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 Abstract. For the first time, the beta Burr III distribution is introduced as an

 important model for problems in several areas such as actuarial sciences, me-
 teorology, economics, finance, environmental studies, survival analysis and
 reliability. The new distribution can be expressed as a linear combination of
 Burr III distributions and then it has tractable properties for the moments,
 generating and quantile functions, mean deviations, reliability and entropies.
 The density of its order statistics can be given in terms of an infinite linear
 combination of Burr III densities. The beta Burr III model is modified for the

 possibility of long-term survivors. We define a log-beta Burr III regression
 model to analyze censored data. The estimation of parameters is approached
 by maximum likelihood and the observed information matrix is derived. The
 proposed models are applied to three real data sets.

 1 Introduction

 Burr (1942) introduced a system of distributions which contains the Burr XII
 (BXII) distribution as the most widely used of these distributions. If a random
 variable X has the BXII distribution, then X-1 has the Burr III (Bill) distribution
 with cumulative distribution function (c.d.f.) defined (for x > 0) by

 where a > 0 and ß > 0 are shape parameters and s > 0 is a scale parameter. The
 probability density function (p.d.f.) corresponding to (1.1) is given by

 s(x) r ^ - aß r (*/*)" Y+l n o,
 get, ß, s(x) r ^ - s(x/s')a^ Li •+" (*/s)a J

 The Bill distribution has been used in various fields of sciences. In the actuarial

 literature, it is known as the inverse Burr distribution (see, e.g., Klugman et al.,
 1998) and as the kappa distribution in the meteorological literature (Mielke, 1973;
 Mielke and Johnson, 1973). It has also been employed in finance, environmental

 Key words and phrases. Beta Burr III distribution, Burr III distribution, exponentiated Burr III
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 Survival analysis 503

 studies, survival analysis and reliability theory (see Sherrick et al., 1996; Lindsay
 et al., 1996; Al-Dayian, 1999; Shao, 2000; Hose, 2005; Mokhlis, 2005; Gove et
 al., 2008). Further, Shao et al. (2008) proposed an extended BUI distribution in
 low-flow frequency analysis where its lower tail is of main interest. A bivariate
 extension of the Bill distribution was defined by Rodriguez (1980).
 The statistics literature is filled with hundreds of continuous univariate distribu-

 tions. Recent developments focus on new techniques for building meaningful dis-
 tributions such as the beta generalized class of distributions (Eugene et al., 2002)
 that has two shape parameters in the generator. Based on this generator, we pro-
 pose the beta Burr III (BBIII) distribution to accommodate a wide variety of shapes
 including the BEI distribution. Its two extra shape parameters provide greater flex-
 ibility in the form of the generated distribution and, consequently, it is very useful
 for modeling observed positive data. If G denotes the baseline cumulative function
 of a random variable, the beta-G distribution (Eugene et al., 2002) is defined by

 1 rGw , u ,
 F{x) = IG(x)ia,b) = - - - - wa dw, (1.3)

 B(a, b ) Jo

 where a > 0 and b > 0 are two extra shape parameters to the G distribution,
 B(a, b) = T{a)T{b)/ T(a + b) is the beta function, T(-) is the gamma function,
 By {a, b) = /q wa~l (1 - w)b~l dw is the incomplete beta function and Iy{a, b ) =
 By(a,b)/B(a, b) is the incomplete beta function ratio.

 The class of generalized distributions (1.3) has been receiving considerable at-
 tention over the last years, in particular after the works of Eugene et al. (2002)
 and Jones (2004). In fact, following this idea, Eugene et al. (2002), Nadarajah
 and Kotz (2004), Nadarajah and Gupta (2004), Nadarajah and Kotz (2006), Lee
 et al. (2007), Akinsete et al. (2008), Barreto-Souza et al. (2010), Fischer and
 Vaughan (2010), Pescim et al. (2010), Silva et al. (2010), Khan (2010), Paranaiba
 et al. (201 1) and Cordeiro and Lemonte (201 la, 201 lb) proposed the beta normal,
 beta Gumbel, beta Fréchet, beta exponential (BE), beta Weibull, beta Pareto, beta
 exponentiated exponential (BEE), beta hyperbolic secant, beta generalized half-
 normal, beta modified Weibull, beta inverse Weibull, beta Burr XÜ (BBXII), beta
 Birnbaum-Saunders and beta Laplace distributions by taking G(x) in (1.3) to be
 the c.d.f. of the normal, Gumbel, Fréchet, exponential, modified Weibull, Pareto,
 exponentiated exponential (EE), hyperbolic secant, generalized half-normal, mod-
 ified Weibull, inverse Weibull, BXn, Birnbaum-Saunders and Laplace distribu-
 tions, respectively. The cumulative function (1.3) can be expressed as

 = ~4j7~~772Fi(a, 1 - b-, a + 1; G(x)), aB(a,b )

 where

 2Fi(p,q;ny) = J2 (r). 77 J ■ j- o V )j J ■
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 504 Gomes, da-Silva, Cordeiro and Ortega

 is the hypergeometric function and (p)j is the Pochhammer symbol defined as
 (p)j = p{p + 1) • • • ip + j - 1). Thus, for any parent G(x), the properties of
 F(x) could, in principle, be obtained from the well established properties of the
 hypergeometric function (Gradshteyn and Ryzhik, 2000, Section 9.1).

 The density function corresponding to (1.3) has the form

 /(*) = - GOOf _1g(*), (1.4)
 B(a, b)

 which will be most tractable when G(x) and g(x) = dG(x)/dx have simple an-
 alytic expressions. Except for some special choices for G(jc) in (1.4), such as the
 case given by (1.1), the density function fix) will be difficult to deal with in gen-
 erality.

 The five parameter BBIII distribution is defined from (1.3) by taking G(jc) to
 be the c.d.f. (1.1). Its cumulative distribution becomes

 Fix) = I[i+(x/S)-a]-ßia, b). (1.5)
 Here, we have four positive shape parameters a, ß, a and b and a positive scale
 parameter s. The p.d.f. and the hazard rate function corresponding to (1.5) (for
 X > 0) are

 f( , ocß r ix/s)a Ya+l' ! r (*/*)"
 nX)-six/sY+iBia,b)ll f( + ix/sYÍ V ! [ì + ix/sYÌ ļ

 and

 ßa[six/s)~a -1]
 h(x) =

 Bia, b)Iļ_ļļ+(x,s)-a]-fi ib, a)
 (1.7)

 r jx/sY l^'iļ _ r ix/sY ļ^ļ^1
 xLI + (x/5)«J 1 _ LI + oc/J)«J J '

 respectively. The BBIII density function (1.6) allows for greater flexibility of its
 tails with a continuous crossover towards distributions with different shapes (e.g., a
 particular combination of skewness and kurtosis). It includes three important sub-
 models: the Bill distribution arises immediately for a = b = I, the exponentiated
 Burr III (EBHI) distribution for b = 1, and the Lehmann type II Burr III (LeBIII),
 which is also the Kumaraswamy Burr III (KwBIII) distribution for a = 1. The
 EBIII and LeBIII models have not been studied in the literature yet. Moreover,
 while the transformation (1.3) is not analytically tractable in the general case, the
 formulas related with the BBIII distribution turn out manageable as it is shown in
 the rest of the article.

 Plots of the density function (1.6) for selected parameter values are given in
 Figures 1-4, respectively. Figure 5 shows that the BBIII failure rate function can be
 bathtub shaped, monotonically decreasing or increasing and upside-down bathtub
 depending on its parameter values.

This content downloaded from 
������������143.107.214.185 on Fri, 19 Nov 2021 19:09:34 UTC������������ 

All use subject to https://about.jstor.org/terms



 Survival analysis 505

 Figure 1 Plots of the BBIII density function for some values of the scale parameter s .

 Figure 2 Plots of the BBIII density function for some values of the shape parameter a.

 The rest of the article is organized as follows. In Section 2, we demonstrate that
 the new density function can be expressed as a linear combination of Bill densi-
 ties. This result is important to derive some BBIII mathematical quantities imme-
 diately from those quantities of the Bill distribution. A range of the properties is
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 506 Gomes, da-Silva, Cordeiro and Ortega

 Figure 3 Plots of the BB III density function for some values of the shape parameter ß.

 Figure 4 Plots of the BBIII density function for some values of the shape parameter a .

 considered in Sections 3-6. These include generating and quantile functions, simu-
 lation, Bowley skewness and Moors kurtosis, mean deviations and Bonferroni and
 Lorenz curves. In Section 7, we demonstrate that the density function of the BBIII
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 Survival analysis 507

 Figure 5 Plots of the BBIII hazard rate function.

 order statistics can be expressed as a linear combination of Bill densities. Explicit
 formulae for the moments of the order statistics and L-moments are obtained in

 Section 8. The reliability and the Rényi and Shannon entropies are determined in
 Sections 9 and 10, respectively. Maximum likelihood estimation is investigated in
 Section 11. In Section 12, we define a BBIII model for survival data with long-
 term survivors. An useful log-beta Burr III regression model for lifetime analysis

 in proposed in Section 13. Applications of the proposed models to three real life
 data sets are given in Section 14. Finally, some conclusions are noted in Section 15.

