [fks] P. A. Ferrari, C. Kipnis, E. Saada (1990) Microscopic structure of travelling waves for asymmetric simple exclusion process. To appear in Ann. Probab. (9(1) 226-244 (1991)
- [gp] J. Gärtner, E. Presutti (1989). Shock fluctuations in a particle system. CARR Reports in Math. Physics 1/89.
 - [k] C. Kipnis (1986). Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab. 14 397-408.
- [lps] J. L. Lebowitz, E. Presutti, H. Spohn (1988). Microscopic models of hydrodynamical behavior. J. Stat. Phys. 51, 841-862.
 - [l] T.M.Liggett (1976). Coupling the simple exclusion process. Ann. Probab. 4 339-356.
 - [L] T.M.Liggett (1985). Interacting Particle Systems. Springer, Berlin.
 - [s] E. Saada (1987). A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab. 15 375-381.
 - [S] H. Spohn (1989). Large Scale Dynamics of Interacting Particles. Part B: Stochastic Lattice Gases. Preprint.
- [vb] H. Van Beijeren (1989) Fluctuations in the motions of mass and of patterns in one-dimensional driven diffusive systems. In preparation.
- [w] D.Wick (1985). A dynamical phase transition in an infinite particle system. J. Stat. Phys. 38 1015-1025.

Instituto de Matemática e Estatística Universidade de São Paulo Cx. Postal 20570 01498 São Paulo, Brasil pferrari @ brusp.bitnet fax 55 11 815 4272

RELATORIO

DO

DEPARTAMENTO DE ESTATISTICA

TITULOS PUBLICADOS EM 1987

- 8701 ACHCAR, J.A. & BDLFARINE, H.; Constant Hazard Against a

 Change-Point Alternative: A Bayesian Approach with

 Censored Data, São Paulo, IME-USP, 1987, 20p.
- 8702 RODRIGUES, J.; Some Results on Restricted Bayes Least

 Squares Predictors for Finite Populations, São Paulo,

 IME-USP, 1987, 16p.
- 8703 LEITE, J.G., BOLFARINE, H. & RODRIGUES, J.; Exact

 Expression for the Posterior Mode of a Finite Population

 Size: Capture-Recapture Sequential Sampling, São Paulo,

 IME-USP, 1987, 14p.
- 8704 RODRIGUES, J., BOLFARINE, H. & LEITE, J.G.; A Bayesian Analysis in Closed Animal Populations from Capture Recapture Experiments with Trap Response, São Paulo, IME-USP, 1987, 21p.

- 8705 PAULIND, C.D.M.; Analysis of Categorical Data with Full and
 Partial Classification: A Survey of the Conditional
 Maximum Likelihood and Weighted Least Squares Approaches,
 São Paulo, IME-USP, 1987, 52p.
- 8706 CORDEIRO, G.M. & BOLFARINE, H.; <u>Prediction in a Finite</u>

 <u>Population under a Generalized Linear Model</u>, São Paulo,

 IME-USP, 1987, 21p.
- 8707 RODRIGUES, J. & BOLFARINE, H.; <u>Nonlinear Bayesian</u>

 <u>Least-Squares Theory and the Inverse Linear Regression</u>,

 São Paulo, IME-USP, 1987, 15p.
- 8708 RODRIGUES, J. & BOLFARINE, H.; A Note on Bayesian

 Least-Squares Estimators of Time-Varying Regression

 Coefficients, São Paulo, IME-USP, 1987, 11p.
- 6709 ACHCAR, J.A., BOLFARINE, H. & RODRIGUES, J.; <u>Inverse</u>

 <u>Gaussian Distribution:</u> <u>A Bayesian Approach</u>, São Paulo,

 IME-USP, 1987, 20p.
- 8710 CORDEIRO, G.M. & PAULA, G.A.; <u>Improved Likélihood Ratio</u>

 <u>Statistics for Exponential Family Nonlinear Models</u>, São

 Paulo, IME-USP, 1987, 26p.
- 8711 SINGER, J.M.; PERES, C.A. & HARLE, C.E.; On the Hardy-Weinberg Equilibrium in Generalized ABO Systems, 5%o

- 8712 BOLFARINE, H. & RODRIGUES, J.; A Review and Some Extensions

 on Distributions Free Bayesian Approaches for Estimation

 and Prediction, São Paulo, IME-USP, 1987, 19p.
- 8713 RODRIGUES, J.; BOLFARINE, H. & LEITE, J.G.; A Simple

 Nonparametric Bayes Solution to the Estimation of the Size

 of a Closed Animal Population, São Paulo, IME-USP, 1987,

 11p.

