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Introduction. 

The inviscid Burgers equation 

(1.1.a) 
8u 0a[u(l - u)) = O 
ot + 8r 

with 9 > O admits travelling wave (weak) solutions u(r - vt), where, for 

p< ')., 

(1.1.b) 
u(r) = pl{r < O} + ...\l{r ~ O} 

V = 0(1- p- ~) 

These solutions are called the entropic solutions. In this paper we continue 

the study of Ferrari, Kipnis a.nd Saa<la [&s] of the microscopic approxima­

tion of these solutions by the asymmetric simple exclusion process. This 

is a Markov process on the state space X := {O.l}z. For configurations 

'7 E X we say that there is a particle at x if TJ( x) = 1, otherwise x is empty, 
so that at each site of the one dimensional lattice ~ there is at most one 
particle. Informally the process is described by saying that if there is a 

particle at site x, then it jumps to site x + 1 (respectively x - 1) with rate 

p (resp. q) if x + 1 (resp. x -1) is empty and with rate O if it is occuppied. 

We assume p + q = 1 and p > q. The generator of the process is given by , 

Lf(TJ) = L L p(x,y)TJ(x)(l - 17(y))[l(rt•11 ) - /(77)] 
zEZy=:i:±1 

where / is a cylindric function, ,,,z,11 is the configuration obtained when the 

values of T/ at x and y are interchanged, p(x, x + 1) = p, p(x, x - 1) = 
q = 1 - p and p(x, y) = 0 if Ix - YI > 1. We call TJt the resulting Markov 
process and S(t) the semigroup generated by L. Liggett proved that all 

the translation invariant and (time) invariant measures for this process are 

convex combinations of the product measures v0 , 0 ~a~ 1, for which the 

probability that a given site is occupied is given by a. Under the invariant 

measure v0 the average velocity of the particles is (p- q)(l -a). There are 
also so called "blocking" invariant measures v<n), n E 7Z. These measures 

are also product, have marginals 

(1.2) 
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and are even reversible for the process. They approach exponentially fast 
the densities O and 1 to the left and right of the origin respectively [LJ, 
(l]. \Ve consider these measures as a first example of a microscopic shock: 
at any time the process with initial measure vCn) has a measure (which is 
the same vCn)) which, if shifted by x, approaches v0 as x -+ -oo and v1 

. as x -+ oo. ,This corresponds to the case p = 0 and ,\ = 1 in the Burgers 
equation. The explicit formula for vCn) plays a. crucial role in this paper as 
it did in [tks]: we use (1.2) to find shocks for others values of p and ,\. 

In order to derive equations (1.1) in the general case one starts with 
the product measure v p,>. with densities p and ,\ to the left and right of 
the origin respectively, p < ..\. Under this measure the particles initially to 
the left of the origin have average velocity (p- q)(l - p) which exceeds the 
initial velocity of the particles to the right of the origin (p - q)(l - .X). This 
together with the exclusion interaction is the reason of the formation of 
shocks in this model. In fact it has been proven by Benassi and Fouque [bf] 
and Andjel and Vares [av] that the hydrodynamical limit of this process is· 
given by (1.1) with()= p-q. They proved that Tcirvp,>.S(E:- 1t) converges, 
as£-+ O, to Vp if r < vt and to v,. if r > vt, where v = (p - q)(l - ,\ - p) 
and T:r is the translation by x. \Ve call v the shock velocity. At r = vt 
it is expected to see what Wick calls a "dynamical phase transition", i.e. 
a convex combination of vp and v,.. This was in fact proven by Wick [w] 
and De Masi, Kipnis, Presutti and Saada [dkps] for the case p = 0 and by 
Andjel, Bramson and Liggett [abl] for the cnse ,\ + p = 1. Notice however 
that this is not tme when p = 0 and A = 1, as v<n) arc invariant and not 
a convex combination of v1 and v0 • Some of these results were revie,ved by 
Bramson [b]. 

The question that arises naturally then is what does the shock look 
like? The hydrodynamic limit shows that it is rigid in the scale £-1

• Is 
there another scale such that it is smooth? [fies] ans,v~red this question 
negatively. Indeed they proved that the shock is rigid on the microscopic 
level by defining a random position X(t) and a m<'asure µ ~ Vp,>. such that 
at any time t the system as seen from X(t) is distributed according toµ, 
whereµ~ vp,>. means that.for all cylindric/ on X, · 

{1.3) lim T:eJ.&f = vpf and fun TzJ.&f = v,.J. 
z-.-oo ~ Z-t-00 

In this paper we show that the microscopic shock is also described by 
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a "second class particle". One of the advantages of this approach is that 
the shock can be shortly described and we proceed to do that now. We 
use the graphic construction and the basic coupling. We refer to Liggett's 
book [L) for both techniques, widely used in interacting particle systems. 
The graphic construction of the simple exclusion process T/t is determined 
by the following rules. At each pair of sites ( x, x + 1) associate two Poisson 
point proces.5es (Ppp ), one with rate p and the other with rate q. Each of 
this Ppp is a sequence of times on JR+. \Ve say that an arrow going from x 

to x + 1 is present at each of these times for the Ppp with rate panda left 
arrow going from x+ 1 to x for the Ppp with rate q. These Ppp are mutually 
independent. \Vhcn an arrow occurs going from x to y if x is occupied and 
y is empty, then the particle jumps to the empty site. Otherwise nothing 
happens. In this way, for each realization of the arrows and each initial 
configuration we construct a version of 'It. 

The basic coupling consists in realizing jointly two or more versions of 
the process with different initial configurations using the same realization­
of the arrows. In this way each marginal has the distribution of the simple 

exclusion proces.5 and we can learn other properties by comparing the same 
realization with different initial configurations. In particular, consider two 
initial configurations that differ at only one site, say the origin. The reader 
can check that the coupling has the property that at later times the two 
marginals also differ at only one site. This site is called a second cl~ 
particle. The name comes from the way this "particle" interacts with the 
other particles that we call first class: First and second class particles at 
rate p jump to the right site if it is empty and at rate q do the same to 
the left. None of them jump to sites occupied by first class particles. But, 
when a first class particle tries to jump to a site occupied by the second 
class, the jump is realized and the two particles interchange positions. 