 2 Expansion for the density function

 Equations (1.5) and (1.6) are straightforward to compute with the use of modern
 computer resources with analytic and numerical capabilities. However, we obtain
 expansions for F(x) and f(x) in terms of an infinite (or finite) weighted sums of
 c.d.f.'s and p.d.f.'s of Bill distributions, respectively. Here and henceforth, denote

 by X a random variable with density function (1.6), say X ~ BBIII(a, b, a, ß, s).
 First, for b > 0 real noninteger, we can write the density function of X as

 rx 00 (- lV(fc-1)
 i rx wa~l(l-w)b~ldw = Y
 JO ( a + j)

This content downloaded from 
������������143.107.214.185 on Fri, 19 Nov 2021 19:09:34 UTC������������ 

All use subject to https://about.jstor.org/terms



 508 Gomes, da-Silva, Cordeiro and Ortega

 where the binomial term (^T1) = r(è)/[r(Z> - j) j !] is defined for any real. From
 (1.5), after some algebra, we have

 00

 F(x) = } ' w jGatg(a+j)yS(x' (2.1)
 7=0

 where

 (-íyçj1)
 Wj ( a+j)B(a,b )'

 By differentiating (2.1), the density function of X can be expressed as

 oo

 f(x) = J2Wj8ct,ß(.a+j)Ax)> (2.2)
 7=0

 which holds for any parameter values. If b > 0 is an integer, the index j in the
 sum stops at b - 1. From the linear combination (2.2), we can obtain some BBin
 structural properties. For example, the ordinary, central, inverse and factorial mo-
 ments of X can be expressed as linear functions of those Bill quantities. In fact,
 the rth moment of the Bin distribution (with parameters a, ß and s) is given by
 ļi'r = ßsrB(ß + ra-1, 1 - ra-1), and the rth moment of X follows from (2.2) as

 00

 E(Xr) = ßsr ]T(a + j)WjB(ß(a + j) + ra-1, 1 - ra-1). (2.3)
 7=0

 For a = b = i, equation (2.3) yields the rth moment of the BIU distribution. From
 this formula, we can obtain the skewness and kurtosis of X using well-known
 relationships. Figures 6-9 show great flexibility for the values of these measures.

 3 Quantité function

 The BBffl quantile function, say Q(u) = F-1(n), is straightforward to be com-
 puted from the beta quantile function (Qß(a,b)(u)) by inverting (1.5). We have

 X = Q(u) = F~'u) = s(Qß(ß,b){u)-W - 1 r1/a. (3.1)

 So, the simulation of the BBŒI random variables is straightforward from (3.1) as

 X = s(V~l/ß

 where V is a beta variate with shape parameters a and b.
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 Figure 6 Skewness of the BBIII distribution as a function of b for some values of a and a = 5,
 ß - 2 and s = 1 .

 Figure 7 Skewness of the BBIII distribution as a function of a for some values of b and a = 5,
 ß = 2 and 5 = 1.

 4 Quantile measures

 The effect of the shape parameters a and b on the skewness and kurtosis of the new
 distribution can be considered based on quantile measures. The shortcomings of
 the classical skewness and kurtosis measures are well known. One of the earliest

 skewness measures to be suggested is the Bowley skewness (Kenney and Keeping,
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 510 Gomes, da-Silva, Cordeiro and Ortega

 Figure 8 Kurtosis of the BBIII distribution as a function of a for some values ofb and a = 5, ß = 2
 and 5 = 1.

 Figure 9 Kurtosis of the BBIII distribution as a function of b for some values of a and a = 5, ß = 2
 and 5 = 1.

 1962) defined by the average of the quartiles minus the median, divided by half
 the interquartile range, namely

 g(3/4) + g(l/4) - 2g(l/2)

 0(3/4) - 12(1/4)

 Since only the middle two quartiles are considered and the outer two quartiles are
 ignored, this adds robustness to the measure.
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 Survival analysis 511

 The Moors kurtosis is based on octiles

 M _ 6(7/8) - 0( 5/8) + 0( 3/8) - <2(1/8)
 0(6/8) - ß(2/8)

 The measures B and M are less sensitive to outliers and they exist even for distri-
 butions without moments. For symmetric unimodal distributions, positive kurtosis
 indicates heavy tails and peakedness relative to the normal distribution, whereas
 negative kurtosis indicates light tails and flatness. Because M is based on the oc-
 tiles, it is not sensitive to variations of the values in the tails or to variations of the
 values around the median.

 The basic justification of Aí as an alternative measure of kurtosis is the follow-
 ing: keeping 0(2/8) and 0(6/8) fixed, M clearly decreases as 0(3/8) - 0(1/8)
 and 0(7/8) - 0(5/8) decrease. So, if 0(3/8) - 0(1/8) -» 0 and 0(7/8) -
 0(5/8) -> 0, then M -*■ 0 and half of the total probability mass is concentrated in
 the neighborhoods of the octiles 0(2/8) and 0(6/8). Clearly, M > 0 and there is
 a good agreement with the usual kurtosis measures for some distributions. For the
 normal distribution, B = M = 0.

 In Figures 10 and 1 1, we plot the measures B and M for the BBIII distribution
 as functions of a and b for some values of the other parameter, respectively. These

 Figure 10 Bowie y skewness and Moors kurtosis of the BBIII distribution as function of a for some
 values of b and a = 5, ß = 2 and 5 = 1.
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 512 Gomes, da-Silva, Cordeiro and Ortega

 Figure 11 Bowley skewness and Moors kurtosis of the BBIII distribution as function of b for some
 values of a and a = 5, ß = 2 and 5 = 1.

 Table 1 Values of a for which the Bowley skewness van-
 ishes and achieves its lowest value for different values of b

 b a' 02 Minimum point

 2.5 0.1325 0.3679 0.2038

 3.0 0.1265 0.4551 0.2122

 4.0 0.1206 0.6186 0.2246

 5.0 0.1175 0.7750 0.2332

 10.0 0.1119 1.5212 0.2545

 plots show that both measures B and M can be very sensitive to these shape param-
 eters, thus indicating the importance of the model (1.6). For fixed Z?, the Bowley
 skewness decreases and then increases sharply when a -> 0. The value of a corre-
 sponding to its minimum value depends on b. For fixed a , this skewness increases
 when b decreases. The same conclusions apply to the Moors kurtosis. Table 1 lists
 the values of a in Figure 10, say a' and ai, for which the Bowley skewness van-
 ishes and also the value of a which gives its minimum for different values of è. On
 the other hand, when b -» 0 (a fixed), this skewness increases rapidly. For fixed a ,
 the Moors kurtosis decreases when b increases. When b - ► oo, this kurtosis tends
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 Survival analysis 513

 to an asymptotic level which depends on the value of a. For fixed b, the Moors
 kurtosis increases when a increases. The values of (a, b ) for which the Bowley
 skewness vanishes can be obtained from Figure 1 1 as: (0.2, 1.7544), (0.5, 3.2680),
 (1.0, 6.4805), (2.0, 13.2837) and (3.0, 20.1986).

 5 Generating function

 The moment generating function (m.g.f.) of X, say Mx(t ) = E(etX), can be writ-
 ten as

 k=0

 Another representation for Mx(t) as an infinite weighted sum can be obtained
 from (2.2) as

 oo

 Mx(t) = YlwjMj(t), (5.1)
 7=0

 where Mj(t ) denotes the m.g.f. of the BHI(a, ß(a + j), s) distribution. Now, we
 provide a simple representation for the m.g.f. of the Bill (a, ß, s) distribution,
 namely

 P OO

 MBiii(0 = saß / P expCvyOy^-1 (1 + /*)_(/J+1) dy.
 70

 First, we require the Meijer G-function defined by

 (x'l' lfc> '•'V lfc>

 where i = «/-T is the complex unit and L denotes an integration path; see Grad-
 shteyn and Ryzhik (2000, Section 9.3) for a description of this path. The Meijer
 G-function contains as particular cases many integrals with elementary and special
 functions (Prudnikov et al., 1986).
 Further, we assume that a = m/k, where m and k are positive integers. This

 condition is not restrictive since every positive real number can be approximated
 by a rational number. For t < 0, using the integral (A.1) given in Appendix A, we
 obtain

 ßsm ./ m , m '
 MbiiKO = - - 1 y-st,ß- - 1, , -, -ß - lj.

