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Heteroscedastic controlled calibrationmodel
applied to analytical chemistry
Betsabé Blasa∗ andMônica C. Sandovala

In chemical analyses performed by laboratories, one faces the problem of determining the concentration of a chem-
ical element in a sample. In practice, one deals with the problem using the so-called linear calibration model,
which considers that the errors associated with the independent variables are negligible compared with the for-
mer variable. In this work, a new linear calibration model is proposed assuming that the independent variables are
subject to heteroscedastic measurement errors. A simulation study is carried out in order to verify some proper-
ties of the estimators derived for the new model and it is also considered the usual calibration model to compare
it with the new approach. Three applications are considered to verify the performance of the new approach.
Copyright © 2010 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

The calibration model, where a response variable is modelled as a
function of the independent variable, is defined in two stages. At
the first stage (or calibration experiment), a regression model for
the relation between the dependent variable Y and the indepen-
dent variable x is established. Afterwards, at the second stage (or
the prediction stage), the model obtained at the previous stage
is used to make inference on the unknown value X0 related to a
new observation Y0.

The usual calibration model [1] (see Appendix B) is commonly
used to estimate the concentration X0 of a chemical species in
a test sample. It typically assumes that the independent vari-
able is fixed and it is not subject to error. The estimator given in
Reference [1] (Equation (C.3)) is known as a classical estimator.
There is another estimator in the literature called inverse estima-
tor which is derived by considering the regression of x on Y. We
can find an interesting review in Reference [2] about the wide vari-
ety of approaches to both univariate and multivariate calibrations
without the assumption of error in the independent variable.

For continuous variables, measurement error is generally char-
acterized as either classical or Berkson type (see Reference [3]).
The classical error model is appropriate when an attempt is made
to determine x directly, but one is unable to do so because of var-
ious errors in measurement. On the other hand, the Berkson-type
error [4] arises when the variable X can be set to pre-assigned
target values but not achieved exactly. As it was mentioned
in References [5], when there exists the Berkson-type case the
measurement error is independent of the observed predictor (X)
but is dependent on the unobserved true variable x, while on
the classical error model, the measurement error is independent
of x, but dependent on the observed variable. Due to this dif-
ference in the stochastic structure, we have completely different
procedures in parameter estimation and inference about the
models.

Reference [6] reviews the regression techniques by using the
method of least squares with error in both axes and discusses the

advantages and limitations of the different approaches consider-
ing classical error models.

In applications in analytical chemistry, the independent vari-
able is subject to error which arises from the preparation process
of a standard solution. Many studies, such as [7–9], attempt to
consider the uncertainties due to the preparation process of the
standard solutions by applying the error propagation law to the
standard error of the estimator of X0.

When concentration of the standard solution is pre-fixed by
the chemical analyst and a process is carried out attempting to
attain it, this process generates errors. Hence, in this case the
so-called controlled variable (or Berkson-type variable) [4] arises,
where the controlled variable X is defined by the pre-fixed con-
centration value of the standard solution which is expressed by
the equation X = x + ı, where x is the unobserved variable and ı

is the measurement error variable.
In Reference [10], the so-called homoscedastic controlled

calibration model is proposed. This model is formulated in the
framework of the usual calibration model assuming that the
independent variable is a controlled variable and the associated
measurement errors have equal variances.

In References [11] and [12], some methods to compute the
uncertainties in certain values obtained through measurements
are studied. In Reference [12], the uncertainties of standard
solutions are computed and it is observed that these uncertain-
ties depend on the concentration values, so we can observe
that the usual calibration model and the homoscedastic con-
trolled calibration model do not seem to be the more suitable
ones. This problem motivates us to study a calibration model
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that considers the errors’ variability of the preparation of stan-
dard solutions. In this work, we propose a calibration model
that incorporates the errors’ variability arisen from the prepa-
ration process of the standard solution and we call it as
the heteroscedastic controlled calibrationmodel. This work is a
continuation to our previous paper [10] in which the study of
the so-called homoscedastic controlled calibration model which
assumed equal variance errors was undertaken.