We describe now our results. We show in Section 2 tha.t starting with 
the second els.$ particle at the origin and distributing the other particles 
according to vp,>., the process as seen from that particle at time t has a 
distribution~ vp,>. uniformly int, where~ is defined in (1.3). Furthermore, 
as t--+ oo, this process converges weakly to an invariant measureµ~ vp,>.• 

The process as seen from the second class particle is a. Markov process. 
This is an improvement over the process as seen from the random position 
described by (fk.s]. 
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In Section 3 we show laws of large numbers for the second class particle: 
call R(t) the position at time t of the second class particle (R(O) = 0). 
We prove that R(t)/t converges almost surely to v = (p - q)(l - ,\ - p) 
when the initial measure is either the product measure vp,>. or the invariant 
measure µ.. To prove these laws we use and improve laws of large numbers 
of [fks]. Furthermore we show that if the first class particles are distributed 
according to the (translation invariant) mesure v0 , then R(t)/t converges 
almost surely to (p - q)(l - 2a). 

In Section 4 we consider the situation when the second class particle 
starts at the position c-1r > 0 and study its motion in the hydrodynamic 
limit described above. We prove that its macroscopic motion can be de­
scribed as follows: it starts at r and has velocity (p - q)(l - 2,\) up to the 
moment that it meets the shock that started at the origin and has velocity 
(p- q)(l - ,\ - p). At this moment the second class particle adopts the ve­
locity of the shock. On the other hand, when the initial point is c-1r < 0, 
the velocity is (p - q)(l - 2p) up to the moment it meets the shock. This 
is the behavior that the characteristics of the Burgers equation have. 

The fluctuations of the shock are at least diffusive. In fact we prove in · 
Section 6 that 

{1.4) liminft-1 E- (R(t) - vt)2 > (p- q)p(l - p) + ,\{l - ,\) 
t v,.,,. - \ ' -~ A-p 

where Ev is the expectation of the process with initial measure v; the 
measure v p,>. is the measure that puts a second class particle at the origin 
and the first class particles are distributed according to v,.,,.; finally, in this 
paper we write E(.)2 for E[(.)2]. 

Equation (1.4) proves half of the conjecture of Spohn ([lps] [S1), who has 
heuristic arguments that justify the existence of the limit and the identity in 
{1.4). Also Boldrighini et al. performed computer simulations that support 
the conjecture [bcfg]. The proof of (1.4) is based on a resuJt shown in 
Section 5: if a particle is adde:l. to the system at time zero at any site, then, 
as t -+ oo, the shock shifts· to a random position that differs in average 
-(.,\ - p)-1 from the original position. 

More can be said when p = 0. In Section 6 we show that the flue­
. tuations of the shock depend only on the initial distribution. We prove 



that 

where no(1J,Y) := E!=1{1-r,(x)) is the number of empty sites of the 
configuration 7J between the origin and y and r+ = (p- q)A. This extends 

a result by Gardner and Presutti (gp] who proved (1.5) for p = 1. Equation 
(1.5) implies a central limit theorem for R(t) because no(7J, r+t) is a sum 
of independent identically distributed random variables. In Remark 6.6 we 
show that for the tagged particle ((f), (k], [df]), i.e. a regular particle, (1.5) 
is also true substituting vo,>. by 11.,.. For any p and A we conjecture that the 
following is true 

(1.6) 

· where n1(11,x) is minus the number of particles between the origin and 
x < 0 and r+ = -r- = (p- q)(A - p). 

Finally let us mention that the second class particle is conjectured to 
have the "1/ / noise" behavior. The conjecture is that when A = p = a the 
fluctuations are superdiffusive: 

lim ,-.413Ev,. ,.(R(t)-ER(t))2 =constant> 0 
c-oo ' 

See [SJ and [vb) for a heuristic justification and [bcfg] for computer simula­
tions. 
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2. A second class particle identifies the shock. 

We define the process with a second class particle described in the 
introduction. Define (17,,R(t)) on the state space Xx 7.Z as the process 
with generator 
(2.1) 
L* f(rJ, r) = L L p(x, y)77(x)(l - fJ(t1))[/(77z,y, r) - J(fJ, r)) 

+ L (p(x, r)17(x) + p(r, x)(l - TJ(x))) (/(TJz:,r,x) - /(17, r)) 
z:=r±l 

Consider also ~t := TR(t)T/t, the process as seen from the second class 
particle. The state spa_ce for this process is X := { 0, 1} Z\ {O} x { 0}, the space 
with a second class particle at the origin and with first cla.o;s particles and 
empty sites on the other sites. Call Land S(t) the corresponding generator 
and semigroup. Let Vp,)I. be the product measure on X for which the density 
of first class particles to the right of the origin is A and the density to the 
left of the origin is p. The symbol~ is defined in (1.3) above. 

Theorem 2.2. The following bolds uniformly in t 

Vp,)I.S(t) ~ Vp,>. 

Furthermore, iip,)I.S(t) converges weakly, BS t -+ oo, to an invariant measure 

In the remainder of this section we prove Theorem 2.2. The proof uses 
the identification of the interface given by (fks). They proved that there 
exists a position X(t) such that if 110 is Vp,>. distributed, then the process 
TX(t)'7t has distribution ~ Vp,>. uniformly in t. We will prove here that 
there exists a coupling for which EIR(t) - X(t) I ~ C for all t. The major 
difcrence between X(t) and R(t) is that the process TR(t)"1t is Markovian 
while Tx(t)flt is not. 