 Hence, from equation (5.1), we can write Mx(t ) for t < 0 as

 ßsm ■¿2. / mm '
 Mx(t) = -£-J2wjI ' -st,ß(a + j)--',-,-ß{a + (5.2)

 Equation (5.2) is the main result of this section.
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 514 Gomes, da-Silva, Cordeiro and Ortega

 6 Mean deviations

 The amount of scatter in a population is evidently measured to some extent by the
 totality of deviations from the mean and median. If X has the BBIII distribution,
 we can derive the mean deviations about the mean ß = E(X) and about the median
 M from

 f 00 r 00
 <5i = / 'x - ß'f(x)dx and 82= I 'x - M'f(x)dx,
 Jo Jo

 respectively. The mean ß is obtained from (2.3) with r = 1 and the median M is

 the solution of the nonlinear equation l'-['+(M/s)-o'-ß(a' b) = 1/2.
 These measures can be calculated by the following relationships

 8i=2ßF(ß)-2ß + 2T(ß) and 82 = 2T(M)-ß, (6.1)

 where T (a) = /a°° xf(x) dx follows from (2.2) as

 T(q) = B J [E(xj)~ j* xgaj(a+j)Ax)dxļ, (6.2)

 where Xj has the BIII(a, ß(a + j), s) distribution. Let 2F' be the hypergeometric
 function defined in Section 1. Setting u = {x/s)~a, we obtain using Maple

 pq poo

 Jo / pq xgayß(a+j)iS(x)dx = sß(a + j) / u~1/a (Í + u)~[ß{a+j)+1] du Jo J(q/S)~ "

 = sß(a + j)Uj,

 where Uj = Uj(q/s, a, ß) is given by

 rr 2Fi[ß(.a + j) + l,-a-i + U(2-a-1y,-(q/s)-ai(q/s)l-a
 Uj~ rr

 T[ß(a + j) + a-1];r csc(- n/a)
 T[ß(a + j) + lF(a-i) •

 Hence,

 r(?) = wh) §(_iy (b 1 ' ) + »+«"'■ 1 - «"'] + fd-
 The quantity T (q) can also be used to determine Bonferroni and Lorenz curves
 which have applications in economics, demography, income, poverty, reliability,
 insurance and medicine. They are defined by

 1 m 1 rq
 B(p) = - I xf(x)dx and L(p) = - I xf(x)dx,

 Pß Jo ß Jo
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 Survival analysis 515

 respectively, where q = Q{p ) = F~l(p) is the quantile function (given in Sec-
 tion 3) for a given probability p. From /q xf(x) = p - T (q), we have

 », ^ 1 , T, , i TW
 B(p) », ^ =

 p pp p

 7 Order statistics

 The density function fi:n(x ) of the ith order statistic for i = 1, . . . , n from data
 values X', ...,Xn having the BBIII distribution can be expressed as

 /¡■Ax ) = 1 (n 7 F(Xy-i+i
 B{i,n-i + 1) V I )

 where F(-) is the c.d.f. (1.5) and /(•) is the p.d.f. (1.6). Then

 /í:nW , ( , = 1
 /í:nW ( = B(i,n-i

 1 /"-A Jv [(xAr
 X (x/s)a+1 1 ^ /"-A V l ) Jv j^^Ll [(xAr + (^/5)"j J

 We use an equation of Gradshteyn and Ryzhik (2000, Section 0.314) for a power
 series raised to a positive integer k given by

 (oo j= J2aJuj) 0 ' / k y=0 oo (oo J2aJuj) =12ckJuJ' c7-1) j= 0 / y=0

 where the coefficients Ckj (for ¿ = 1,2,...) can be determined from the recurrence
 equation

 j

 Ckj = (jao)~l X! + !) - j]amCk,j-m (7.2)
 m= l

 and Ck, o = «o- Hence, Ckj follows directly from cjt, o, . . . , Qj-i and, therefore,
 from ao» ••• » ak- We can obtain from (7.1)

 i^Uyu + a/.,,« J J

 _ r_(x/£)«_ļ^(i+/-1) ^ r (x/5)a i#
 L i + (x/s)a J ;èoc,+/_1Jl-i+(^)aJ
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 516 Gomes, da-Silva, Cordeiro and Ortega

 where c(+/_i,o = w¿+/_1 and

 = ar(b) J (~l)m[(i >+l)m-j]ci+l-hj-m
 Ci+l-i,j = j (a + m)m'T(]b - m)

 Thus, setting a*j¡ = a(i +l) + j and after some algebra, we have

 = B(a , b)B(i, n - i + 1)
 (7.3)

 n-i y . X oo

 /=0 ^ ' 7=0
 where /#¡;; (x) denotes the BBIII density function defined by the parameter vec-
 tor Oijj = b, a, ß, s)T . Equation (7.3) is an important result in applications
 since it gives the density function of the BBIII order statistics as a linear combi-
 nation of BBIII density functions. Several mathematical properties for the BBIII
 order statistics (m.g.f., ordinary, inverse and factorial moments) can be derived
 from this representation form.

 8 Moments of order statistics and L -moments

 The moments of the BBIII order statistics can be written directly in terms of the
 moments of Bill distributions from (2.3) and (7.3). We have

 ßsTja + b)
 K ,:n) B(i, n - i + l)T(a)

 n-i / -' OO ✓ i'jt

 X B[ß(afj i + k) + r/a, 1 - r/a],

 where a*k ; is defined in Section 7.
 L-moments (Hoskings, 1990) are summary statistics for probability distribu-

 tions and data samples but have several advantages over ordinary moments. For
 example, they apply for any distribution having finite mean and no higher-order
 moments need be finite. The rth L-moment is computed from linear combinations
 of the ordered data values by

 7+'K
 where ßj = E{XF(X)i}. In particular, Ai = ßo, X2 = 2ß' - ßo, X3 = 6ß2 - 6ß' +
 ßo and A.4 = 20^3 - 30^2 + 12>Si - ßo. In general, ßr = (r + l)-1£(Xr+i:r+i),
 so Xr can be computed from equation (8.1).
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 9 Reliability

 In the context of reliability, the stress-strength model describes the life of a com-
 ponent which has a random strength X' that is subjected to a random stress
 X2. The component fails at the instant that the stress applied to it exceeds
 the strength, and the component will function satisfactorily whenever X' > Xļ.
 Hence, R = P(X 2 < Xi) is a measure of component reliability (see Kotz et al.,
 2003). It has many applications especially in the area of engineering. We derive
 the reliability R when Xj and X2 have independent BBIII(ai, &i, a, ßi,s) and
 BBIH(ö2, b2, a, ß2, s) distributions with the same shape parameter a and scale pa-
 rameter s. From equations (1.6) and (2.1), the reliability reduces to

 roo

 R = P(Xļ > X2) = Jo / Mx)F2(x)dx Jo

 fra ^ (-lyf1;1)
 sB(a',b')B(a2,b2) a2 + j

 / r ' ~ (a+i) r / r ' - an~[^ifli+ft(fl2+y)+i]

 */„ G) / r ' ~ (a+i) h r (7) / r ' - ]

 Setting z = [1 + (x/s) "] , we obtain

 , 00 (_ i)/^2-1)
 R = B{a',b')B(a2, nr i. Mir b2) ^ E B{a',b')B(a2, nr i. Mir b2) ^ a2 + j

 From equations (2.1) and (2.2), an alternative expression for R follows as

 o ^ (1) m r (*/*)" -fdax+j)+ßl(a1+k)+'
 jso"1' ^ (1) m k r ^(TTTř^LTTwTřJ (*/*)"

 ft Ä (-Q'+'C'/'HV)
 B(a' , b')B(a2, b2 ) ( a2 + k)[ß' (a' + j ) + ß2(a2 + £)] '

 where u>J? = (-1 )m(b'~l)[B(ai, bi)(a¡ + m)]~l , for / = 1, 2.

 10 Entropies

 The entropy of a random variable X with density f(x) is a measure of variation
 of the uncertainty. A large value of the entropy indicates the greater uncertainty in
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 the data. The Rényi entropy is defined by

 Ir^ = YZ~pio^f fWdx)'
 where p > 0 and 1. Setting y = 1/[1 + (x/í)"], the integral L in Ir(p) for
 the BBIII distribution becomes

 L_( ~ ßa Vf00 1 I" (x/s)a -'p{ßa+l)
 ~ 'sB(a,b)J Jo (x/í^+dLi + Cx/í)«]

 I Li + (x/i)aJ j

 = { " V (
 'sj 'B(a,

 X (1 _ yy(ßa-'la)+'lct-'1y _ (ļ _ yÝY{b~l)dy

 = aVíB(a,&)/ aß y yv_i y ( ' P& - V) aVíB(a,&)/ ' j J

 X B'p(l +a_1) -a~l,p(ßa -a-1) + a_1 +jß].