The paper is organized as follows. In Section 2, we formulate
the heteroscedastic controlled calibration model. In Section 3, a
simulation study to test the new approach is presented. In Sec-
tion 4, three applications are considered which show that the
proposed model seems to be more adequate. Section 5 presents
our concluding remarks. Finally, some tables showing the results
of the simulation study, the usual calibration model and the
maximum likelihood estimator via the expectation-maximization
(EM) method are presented in Appendices A, B and C, respecti-
vely.

2. THE PROPOSEDMODEL

Among the relevant problems in chemical analysis is the one
related to the estimation of the concentration X0 of a chemical
compound in a given sample. In order to tackle this problem a
statistical calibration model is used, which is defined by a two-
step process. This problem has been considered in References
[13] and [14].

The first stage of the calibration model is given by data points
(X, Y ) which is determined in an experiment where the inde-
pendent variable X is the one that the experimenter selects.
For instance, the concentrations of the standard solutions that
a chemist prepares are independent variables since any concen-
tration may be chosen. The dependent variable Y is a measurable
property of the independent variable. For example, the depen-
dent variable may be the amount of intensity supplied by the
plasma spectrometry method, since the intensity depends on the
concentration.

In the second stage of the calibration model, a suitable sample
related to the unknown concentration X0 is prepared in order to
obtain the measurements Y0.

When the standard concentration X is fixed by the analyst,
the process of preparation attempting to get it produces an
error ı, and the unobserved quantity attained is x. Consider-
ing the usual calibration model defined by Equations (C.1) and
(C.2) in Appendix B and the equation X = x + ı, we define the
heteroscedastic controlled calibration model as

Yi = ˛ + ˇxi + �i, i = 1, 2, . . . , n, (1)

Xi = xi + ıi, i = 1, 2, . . . , n, (2)

Y0i = ˛ + ˇX0 + �i, i = n + 1, n + 2, . . . , n + k. (3)

Where n is the number of different observed points (Xi, Yi), k is a
number of replicate measurements of the response correspond-
ing to the unknown X0.

We consider the following conditions:

� X1, X2, . . . , Xn take pre-fixed values by the analyst.
� �1, �2, . . . , �n+k are independent and normally distributed with

mean 0 and variance �2
� .

� ı1, ı2, . . . , ın are independent and normally distributed with
mean 0 and variance ı2

�i
, i = 1, . . . , n are supposed to be

known.
� ıi, i = 1, . . . , n and �i, i = 1, . . . , n + k are independent.

Observe that in the model described above we only consider
the case when the variances �2

ıi
, i = 1, . . . , n are known. It is a

generalization of the homoscedastic controlled calibration model
discussed in Reference [10], when it is considered �2

ıi
= �2

ı for
all i and the known �2

ı case. This new model is also a gen-
eralization of the usual calibration model in which one takes
ıi = 0, i = 1, . . . , n.

In this paper, the approach considered is based on the likeli-
hood function [15]. For the heteroscedastic controlled calibration
model, the logarithm of the likelihood function is given by

l(˛, ˇ, X0, �2
� ) ∝ −1

2

n∑
i=1

log(�i) − k

2
log(�2

� )

−1

2

[
n∑

i=1

(Yi − ˛ − ˇXi)2

�i

+
n+k∑

i=n+1

(Y0i − ˛ − ˇX0)2

�2
�

]
, (4)

where �i = �2
� + ˇ2�2

ıi
, i = 1, . . . , n. Solving ∂l/∂˛ = 0 and

∂l/∂X0 = 0 one can get the maximum likelihood estimator of ˛

and X0 given, respectively, by

ˆ̨ = Ȳ − ˆ̌ X̄ and X̂0 = Ȳ0 − ˆ̨
ˆ̌

. (5)

From Equations (4) and (5), it follows that the logarithm of the
likelihood function for (˛, ˇ, X0, �2