Now we recall the results of [fks) . .The position X(t) is obtained from 
the basic coupling described in the introduction between two copies of the 
simple exclusion process. The first copy has initial (marginal) measure vp 

. and the second V>., Under the initial measure the configuration of the first 

7 



copy is coordinatewise less or equal than the configuration of the second 
one. We call second class particles those occupied sites of the second copy 
that do not have a corresponding particle in the first copy, and we call first 
class particles the common occupied sites. This nomenclature is justified 
in the introduction. The resulting process is denoted (ut,{t), where the u 

particles are the first class and the { particles are the second class. We 

say as in [ak) that the u particles have priority over the { particles and 

denote this priority o, I- {,. By construction Ut is the simple exclusion 

process with initial measure vp while Ut + {, (coordinatewise) is the simple 
exclusion process with initial measure V)I. Call v2 the initial measure for 
the process (u,,{,) and v~ := v2(.l{(O) = 1), so that under v~ there is a 
second class particle at the origin. Let X(t) be the position of that particle 
at time t. 

To recover the original process 'lt (iks] define yet a new process (ut, 
'Yt, (,) where 'Yt + (t = {, with priorities a, I- 'Yt I- (,. This means that 
the particles follow the arrows to jump either to empty sites or to sites 
occupied by another particle of lower priority interchanging positions. The 

initial distribution of (ui,-yi,(,) is given as follows. Pick (u0 ,{0 ) from the 
distribution v~, and label the n-th { particle counted from the origin a 'Y 

particle with probability (p/q)n /(l+(p/q)"), otherwise a ( particle. Do this 
independently for each n. Call v3 the resulting distribution of ( <10, -y0 , (o ). , 
The notable property of this construction is that the 'Yt and (, labeling is 
the same for all t ~ 0. In Lemma 3.26 of (fies] it is proved that the shifted 
process Tx(t)(ai, 1t, (,) has measure v3SHt) with the property that the u+-y 
marginal has distribution ~ vp,>. uniformly in t. Using compactness, (fies] 
proved that there exists an invariant measure µ; with the same properties. 
The original process is recovered by defining f/t =a,+,, but with a different 
initial distribution. In fact note that at time zero the projection of v3 over 
the f/ coordinate is not exactly vp,>. but a measure equivalent to it. Hence 
TX(t)'lt has distribution ~ vp,>,. uniformly in t. Projecting the invarian; 
measureµ; over u + -y one obtains a measureµ~ vp,>. such that, starting 
withµ, TX(t)f/t is distributed according toµ for all t. 

Now we establish the relationship between R(t) and X(t). For P,= 1 
we simply label the {-particles to the right of the origin at time O as 'Y 
particles and those to the left as ( particles. In this case notice that X(t) 
is just a second class particle with respect to the '1t process (which is the 
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same as '1t + ,,). So in this case· R(t) = X(t), and µ = µ. 

\Vhen p < 1 we have the following 

Proposition 2.3. There exists a coupling between ( T/t, R( t)) with initial 

measure llp,">. and (t1t,{t,X(t)) with initial measure~ such that for all t ~ 0 

(2.4) EIR(t) - X(t)I ~ C < 00 

Proof. At time t = 0 distribute (o-0 ,{0) according to~ and set ('lo, R(O)) 

as follows 

R(O) = X(O) = 0 
(2.5) ']o(x) = uo(x), for x < 0 

']o(x) = uo(x) + {o(x), for x > 0 
I 

Now call 'Y and ( the e particles to the right and left of the origin respec-
tively. For later times consider the following priorities: 

t1: I- 'Yt I- R( t) I- (, 

(we identify R(t) with the configuration with a particle at R(t) and no 
particles elsewhere). Hence (T/t, R(t)) = (u, + 1't,R(t)) and (u,,{i,X(t)) = 
(ut,(,'t + (t) U R(t),X(t)) have the right distribution. (We identify the 
configuration T/ with the set. of occupied sites {x : 11(x) = 1} and abuse 
notation by writing R(t) for {R(t)}.) 

We now study the process TX(t)(ut, 'Yt, (i, R(t)). For the initial distri­
bution of this process it is convenient to consider a new measure v~ for 
which vH. IA) satisfies (2.5), with A:= {R(O) = O;;(x) = O,x < O; ((x) = 
0,x > O}. To define v~, put the u and { particles according to v~. Define 
Xi := position of i-th { particle (xo = X(O) = 0). Choose R(O) to be equal 
to x, with probability 

{2.6) 

independently of the configuration (u,{). (The ·,ia1ue of m(i) is chosen 
so that (2.16) below holds.) Finally decide which { particles different from 
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R(O) are I particles: label the i-th { particle as a -y particle with probability 

(p/q)i /(1 + (p/q)i) independently of everything, otherwise as a. ( particle. 
(A formal definition is given in (2.11) below.) 

Now, calling Xi(t) the position at time t of the i-th {, particle (x0 (t) = 
X(t)), we prove below that for all t 2: 0, 

(2.7) 

where F2,t is the sigma algebra generated by {(u,,{,) : 0 ~ s ~ t}. Before 

proving (2.7) we finish the proof of the proposition. Equation (2.7) implies 

that {R(t) = :Jl
1
i(t)} is independent of (u,, {i), Hence 

(2.8) 
E.,~ IR(t) - X(t)I = E.,~ (IR(t) - X(t) I jR(t) = Xi(t)) P(R(t) = Xi(t)) 

= L __M_m( i) = constant < oo 
. ,.,>.-p ,e.-. 

where in the second identity we used that for all i and all t ~ O, Ev: (xi(t)- , 
Xi-1(t)) = 1/(>.. - p). This proves (2.4) when the initial measure is,{. In 
fact our initial measure is v~(-IA). Since v~ gives positive mass to A, (2.8) 
implies the proposition.4', 

Proof of (2.7). The process Tx(t)(O't,'Yh(t,R(t)) has genera.tor L~ := 

L~ + L~ + Li, where L~ is the generator of the motion of the a and { -
particles and the translations due to the jumps of X(t): · 
(2.9) 
L~f(u,-y,(,r) 

= L L (u(x)(1- u(y)) p(x,y) 
Z'FO Jl=z±l#O 

X [/(uz,J1,-yz,i,,(z,J1,rz,i,)- /(u,-y,(,r)) 

+ (-y(x) + ((x) + l{r = x})(l - u(y)- -y(y)- ({y)- l{r = 11}) p(x,y) 

X [/(c:r,,z,J1,(z,J1,rz,J1) - f(u,-y,(, r)J) 

+ L (u(y) p(y,O) [f(T,u0•',r11-y
0

•11 ,r,(0
•11,r0

•11 -11)-f(u,-y,(,r)] 
r=±l . 

