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Abstract 
The correct estimate of the water requirements of a crop, besides favoring its full development, also allows the 
rational use of water. In this context, this study aimed to evaluate water balance in the soil and estimated through 
climatic methods for the melon crop. Field water balance was daily determined along a period of 70 days. 
Climatic water balance was determined based on the reference evapotranspiration estimated by the methods of 
Penman-Monteith, Thornthwaite and Hargreaves-Samani. It was concluded that climatic methods do not 
estimate correctly water storage in the soil and, consequently, also the balance. Therefore, they should not 
substitute the soil water balance method to determine these variables. The water management for the melon crop 
based on evapotranspiration estimated through climatic methods results in overestimation of the water depth to 
be applied in the soil, in the initial growth stage, and underestimation in the periods of highest water demand. 

Keywords: evapotranspiration, irrigation, water storage 

1. Introduction 
Irrigation is essential to meet the water requirements of the plants, especially in regions like Northeast Brazil. This 
region stands out for the great productive potential, particularly with the melon crop (Cucumis melo L.), 
responsible for 95% of the national production (IBGE, 2016). In regions where the scarcity of water resources 
prevails in most of the time, special care must be taken with respect to water use and management, since it is a 
limiting factor in the production of agricultural crops (Libardi et al., 2015). 

This way, the measurement of the water requirement of a crop should be made, always when possible, based on 
parameters obtained in situ (Libardi et al., 2015), because they control the availability of water to plants (Hartmann 
et al., 2012). According to the same authors, changes in the hydraulic soil properties influence the water supply and 
the consumption by transpiration and, thus, affect the soil water balance. For Timm et al. (2002), water balance 
performed in the soil is important for rational water management and consequent maximization of yield. However, 
the soil water balance equation is not always used because of the difficulty of obtaining its components (Ghiberto 
et al., 2011), since it requires detailed information about the hydraulic soil properties (Ma et al., 2013; Campos et 
al., 2016). In this context, climatic water balance has been used because its parameters can be easily obtained, since 
it utilizes data of climatic temporal series. 

Nevertheless, since it is a generalized recommendation for completely different situations, the climatic water 
balance may not represent the actual conditions of water in the soil, and the greatest disadvantage in this type of 
balance is the high spatial variability of the climatic components (Libardi et al., 2015). The main component for the 
determination of climatic water balance is the evapotranspiration, which can be estimated through various physical 
and empirical models, such as Thornthwaite (Th), Penman-Monteith (P-M) (Bruno et al., 2007) and Hargreaves 
and Samani (H-S) (Arellano & Irmak, 2016), among others. The difference between these models is in the 
parameters used to determine the evapotranspiration, because the model of P-M uses data of radiation and wind 
speed, H-S uses temperature and Th uses temperature and photoperiod (Arellano & Irmak, 2016).  
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(2) 

where, K() is the hydraulic conductivity as a function of soil water content for the depth of 0.3 m; t(0.2 m) and 
t(0.4 m) are the total potentials at the depths of 0.2 and 0.4 m, respectively. Runoff (R) was disregarded, 
because the area is considered as flat. Volumetric water content () was obtained through readings of 
tensiometers at the depths of 0.1, 0.2 and 0.3 m. Water storage and storage variation were daily calculated 
through the trapezoid rule. Crop evapotranspiration (ET) was obtained through direct measurement of all 
components of the field balance, thus leaving it as unknown. 

The climatic water balance for the melon crop was determined based on the methods of Penman-Monteith (P-M), 
Thornthwaite (T), Hargreaves-Samani (H-S) and Hargreaves-Samani with data adjusted to the local conditions 
(H-Sadj). The daily means of ETo were calculated through the previously cited methods using data from the 
conventional weather station of the Federal University of the Semi-Arid Region. 