� ) can be written as

l( ˆ̨ , ˇ, X̂0, �2
� ) ∝ −1

2

n∑
i=1

log(�i) − k

2
log(�2

� )

−1

2

[
n∑

i=1

[(Yi − Ȳ ) − ˇ(Xi − X̄ )]2

�i

+ 1

�2
�

n+k∑
i=n+1

(Y0i − Ȳ0)2

]
. (6)

Making ∂l/∂̌ = 0, ∂l/∂�2
� = 0 in the logarithm of the likelihood

function (6), we have the following equations:

n∑
i=1

ˇ�2
ıi

[
�i − (Yi − ˛ − ˇXi)2

]
�2

i

=
n∑

i=1

Xi(Yi − ˛ − ˇXi)

�i

, (7)

n∑
i=1

�i − (Yi − ˛ − ˇXi)2

�2
i

=
n+k∑

i=n+1

(Y0i − Ȳ0)2

�4
�

− k

�2
�

. (8)

The estimates of ˇ and �2
� can be obtained through some iterative

method that solves Equations (7) and (8).
Another method for finding the estimator of � = (˛, ˇ, X0, �2

� )
is the EM algorithm, which is a method for finding maximum-
likelihood estimates of population parameters of underlying
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distribution from a given incomplete data set, originally intro-
duced in Reference [16]. It is a widely applicable approach to
the iterative computation of maximum likelihood estimators. In
Appendix C we present this method for our new approach, which
gives the same estimates than maximizing the likelihood function
directly described above.

The Fisher expected information I(�) = E
[

∂l(�)

∂�
∂l(�)

∂�
�
]

is given by

I(�) =




n∑
i=1

1

�i

+ k

�2
�

n∑
i=1

Xi

�i

+ kX0

�2
�

ǩ

�2
�

0

n∑
i=1

Xi

�i

+ kX0

�2
�

n∑
i=1

X2
i

�i

+ 2ˇ2

n∑
i=1

�4
ıi

�2
i

+ kX2
0

�2
�

ǩ X0

�2
�

ˇ

n∑
i=1

�2
ıi

�2
i

ǩ

�2
�

ǩ X0

�2
�

ǩ 2

�2
�

0

0 ˇ

n∑
i=1

�2
ıi

�2
i

0

n∑
i=1

1

2�2
i

+ k

2�4
�




.

When k = qn, q ∈ Q+ and n → ∞, the estimator �̂ is approxi-
mately normally distributed with mean � and variance I(�)−1. Since
our main interest is to obtain the estimate of X0 and its variance
estimator, we obtain the approximate variance to order n−1 for X̂0

from the Fisher expected information matrix, which is given by

V (X̂0) = �2
�

ˇ2

[
1

n
+ 1

k
− E1

n�2
� E2

]
, (9)

where E1 and E2 are given by

E1 = −n

(
�4

�

n∑
i=1

1

�2
i

+ k

)
n∑

i=1

(Xi − X0)2

�i

+ �2
�

(
k + �4

�

)

×
(

1 +
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1

�2
i

)
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X2
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1
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)2

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�
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)
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)2

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�4
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i


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E2 =
(

�4
�
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1

�2
i
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)
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X2
i

�i
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1
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−
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Xi
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+ 2ˇ2
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1
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ıi
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i
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i
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1
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]

Note that when �2
ıi

= 0, i = 1, . . . , n, expression (9) is reduced to
the variance of the usual model given in (C.5) and when �2

ıi
= �2

ı

(for all i) the expression (9) is also reduced to the variance of the
homoscedastic model when �2

ı is known (see Equation (2.12) of
Reference [10]).

In order to construct a confidence interval for X0 we consider
the interval (C.7), where V̂ (X̂0C ) is the estimated variance that
follows from Equation (9).

3. SIMULATION STUDY

We present a simulation study to compare the performance of the
estimators obtained from the heteroscedastic controlled calibra-
tion model (Proposed-M) with the results obtained by considering
the usual model (Usual-M).