+ (1-u{y)--y(y)-((y)- l{r = y}) p(O,y) 

x [f(T1u, r,,0
•', Ti,(0•1,r0•' - y) - f(u,-y,(, r)J) 
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where r:r,v = r for r 'Ix and r:r,v = y if r = x; Li is the generator of the 

exchange between 7 and ( particles: 
(2.10} 

L~f(u,,, (, r) 

= L L ,(x)((y) p(x,y) [f(u,1z• 11 ,(z•11,r)- f(u, 1 ,(,r)] 
a:,;.r 11=:r:f::l#-r 

and Li is the generator which describes the motion of R(t) on the { particles: 

Ltf(u,1 ,(, r) 

:= (n(r - 1) + q((r - 1))[/(u, ,r-l,r, (r-l,r, r - 1) - /(u, -y, (, r)] 

+ (q1(r + 1) + p((r + 1))[/(u,,r+i,r, (r+i,r, r + 1) - f(u, 'Y, (, r)] 

The point here is that" the generators L~ and L~ do not affect the position 
of the u and { particles as they describe interchanges of € particles. On the 
other hand, L~ does not affect the 'Y, ( and R labeling of xi(t). 

Let 11'2 be a measure on X 2 with the good marginals, i.e. J d,r2(u,€) 
f(u) =lip/and J d1r2(u,{)f(u+{) = V).f. Let 11"~ := 1r2(,l~{0) = 1). Define 
the measure 1r~ on X3 x ZZ as follows. Let A n B n C n { r} = 0 and 

fA,B,c,r(u, 7, (,R) := Ila:eAu(x) IlzeB'Y(x) Ilzec((x}l{R = r}. The 
fourth coordinate states for the position of R(t) - X(t). 

I • J I IT IT (p/qr<F.,z} 
1r4 fA.B,C,r .= d1r2(u,{) u(x) {(x) 1 + (p/ )n(f.,z). 

zEA zeB q ' 

1 
X II {(x) 1 + (p/q)n(f.,z) 

:rec 
(2.11) 

X !{r) ( (q/pt<f.,r)/2 + (p/q)"(f.,r)/2)-2 

where n(f~ x) is the signed number of { particles between the origin and x: 

·- { E;=l {(y) if x > 0 
n({,x} .- - E;!z {(y) if x < 0 

Calls, the semigroup corresponding to the generator L~. We shall prove 
that v~S~(t) can be constructed from v~S~(t) as ,r~ is constructed from ,r~ 
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in (2.11). To do that we shall prove that if 1r~ is defined as in (2.11) then 
it is reversible for L:: 

(2.12) 

for all/ and g cylindric. Or equivalently, we need to prove that 

(2.13) 
1r~ (l{R = r} (p((r + 1) + q,(r + 1))) 

= 1r~ (l{R = r + 1} (p-y(r) + q((r))) 

Notice however that 11"~ is not even invariant for L~, the generator of the 
whole process. By the definition of ,r~, {2.13) is equivalent to the following 
identity when integrated with respect to 1r~: 

(2.14) 
{(r){(r + l)m(n({, r)) Q(n({, r), n{{, r + 1)) 

= {(r){(r + l)m(n({,r + 1)) Q(n({,r + 1),n(e,r)) 

where 

. . 1 (p/q)i+l 
Q(,,' + 1) :=pl+ (p/q)i+l + q 1 + (p/q)i+l 

(2.15) . . ·- (p/q)i (p/q)i 
Q(, + 1, ,) .- p 1 + (p/q)i + q 1 + (p/q)i 

Q(i,i) := o if Ii - i i > 1 

Now (2.14) holds if {(r) = 0 or {(r + 1) = 0. Otherwise n({, r + 1) = 
n({, r) + 1. Hence it suffices to check that 

(2.16) m(i)Q(i, i + 1) = m(i + l)Q(i + 1, i) 

which is left to the reader. This proves (2.12). Since the motion related 
to the generators L~ and L~ does not affect the distribution of the label of 
the { particle chosen by R(t), Equation (2.7) is then a consequence of the 
Trotter-Kurtz formula. 6 
Remark. In the same way as {2.7) one can prove that v~S~(t) is reversible 
for Li+ Li and lettiug J, [( C 7Z, i E 7.Z, {i} n J n I(= 0, 

P11~ (R(t) = xi(t); ,,(x;(t)) = 1, j e J; (,(x1c(t)) = 1, k e K I .1"2,t) 

· II (p/q); II 1 
= m(a) 1 + (p/q); 1 + (p/q)k 

;eJ tceK 
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or, in other words, using the notation of (2.11), for all t 2: O, 
(2.17) 

I I J I I IT IT (p/qr<e,z:) 
114S4(t)JA,B,C,r = dv2S2(t)(u,{) u(x) {(x) 1 + (p/ )n(t,z) 

:i:EA :i:EB q 
1 

X II ~(x) 1 + (p/q)n({,z) 
zEC 

X {(r) ((q/pt(e,r)/2 + (p/qr({,r)/2)-2 

The next proposition is used to prove the convergence to an invariant 
measure in Theorem 2.2. Its proof uses again the basic coupling, but now 
between two copies of the process (TJt,{t) which was constructed itself us­
ing that coupling. What we mean for basic couplig is again the fact that 
the two copies use the same realization of arrows. This gnarantees that 
each marginal has the correct distribution. The same remark is valid for 
the future, where we will copy up to three processes each with different 
priorities. 