8801 - PEREIRA, C.A.B. & WECHSLER, S.; On the Concept of P-value,

5%o Paulo, IME-USP, 1988, 22p.

8714 - BUEND,

V.C.; Generalizing Importance of Components for

Multistate Monotone Systems, 5% Paulo, IME-USP, 1987, 12p.

- BB02 ZACKS, S., PEREIRA, C.A.B. & LEITE, J.G.; Bayes Sequential

 Estimation of the Size of a Finite Population, São Paulo,

 IME-USP, 1988, 23p.
- 8803 BOLFARINE, H.; Finie Population Prediction Under Dynamic Generalized Linear Models, São Paulo, IME-USP, 1988, 21p.
- 8804 BOLFARINE, H.; Minimax Prediction in Finite Populations, 5%o
 Paulo, IME-USP, 1988, 18p.
- 8805 SINGER, J.M. & ANDRADE, D.F.; On the Choice of Appropriate

 Error Terms for Testing the General Linear Hypothesis in

 Profile Analysis, São Paulo, IME-USP, 1988, 23p.

- 8806 DACHS, J.N.W. & PRULA, G.A.; <u>Testing for Ordered Rate Rations</u>

 in Follow-up Studies with Incidence Density Data, São
 Paulo, IME-USP, 1988, 18p.
- 8807 CORDEIRD, G.M. & PAULA, G.A.; Estimation, Significance Tests

 and Diagnostic Methods for the Non-Exponential Family

 Non-linear Models, São Paulo, IME-USP, 1988, 29p.
- 8808 RODRIGUES, J. & ELIAN, S.N.; The Coordinate Free Estimation in Finite Population Sampling, São Paulo, IME-USP, 1988, Sp.
- 8809 BUEND, V.C. & CURDRADD, R.Z.B.; On the Importance of Components for Continuous Structures, São Paulo, IME-USP, 1988, 14p.
- 8810 ACHCAR, J.A., BOLFARINE, H. & PERICCHI, L.R.; Some

 Applications of Bayesian Methods in Analysis of Life Data,

 5% Paulo, IME-USP, 1988, 30p.
- 8811 RDDRIGUES, J.; A Bayesian Analysis of Capture-Recapture

 Experiments for a Closed Animal Population, São Paulo,

 IME-USP, 1988, 10p.
- 8812 FERRARI, P.A.; <u>Ergodicity for Spin Systems</u>, 5% Paulo, IME-USP, 1988, 25p.

- 8813 FERRARI, P.A. & MAURO, E.S.R.; A Method to Combine

 Pseudo-Random Number Generators Using Xor, São Paulo,

 IME-USP, 1988, 10p.
- 8814 BOLFARINE, H. & RODRIGUES, J., Finite Population Prediction

 Under a Linear Functional Superpopulation Model a Bayesian

 Perspective, São Paulo, IME-USP, 1988, 22p.
- 8815 RODRIGUES, J. & BOLFARINE, H.; A Note on Asymptotically

 Unbiased Designs in Survey Sampling, São Paulo, IME-USP,

 1988, Sp.
- 8816 BUEND, V.C.; Bounds for the a Availabilities in a Fixed Time

 Interval for Continuous Structures Functions, São Paulo,

 IME-USP, 1988, 22p.
- 8817 TOLOI, C.M.C. & MORETTIN, P.A.; Spectral Estimation for Time

