

PRODUÇÃO E CARACTERIZAÇÃO DE FILMES À BASE DE QUITOSANA UTILIZANDO SOLVENTES EUTÉTICOS PROFUNDOS COMO PLASTIFICANTES

Fernando Ciaco Carniceli

Leonardo Henrique Semensato

Prof. Dr. Sérgio Paulo Campana-Filho

Universidade de São Paulo

carnicelifernando@usp.br

Objetivos

O presente estudo teve como objetivo desenvolver filmes poliméricos à base de quitosana (CH) por meio da técnica de *casting*, incorporando diferentes solventes eutéticos profundos (DES) como agentes plastificantes. O foco principal foi avaliar como a natureza e o teor dos DES influenciam as propriedades físico-químicas, mecânicas e morfologia dos filmes.

Métodos e Procedimentos

Beta-quitina comercial (BQ) foi triturada e peneirada, e então processada empregando Desacetilação Assistida por Irradiação de Ultrassom de alta intensidade (DAIUS) multietapas, de acordo com a metodologia descrita por Fiamingo et al.[1], de forma a obter a quitosana U CH. Os DES foram preparados através da mistura de uma espécie doadora de ligação hidrogênio (HBD) e uma espécie aceptora de ligação hidrogênio (HBA), em razão molar específica, e posteriormente aquecidos a 80 °C por 1 h[2]. As espécies usadas como HBD foram cloreto de colina (ChCl) e betaína (Bet), ao passo que as espécies HBA foram glicerol (Gly), ácido láctico (LA), e ácido malônico (MA). Para a produção dos filmes, inicialmente U CH

ou quitosana comercial (C_CH), foi dissolvida a 2% (m/v) em solução aquosa de ácido acético (1,5% v/v), seguida da adição dos DES em duas proporções: 30% e 70% (m/m em relação à massa de quitosana). As soluções foram então vertidas em placas de petri (Φ = 90 mm) e secas durante 24 h a 37 °C em estufa com circulação forcada de ar.

As matérias-primas (BQ, U_CH, C_CH) foram caracterizadas através de espectroscopia no infravermelho (FTIR) e de ressonância magnética nuclear de ¹H e ¹³C (RMN de ¹H e ¹³C), viscosimetria capilar em regime diluído e cromatografia de exclusão de tamanho (SEC). Os filmes produzidos foram caracterizados através de medidas de ângulo de contato e outros métodos.

Resultados

A Tabela 1 evidencia que a beta-quitina de partida (BQ), utilizada como matéria-prima para a produção da quitosana U_CH via processo DAIUS, apresenta cadeias longas e altamente acetiladas, enquanto a quitosana U_CH exibe redução significativa tanto no grau médio de acetilação quanto no grau médio de polimerização viscosimétrica. A quitosana U_CH apresentou cadeias mais curtas que a beta-quitina de partida como consequência da

despolimerização provocada por hidrólise básica, enquanto que o menor grau de acetilação se deve à ocorrência da cavitação ultrassônica, que favorece a *N*-desacetilação. Em contraste, a quitosana comercial, embora mais extensivamente desacetilada, tem cadeias relativamente mais longas, provavelmente, devido a diferenças nas condições empregadas em sua produção na indústria.

	\overline{DA}	$\overline{\textit{DP}_{v}}$
	(%)	(a.u.)
BQ	$96,4 \pm 1,0$	2049 ± 339
U_CH	96.4 ± 1.0 32.0 ± 0.3	1037 ± 79
C_CH	$16,9 \pm 0,6$	1288 ± 38

Tabela 1: Grau médio de polimerização viscosimétrico $(\overline{DP_v})$ e grau médio de acetilação (\overline{DA}) de beta-quitina (BQ) e das quitosanas U_CH e C_CH.

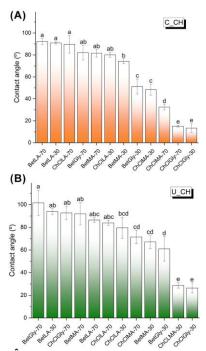


Figura 1: Ângulos de contato dos filmes baseados em (A) C_CH e (B) U_CH. Diferenças significativas entre as amostras são indicadas por letras distintas (Tukey, p < 0,05).

A Figura 1 apresenta os resultados de ângulo de contato, analisados estatisticamente para

agrupar amostras com comportamentos semelhantes. Observa-se que menores ângulos correspondem a maior afinidade com a água. Nesse contexto, os filmes contendo cloreto de colina e glicerol (30%) mostraram maior hidrofilicidade. independentemente quitosana, o que é atribuído à abundância de grupos hidroxila capazes de estabelecer ligações de hidrogênio. Por outro lado, os filmes contendo betaína e ácido lático (30%) destacaram-se entre os mais hidrofóbicos, devido à menor disponibilidade de sítios ativos para interação com moléculas de água, quando comparados ao glicerol e ao ácido malônico.

Conclusões

Filmes de quitosana com diferentes DES mostraram que natureza e concentração do DES influenciam suas propriedades. Os resultados indicam o potencial desses materiais para embalagens alimentícias, sendo as suas propriedades ajustáveis às demandas de aplicação.

Agradecimentos

O projeto foi realizado com o auxílio do CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Conflito de interesses: os autores declaram não haver conflito de interesses.

Contribuições: parte experimental: CARNICELI, F. C., SEMENSATO, L. H; análise de dados e escrita: CARNICELI, F. C., SEMENSATO, L. H., CAMPANA-FILHO, S. P.

Referências

- [1] FIAMINGO, A. et al. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of betachitin. **Ultrasonics Sonochemistry**, v. 32, p. 79–85, set. 2016.
- [2] YU, J. et al. Chitosan films plasticized with choline-based deep eutectic solvents: UV shielding, antioxidant, and antibacterial properties. **Food Hydrocolloids**, v. 135, p. 108196, fev. 2023.