Proposition 2.18. Let 1r2 be a measure on X2 with the good marginals, 
i.e. J d1r2(u,{) f(u) = vpf and J d1r2(u,{)f(u + {) = V).j, and let 71'2 := 
1r2(-l{(0) = 1). Let µ2 be an invariant measure for S2(t) with the good 
marginals (its existence is proven in [Jks]). Then 1r2S2(t) converges weakly 
to µ2 and 1r2S~(t) converges weakly to µ2 := µ2(-l{(0) = 1). ~, 

Proof. Consider the basic coupling between two copies of (at,{,): 

(uf, {f) with initial measure 1r2 

(uL{:} with initial measure µ2 

' 

Since the u and the u + { marginals are the same for 1r2 and µ2 , we can 
assume that under our coupling, at time O (and hence for all later times), 
u8 + {8 = uJ + {J. In that way the marginal (u8, uJ) has a translation 
invariant measure and we can apply Lemma 3.2 of Chapter VII of Liggett 
[L] to the marginal coupling ( u1, ul) to obtain that any weak limit µ of 
(uf ,u;,{f ,{t) satisfies µ(u0 (x) = u1 (y) = 1,u0 (y) = u0 (x) = 0) = 0 for all 

. z, y. Hence µ(u0 ~ o-1 or a0 =:; o-1 ) = 1. Suppose now that µ(u0 ~ u 1 , a0 i: 
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u1) > 0. Then, by translation invariance, µ( u0 ( x) > u1 ( x)) = c · > 0 for all 

x and 

(2.19) 

But this leads to a contradiction because the first two marginals of µ are 

vp, and the law of large numbers imply that the limit as n-+ oo of the left 

hand side of (2.19) is zero. Then µ( u0 = u 1) = 1. Since uf + e: = (1~ + er 
for all t, this implies that 1r2S2(t) converges to µ2. This and the fact that 

11'2S2(t) = 11'2S2(t)(.l{(O) = 1) (Lemma 3.6 of [fks}) imply that 1r2SHt) 
converges to µ;. 4', 

Proof of Theorem 2.2. Proposition 2.3 guarantees that since v~ has the 

good marginals, then, under initial measure v4, X(t) - R(t) is tight. This 

and the fact that the projection over u + "'( of v4 S4 ( t) is ~ v p,>. uniformly in 

t (Lemma 3.26 of [£ks]) imply that TR(t)T/t has distribution~ Vp,>. uniformly 
in t. This proves the first part of the theorem. 

For the second part, we observe that Proposition 2.18 and equation 

(2.17) imply that v4SHt) converges to a unique invariante measure for 

the process as seen from X(t). This implies that X(t) - R(t) converges _ 

in distribution. Since EIX(t) - R(t)I is uniformly bounded, TR(t)T/t • = 
TR(t)-X(«)TX(t)(u, + 'Yt) converges in law to the invariant measureµ . .ft 
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3. Laws of large numbers. 

In this section we prove laws of large numbers for R(t) and others 

microscopic shocks. We start with a strong law of large numbers for X(t) 
when the initial measure is any measure with the good marginals. This 
extends the results of [fks], who proved a weak law when the initial measure 

is product and a strong law when the initial measure is the invariant measure 

112. We give here an ea.5y and unified proof. Let v = (p - q)(l - ,\ - p). 

Theorem 3.1. Let 1r2 be a measure with the good marginals as in Propo­

sition 2.18, and ,r~ = 1r2(,l{(0) = 1). Then 

. X(t) 
hm - - = v, P1r, almost surely. 

t-+oo t l 

Proof. Let U(t) E 7Z and define F{{,, U(t)) := number of { particles that 

at time zero were to the left of the origin and at time t are to the right of 

U(t) minus the number of { particles that at time zero were to the right of 

the origin and at time tare to the left of U(t). In other words, F(~i, U(t)) 

is the net flux of { particles throught the space time line [(O, 0), (U(t), t)] . 
Notice that F({t,X(t)) = 0. Define analogously F(ui,U(t)) for the proce~ 
u, and F(u, + {t, U(t)) for the process u, + {,. Now assume that U(t) is a 
random walk on 7Z that jumps to the right neighbor at rate w independent 

of (a,,{t) and study the process Tu(t)Ut. Using the techniches of Liggett [l], 
it can be proven that all invariant measures for this process are translation 

invariant and that v0 , 0 ~ a~ 1, are extremal invariant for this process. 

Notice that F(Tu(t)Ut, 0) = F(u,, U(t)). Now we can use the martingale 

decomposition of F( Tu(t)O"t, 0)) and the fact that v 0 is extremal for Tu(t)O"t 

to prove -as in the proof of Theorem 6 of [kj or Theorem 1 of [sj- that 

. F(u, U(t)) · 
, hm ' = (p- q)p(l - p)- wp, Pr. a.s. 

t-+oo t 2 

where we used that the u marginal of 1r2 is absolutely continuous with 

respect to Vp• Analogously- using the fact that O't + e, is also the simple 

exclusion process with measure (absolutely continuous with respect to) II)., 

lim F(u, + {,, U(t)) = (p- q).\(l - .\) - w.\, Pr., a.s. 
t-oo t • 
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from where, using the fact that F({t, U(t)) . F(ut +{,, U(t))-F(u,, U(t)), 

lim F({,, U(t)) = (p- q)(..\(1 - ..\) - p(l - p)) - w(,\ - p), P1r1 a.s. 
t-oo t 3 

Now check that this limit is negative for w >. v = (p- q)(l - ,\ - p) and 

positive for w < v. On the other hand, limt .... 00 U(t)/t = w a.s. because 
U(t) is a Poisson random variable with mean wt. Also F({t,x} is a non 

increasing function of x. Hence, since F(!,,X(t)} = 0, 

limsup X(t) < lim U(t) = w, P,r, a.s. 
t-oo t - t-oo t 3 

for all w > v, and analogously, 

liminf X(t) > lim U(t) = w, P,r, a.s. 
t-00 t - t-00 t 3 

for all w < v. This proves the Theorem.'9 

The next lemma is a corollary to Proposition 2.3. 