 Thus,

 ™>-ī^Hc£<-I)'('V))
 X B[/0(1 +a-1) - a~l p(ßa - a~l) + a~l +jß] ,

 where

 c.L(-ĚS-)'. a'sB(a,b) J

 The Shannon entropy is given by

 £{-log[/(X)]}

 = - log[r(a + b)] + log[T(a)] + log[r(¿>)] - log(ß) - log(a)

 - (ßaa - l)£[log(X)] + ßaa log(í) - ( ßa + l)£7{log[l + (X/í)"]}
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 Setting y = (x/5)a[l + (jt/s)"]-1, we have

 £[log(X)1 = sér) /«' [l08<s) + » (1 - yß)i~l dy

 =^/o1[1o8W+ï1o8(T^)]/"+'

 X ^(-l)-7 (b . l'yßj dy
 j= o ' J /

 +;g<-"(V)
 X [/ log(y)yß(-a+j)+1 dy

 - jf * log(l - y)yßW>+1 dyļ j .
 The last three integrals are easily calculated. The first one is equal to [ß(a + j) +
 2]-1 . Setting z = - log(y), the second integral becomes

 f log(y)yß(a+j)+i dy = - 1 ,
 Jo [ ß(a + j) + 2 Y

 and using the expansion log(l - y) = - yk/k, the last integral reduces to

 Jo f log(l - y)y^a+^+1 dy = ~Y^ Mñ, + j) ' + k , + 0, 2] • Jo ^[k[ß(a Mñ, + j) + k , + 0, 2]

 Since the expected values of the score functions vanish, equations (11.1) and (11.2)
 (given in the next section) yield

 £{log[l + (X/s)*]} = Ý(a + b) ~na) +a{E['og(X)] - logft)}
 P

 and

 where ý(z) = ¿lo^(¿)] = is the digamma function.
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 Hence,

 £{-log[/(X)]}
 = - iog[r (a + b )] + iog[r(ö)] + iog[r(è)]

 - log(/J) - log(or) + cu (aß + 1) logO)

 - + -(b- 1 )[rļr(b) - f(a + b)]
 ß

 ß[a(aß + !) - !]
 B(a, b )

 Í oo (_i yfý)
 * ļto8<s)g^T7)TI Í

 ir- (-ìyf;1)
 alf^[ß(a + j) + 2?

 - - (-iy'(V) lì
 f?0tl k[ß(a + j) + k + 2]'y

 11 Estimation

 Let 0 = (a, b, a , ß, s)T be the parameter vector of the BBIII distribution (1.6).
 We consider the method of maximum likelihood to estimate 0. The log-likelihood
 function for the five parameters from a single observation x > 0, say I = ¿(0),
 is

 I (0) = log[l> + b )] - log[r (a)] - log[r(Z>)] + logOß) + log(a)

 + (aaß - 1) log(x) - aaß log(s) - (aß + 1) log[l + (x/i)a]

 The components of the unit score vector U = (ff>ff>f£>f|>§7)T are

 ^ = t (r(a + b)~ f(a) + ß{a log(x/.s) - log[l + (x/s)"]}, (11.1)
 oa

 fb = t (a + b) - fib) + log{ 1 - J. <11-2)
 d£= 1 X S 'ß° - (• x/s)a ļ ß(b- ')(x/s)aß log(x/s)
 da a X S L 1 + (x/s)a J [1 + (x/s)a]{[l + (x/s)a]ß - (x/s)aß} '
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 9£_1 r jx/s)a ]f jb-l)jx/s)^ Ì
 3^8 ß ogLi+(^A)«Jr [i + (x/s)aÝ - (x/s)aß í 311
 M _ aßa a{ßa + ')(x/s)a ßa(b - '){x/s)a^
 ds~ _ 7~+ s[l + (*/*)"] +í[l + (jc/s)a]{[l + (x/í)a]^-U/í)^}'
 For a random sample (jc i , . . . , xn) of size n from X, the total log-likelihood is

 ln = ¿n(ft) = £]"=1 ¿(l' where is the log-likelihood for the ith observation
 (i = 1, . . . , n). The total score function is U„ = l]"_i where has the
 form given before for i = 1, . . . , n. The maximum likelihood estimate (MLE) 0
 of 0 is obtained numerically from the nonlinear equations U„ = 0. For interval
 estimation and tests of hypotheses on the parameters in 0, we require the 5 x 5
 observed information matrix J = J(0) = {- Lp,q}, where the entries LPj9, for
 p,q = a, b, a, ß, s, are given in Appendix B.

 Under conditions that are fulfilled for parameters in the interior of the parameter
 space but not on the boundary, the approximate multivariate normal Ns(Q, J(0)~l)
 distribution of 0 can be used to construct confidence intervals for the parameters.
 In fact, an approximate confidence interval with significance level y for each pa-
 rameter Op is given by

 ACI(0P, 100(1 - y)%) = (0p - Op + Zyß^fW^),
 where J^p^p is the diagonal element of J {0)~^ corresponding to each parame-
 ter ip = a, b, a, ß, s) and zy/ 2 is the quantité (1 - y /2) of the standard normal
 distribution.

 The likelihood ratio (LR) statistic can be used for comparing the BBIII distribu-
 tion with some of its special sub-models. Considering the partition 0 = (0f , 0' )T ,

 tests of hypotheses of the type Hq:0' = 0^ versus Ht ':0' ^ 0^ can be per-
 formed using LR statistics given by w = 2{¿(0) - ¿( 0 )}, where 0 and 0 are the

 MLEs of 0 under Ha. and Ho, respectively. Under the null hypothesis, w Xq>
 where q is the dimension of the vector 0 1 of interest. The LR test rejects Ho if

 w > Ķy, where ĶY denotes the upper 100 y% point of the Xq distribution. For ex-
 ample, we can verify if the fit using the BBIII distribution is statistically "superior"
 to a fit using the EBIII distribution (for a given data set) by testing Ho'.b=' versus
 HA:b* 1.

 12 A BBIII model for survival data with long-term survivors

 In population based cancer studies, cure is said to occur when the mortality in
 the group of cancer patients returns to the same level as that expected in the gen-
 eral population. The cure fraction is a useful measure of interest when analyzing
 trends in cancer patient survival. Models for survival analysis typically assume that
 every subject in the study population is susceptible to the event under study and
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 will eventually experience such event if the follow-up is sufficiently long. How-
 ever, there are situations when a fraction of individuals are not expected to expe-
 rience the event of interest, that is, those individuals are cured or not susceptible.
 For example, researchers may be interested in analyzing the recurrence of a dis-
 ease. Many individuals may never experience a recurrence and, therefore, a cured
 fraction of the population exists. Cure rate models have been used for modeling
 time-to-event data for various types of cancers and to estimate the cured fraction
 of patients. These models are survival models which allow for a cured fraction
 of individuals and extend the understanding of time-to-event data by allowing for
 the formulation of more accurate and informative conclusions. These conclusions

 are otherwise unobtainable from an analysis which fails to account for a cured or
 insusceptible fraction of the population. If a cured component is not present, the
 analysis reduces to standard approaches of survival analysis.

 Perhaps the most popular type of cure rate models is the mixture model
 (Berkson and Gage, 1952; Mailer and Zhou, 1996), where the population is di-
 vided into two sub-populations so that an individual either is cured with probabil-
 ity p, or has a proper survival function S(x) with probability 1 - p. This leads to
 an improper population survivor function S*(x) in the mixture form, namely

 S*(x) = p + (l-p)S(x), 5(0) = 0, 5*(oo) = p. (12.1)

 Common choices for 5(jc) in (12.1) are the exponential and Weibull distributions.
 Mixture models involving these distributions have been studied by several authors
 (Farewell, 1982; Sy and Taylor, 2000 and Ortega et al., 2009). The book by Mailer
 and Zhou (1996) provides a wide range of applications of the long-term survivor
 mixture model. The use of survival models with a cure fraction has become more

 and more frequent because traditional survival analysis does not allow for mod-
 eling data in which nonhomogeneous parts of the population do not represent the
 event of interest even after a long follow-up.

 Here, we adopt the BBIII distribution to compose a mixture model for cure
 rate. Consider a sample x', . . . , xn, where x¡ is either the observed lifetime or
 censoring time for the ith individual. Let a binary random variable q¡, for i =
 1 ,...,«, indicating that the ith individual in a population is at risk or not with
 respect to a certain type of failure, i.e., q¿ = 1 indicates that the ith individual
 will eventually experience a failure event (uncured) and q¡ = 0 indicates that this
 individual will never experience such event (cured).