Three thousand samples generated from the Proposed-M
were considered. In all the samples, the parameters ˛ and ˇ

take the values 0.1 and 2, respectively. The range of values for
the controlled variable was [0,2]. The fixed values for the con-
trolled variable were x1 = 0, xi = xi−1 + 2/(n − 1), i = 2, . . . , n,

and the parameter values X0 were 0.01 (extreme inferior value),
0.8 (near to the central value) and 1.9 (extreme superior value).
For the first and second stages, we consider the sample of sizes
n = 5, 20, 100, 5000 and k = 2, 20, 100, 500, respectively. We
consider �2

� = 0.04 and the maximum parameter values of �2
ı as

max{�2
ıi
}n
i=1= 0.1. We consider �2

ıi
= i × 0.1/n for i = 1, . . . , n.

The empirical mean bias is given by
∑3000

j=1 (X̂0 − X0)/3000 and

the empirical mean squared error (MSE) is given by
∑3000

j=1 (X̂0 −
X0)2/3000. The mean estimated variance of X̂0 is given by∑3000

j=1 V̂ (X̂0)/3000. The theoretical variances of X̂0 are referred to
expressions (C.5) and (9) evaluated on the relevant parameter
values.

In Table A.I (Appendix A), we observe that, in general, the bias
of X̂0 from the usual model is smaller than the value supplied by
the proposed model, whereas the outcome from the usual model
is greater compared with MSE of the proposed model. Also, we
observe that the mean estimated variance from the proposed
model is closer to the theoretical variance as compared to the
outcome from the usual model.

Analysing Table A.II (Appendix A), we observe that the ampli-
tude of the intervals for the parameter X0 from the proposed
model, in most of the cases, is smaller when compared with the
amplitude from the usual model. When n is large, the amplitude
from the usual model is large; this makes the covering percentage
from the usual model to be overestimated (approaching 100%).
Since the confidence interval was constructed with a 95% confi-
dence level and, in most of the cases of n, k and X0 the covering

J. Chemometrics. 2010; 24: 241–248 Copyright © 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table I. Concentration (mg/g), uncertainty(u(Xi)) and intensity of the standard solutions of chromium, cadmium and lead elements

Chromium element Cadmium element Lead element

Xi u(Xi) Intensity Xi u(Xi) Intensity Xi u(Xi) Intensity

0.05 0.00016 6455.900 0.05 0.00016 4.89733 0.05 0.00015 0.9471
0.11 0.00027 13042.933 0.10 0.00027 9.706 0.10 0.00025 1.46833
0.26 0.00040 32621.733 0.25 0.00041 23.41333 0.26 0.00039 3.09033
0.79 0.00122 97364.500 0.73 0.00122 69.73 0.77 0.00117 8.40533
1.05 0.00161 129178.100 1.01 0.00168 96.85667 1.01 0.00155 10.92667

Table II. Intensity of the sample solutions of chromium,
cadmium and lead elements

Chromium element Cadmium element Lead element

10173.6 5.066 1.303
10516.9 5.027 1.290
10352.2 5.085 1.341

percentage from the proposed model approaches 95%, indicat-
ing that the proposed model is more suitable.

4. APPLICATION

In this section, we illustrate the usefulness of the proposed model
by applying it to the data supplied by the chemical laboratory of
the ‘Instituto de Pesquisas Tecnológicas do Estado de São Paulo
(IPT)’–Brazil. The outcome from the proposed approach is also
compared with the results from the usual model. Our main inter-
est is to estimate the unknown concentration value X0 of a sample
of the chemical elements such as chromium, cadmium and lead.

Table I presents the fixed values of concentration for the
standard solutions with their related uncertainty (u(Xi)) and the
corresponding intensities for the chromium, cadmium and lead
elements. The uncertainties considered are computed using the
method recommended by the ISOGUM guide (see Reference
[17]) and the intensities are supplied by the plasma spectrom-
etry method. These data are referred to as the first stage of the
heteroscedastic controlled calibration model.