Lemma 3.2. Let G(t) be the position of the leftmost particle of 'Yt and 
Z(t) the position of the rightmost particle of (t . . Then for all t ~ 0 

(3.3) Ev~ IR(t) - G(t) I = Ev: IR(t) - Z(t)I < C < oo, and 

{3.4) 

Proof. When the initial measure is v~, the average distance between { 
particles is(). - p)-1 for all times. Furthermore the way of choosing which 
{ particles are , particles and the R particle is independent of the position 
of the { particles. This implies that 

• (p/q)k 1 
{3.5) Ev~IX(t)- G(t)I = {..\ - p)-1 I: lkl l (p/ )k IT l (p/ )' < OO 

kEZ + q l>k + q 

This and E IX(t)- R(t)I < C < oo (Proposition 2.3) imply (3.3). Equation 
{3.4) is a consequence of the symmetry of m{i) with respect to the origin . .. 

In the next theorem we show that the different positions of the shock 
satisfy laws of large numbers. 
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Theorem 3.6. The following holds 

(3.7) 
. R(t) 

lim -- = v, Pv ,. and P;,. almost surely; 
t-oo t '' 

(3.8) lim G(t) = lim Z(t) = v, Pv' and Pµ, almost surely. 
t-oo t t--+oo t 3 3 

Proof. By Theore~ 3.1, X(t)/t converges Pµ; a.s. and Pv; a.s. to v. 
Proposition 2.3 says that X(t) - R(t) is tight. Hence R(t)/t converges P;,. 
a.s. and Pv,,,. a.s. to v. This and Lemma 3.2 imply that both G(t)/t and 
Z(t)/t converge Pµ; a.s. and Pv; a.s. to v.'9 

Now we prove a law of large numbers for a single second class particle 
when the initial distribution of first class particles is 110 • We consider the 
process ('1t, D(t)) on X x 7Z, with priority T/t I- D(t) and initial measure 
110 , the product measure of density a with the second class particle at the 
origin. 

Theorem 3.9. Let D(O) = 0, T/t I- D(t). Then 
J 

. D(t) 
fun - = (p- q)(l - 2a), P;,,,, a.s. 
t-oo t 

Proof. Couple the process (TJt, D(t)) and the process (ui, it, (t) with initial 
distribution 11~, with ,\ > p = a, in such a way that at t = 0, D(O) = 0, 
770 (0) = 0 and 170 (x) = uo(x) for x -::f:. 0. This gives (TJo, D(O)) distribution Va 
and the correct distribution for later times. Letting G(t) to be the position 
of the leftmost it particle, 

(3.10) io(0) = 1 implies D(t) ~ G(t). 

To prove (3.10) observe that it holds trivially fort= 0. Then observe that 
if G(t) = D(t), a right jump of G(t) implies a right jump of D(t) while a 
left jump of D(t) implies a -left jump of G(t). From (3.10) we get that, for 
any.\> p, in {-yo(O) = 1}, 

limsup D(t) ~ lim G(t) = (p- q)(.1 - p - .\), 
t-oo t t-oo t 

(3.11) a.s. 
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where the identity is (3.8). Since this holds for all ..X > p, 1 

(3:12) limsup- Dt(t) ~ (p- q)(I - 2a), P;,,,, a.s. 
t-00 

where we .have used that vH,(O) = 1) > 0. 

On the other hand, couple again (11t,D(t)) with (ut,"Yt,(t) but now 
with initial distribution v3 with p < ..\ = o. At time t = 0: 

D(O) = 0, 7Jo(O) = 0 
770(x) = u,(x) + ,,(x) + (,(x) for x -::f:. 0 

Letting Z(t) to be the rightmost (t particle, analogously to (3.10), ·· 
' . 

( 0 (0) = 1 implies D(t) ~ Z(t), t ~ 0, and 

lirninf D(t) ~ (p - q)(l - 2a), Pv
0 

a.s. 
t-oo t 

This and (3.12) finish the proof. ft 

4. Second class particle and characteristics. 

In this section we prove that the macroscopic motion of a second class 
particle coincides with a characteristic of the Burgers equation. The char- .. 
acteristic corresponding to r E JR is the curve w(r, t) in the space time 
satisfying w(r,O) =rand u(w(r,t),t) = constant, where u is a solution of 
(1.1). In our case 0 = p- q and 

(4.l) w(r t) = { (p- q)(l - 2>.)t + r for r > 0 
' (p - q)(l - 2p)t + r for r < 0 

Since >. > p, the characteristics to the right are slower than the ones to 
the left. Hence they meet, developing a shock. The shock is travelling at 
velocity v = (p - q)(l - >. - p). The characteristics starting at r ~and -r. 
respectively mcetr the shock at time 

(4.2) 

In the next theorem we abuse notation. The measure ,., p,'>. states for a 
measure on X x :ZZ, being a product measure on X for all but one site: at 
(the integer part of) e-1r there is a second class particle. 
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Theorem 4.3. Let Y(x, t) be the position at time t of a second class 
particle that at time zero is at site x. Then as e -+ 0, eY{e-1r,e-1 t) 
converges P11,,A a.s. to w(r, t) fort< t(r) and to vt fort~ t(r). 