ETc (maximum or potential crop evapotranspiration) was determined through the multiplication of the reference 
evapotranspiration by the crop coefficient (Kc). The Kc was considered according to the development stage of 
the melon crop, as 0.5, 0.8, 1.05 and 0.75 for the initial, vegetative, fruiting and maturation stages, respectively. 
Potential reference evapotranspiration was daily measured through the Class A Pan method. The variation of soil 
water storage was estimated using data of water conditions in the soil and the climate of the region, according to 
Equation 3,  

±∆WS = P + I – ET – D                              (3) 

where, ±∆WS represents the variation of water storage in the soil (mm) relative to the layer of 0-0.30 m; the 
negative sign indicates water deficit while the positive sign indicates water excess. When ∆WS is negative, 
drainage is null (D = 0); when it is positive, the excess includes runoff and drainage.  

The Penman-Monteith model is classified by the Food and Agriculture Organization (FAO) as a standard 
equation to estimate ETo (potential evapotranspiration). Therefore, it is advisable to adjust empirical models of 
evapotranspiration through this standard (Allen et al., 1998). The model is represented by Equation 4, 

(4) 

where, ETo is the reference evapotranspiration (mm day-1), Rn is the total net radiation of the grass (MJ m-2 d-1), 
G is the heat flow density in the soil (MJ m-2 d-1), Tm is the mean daily air temperature (°C), U2 is mean daily 
wind speed at height of 2 m (m s-1), es is the vapor saturation pressure (kPa), ea is the partial vapor pressure (kPa), 
es – ea is the vapor saturation deficit (kPa), ∆ is the slope of the vapor pressure curve at the point Tm (kPa °C-1) 
and γ is the psychrometric coefficient (kPa °C-1).  

The partial vapor pressure (ea) was estimated by substituting the dew point temperature by the minimum daily air 
temperature minus 2 ºC (Td = Tn – 2 ºC), as suggested by Allen et al. (1998) for semi-arid climates, Equation 5, 

(5) 

Global solar radiation (Rs) was estimated through the method of Hargreaves and Samani (1982), Equation 6, 

(6) 

where, Krs is the empirical adjustment coefficient – the value depends on the distance from the coast, equal to 
0.19 for coastal region and 0.16 for continental region, Tx and Tn are maximum and minimum air temperatures 
(ºC) and Ra is the radiation on top of the atmosphere (MJ m-2 d-1). 

The model of Thornthwaite (1948) estimates ET0 using data of mean daily temperature or of a certain period (T) 
and photoperiod (N) as entry parameters. In the present study, since the mean annual temperature is higher than 
26.5 ºC, ETp was calculated by Equation 7,  

(7) 

where, ETp is the mean monthly evapotranspiration (mm 30 d-1). Since the water balance in the present study 
was performed daily, ET0 was estimated using Equation 8 (mm day-1), described in Sentelhas et al. (2010), 

(8) 
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The time of maximum insolation (N) was determined by Equation 9, in which ωs is the angle of solar radiation at 
sunset,  

(9) 

The model of Hargreaves and Samani (1985) estimates ETo using only the values of maximum, minimum and 
mean air temperatures and radiation on top of the atmosphere, Equation 10, 

(10) 

where, α is an empirical parameter, whose original value was 0.0023, and β is an exponential empirical 
parameter, whose original value was 0.5. 

Prior to comparison and calculation of water balance in the soil using field data, the parameters of the H-S 
equation were calibrated, thus adjusting the empirical model for ETo estimation to the studied site. The 
parameters of the Hargreaves and Samani (1985) equation were adjusted using Microsoft Excel®, through the 
Solver application, following the methodology described and used by Wraith and Or (1998). This technique 
allows to minimize the sum of square deviation, so that the closer to zero the difference between the values 
obtained through P-M and H-S, the better the calibration, Equation 11, 

             (11) 

where, n is the number of observations. 

The statistical indices suggested by Legates and McCabe Jr (1999): Willmott’s index of agreement (d), 
Nash-Sutcliffe coefficient (E) and root mean squared error (RMSE), were used to evaluate the models,X 

                            

(12) 

(13) 

(14) 

where, Xi is the value obtained at field (independent variable), Yi is the value estimated by the equation based on 
climatic data, X is the mean value obtained at field and Y is the mean value estimated based on climatic data. 

The components were compared by linear regression, analysis of the coefficients applying the Student’s t-test at 
0.10 probability level, correlation and/or comparisons between sequenced values. Climatic balances used the 
following data: available water capacity = 26 mm, field capacity = 79 mm, permanent wilting point = 53 mm, 
latitude  = -05º08’, year 2006, initial NDA (number of days in the Julian calendar) = 3, corresponding to 
January 03, and ∆t = 1 day. 