Moreover, Table II presents the intensities of the sample solu-
tions of chromium, cadmium and lead elements. These data are
referred to as the second stage of the calibration model.

From Table I we verify that the uncertainty values increase with
the concentration values.

We consider �2
ıi

= u(Xi)2. The expanded uncertainty U(X̂0) is
obtained multiplying the squared root of the estimate of variance
of X̂0 by the value 1.96 (see References [7] and [12]).

We use the optim command from the R-project program
to estimate the parameters ˇ and �2

� on the likelihood func-
tion of the proposed model (6). We use as initial point
the estimates from ˆ̌ = ∑n

i=1(Xi − x̄)(Yi − Ȳ )/
∑n

i=1(Xi − X̄ )2 and
�̂2

� = ∑n

i=1(Y0i − Ȳ0)2/n, which are the estimators from the
homoscedastic controlled calibration model when �2

ı is unknown
[10].

Table III presents estimates of ˛, ˇ, X0, V (X̂0) and the expanded
uncertainty, U(X̂0), from the proposed model (Proposed-M) of
chromium, cadmium and lead elements. Also, we present the
estimates obtained from usual calibration model (Usual-M) to
observe the performance of both models.

In Table III, for cadmium and lead elements, we observe that the
estimates of ˛, ˇ and X0 from the Proposed-M and Usual-M are
the same. For the chromium element, there are small differences.
Also, we observe that for the chromium element there is a small
difference between the estimates of X0 and U(X̂0) obtained respec-
tively from the usual model and the proposed model. Despite the
relevant estimates of ˛, ˇ and X0 from both approaches for cad-
mium and lead element are similar, the estimates of V (X̂0) and
U(X̂0) differ considerably, the estimates obtained adopting the
usual model is greater than the estimates outcome supplied by
the proposed model.

5. CONCLUDING REMARKS

In many applications in chemical analysis the independent vari-
able is measured with Berkson-type error. Due to the fact that
the error in the independent variable is of the Berkson type,

Table III. Estimates of ˛, ˇ, X0, V (X̂0) and U(X̂0) related to usual and heteroscedastic model, for the chromium, cadmium and lead
element

Chromium element Cadmium element Lead element

Parameters Usual-M Proposed-M Usual-M Proposed-M Usual-M Proposed-M

˛ 134.9469 124.2801 0.454801 0.454801 −0.3822126 −0.3822126
ˇ 123003.7 123027.3 10.54381 10.54381 94.29881 94.29881
X0 0.08302691 0.08309769 0.08123556 0.08123556 0.05770535 0.05770535
V (X̂0) 4.357870e-06 4.474395e-06 7.898643e-05 4.440342e-06 0.0001181068 7.237226e-08
U(X̂0) 0.004091601 0.004145942 0.01741936 0.004130135 0.02130068 0.000527281

www.interscience.wiley.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 241–248
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we believe that our approach is the suitable one. In analytical
chemistry applications, the Usual-M is used assuming that the
measurement errors are negligible. However, we have considered
the Usual-M in our study just to show that the incorrect use of it
gives appreciable differences on the estimates of V (X̂0) and U(X̂0)
compared with the corresponding estimates from the proposed
model. Thus, we have shown that the measurement errors might
not be always negligible, so we can conclude that the usual model
is not always the appropriate one in this context.

Various aspects of the model studied above deserve attention
in future research, e.g. it is not considered the error arisen from
the test sample solution preparation and the proposed model can
be studied by considering other type of distribution of the errors,
such as the skew normal distribution [18]. In particular, one of
the drawbacks of the usual model is that it does not consider
the error in the independent variable; we believe that despite the
fact that this error could be very small, it must be considered as
an important property of the calibration model.
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APPENDIX

A: SIMULATION RESULTS

Table A.I. Empirical bias and mean squared error, the mean estimated variance and theoretical variance of X̂0

X0 n k Usual-M Proposed-M Usual-M Proposed-M Theoretical variance

Bias MSE Bias MSE V̂ (X̂0) V̂ (X̂0) V (X̂0)