Proof. For each pair (e, r), r > 0 couple the processes (r,1, Y(e-1r, t)), with 
priority TJt I- Y(., t); (ut, "ft, (t, R(t)) with priorities u1 I- 'Yt I- R(t) I- (t and 
(iit, D(e-1, t)) with priority fit I- D(e-1, t). At time t = 0 set R(O) = 0 and 
distribute (uo, 'Yo, (o(°on the other sites according to v~. Set TJo = u0 + 'Yo, 
iio = uo +'Yo+ (o and Y{e-1r,O) = D(e-1r, 0) = [e-1r]. Define 

b 
~ . . t' 

T1(e, r) := inf{t: (e-1r,t)-/: Y(e-1r, tJ or Y(e-1r,t) = R(t)} 

T2(e, r} := inf{t: Y(e-1r, t) = R(t)} 

if those first times do not exist, we set Ti = oo. ' Under this coupling, 
D(., t) = Y(., t) up to the first moment that they meet a ( particle. By the 
laws of large numbers for D(t) and Z(t) (the position of the rightmost ( 
particle), (Theorems 3.9 and 3.6) 

(4.4) 

After T2, Y(., t) = R(t). Hence it suffices to prove that lime ..... o eT2(e, r) = 
t(r). Let O' · := {lime-o eT1(e, r) = t(r)} . Since- T2 ~ 7'1 , it suffices to 
show that P(limsupe ..... oe(T2-T1 ) > 0,0') = 0. But, e.fterT1 , Y(c-1r,t) ~ 
max{Z(t), R(t)} by the same argument to prove (3.10). Hence 

J • 

(4.5) P(limsup e(T2 -Ti)> 0,0') S P(Z(t)- R(t) > 6., Vt> t(r)). 
e-o 

By Lemma 3.2, E(Z(t) - R(t)) < C < oo. Then Chevichev inequality 
implies that,' for all 6 > 0, there exists M > 0 such Lh .. it P(Z(t) - R(t) ~ 
M) S 6, for all t ~ 0, which implies, for n E JN, P(Z(n) - R(n) < 
M, infinitely often) ~ 1 - 6. But each time tha.t Z(n) - R(n) < lvl, they 
have a uniformly bounded above zero probability of meeting in a time in­
terval of lenght 1. Hence 

(4.6) P(Z(n) = R(n), for some n) ~ 1 - 6 
I 

Since ( 4.6) holds for all h, this implies that the right -hand side of ( 4.5) 
vanishes. A similar argument works for r < 0, by defining ij0 = u0 • • 
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5. Initial perturbations produce shock translations. 

In this section we show that, as t -+ oo, a perturbation at one site of 

the initial measure v p,>,. produces a translation of the shock of the order 

of (..\ - p)-1 • This behavior can also be observed in the Burgers equation 

with shock initial conditions. Denote R(r,, t) the (random) position at time 

t of a second class particle that at time O is at the origin when the initial 

configura tion is '1· For any configuration TJ, a site ye 7Z, let 11111' be defined 

by (i E {O, 1}) 
yli(x) = { ~(x) for x-:/: y_ 

f/ Z for X = y. 

Define r+ := l.,\ - p)(p - q), r- := (p - ..\)(p - q). 

Theorem 5.1. For all e > 0 it holds 
(5.2) 

lim '. sup IE11,.,A(R(111110,t)-R(TJ1111,t))-(,\-pr1I =0 
,-

00 cr-+c)t<11<(r+-c)t , 

(5.3) 
r+t 1 . 

lim - ~ E11 (R(17 111° t) - R(771111 t)) = p - q 
t-+oo t L-J "•" ' ' 

tr-0 

(5.4) 

In order to prove this Theorem we need the following Lemma 

Lemma 5.5. Let R-1 (t) be a particle such that f/t I- R(t) I- R_1(t). Then 

the initial distribution of(r,,,R(t),R-1(t)) can be chosen such that, for all 

t ~ 0, both TR_ 1(t)(1Jt U R(t)) and TR(t)'lt have distribution vp,>,.S(t) . .Fur­
thermore, with respect to the chosen initial distribution, E(R(t)-R_ 1 (t)) = 
(..\ - p>-1 , t ~ 0. 

Proof. First observe that R_1 (t) is a second class particle with respect to 

,,, U R(t). Consider the coupling (u,,7,,(,,R(t),R-1(t)) with priorities 'Yt 
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I-(, 1- R(t) t- R-1(t). To define the initial distribution pick (a,{) from the 

product measure v~ = v2(-l{(0) = 0) and call Xi the position of the i-th { 

particle, xo = 0. Set ((xi)= 1 for i ~ 2, ;(xi)= 1 for i ~ I, R(O) = x0 = O, 
R-1 (0) = X-1• Under the resulting distribution, TR-i(t)(a,, ,, U R(t), (,) 

and TR(t)(O'c,"(t,(t UR-1(t)) are identically distributed for all t ~ 0. The 

projections Tn_1 (t)(a, U ,, U R(t)) and TR(t)(at U ,,) are both distributed 

according to vp,>.S(t). Hence, denoting 1Jt = u, + ,,, we have proven the 

first part of the Lemma. 

By (3.4) E(R(t) .-X(t)) = 0 and E(R-1(t)-x-1(t)) = 0, where xi(t) 

is the position of the i-th particle of { (x0 (t) = X(t)). This implies that 

E(R(t) - R-1 (t)) = E(X(t) - x_1 (t)) = (.\ - p)-1 • "' 

Proof of 'l'heorem 5.1. Couple ('7Yl1 ) 1 and (77Y1°), -the processes with 

initial configurations 77Y11 and 77Y1°, respectively- according to the basic 

coupling. Let Y(y, t) be the site where (tJYl 1 )t and (77111°), are different. 

