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ARTICLE INFO ABSTRACT

Keywords: Soil drainage is an essential factor that influences plant growth and various biophysical processes, such as
Environmental covariates nutrient cycling and greenhouse gas fluxes. Therefore, soil drainage maps are fundamental tools for managing
Ferralsol

crops, forests, and the environment. This study compared two approaches to mapping soil drainage classes in the
state of Sao Paulo, Brazil, using geographic information systems (GIS). The first approach employed expert
knowledge (EK) to develop a simple model based on soil color and texture, while the second used machine
learning (ML) with an extensive set of covariates and a decision tree algorithm. To evaluate the full, operational
implementation of soil mapping, this study assessed the two approaches in terms of accuracy, labor efficiency,
transferability, interpretability, and agreement/disagreement statistical methods. In terms of accuracy, the ML-
based strategy showed greater agreement with the reference map (53 %) compared to the EK approach (50 %).
However, the EK strategy was more time- and resource-efficient, as well as being more transferable and inter-
pretable due to the simplicity of its rules based on soil properties. Given its higher interpretability and ease of
application, the EK approach was recommended as the most suitable for operational soil drainage mapping in
tropical environments.

Predictive modeling
Remote sensing
Soil color

1. Introduction

Demand for detailed soil information has increased over the years as
a means of supporting not only land management for agriculture but also
the roles of soil in ecosystems (Brevik et al., 2016). The gap between this
demand and the state of legacy soil maps is becoming even greater in
developing countries such as Brazil. Here, most available soil maps are
incomplete or insufficient to support public policies and other applica-
tions involving soil resources (Santos et al., 2015).

An important characteristic lacking in most Brazilian maps is the soil
drainage class, defined as the frequency and duration of wet periods or
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degree and frequency the soil matrix is free of water saturation (Soil
Science Division Staff, 2017). A soil drainage class is used as an indicator
of the general conditions of water movement in the soil, which is pri-
marily influenced by climate and regulated by soil texture, structure,
and topography (Troeh, 1964; Gerardin and Duerue, 1990; Fausey,
2005). Information on soil drainage becomes essential because it con-
trols several processes in the soil, such as the decomposition of soil
organic matter (Wickland et al., 2010), distribution of soil organic car-
bon (Raymond et al., 2012), and microbial adaptations (Graca et al.,
2021). Subsequently, soil drainage informs management decisions, such
as irrigation rate, cow stocking rates, dry matter production (Fitzgerald
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et al., 2008) and which plant species are more suitable for a specific area
(Levine et al., 1994).

The description of soil drainage is usually performed in terms of
seven discrete units or classes varying from very well to poorly drained,
depending on the proportion and rate of water infiltration. Rather than
directly observing the long-term hydrologic conditions of a site,
drainage class tends to be interpreted from soil morphological features
such as soil color, texture class, and the presence of redoximorphic
features that are observed when soil profiles are described in the field.
Soil color and redoximorphic features reflect processes that take place in
the soil due to the duration of water saturation, specifically oxidation
and reduction of iron. Well aerated and drained soils usually present
reddish, brownish, and yellowish colors, which are characteristic of the
presence of iron in the oxidized form. In these soils, water is removed
rapidly, especially if coarse-textured soils are present. In poorly drained
soils, however, gray and dark colors reflect the presence of organic
matter and silicate minerals, and altered forms of iron that have been
reduced or removed from the system due to the presence of water during
extended periods (Franzmeier et al., 2001).

On the other hand, the depth to the water table can be more useful
than morphological characteristics for describing soil drainage classes
(Mackintosh and Van Dern Hulst, 1979). This concept relates to soil
sequences along a slope, known as catena, and is grounded in
soil-landscape relationships. Hillslope positions—summit, shoulder,
backslope, footslope, and toeslope—are crucial in governing water
movement (Schaetzl et al., 2022). Well-drained soils with deep water
tables are typically on uplands and upper backslopes, while poorly
drained soils with higher water tables are usually at the slope’s bottom.