3. Results and Discussion 
Based on field measurements, the evaluated soil volume maintained, in terms of water depth, approximately 15 
mm during all the studied period. When the estimate was made using climatic water balances, this condition was 
not observed, regardless of the method used, with underestimation until the 50 days after planting and 
overestimation in the remaining period (Figure 2).  
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Table 1. Significance test for the difference between the coefficients of the regression equations by the 
estimation methods of the water balance components 

Water balance components (mm) Method 
Slope Intercept 

t observed t tabulated t observed t tabulated 

Variation in water storage H-Sadj × H-S 0.242 1.567 0.008 1.567 

H-Sadj × Th 0.178 1.567 0.005 1.567 

H-Sadj × P-M 0.462 1.567 0.016 1.567 

H-S × Th 0.073 1.567 0.002 1.567 

H-S × P-M 0.729 1.567 0.024 1.567 

Th × P-M 0.678 1.567 0.024 1.567 

Drainage H-Sadj × H-S 0.133 1.567 0.864 1.567 

H-Sadj × Th 0.268 1.567 0.802 1.567 

H-Sadj × P-M 0.165 1.567 1.336 1.567 

H-S × Th 0.410 1.567 1.666 1.567 

H-S × P-M 0.014 1.567 2.201 1.567 

Th × P-M 0.488 1.567 2.201 1.567 

Evapotranspiration H-Sadj × H-S 0.777 1.567 0.143 1.567 

H-Sadj × Th 0.165 1.567 0.256 1.567 

H-Sadj × P-M 1.710 1.567 0.449 1.567 

H-S × Th 0.716 1.567 0.114 1.567 

H-S × P-M 2.554 1.567 0.306 1.567 

Th× P-M 2.046 1.567 0.306 1.567 

 

The evapotranspiration obtained through field method and climatic methods (P-M, Th, H-S and H-Sadj) is 
presented in Figure 7. Since these methods are based on different principles to estimate the removal of water 
from the soil, the first one with measurements directly in the soil and the second one with climatic data, it 
became evident the difference for the variable in all stages of the melon phenological cycle, differing from the 
result found by Bruno et al. (2007). These authors compared water balances at field and through climatic 
methods, and observed similarities in evapotranspiration, water storage variation in the soil and drainage. These 
differences may result from the number of days of the balance, because, unlike Bruno et al. (2007), the balance 
was daily calculated in this study, and/or from the different edaphoclimatic conditions.  
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Table 2. Statistical indexes of Willmott (d), Nash-Sutcliffe (E) and root mean squared error (RMSE), for the 
comparison of soil water balance by Penman-Monteith (P-M), Thornthwaite (Th), Hargreaves-Samani (H-S) and 
Hargreaves-Samani adjusted (H-Sadj) climatic methods 

P-M Th H-S H-Sadj 

d 0.809 0.744 0.704 0.738 

E 0.551 0.513 0.462 0.480 

RMSE (mm day-1) 1.801 1.877 1.972 1.939 

 

The Nash-Sutcliffe coefficient (E) was also the highest one for the P-M model, indicating that it is the most 
efficient to estimate melon ET under the semi-arid conditions. For the estimation model to be classified as 
satisfactory, its value must be at least 0.50 (Moriasi et al., 2007) and, therefore, the results indicate the viability 
of using the models P-M and Th to estimate ET.  

In turn, the errors, represented by the root mean squared error, were all above 1.8 mm day-1, although they were 
lower than those calculated by Jacovides and Kontoyiannis (1995) with the Penman-Monteith equation in a study 
on statistical models utilized in the analyses of equations that estimate ETo.  

4. Conclusions 
The climatic methods do not estimate correctly water storage in the soil and, consequently, also the balance; 
hence, they should not substitute the soil water balance method to determine these variables. 

The water management for the melon crop based on evapotranspiration estimated through climatic methods 
results in overestimation of the water depth to be applied in the soil in the initial growth stage and in 
underestimation in the periods of highest water demand. 
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