Then Y(y, t) behaves like a second class particle with respect to rJ, i.e. 
(riY1°), t-Y(y,t). Now, R(77Y1°,t) = R(77Y11,t) until T1(y) := first time that · 

Y(y, t) = R(riYIO, t). After T1 , R(ri1111, t) = Y(y, t). Define T2 (y) := first 

time that Y(y, t) = R_1 (t). After T2, Y(y, t) = R_1(t). Then 

(5.6) 
Ev,.,A ( R( '71110, t) - R( '71111, t)) 

= Ev,.,A(R(t) - R-1(t), t ~ T2(Y)) + Ev,.,A(R(t) - Y(y, t),T1 :5 t :5 T2(y)) 

A coupling argument shows that the processes can be constructed in such 

a way that {t ~ Ti(y)} is non decreasing for positive y and non increasing 

for negative y. Hence, as in the proof of Theorem 4.3, 

The first term in the right hand side of (5.6) is bounaed by EIR(t) -
R_1 (t)I < C < oo. Hence, by dominated convergence it converges to 

(.\ - p>-1 • The second term in the same equation con~erges to zero by 

an argument analogous to the one we used to prove Theorem 4.3. · 

Since E(IR(t)-Y(y,t) j,T1 ~ t ~ T2) < C < 001 equation (5.6) also 

implies that E 11,.,A( IR(ri111°, t)-R(tJJ.111, t)I) < C < oo. Hence, by dominated 

convergence (5.2) imply (5.3) and (5.4) .• 
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6. Dependence on the initial configuration. 

We prove here a formula relating the diffusion coefficient of the shock R(t) to 

the conjectured diffusion coefficient. We call, as before, v = (p-q)(l-p-.X). 

Define 
fJ := (p- q)p(l - pl+ .X(l - ~). 

-p 

F(t) := E;,,,>-(R(t) - vt)2
, 

I(t) := J dzip,.\(TJ)E ( R(TJ, t) - noiTJ~r;t) - n1 ;TJ~r;t)) 2, 

where R('IJ, t) and r± are defined at the begining of Section 5 and n0 (77, x) := 

E;=0(1 - 77(y)) is the number of empty sites off/ between O and x and 

n1 ( TJ, x) := - E:=2: 17(y) is minus the number of r, particles between the 

origin and x < 0. 

Theorem 6.1. The following bolds 

(6.2) lim F(t) = D + lim I(t) 
t--+00 t t-oo t 

if the limits exist. If not (6.2) holds with lim substituted by either limsup 

or liminf. 

Proof. Summing and substracting vt, I(t) equals 

(6.3) 

j dzip,>.(TJ)E (R(TJ, t) - vt)2 + j dvp,>.(TJ) ( not~.r;t) - (p- q)(l - ..\)t) 2 

+ j dvp,.x(11) (ni;TJ~r~t) -(p-q)pt)
2 

-2 j dvp,.x(TJ) 

x E (R(r,, t) (no(TJ, r+t) _ (p _ q)(l _ ..\)t + n1 (TJ, r-t) _ (p- q)pt)) 
..\-p p-..\ 

where we have used that no(TJ, r+t) and n 1(77r-t) are independent under 

Vp,>.• Dividing by t and taking t ,_ oo, the first tertn gives lim(F(t)/t), and 

the second and third terms give i'J. Then it suffices to show that dividing 
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by t and ta1cing t-+ oo the last term equals -2D. Using the definition of 

ni(., .), the expectation in the last term in (6.3) equals 

Integrating the first term of (6.4), 

• r+t 

- >. ~ j dvp,>.(TJ) LE (R(TJ, t)(TJ(x) - >,.)) 
p :r=O 

r+t 

= - ,\ ~ j dzip,>.(1J) L [E (R(17, t)j17(x) = 1) .,\ 
p :r=O 

' - >.(E (R(T/, t) l11(x) = 1) .\ + E(R(T/, t)l11(x) = 0)(1 - .\))] 

(6.5) 
= - ,\ ~ P .\(1 - .\) j dvp,>.(TJ) 

) r+t 

· x E [E (R(71, t)l'l(z) . 1) - E (R(71, t)l17(x) = 0)] 

r+t 

= - >. ~ .\(1 - .\) J dvp,,.(11) LE ( R('7:r11, t) - R(TJ:r1o, t)) 
p :r=O ' 

' .,, 
Dividing by t and ta1cing the limit as t-+ oo of the first term of (6.4), we 

get using (5.3) on {6.5) that 

and analogously using (5.4), 

. 1 J .. I:o p(l - p) 
lim -, - dvp,>.(TJ) R(TJ, t)(TJ(x) - p) = (p- q) , 

-t-oo A - p _ A - p 
z=r-t 
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This implies the Theorem .• I thank Errico Presutti for telling me the above 

proof. 

Remarks 6.6. From Theorem 6.1 we conclude: 1. The diffusion coefficient 

of the shock is the same as the conjectured diffusion coefficient if and only 

if the position of the shock at time tis given -in the scale ./i- by (A - p)-1 

times the number of holes between O and r+t minus the number of particles 

between O and r-t. In any case, l(t) is non negative, then fJ is always a 

lower bound for the lim inf of F(t)/t as announced in (1.4). 

2. Tightness of R(t) - X(t) and R(t) - G(t) imply that Theorem 6.1 
also holds for X(t) and G(t). When p = 0, X(t) has the distribution 

of a plain tagged particle in the simple exclusion process with density ..\ 

and G{t) has the distribution of the leftmost particle in simple exclusion 

with initial distribution v0 ,~. In the case p = 0, it is known that D := 

lim,_00 t-1 E(X(t) - EX(t))2 = D = (p- q)(l - ..\) [fd). This implies that 
lim,_00 I(t)/t = 0, hence in the scale ,/i, the position of R(t) is determined 

by the initial configuration in the sense discussed above. This was proved , 
for G(t) when p = 1 by Gardner and Presutti [gp]. This and the previous 
remark imply that we get for free the central limit theorem of [k] for the 
tagged particle and of [dkps] for the leftmost particle. Unfortunately one 
needs to use the precise computation of [df] for the diffusion coefficient. 
An independent proof that liml(t)/t = 0 would give a direct proof of the .. 

central limit theorems for all these objects. 
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