 For an individual i, the proportion of uncured 1 - p individuals can be speci-
 fied such that the conditional distribution of qi is given by Pr(<7, = 1) = 1 - p. The
 cure probability varies over the individuals, so that the probability that individual
 i is cured is modeled by p. Suppose that the X, 's are independent and identically
 distributed random variables having the BBIII distribution (1.6). Thus, the contri-
 bution of an individual that failed at x¡ to the likelihood function becomes

 (1 -p)aß r (. x/s)a I*'"'"'). _ r (x/s)a "[Y""1
 s(x/s)a+ìB(a,b) Li + (x/í)aJ i _ Ll + (x/s)aJ J
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 and the contribution of an individual that is at risk at time x¡ is

 p + ('-p){'- /[i +fr/,)-«]-* (a, b)},

 where /.(•, •) is the incomplete beta function ratio (Section 1). The model defined
 from the last two equations is referred to as the BBin mixture model with long-
 term survivors. For a = b = 1, we obtain the BEI mixture model (a new model)
 with long-term survivors. For b - 1, we have the exponentiated Burr m (EBIII)
 mixture model and, for a = 1 the Lehmann type II Burr EI (LeBIII) mixture model.
 Thus, the log-likelihood function for the parameter vector $ = (p, a, b, a, ß, s)T
 can be expressed as

 /W = , ,°8[il^Ä] _ g >°8(^)

 ♦«-♦■>5*1^]

 + + (i - P)[ i - '[i +(*,/»)-]-*(«. *>)]}'
 i€C

 where F and C denote the sets of individuals corresponding to lifetime observa-
 tions and censoring times, respectively, and r is the number of uncensored ob-
 servations (failures). The score functions for the parameters p, a, b, a, ß and s
 are

 Tj (o' - r + V

 P (1_P) tecP + ū-p)[l-Iqt{a,b)Y
 Ua(0) = r[iļr(a + b)~ ý(a)]

 + £{0{alog(*,/i) _ log[l + (Xi/S f]}}
 ieF

 (l-p)Uqi(a,b)]g
 fap + a-p)[l-Iqü(a,b)V

 Ub(0) = r[ý(a + b)-f(b)'

 y~v (l-p)Uqi(a>b)h
 f^cP + ū-p)''-iqMMV
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 ß(b - 1 )(xj/s)aß log (Xj/s)

 [1 + (X,/5)«]{[1 + (Xi/srf - (. Xi/S)«ß }

 (1 -P)[iqi(a,b)]a
 £¿p + (l-p)[l-Iqi(a,b)Y

 ti (û'-r r (Xj/s)01 Ķ jb - 1)C Xj/sy# '
 ß (û'-r ß ^ r Li + ixi/s)a Ķ J r [1 + (Xi/s)a]ß - {Xi/syß ' J

 (l-p)[iqi(a,b)]ß
 f£p + (l-p)[l-Iqi(a,b)y

 U (ň) _ raßa + v a(ßa + Wxi/s)a
 S fe í[l + (jCi/í)«]

 y*

 ¿jj y*

 y-v (1 P)'.Íq¡(aiby's
 iēcp + (^~ ~ 7«' (a' b ^

 Here, qt = [1 + (xi/s)"*]^, [Íq¡(a,b)]p = dlq,(a,b)/dp , [4(a,% =
 dlqi(a,b)/da , [4(0.% = dlq¡(a,b)/db, [Íq¡(a,b)]a = dlq¡(a,b)/da,
 Üqi(a,b))ß = dlqi(a,b)/dß, [Íqi(a,b)]s = dlq¡(a,b)/ds. The MLE ? of 0 is
 obtained by solving the nonlinear likelihood equations UP(B) = 0, Ua(0) = 0,
 Ub($ ) = 0, ř/<*(0) = 0, Uß(6) = 0 and US(Q) = 0. They cannot be solved an-
 alytically and statistical software can be used to solve them numerically. We
 can use iterative techniques such as a Newton-Raphson type algorithm to cal-
 culate $. For interval estimation of (p, a, b, a, ß, s), we can use the 6 x 6 ob-
 served information matrix J (6) = {- L,j}, where the entries L ¡j are given in
 Appendix C.

 13 The log-beta Burr III regression model

 Let X be a random variable having the BBIII density function (1.6). The random
 variable Y = log(X) has a log-beta Burr III (LBBIII) distribution, whose density
 function (parameterized in terms of a = a + 1 and p. = - log(s)) can be expressed
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 as

 (131)

 r exp((y - ß)/cr) 1 r ^ r exp((y - ß)/o) ļ^i^-1
 X Li +exp(0 -ß)/o)' 1 ^ Li + exp((y-/*)/cr)J J

 where - oo < y < oo, a > 0 and - oo < ß < oo.
 We refer to equation (13.1) as the (new) LBBIII distribution, say Y ~

 LBBIII(a, b, ß, a, ß), where ß is a location parameter, a is a dispersion parameter
 and a and b are shape parameters. Thus,

 if X ~ BBIII(a, b, ß, a, s ) then Y = log (T) ~ LBBIII(a, b, ß, a, ß).

 The plots of (13.1) in Figure 12 for selected parameter values show great flexibility
 of the density function in terms of the parameters a and b. In Figure 12(a), b =
 0.5 and in Figure 12(b), a = 1.5. The survival function corresponding to (13.1)
 becomes

 ^00 = 1 - ^[exp((y- /i)/cr)/(l+exp((y- ß)/a))]ß(a' (13.2)
 We define the standardized random variable Z = {Y - ß)/ o with density function

 ß exp(- z) [" exp(z) f exp(z)

 71 Z'a' B(a,b ) [l+exp(z)J [" ļ f [l + exp(z)J J '^33^
 -00 < z < 00.

 The special case a = b = 1 leads to the standard log-Burr III (LBIII) distribution.
 For b = 1 and a = 1, we obtain the log-exponentiated Burr III (LEBIII) and log-
 Lehmann type II Burr III (LLeBIII) distributions, respectively.

 In many practical applications, the lifetimes are affected by explanatory vari-
 ables such as the cholesterol level, blood pressure, weight and many others. Para-
 metric regression models to estimate univariate survival functions for censored
 data are widely used. A parametric model that provides a good fit to lifetime data
 tends to yield more precise estimates of the quantities of interest. Based on the
 LBBIII density function, we propose a linear location-scale regression model for
 censored data linking the response variable y¿ and the explanatory variable vector
 vf = (v/i , . . . , vip) as follows

 yi=vfy +crzi, i = l, . . . ,n, (13.4)
 where the random error n has density function (13.3), y - (yi, ■ ■ ■ , yp)T, o > 0,
 a > 0 and b > 0 are unknown parameters. The parameter ßi = vf y is the loca-
 tion of y¡. The location parameter vector ß = (ß' , . . . , ßn)T is given by a linear
 model ß = Vy, where V = (vi , . . . , v„)r is a known model matrix. The LBBIII
 regression model (13.4) opens new possibilities for fitting many different types of
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 Figure 12 Plots of the LBBIII density for some parameter values. Figures (a), (b) and (c) ß = 0.5,
 p = 0 and a = 1 .

 censored data. It is an extension of an accelerated failure time model using the
 BBIII distribution for censored data.

 Consider a sample (yi, v i ),..., (y„, v„) of n independent observations, where
 each random response is defined by y¡ = min{log(x,), log(c,)}. We assume non-
 informative censoring such that the observed lifetimes and censoring times are
 independent. Let F and C be the sets of individuals for which y¡ is the log-
 lifetime or log-censoring, respectively. Conventional likelihood estimation tech-
 niques can be applied here. The log-likelihood function for the vector of param-

 eters T = (a, b, a, ß , yT)T from model (13.4) has the form /(r) = £;6/t/i(t) +

 E,ec'/C)(T)' where li{r) = log[/(y,|v,)], l'c'r) = log[S(y, |v,)], /(y, |v¿) is the
 density (13.1) and S(y¡ |v,) is the survival function (13.2) of F,. The total log-

This content downloaded from 
������������143.107.214.185 on Fri, 19 Nov 2021 19:09:34 UTC������������ 

All use subject to https://about.jstor.org/terms



 Survival analysis 527

 likelihood function for t reduces to

 ,w - - £» + «" -

 + Eiog{i- ^[exp(z,)/ (l+exp(z,))]^ (° ' ¿) } '
 ieC

 where z¿ = (y, - 'f y)/a and r is die number of uncensored observations (fail-
 ures). The score functions for the parameters a, b, ß, o and y are given by

 r - , ^ [iuß(a,b)]a
 Ua(r) =

 [i ß (a, b)]b

 Ubit) =  a ieF ieC (a '

 TT / ' r , / x /L ^ ^wflogí«,) -, t4f(íZ'è)]^
 l^(T) TT / ' = - P +a , Elog("') / x -(¿-DE /L ^ - P ieF ieF l-"¿ ieC

 TT / ' - r I i V"*/ ' (°^ ~~ D Zí'MÍ
 Uair) TT / ' =

 a a fã a fãex pfo)

 a ilí ( 1 - "? )(exp(z«)) ,1c 1 - 7«f (a' è) '

 1 y"1 iaß - i) vijui
 uyí (T) = - y"1 E v'j

 o fã v'j ° fã exp(zí) 7~T

 + | (¿~l))8y^ Mf+1%-
 + | (¿~l))8y^ iei (1 - Mf )(exp(Zi)) ife1"7«^0'*)'

 Here, [/^(a,¿)]a = dljia,b)/da, [Íjia,b)]b = dlußia,b)/db, Uußia,b)]ß =

 dlußia,b)ßß, [iußia,b)]a = dIußia,b)/do, [iußia,b)]Yj = dIußia,b)/dYj,
 Ui = exp(z,)/l + exp(zi) and j = l, . . . , p. The MLE r of t is obtained by solv-
 ing the nonlinear equations Ua(t) = 0, Ubit) = 0, Uß(r) = 0, U0(t) = 0 and
 Uyj (t) = 0. These equations cannot be solved analytically and statistical software
 can be used to solve them numerically. We can use iterative techniques such as a
 Newton-Raphson type algorithm to calculate the estimate r. The elements of the
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 observed information matrix corresponding to (13.5) can be by obtained from the
 authors upon request.