 Series with Amplitude Modulated Observations: A Review, São

 Paulo, IME-USP, 1988, 16p.
- 8818 CHRYES, J.T. CHRYES, L.; GRIMMETT, G.R.; KESTEN, H. A

 SCHONMANN, R.H.; The Correlation Length for the High

 Density Phase of Bernoulli Percolation, São Paulo, IME-USP,

 1988, 46p.
- 8819 DURRETT, R.; SCHONMANN, R.H. & TANAKA, N.I.; The contact

 Process on a Finite Set, III: The Critical Case, São Paulo,

- 8820 DURRETT, R.; SCHDNMANN, R.H. & TANAKA, N.I.; Correlation

 Lengths for Oriented Percolation, São Paulo, IME-USP,

 1988, 18p.
- 8821 BRICMONT, J.; KESTEN, H.; LEBOWITZ, J.L. & SCHONMANN, R.H.; A Note on the Ising Model in High Dimensions, 5% o Paulo, IME-USP, 1988, 21p.
- 8822 KESTEN, H. & SCHONMANN, R.H.; <u>Behavior in Large Dimensions of</u>

 the Potts and Heisenberg Models, São Paulo, IME-USP, 1988,
 61p.
- 8823 DURRETT, R. & TANAKA, N.I.; Scaling Inequalities for Driented

 Percolation, São Paulo, IME-USP, 1988, 21p.
- 8901 RODRIGUES, J.; <u>Asymptotically Design</u> <u>Unbiased Predictors to</u>

 <u>Two-Stage Sampling</u>, São Paulo, IME-USP, 1989, 9p.
- 8902 TOLOI, C.M.C. & MORETTIN, P.R.; <u>Spectral Analysis for</u>

 <u>Amplitude Modulated Time Series</u>, São Paulo, IME-USP, 1989,
 24p.
- 8903 PAULA, G.A.; <u>Influence Measures for Generalized Linear Models</u>

 <u>with Restrictions in Parameters</u>, 5% Paulo, IME-USP, 1989,
 18p.

- 8904 MARTIN, M.C. & BUSSAB, W.O.; An Investigation of the

 Properties of Ranking Ratio Estimators for Cell Frequencies

 with Simple Random Sampling, São Paulo, IME-USP, 1989, 11p.
- 8905 WECHSLER, S.; <u>Yet Another Refutation of Allais 'Paradox</u>, São Paulo, IME-USP, 1989, Sp.
- 8906 BARLOW, R.E. & PEREIRA, C.A.B.; Conditional Independence and

 Probabilistic Influence Diagrams, São Paulo, IME-USP, 1989,

 21p.
- 8907 BARLOW, R.E.; PEREIRA, C.A.B. & WECHSLER, S; The Bayesian

 Approach to Ess, São Paulo, IME-USP, 1989, 20p.
- 8908 PEREIRA, C.A.B. & BARLDW, R.E.; Medical Diagnosis Using
 Influence Diagrams, São Paulo, IME-USP, 1989, 13p.
- 8909 BOLFARINE, H.; A Note on Finite Population Prediction Under

 Asymmetric Loss Functions, São Paulo, IME-USP, 1989, 8p.
- 8910 BOLFARINE, H.; Bayesian Modelling in Finite Populations, São Paulo, IME-USP, 1989, 8p.
- 8911 NEVES, M.M.C. & MORETTIN, P.A., <u>A Generalized</u>

 <u>Cochrane-Orcutt-Type Estimator for Time Series Regression</u>

 <u>Models</u>, São Paulo, IME-USP, 1989, 29p.

- 8912 MORETTIN, P.A., TOLDI, C.M.C., GAIT, N. & MESQUITA, A.R.;

 Analysis of the Relationships Between Some Natural

 Phenomena: Atmospheric Precipitation, Mean Sea Level and

 Sunspots, São Paulo, IME-USP, 1989, 35p.
- 8913 BOLFARINE, H.; Population Variance Prediction Under Normal

 Dynamic Superpopulation Models, São Paulo, IME-USP, 1989,
 7p.
- 8914 BOLFARINE, H.; Maximum Likelihood Prediction in Two Stage
 Sampling, São Paulo, IME-USP, 1989, 4p.
- 8915 WECHSLER, S.; Exchangeability and Predictivism. 5% Paulo, IME-USP, 1989, 10p.
- 8916 BOLFARINE, H.; Equivariant Prediction in Finite Populations,
 São Paulo, IME-USP, 1989, 13p.
- 8917 SCHONMANN, R.H.; <u>Critical Points of Two Dimensional Bootstrap</u>