0.01 5 2 −0.0156 0.0350 −0.0318 0.0334 0.0398 0.0143 0.0257
20 −0.0236 0.0319 −0.0445 0.0278 0.0131 0.0156 0.0211
100 −0.0183 0.0306 −0.0429 0.0276 0.0084 0.0155 0.0207

20 2 −0.0076 0.0119 −0.0049 0.0100 0.0365 0.0053 0.0097
20 −0.0055 0.0074 −0.0073 0.0055 0.0081 0.0036 0.0051
100 −0.0059 0.0068 −0.0101 0.0050 0.0036 0.0033 0.0047

100 2 0.0003 0.0063 0.0020 0.0059 0.0315 0.0047 0.0059
20 −0.0023 0.0019 −0.0020 0.0014 0.0046 0.0011 0.0014
100 −0.0014 0.0015 −0.0013 0.0010 0.0017 0.0007 0.0010

5000 2 0.0008 0.0055 0.0008 0.0055 0.0300 0.0050 0.0050
20 0.0000 0.0005 0.0000 0.0005 0.0030 0.0005 0.0005
100 −0.0003 0.0001 −0.0004 0.0001 0.0006 0.0001 0.0001
500 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000

0.8 5 2 0.0061 0.0193 0.0025 0.0202 0.0254 0.0089 0.0167
20 0.0033 0.0135 −0.0019 0.0139 0.0047 0.0081 0.0122
100 0.0014 0.0132 −0.0037 0.0137 0.0029 0.0078 0.0118

20 2 0.0015 0.0077 0.0015 0.0077 0.0291 0.0042 0.0074
20 0.0016 0.0032 0.0009 0.0032 0.0036 0.0020 0.0029
100 −0.0005 0.0026 −0.0018 0.0026 0.0012 0.0016 0.0025

100 2 0.0010 0.0055 0.0014 0.0054 0.0299 0.0044 0.0055
(Continues)

J. Chemometrics. 2010; 24: 241–248 Copyright © 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem

 1099128x, 2010, 5, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.1275 by U
niversity O

f Sao Paulo - B
razil, W

iley O
nline L

ibrary on [03/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2
4
6

B. Blas and M. C. Sandoval

Table A.I. (Continued)

X0 n k Usual-M Proposed-M Usual-M Proposed-M Theoretical variance

Bias MSE Bias MSE V̂ (X̂0) V̂ (X̂0) V (X̂0)

20 0.0006 0.0010 0.0007 0.0010 0.0031 0.0008 0.0010
100 −0.0001 0.0006 −0.0001 0.0006 0.0007 0.0004 0.0006

5000 2 0.0014 0.0051 0.0014 0.0051 0.0300 0.0050 0.0050
20 0.0006 0.0005 0.0006 0.0005 0.0030 0.0005 0.0005
100 0.0001 0.0001 0.0001 0.0001 0.0006 0.0001 0.0001
500 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

1.9 5 2 0.0500 0.0802 0.0582 0.0704 0.0432 0.0275 0.0482
20 0.0314 0.0620 0.0503 0.0562 0.0124 0.0278 0.0435
100 0.0434 0.0645 0.0594 0.0587 0.0085 0.0283 0.0430

20 2 0.0070 0.0213 0.0054 0.0185 0.0351 0.0086 0.0166
20 0.0117 0.0160 0.0127 0.0132 0.0075 0.0067 0.0118
100 0.0099 0.0161 0.0104 0.0130 0.0033 0.0064 0.0114

100 2 0.0016 0.0080 0.0007 0.0076 0.0312 0.0055 0.0074
20 0.0019 0.0035 0.0014 0.0029 0.0043 0.0017 0.0028
100 0.0001 0.0031 0.0009 0.0025 0.0015 0.0013 0.0024

5000 2 −0.0008 0.0051 −0.0009 0.0051 0.0300 0.0050 0.0050
20 −0.0003 0.0006 −0.0004 0.0006 0.0030 0.0005 0.0005
100 −0.0003 0.0002 −0.0002 0.0001 0.0006 0.0001 0.0001
500 0.0000 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001