 We use the subroutine NLMixed in SAS to compute t. Initial values for ß, y
 and cr are taken from the fit of the LBIII regression model with a = b = 1 . The fit
 of the LBBm model produces the estimated survival function for y¡ given by

 s(yr,â, b, a, ß, yT) = 1 - /[exp(ží)/(1+exp(ží))]^(á, b), (13.6)

 where zt = (y¡ - vf y)/a.
 Under standard regularity conditions, the approximate multivariate normal dis-

 tribution Np+4(0, J( t)-1) for t can be used in the classical way to construct con-
 fidence intervals for the parameters in r, where 7(r) is the observed information
 matrix. Further, we can use LR statistics for comparing some special sub-models
 with the LBBIII model. We consider the partition t = (r', tJ )t, where x' is a
 subset of parameters of interest and T2 is a subset of the remaining parameters.

 The LR statistic for testing the null hypothesis Hq:t' = t10' versus the alternative

 hypothesis H':t'^ is w = 2{£(r) - ¿( t)}, where t and r are the estimates
 under the null and alternative hypotheses, respectively. The statistic w is asymp-
 totically (as n oo) distributed as x% » where k is the dimension of the subset of
 parameters ri of interest.

 14 Applications

 In this section, we give three applications using well-known data sets, two of them
 with censoring, to demonstrate the flexibility and applicability of the proposed
 models. These data show that it is necessary to have positively skewed distributions
 with nonnegative support in different fields. These data present different degrees
 of skewness and kurtosis.

 14.1 Acute myelogeneous data

 Here, we apply our methods to a survival data set that was analyzed by Feigl
 and Zelen (1965). The data represent the survival times, in weeks, of 33 patients
 suffering from acute myelogeneous Leukaemia. The data, that can also be found
 at library SMIR of the R program (http://cran.r-project.org), are the following: 65,
 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22,
 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. We fit the BBIII, EBBI, LeBIII and Bill distributions to
 these data using the method of maximum likelihood. The MLEs of the parameters
 (with standard errors) and the Akaike Information Criterion (AIC) for the fitted
 models are listed in Table 2.

 A comparison of the new distribution with three of its sub-models using LR
 statistics is performed in Table 3. So, considering a significance level of 10%,
 we reject the null hypotheses in favor of the BBIII distribution in the three tests.
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 Table 2 MLEs of the model parameters for the acute myelogeneous data, the corresponding SEs
 ( given in parentheses) and the AIC measure

 Model a b a ß s AIC

 BBIII 0.0671 68.8649 0.7687 15.6785 40.5867 315.02

 (0.0080) (20.6863) (0.0615) (2.2911) (11.5609)
 LeBin 1 4.6233 0.5024 2.8857 17.2698 316.37

 (-) (1.0142) (1.1221) (0.0816) (16.9161)
 EBIII 9.3906 1 0.8303 0.3084 3.0707 319.17

 (8.9829) (-) (0.0404) (0.2951) (1.4018)
 BIU 1 1 0.8478 2.5633 3.7879 317.12

 (-) (-) (0.0471) (0.7354) (1.8414)

 Table 3 LR statistics for the acute myelogeneous data

 Model Hypotheses Statistics w p-value

 BBIII vs EBIII H0 : b = 1 vs Hi : H0 is false 6.1515 0.01312
 BBIII vs LeBIII H0 :a = l vs Hļ -.Ho is false 3.3500 0.06720
 BBIII vs Bill H0:a=b=l's Hi:H0 is false 6.0972 0.04742

 The plots of the fitted BBIII, EBIII, Bill and LeBIII densities are given in Fig-
 ure 13. They show that the new distribution provides a better fit than the other
 three sub-models. The required numerical evaluations were implemented by using
 an R program (sub-routine nlminb that can be found at http://cran.r-project.org).
 Chen and Balakrishnan (1995) proposed a general approximate goodness-of-fit

 test for the hypothesis Hq'X', . . . ,Xn with X¡ following F(x, 9), that is, under
 Hq, X', ... ,Xn is a random sample from a continuous distribution with cumu-
 lative distribution F(x, 9), where the form of F is known but the p -vector 9 is
 unknown. The method is based on the Cramér-von Mises and Anderson-Darling
 statistics and, in general, the smaller the values of those statistics, the better the fit.

 Next, we apply such methodology in order to provide goodness-of-fit tests for the
 distributions in study.

 Table 4 gives the values of the Cramér-von Mises and Anderson-Darling statis-
 tics for the acute myelogeneous data. According to the critical points given in
 Table 1 of Chen and Balakrishnan (1995), when the Anderson-Darling statistic
 is used, the null hypotheses are rejected at the significance level of 5% for the
 Bill and EBIII models and at 10% for the Lein model. The null hypothesis is
 not rejected for the BBIII model. The same conclusions are obtained when the
 Cramér-von Mises statistic is used.
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 Figure 13 Fitted BBIII, EBlll, BUI and LeBIII densities for the acute myelogeneous data.

 Table 4 Goodness-of-fit statistics for the acute myelogeneous data

 Model Anderson-Darling Cramér-von Mises

 BUI 0.8922 0.1498

 EBIII 0.8984 0.1512

 LeBIII 0.7125 0.1128

 BBIII 0.5657 0.0832

 14.2 Melanoma data with long-term survivors

 Here, we apply the BBIII model for survival data with long-term survivors to pre-
 dict cancer recurrence. The data are part of a study on cutaneous melanoma (a type
 of malignant cancer) for the evaluation of postoperative treatment performance
 with a high dose of a certain drug (interferon alfa-2b) in order to prevent recur-
 rence. Patients were included in the study from 1991 to 1995, and follow-up was
 conducted until 1998. The data were collected by Ibrahim et al. (2001). The sur-
 vival time X is defined as the time until the patient's death. The original sample
 size was n = 427 patients, 10 of whom did not present a value for the explanatory
 variable tumor thickness. When such cases are removed, a sample of size n = 417
 patients was retained. The percentage of censored observations was 56%.
 We start the analysis of the data considering only failure (*,) and censoring
 {cens i ) observations. An appropriate model for fitting such data could be the BBIII
 distribution. Table 5 lists the MLEs (and the corresponding standard errors in
 parentheses) of the model parameters and the AIC statistic for the fitted models.
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 Table 5 Estimates of the model parameters for the melanoma data , the corresponding SEs ( given
 in parentheses) and the statistics AIC , CAIC and BIC

 Model aba ß s AIC

 BBni 0.0348 0.0536 1.2575 99.3570 0.6363 1061.6

 (0.0194) (0.0326) (0.6433) (25.87) (0.9928)
 EBm 5.5084 1 0.6617 100.12 0.0002 1066.1

 (1.6584) - (0.0384) (0.0144) (0.00001)
 LeBIII 1 0.7719 0.7440 142.47 0.0027 1065.8

 (0.3624) (0.1604) (0.0004) (0.0002)
 Bm 1 1 0.6672 99.4551 0.0031 1064.1

 (0.0372) (2.712E-6) (0.0011)

 ai ri

 Weibull 6.9437 1.0509 1102.1

 (0.5611) (0.0691)

 Table 6 LR statistics for the melanoma data

 Model Hypotheses Statistics w p-value

 BBIII vs EBBI H0 :b=l vs Hi : is false 6.40 0.0114
 BBm vs LeBIII Hq : a = 1 vs H' : Hq is false 6.20 0.0127
 BBm vs BIB Hq : a = b = 1 vs H' : Hq is false 6.50 0.0388

 The computations were performed using the subroutine NLMixed in SAS. These
 results indicate that the BBm model has the lowest AIC value among those values
 of the fitted models, and therefore it could be chosen as the best model.

 Note that a' and y' are the scale and shape parameters of the Weibull distribu-
 tion, respectively.

 A comparison of the new distribution with three of its sub-models using LR
 statistics is performed in Table 6.

 From the values of these statistics in Table 6, we conclude that the BBHI
 distribution provides a good fit for these data. In Figure 14, we plot the empiri-
 cal survival function and the estimated survival functions of the BBIII, Bm and
 Weibull distributions. These plots indicate that die BBm model gives the best fit
 to these data. Next, we present results by fitting the BBm mixture model. The
 MLEs (approximate standard errors in parentheses) are: à - 0.8459 (0.0472), b =
 7.5865 (0.2401), p = 0.4822 (0.0408), ß = 5.5316 (2.9311), â = 0.7596 (0.2210)
 and š = 0.9516 (1.5506). The proportion of cured individuals estimated by the
 BBm mixture model is /?bbiii = 0.4822. In Figure 15, we plot the empirical sur-
 vival function and the estimated survival function for the BBm mixture model

 which indicates an appropriate fit to the current data.
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 Figure 14 Estimated survival functions and the empirical survival for melanoma data.