Evaluating landscapes and allocating land areas into drainage classes
is a complex task that relies on spatial predictions of observable surface
variables. Traditionally, creating soil drainage class maps involves two
steps: 1) field observations and allocation of drainage classes and 2)
applying knowledge from observed soil profiles to areas where direct
observation is impractical. In the second step, pedologists use their
mental models, that is, their perceptions and knowledge acquired over
time from prior experiences, scientific understanding, and technical
intuition, in addition to the understanding of soil-landscape relation-
ships. Previous studies have relied on expert knowledge, morphological
characteristics, and the experiences of pedologists (Hudson, 1992). For
example, Gerardin and Duerue (1990) proposed a method for assessing
natural soil drainage in forest soils to assist non-specialists. Their
approach, which involved measuring various geomorphological, topo-
graphical, edaphic, and vegetation variables, showed promise but was
site-specific, limiting its broader applicability.

Traditional techniques have produced valuable soil maps for over a
century; however, reliance on tacit knowledge can lead to in-
consistencies among experts (Bouma, 1973; Kerebel and Holden, 2013).
To address this issue, quantitative frameworks for mapping soil drainage
classes have emerged, utilizing mathematical calculations and statistical
tools to describe the landscape’s relationship with drainage classes. For
instance, Troeh (1964) developed 3D equations to derive landscape
parameters related to soil drainage, establishing a strong correlation.
Bell et al. (1992) proposed a "soil-landscape model" using multivariate
discriminant analysis to identify variables that optimally separate soil
drainage classes, achieving a 74 % agreement with field survey data.

Currently, digital soil mapping is the primary method for spatially
predicting soil drainage classes. Common covariates include optical and
radar remote sensing images (Cialella et al., 1997; Peng et al., 2003;
Niang et al., 2012), terrain derivatives (Zhao et al., 2013), electrical
conductivity (Kravchenko et al., 2002), magnetic susceptibility (Grimley
et al., 2008; Asgari et al., 2018) and soil color (Malone et al., 2018).
Despite its advances, field descriptions of soil drainage classes are still
essential before employing digital mapping techniques. Most studies
relied on field descriptions or legacy soil maps. An exception is Malone
et al. (2018), who defined soil drainage classes based on soil color
groups. They predicted these classes using terrain attributes and

Soil Advances 3 (2025) 100028

machine learning, marking the first quantitative attempt to define soil
drainage classes with information on soil color from legacy data.

In this research, we compared two strategies for mapping soil
drainage classes in Brazil. The first was based on expert knowledge (EK),
in which maps of soil color and texture were used to predict the soil
drainage class. The second strategy was based on machine learning
(ML), in which soil sampling points with the labeled soil drainage class
were used in conjunction with environmental covariates to spatially
predict the distribution of soil drainage classes in the study area. An
existing soil drainage class map was used as a reference. Finally, we
compared and selected the most appropriate strategy between EK and
MK based on their best performance, taking into account four criteria
(accuracy, labor efficiency, transferability, and interpretability), and
agreement and disagreement accuracy statistical method.

2. Materials and methods
2.1. Study site description

The study area is in southeastern Brazil, in the state of Sao Paulo,
covering an area of approximately 2574 km? (Fig. 1). The study area is
part of the Rio Parand Basin, where 2309 soil samples were collected
from various collection points (Fig. 1a). It is characterized by gentle
slopes, undulating hills, and rolling uplands, with elevation varying
between 450 and 950 m.a.s.l. The region’s climate is classified as Cwa in
Koppen’s climatic classification, which is characterized by dry winters
and hot summers with mean annual precipitation of 1200 mm and a
mean annual temperature of 24 °C (Alvares et al., 2013). In the study
area, 83 % of the land is used for agriculture and pasture, 9 % for forest,
savanna, and forest plantations, and the remaining corresponds to urban
areas and water. More than 40 % of the agricultural land is cultivated
with sugarcane, almost 15 % with pasture, 22 % with a mixture of
agriculture and pasture, and 3 % with soybean and other perennial and
temporary crops (Souza et al., 2020).