Table A.II. Covering percentage (%) and amplitude (A) of the intervals with a 95% confidence level for the parameter X0

X0 n k Usual-M Proposed-M

% A % A

0.01 5 2 89 0.35 78 0.22
20 78 0.21 89 0.24
100 70 0.17 88 0.24

20 2 100 0.37 74 0.13
20 95 0.17 90 0.12
100 85 0.12 90 0.11

100 2 100 0.35 84 0.13
20 100 0.13 91 0.06
100 96 0.08 90 0.05

5000 2 100 0.34 94 0.14
20 100 0.11 95 0.04
100 100 0.05 94 0.02
500 100 0.02 94 0.01

0.8 5 2 90 0.28 78 0.18
20 73 0.13 87 0.17
100 63 0.10 87 0.17

20 2 100 0.33 73 0.11
20 95 0.12 87 0.09
100 81 0.07 88 0.08

100 2 100 0.34 86 0.12
20 100 0.11 91 0.05
100 97 0.05 89 0.04

5000 2 100 0.34 95 0.14
20 100 0.11 95 0.04
100 100 0.05 95 0.02
500 100 0.02 93 0.01

(Continues)
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Table A.II. (Continued)

X0 n k Usual-M Proposed-M

% A % A

1.9 5 2 78 0.35 81 0.31
20 59 0.20 86 0.32
100 51 0.17 87 0.32

20 2 98 0.36 78 0.17
20 81 0.17 84 0.16
100 62 0.11 84 0.16

100 2 100 0.34 87 0.14
20 97 0.13 87 0.08
100 83 0.08 84 0.07

5000 2 100 0.34 95 0.14
20 100 0.11 94 0.04
100 100 0.05 93 0.02
500 99 0.02 89 0.01

B: USUAL CALIBRATIONMODEL

The first and second stage equations of the usual linear calibration
model are given, respectively, by

Yi = ˛ + ˇxi + �i, i = 1, 2 · · · , n, (C.1)

Y0i = ˛ + ˇX0 + �i, i = n + 1, n + 2, . . . , n + k. (C.2)

We consider the following assumptions:

� x1, x2, . . . , xn take fixed values, which are considered as true
values.

� �1, �2, . . . , �n+k are independent and normally distributed with
mean 0 and variance �2

� .

The model parameters are ˛, ˇ, X0 and �2
� and the main interest is

to estimate the quantity X0.
The maximum likelihood estimators of the usual calibration

model are given by

ˆ̨ = Ȳ − ˆ̌x̄, ˆ̌ = SxY

Sxx

, X̂0 = Ȳ0 − ˆ̨
ˆ̌

, (C.3)

�2
� = 1

n + k

[
n∑

i=1

(Yi − ˆ̨ − ˆ̌xi)
2 +

n+k∑
i=n+1

(Y0i − Ȳ0)2

]
, (C.4)

where

x̄ = 1

n

n∑
i=1

xi, Ȳ = 1

n

n∑
i=1

Yi, SxY = 1

n

n∑
i=1

(xi − x̄)(Yi − Ȳ ),

Sxx = 1

n

n∑
i=1

(xi − x̄)2, Ȳ0 = 1

n

n+k∑
i=n+1

Y0i .

The approximation of order n−1 for the variance of X̂0 is given by

V (X̂0) = �2
�

ˇ2

[
1

k
+ 1

n
+ (x̄ − X0)2

nSxx

]
. (C.5)

In order to construct a confidence interval for X0, we consider that

X̂0 − X0√
V̂ (X̂0)

D−→ N(0, 1), (C.6)

hence, the approximated confidence interval for X0 with a confi-
dence level (1 − ˛) is given by

(
X̂0 − z ˛

2

√
V̂ (X̂0), X̂0 + z ˛

2

√
V̂ (X̂0)

)
, (C.7)

where z ˛
2

is the quantile of order
(
1 − ˛

2

)
of the standard normal

distribution.