 Figure 15 Estimated survival function for the BBIII mixture model and the empirical survival for
 melanoma data.

 14.3 Ovarian carcinoma data

 Fleming et al. (1980) reports an study, performed at the Clinic Mayo, of patients
 having limited Stage II or III ovarian carcinoma. The main goal was to determine
 whether or not the grade of the disease was associated with the time to progression
 of the disease. The sample size is n = 35 and the percentage of censored observa-
 tions was 34%. The variables involved in the study are:

 • ti - survival times (in days);
 • cens i - censoring indicator (0 = censoring, 1 = lifetime observed);
 • xi' - grade of disease (0 = patients with low-grade or well-differentiated cancer,

 1 = patients with high-grade or undifferentiated cancer).
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 Table 7 MLEs of the parameters from the LBBIII and LBIII regression models fitted to the ovarian
 carcinoma data , the corresponding SEs (given in parentheses ), p-value in [•] and the statistic AIC

 Model a b ß o ßo ß' AIC

 LBBIII 0.0072 0.0166 10.7400 0.0520 6.1856 -0.1403 86.7

 (0.0050) (0.0140) (4.9442) (0.0343) (0.0942) (0.1313)
 [cO.OOl] [0.2928]

 LEBIII 0.4396 1 0.7916 0.2954 7.1673 -0.8968 94.6

 (0.1019) - (0.1944) (0.0151) (0.4636) (0.4046)
 [<0.001] [0.0333]

 LLeBIII 1 81.0385 2.2209 1.5580 9.6877 -0.7698 96.3

 (2.5643) (0.6492) (0.1971) (1.1108) (0.3746)
 [<0.001] [0.0474]

 LBIII 1 1 0.3480 0.2954 7.1673 -0.8968 92.6

 (0.2236) (0.1498) (0.4605) (0.4025)
 [<0.001] [0.0324]

 Table 8 LR statistics for the ovarian carcinoma data

 Model Hypotheses Statistics w p-value

 LBBIII vs LEB III H0 'b = 1 vs Hx : H0 is false 9.8 0.0017
 LBBIII vs LLeBIII H0 : a = 1 vs Hi : H0 is false 1 1 .6 0.0007
 LBBIII vs LBIII H0 :a = b = 1 vs Hx : H0 is false 9.9 0.007 1

 Now, we present results by fitting the model

 yi = ßo + ß'xn+ozi,

 where the random variable z¡ follows the LBBIII distribution (13.1) for i =
 1, . . . , 35. The MLEs of the model parameters are calculated using the procedure
 NLMixed in SAS. Iterative maximization of the logarithm of the likelihood func-
 tion (13.5) starts with initial values for ß and a taken from the fit of the LBIII
 regression model with a = b = 1 . Table 7 lists the MLEs of the model parameters.
 The value of the AIC statistic is smaller for the LBBIII regression model when
 compared to the value of the LBIII regression model.

 A comparison of the new distribution with three of its sub-models using LR
 statistics is performed in Table 8. From the values of these statistics, we conclude
 that the LBBIII distribution provides a good fit for these data.

 We note from the fitted LBBIII regression model that x' is not significant at 5%
 and that there is not a significant difference between the patients with low-grade
 or high-grade for the survival times.
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 15 Conclusion

 In this article, we study several mathematical properties of the beta Burr III (BBIII)
 distribution, which represents a generalization of the Burr III (Bill) distribution.
 The current generalization is important because of the wide usage of the base-
 line distribution and the following two facts: it is quite flexible to analyze positive
 data and it is an important alternative model to the exponentiated Burr III (EBIII),
 Lehmann type II Burr III (LeBIII) and Burr III (Bill) sub-models. The new den-
 sity function can be expressed as a linear combination of Bill densities, which
 provide some expansions for the ordinary moments, generating function, mean de-
 viations, Bonferroni and Lorenz curves, reliability and two measures of entropy.
 The density function of the BBIII order statistics can also be expressed as a linear
 combination of Bill densities. We provide a general formula for the moments of
 the order statistics. The estimation of parameters is approached by the method of
 maximum likelihood and the observed information matrix is derived. We adopt
 the BBIII distribution to compose a mixture model for cure rate and propose a log-
 BBIII regression model for censored data. The usefulness of the proposed models
 is illustrated in three applications to real data sets.

 Appendix A

 We have the following result which holds for m and k positive integers, ß > - 1
 and p > 0 (Prudnikov et al., 1986, page 21):

 ./ m '

 roo

 = J xßexp(-px)(l+xm/k)vdx (A.l)
 k~vm^+x'2 k,k+m ( m"1 A(m, -ß), A(k, v + 1)'

 (2^)(m_1)/2r(-v)p^+1 k+m'k'pm A(k, 0) /'

 where A (k, a) = f , 2±i, . . . ,

 Appendix B

 The elements of the observed information matrix J(0) for 0 = (a, b, a, ß, s)T are:

 La, a = n[ý'(a + b)~ t'(a)',

 L a,b = nf'{a + b),

 i í / ' (-Ï; / s)" log(x, / S) ļ
 a = ß £Ll08te/s) í / ' - i / +(*,/,)« log(x, / S) J- ļ
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 n n

 La,ß = a ^logto/s) - £log[l + {Xi/s)01],
 / = 1 / = 1

 La 5 - 1 - ,
 5 ¿¡i - + (Xi/sr -

 Lbtb = n[Ý'(a + b)-y1f'(b)]t

 L b'a
 b'a ¿Í

 L M " logta/s) - log(l + (*,-/j)tt)] M ¿Í [H-(x//j)«]^-(xi/s)^
 _ ßa v-*

 ^ _ ~ Í ¿J

 T n ,a_ , nf UiArtlog^/i)]2
 T L"'" = -^-tfa+1)S n ,a_ , nf [i+tew«ř

 -00-1)
 n

 x ^(^'A)^[i°gte75)]2
 i=i

 „ {j8[l + (xf/j)«]* - (Xj/sril 1 + - QCfA)«*}}
 [1 + (x,/s)«]2{[l + (Xi/s)«]ß - (Xi/srß}2

 _ v-^ l0g(x, / s)

 _ L^=aglT(^Ār v-^
 n

 -{b- 1) J2(xi/s)aß log (x,-/i)
 (=1

 f [1 + (x/AH^l+c^logfeA) ß log[l + fo/j)«]} - (x,/s)^ 1
 X 1 [1 + (X,/J)«]{[1 + (Xi/sTf - {Xi/srß} 2 J'

 ^

 a's~ s ¿Í

 {aß + 1)« A O, A)a log(-t¡ / s)

 s h' tl+ (^¿A)"]2
 jgçfe - 1> " f [l+a01og {Xi/s)]{xi/srß
 s ¿í í [1 + (xí/â)«]{[1 + (Xi/s)«]ß - (xi/srß}
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 ßa{xi/s)aß'og{xi/s){{xi/s)aß - (Xi/s)a[ 1 + (xi/s)a)ß~1}
 [1 + (x¡ /s)«]{[l + (xt/s)a]ß - (. xi/s)«* }2

 a(xļ /s)a(ß+V) log(jc,- /s) ļ
 " ti + (xi/srnn + (xi/syr - (*,■/*)«/»} r

 f Hß = n f Hß = -j¡

 - (b - I) Va t1 + (xi/s)a]ß(xi/s)aß[alog(xi/s) - log(l + (xj/s)a)]2
 {[1 + (Xi/s)a]ß - {Xi/s)aß}2

 ^ajb-l)" 1
 í ¿Í t1 + A)"]
 [

 X 1 [1 + ( Xi/s)a]ß -

 r (Xj/s)a 1 [1 + (Xi/s)aÝ ì
 gLi + (xi/sr J {[i + {XÍ/stý - (xi/srß}2 y

 _ naaß a(aß + 1) A {a - (1 + oQ[l + (x¡ /5)"]}
 s2 s2 ~ {[l + te7«)a]}2

 (aß)2(b- 1)A

 52 h'

 _ ßa(b- 1)
 S 2

 ,, A (Xi/srß[(xi/sr( 1 - a) + !]{[! + (Xj /s)a]ß - (Xj/s)«*}
 ,, X ¿J {[1 + te A)a]{[l + (*/ - (jcîA)«/»}}2

 «£2(fe - l)g " [1 + fa A)a]{fa-A)^ - (Xj/s)a[l + (^A)"]^-1}
 Í2 ¿1 {[i + (JCiA)a]{[i + (JCiA)«]^-(jcť/í)«/'}}2 '

 Appendix C

 The elements of the observed information matrix 7(r) for the parameters
 (p,a,b, a, ß, s) are:

 L r y- UqM^))2
 p'p (l-p)2 f£.[p + ('-p)''-Iqi(a,b)])2,
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 L _ v [Ļ (a, b)]a[p + 2(1 - p)Iqi {a, b )]
 ^ _ h¿ v {p+a-pm-iv^b)]}2 '