 <u>Percolation Like Cellular Automata</u>, São Paulo, IME-USP,

 1989, 6p.
- 8918 SCHONMANN, R.H.; On the Behavior of Some Cellular Automata

 Related to Bootstrap Percolation, São Paulo, IME-USP, 1989,
 26p.
- 8919 PEREIRA, P.L.V.; Local Nonlinear Trends, 5% Paulo, IME-USP, 1989, 8p.

- 8920 ANDJEL, E.D., SCHINAZI, R.B. & SCHONMANN, R.H.; Edge

 Processes of One Dimensional Stochastic Growth Models, São
 Paulo, IME-USP, 1989, 20p.
- 8921 MARKWALD, R., MOREIRA, A.R.B. & PEREIRA, P.L.V.; Forecasting

 Level and Cycle of the Brazilian Industrial Production

 Leading Indicators versus Structural Time Series Models,

 5% Paulo, IME-USP, 1989, 23p.
- 8922 NEVES, E.J. & SCHONMANN, R.H.; <u>Critical Droplets and Metastability for a Glauber Dynamics at Very Low Temperature</u>, São Paulo, IME-USP, 1989, 33p.
- 8923 ANDRE, C.D.S., PERES, C.A. & NARULA, S.C.; An Interative

 Procedure for the MSAE Estimaton of Parameters in a

 Dose-Response Model. São Paulo, IME-USP, 1989, 9p.
- 8924 FERRARI, P.A., MARTINEZ, S. & PICCO, P.; <u>Domains of Attraction of Quasi Stationary Distributions</u>, São Paulo, IME-USP, 1989, 20p.
- 9001 JR., HODGES, J.L. RAMSEY, P.H. & WECHSLER, S.; <u>Improved</u>

 <u>Significance Probabilities of the Wilcoxon Test</u>, São Paulo,

 IME-USP, 1990, 30p.
- 9002 PRULA, G.A.; <u>Bias Correction for Exponential Family Nonlinear</u>

 Models, São Paulo, IME-USP, 1990, 10p.

- of Phase Transition, São Paulo, IME-USP, 1990, 16p.
- 9004 ZACKS, S. & BOLFARINE, H.; Maximum Likelihood Prediction in Finite Populations, São Paulo, IME-USP, 1990, 15p.
- 9005 ZACKS, S. & BOLFARINE, H.; <u>Equivariant Prediction of the Population Variance Under Location-Scale Superpopulation Models</u>, São Paulo, IME-USP, 1930, 8p.
- 9006 BOLFARINE, H.; Finite Population Prediction Under Error in Variables Superpopulation Models, São Paulo, IME-USP, 1990, 14p.
- 9007 BOLFARINE, H.; Ratio and Regression Estimators Under <u>Error-In-Variables Superpopulation</u>, São Paulo, IME-USP, 1990, 16p.
- 9008 BOTTER, D.A. & MOTTA, J.M.; <u>Experiments With</u>

 <u>Three-Treatment Three-Period Crossover Design: Analysis</u>

 <u>Through the General Linear Models</u>, São Paulo, IME-USP,
 1990, 15p.
- 9009 SCHONMANN, R.H.; Finite Size Scaling Behavior of a Biased

 Majority Rule Cellular Automaton, São Paulo, IME-USP,

 1990, 11pg.

- 5ystems, São Paulo, IME-USP, 1990, Spg.
- O11 CORDEIRO, G.M. & FERRARI, S.L.P.; <u>A Modified Score Tests</u>

 Statistic Having Chi-Squared Distribution to Drder n .

 São Paulo, IME-USP, 1990, 12pg.
- 1012 -NEVES, E.J. & SCHONMANN, R.H.; Behavior of Droplets for a Class of Glauber Dynamics at very Low Temperature, São Paulo, IME-USP, 1990, 33p.