C: EM ESTIMATOR

The models (1)–(3) can be written as

Yi|xi

ind∼ N(˛ + ˇxi, �2
� ), i = 1, . . . , n, (D.1)

xi

ind∼ N(Xi, �2
ıi
), i = 1, . . . , n, (D.2)

Y0i

ind∼ N(˛ + ˇX0, �2
� ), i = 1, . . . , k. (D.3)

The complete-data log-likelihood function lc(�|Y,Y0, x), where
Y = (Y1, . . . , Yn), Y0 = (Y01, . . . , Y0k ) and x = (x1, . . . , xn), is given
by

lc(�|Y,Y0, x) ∝ −n + k

2
log(�2

� ) − 1

2

n∑
i=1

log(�2
ıi
)

−1

2

[
1

�2
�

n∑
i=1

(Yi − ˛ − ˇxi)
2

+ 1

�2
ıi

n∑
i=1

(xi − Xi)
2 + 1

�2
�

k∑
i=1

(Y0i − ˛ − ˇX0)2
]

.
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For the current value �(t), the E-step of the EM-type algorithm

requires the evaluation of Q(�|�̂(t)
) = E(lc(�|Y,Y0, x)|Y,Y0, �̂

(t)
),

where the expectation is taken with respect to the joint condi-
tional distribution of x given Y and Y0. Thus, we have that

Q(�|�̂(t)
) = −n + k

2
log(�2

� ) − 1

2

n∑
i=1

log(�2
ıi
)

−1

2

[
1

�2
�

n∑
i=1

{
(Yi − ˛)2 + ˇ2(x̂2

i )(t) − 2ˇ(x̂i)
(t)(Yij − ˛)

}

+ 1

�2
ıi

n∑
i=1

(
(x̂2

i )(t) + X2
i − 2(x̂i)

(t)Xi

)

+ 1

�2
�

k∑
i=1

(Y0i − ˛ − ˇX0)2
]

,

where x̂ (t)
i = E[xi|Y,Y0, �̂

(t)
] and x̂i

2(t) = E[x2
i |Y,Y0, �̂

(t)
], i =

1, . . . , n are given by

x̂ (t)
i = Xi +

ˆ̌ (t)�̂2(t)
ıi

�̂ (t)
i

(Yi − ˆ̨ (t) − ˆ̌(t)
Xi), (D.4)

x̂2
i

(t) = �̂2(t)
� �̂2(t)

ıi

�̂ (t)
i

+
(

Xi +
ˆ̌ (t)�̂2(t)

ıi

�̂ (t)
i

(Yi − ˆ̨ (t) − ˆ̌(t)
Xi)

)2

, (D.5)

with �̂ (t)
i = �̂2(t)

� + ˆ̌2(t)
�̂2(t)

ıi
.

The M-step requires the maximization of Q(�|�̂(t)
) with respect

to �(t). The closed-form equation for the M-step is given by

X̂ (t+1)
0 = Ȳ0 − ˆ̨ (t)

ˆ̌(t)
,

ˆ̌(t+1) =
∑n

i=1 x̂i
(t)(Yi − ˆ̨ (t))∑n

i=1 x̂2
i

(t)
,

ˆ̨ (t+1) = Ȳ − ˆ̌(t) ˆ̄x
(t)

,

�̂2(t+1)
� = 1

k + n

[ n∑
i=1

(
(Yi − ˆ̨ (t))2 + ˇ2x̂2(t)

i − 2 ˆ̌ (t)x̂ (t)
i (Yi − ˆ̨ (t))

)

+
k∑

i=1

(
Y0i − ˆ̨ (t) − ˆ̌(t)

X̂0
(t))2

]
,

where Ȳ = 1
n

∑n

i=1 Yi and ˆ̄x
(t) = 1

n

∑n

i=1 x̂i
(t).

The above algorithm is iterated until a suitable convergence
rule is satisfied, e.g., ‖�(t+1) − �(t)‖ is sufficiently small.
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