 L _ [4 ( a ' ¿OMP + 2(1 - p)/g, {a, b )]
 P'è~ife _ {P + (l-P)[l-^(«^)]}2 '

 _ [Ļ (a, b)]a[p + 2(1 - p)/g|. (a, b )]
 P'a _ ieC {P + (l - PW -hM'b)]}2

 L ß _ [4 ¿OJ/ŠÍP + 2(! - P)^, (a> ¿)]
 P ß _ he {P + (l- P)[l- Iqi(a>b)]}2

 L _ y-v [4 (a> ¿MP + 2(! - P)7<?, ^)]
 P'S _ he y-v {p + (l- p)[l- Iqi(a>b)]}2

 La>a = r[f'(a + b)-f'(a )]

 - £(a - p)[4(«. *)]«> + a - p)[i - '«(«. *)]}
 ieC

 + (1 - p)2[4 (a, &)]2)/{p + (1 - p)[l - 4- (a, b )]}2,

 La, è = rf'(a + b)

 - £((1 -^«(«•WUÍP + O -PÁ1 -IqM'b)]}
 ieC

 + (1 - pÝ[ÍqM,b)]a[Íqi(a,b)]b)/{p + (l -p)[l - Iqi(a,b)]}2,

 T aV^Ti / ^ feA)a logfo/i)]
 T L-<, = "S[logteA) aV^Ti / ^

 - £«i - p)[4(«> *)Up + d - p)[i - '«(«. *)]}
 i gC

 + (l-p)2[4(fl,fr)]a[4(a,Ä)]J

 /{p + (l -p)[l -/9i(a,ž>)]}2,
 n

 La.jS = a £log(^/i) - £log[l + {Xi/s)a]
 ieF i= l

 - £((1 - P)[iqM, b)]aß{p + (1 - P)[ 1 - 6)]}
 ieC

 + (1 - p)2[4 (a. *)]«[4

 /{P + (1-P)[l -/*(«, &)]}2,
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 Las = _^y

 s Áf1

 - E^1 - P)[ïqM,b)]as{p + (1 - P)[l - Iqt(ū,b)]}
 ieC

 + ū-p)2[iqMM]a[iqiM)l)
 /{p + (l-p)[l-Iqi(a,b)]}2,

 L b,b = r[t'a + b)~ f'b )]

 - H«1 - P)[)qM'b)]bb{P + ^ -PÏ'> -IqM,b)}}
 ieC

 + (1 - p)2[4(a, h)fb)/{p + (1 - p)[ 1 - Iqi(a, b )]}2,

 L ba =ßy^

 ba i€F

 - £((1 - p)'ïqi (a, b)]ba{p + (1 - p)[ 1 - Iqi(a, *)]}
 ieC

 + (1 - p)2[iqi (a, b)]b[Ļ (a, b)]a)/{p + (1 - p)[l - Iqi (a, b)]}2,

 _ (Xj/s)aß[a log (Xj/s) - log(l + feA)")]
 b,ß _ [1 + (xi/s)a]ß - (. xi/s)aß

 - E«1 - p)[iqi(a>b)]bß{p + (.l -p)[l -Iq¡(a,b)]}
 ieC

 + (l-p)2[iqi(a,b)]b[igi(a,b)]ß)/{p + (l-p)[l-Iqi(a,b)]}2,

 L bS

 bS s ieF

 - E«1 - P)[4(«. + (! - P)[! - 4w(«. *)]}
 i^C

 + d - p)2[4 («^)L[4 («'¿)D/{P + d - p)[i - iqMMÝ'
 F r ^ ^ {Xi/s)a['og(Xi/s)]2
 u,- F ?-w«+i)E r ^ ^ [1+(flA)«P

 - - l) EO/A)^[l°gteA)]2
 ieF

 {ß[i + Qc,-A)tt]* - U,-A)a{[l + fo/j)g]" - 0,-A)^}}
 [1 + (*/ A)a]2{[l + (x//s)a]^ - {Xi/s)aß}2
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 - £(ü - P)[UM> b)]aa{p + (1 - p)[ 1 - Iqi(a, &)]}
 ieC

 + (1 - p)2[iq¡ (a, b)]l)/{p + (1 - p)[' - Iqi (a, b)])2 ,

 a'ß~a^Fi + (xi/sr

 - (b - 1) ^2(x'/sfß !°g (Xi/s)
 ieF

 f [1 + (xi/s)af{l+aßlog(xi/s) -ßlogjl + (Xj/s)01}} - (. Xj/sT ß Ì
 X 1 [1 + (Xi/J)«]{[l + (xi/sr]ß - (Xi/S)"ß}2 ļ

 - £((! - P)[ïqM> b)]aß{p + 0 - P) t1 - UM' b)]}
 ieC

 + (l-p)2[iqi(a,b)]a[iqi(a,b)]ß)/{p + (l-p)[l-IqM>b)]}'

 I

 5 [1 + U« A)a]

 1 (Xj/s)a (ßa + 1)« (Xj/sf 'og{xj/s)

 s ieF t1 + toA)"] s i^F t1 + C-*/A)oe]2

 ß(b - 1) ^ r [l+aß log (xi/sMxj/srf*
 * f?F' ^ [1 + (Xi A)"]{[1 + (xi/s)a]ß - (. Xi/syß }

 + {ßa(xi/s)aß'og(xi/s)

 X {{Xi/s)aß - (x¡/s)a[' + (Xí/s)"]^"1})

 /([1 + (*ť/*)a]{[l + (Xi/s)a]ß - (Xi/s)aß}2)

 <x(xi / s)a(-ß+i) log(x,/s) 1
 ~ [1 + (JCI-A)«]2{[1 + (Xi/s)a]ß - {Xi/sTß} )

 - £((1 - p)[ïqi(a, b)'as[p + (1 - p)[l - Iqt(a, b)]}
 i €C

 + (1 - p)2[Íqi(a,b)]a[Íqi(a,b)]s)/{p + (l - p)[ 1 - Iqi(a>b)]}2,

 i Lß'ß = n
 i Lß'ß = "fi

 -(b-lìY^ t1 + (Xi/s)a]ß(xi/s)aß[a log(X| / s) - log(l + (xí/s)")]2
 {[1 + (Xi/s)a]ß - {,Xi/s)aß}2
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 - E«1 - P)[4(a. »]ßß{p + a - Ml - /«(«. Ml
 ieC

 + (1 - p)2[Ļ(a,b)]ļ)/{p + (l -p)[l - Iqi(a,b)]}2,

 _a(b- 1)^ 1
 ß'S S f^F[l + (Xi/s)a]

 Í (Xj/s)aß

 x I [1 + (Xi/s)a]P -

 +ßi r (xi/s)a i [i +(Xi/srý i
 gLi + (xi/sr J {[i + teme - (x i/srß}2 )

 - E«1 - M4(«. *)]*> + d - Mi - '«(«. Ml
 i gC

 + (i + -p)[i - AM>M}2>
 _nßaa a(ßa + 1) ^ {« ~ (1 +a)[l + teA)a]}

 í,í_^2- ¡2 ^ 2-, {[1 + (xi/sr]}2

 (ßa)2(b- l)y>

 i2 ¿

 ßa(b - 1)
 s2

 :: X y-v (Xi/s)aß[(xj/s)a( 1 - a) + !]{[! + (Xj/srý - (xt/s)aß)
 :: X ftF y-v {[1 + te A)a]{[l + te A)"]^ - (Xi/srß}}2

 ßMb - 1 )g [1 + teA)g]{teA)"^ - teA)g[i + teA)a]^~'}
 í2 i?F {[1 + te/i)a]{[l + (Xi/s)a]ß - (Xi/srß}}2

 - E((! - M4(fl» + e1 - M1 - AM - Ml
 ieC

 + d - M[4te M?)/{p + d - Mi - AM Ml2-

 Here, [Íq¡(a,b) ]aa = d2Iqi(a,b)/da2, ßqi(a,b)}ab = d2Iq¡(a,b)/dadb,
 [Íqi(a,b)]aa = d2Iqi(a,b)/da da, Üqi(a,b)]aß = d2lqi(a,b)/dadß,
 [Íqi (a, b)]as = 3 2Iq¡ (a, b)/da ds, [Íq¡ (a, b)]bb = 3 2Iq¡ (a, b)/db2, [ïqi (a, b)]ba =

 d2Iqi(a,b)/dbda, [iq,(a,b)}hß = d2Iqi(a,b)/dbdß, [ïqt ,(a,b)}bs = d2Iqi(a,b)/
 db ds, [Ìqi(a,b)]aa = d2Iq¡(a,b)/da2, [fqi(a,b)}aß = d2Iq¡(a, b)/da dß,
 [4 Was = 3 2Iqi (a, b)/ da ds, [Ļ (a, b)}ßß = 3 % (a, b)/ dß2, [ïqt (a, b)]ßs =
 d2Iq¡ (a, b)/ dß ds and [Ļ (a, b)}ss = 3 2Iqi (a, b)/ds2.
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