The main soil classes in the area according World Reference Base for
Soil Resources (WRB, 2014), with the corresponding Brazilian Soil
Classification System in parenthesis, are Acrisols (Argissolos), Ferralsol
(Latossolos), Arenosols (Neossolos), Cambisol (Cambissolos) and Nitisol
(Nitossolos) (Fig. 1b) (Rossi, 2017). In the study area, three acrisols (PA,
PVA, and PV) are found, the main differences of which are related to soil
color. PA (Yellow Acrisol) has a hue of 7.5YR in the first 100 ¢m of the B
horizon, PV (Red Acrisol) has a hue of 2.5YR, and PVA (Red Yellow
Acrisol) represents a gradient between PA and PV with a hue varying
from red to yellow. Four Ferralsol can be found in the study area: LH
(Humic Ferralsol), LA (Yellow Ferralsol), LV (Red Ferralsol), and LVA
(Red Yellow Acrisol Ferralsol), whose differences in classification are
also due to soil color, except for LH, which has higher organic matter
content than the others. Two suborders of Arenosols are found in the
study area: RQ (Quartzarenic Arenosols), a sandy soil, and RL (Lithic
Arenosols), which has a lithic contact in the first 50 cm. Finally, the
Nitisol, being, Red Nitisol (NVf) with high presence of iron oxides are
common and the Haplic Nitisol (NX), which is a soil class that does not
fit in the other categories of this soil order.

The lithological formation is complex and consists of diverse sedi-
mentary rocks, including sandstone, siltstone, shale, unconsolidated
clay, and alluvial deposits (Fig. 1c). The spatial arrangement of these
lithological formations is also depicted in Fig. lc. For a detailed
description of the area’s geology, the readers are referred to Bonfatti
et al. (2020).

2.2. Strategies for mapping soil drainage classes

The strategies evaluated in this study were based on expert knowl-
edge (EK) and machine learning (ML). We used an existing soil drainage
class map as a reference for accessing accuracy. The more appropriate
mapping strategy was selected based on a set of criteria related to the
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Fig. 1. Study area with a) sampling point locations, b) legacy soil class map at 1:250,000 obtained from Rossi (2017), with soil classes named according to the
Brazilian Soil Classification System and the corresponding WRB in parenthesis, and c¢) Lithological map with a spatial resolution of 30 m, obtained from Bonfatti et al.
(2020). The map unit names in parenthesis correspond to the main geological formations according to the Brazilian classification (IGG, 1996). Neossolos in this map

represents the Neossolos Quartzarénicos.

implementation and results of the mapping procedure. A thorough
description of each step is given in the following sections.

The reference drainage map used for accuracy assessment was
generated based on soil classes previously mapped by Mello et al. (2021)
(Fig. 2). A conventional soil class map was created at a scale of 1:20,000,
incorporating environmental variables such as drainage and relief at-
tributes, drainage classes, and satellite images to extend the soil map
over a larger area. A point grid with a resolution of 30 x 30 m was
established to refine the map further to extract soil and variable infor-
mation. Subsequently, these data were used to calibrate a random forest
model, with cross-validation employed to fine-tune model selection and

optimize performance. Each soil class in the map by Mello et al. (2021)
has a corresponding drainage class (Table S1), assigned by an expert
using descriptions from other soil maps available for the country and
knowledge of soil-landscape relationships for each soil class. For
simplicity, we used only five classes to represent drainage, ranging from
very well drained (Class 1) to poorly drained (Class 5). The reference soil
drainage map (Fig. 2b) shows that the study area is predominantly
(39 %) Class 2 (well drained), followed by Class 3 (moderately drained),
which accounts for 37 % of the area. Drainage classes 1, 4, and 5
represent 13 %, 9 %, and 2 % of the area, respectively.

It is important to realize that the soil class map in Fig. 1 is based on
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Fig. 2. Soil class map (a) and the resulting soil drainage class map (b) used as reference, with drainage classes varying from well drained (Class 1) to poorly drained
(Class 5). Cambisols (CX), Gleisols (GX), Ferralsols (LH, LA, LV, LVA), Nitisols (NV, NX), Acrisol/Lixisol (PA, PV, PVA), Arenosol/Regosol (RL, RQ, RR), and

Planosol (TX).

broader lithological and soil type data, designed to give an overview of
the area’s soil types and their formation factors, particularly lithological
substrates that also influence drainage intensity. On the other hand, the
soil map in Fig. 2 is derived from a more detailed dataset specifically
tailored to analyze the relationship between soil type and drainage class.

2.2.1. Soil drainage mapping by expert knowledge (EK)

The strategy based on EK used soil color and textural classes as base
maps and applied an expert’s mental model to determine how those
covariates indicated drainage class. Soil color variables (hue, value, and

chroma) along with texture class maps were obtained from Mendes et al.
(2021), who predicted these properties for two layers (0-20 cm and
80-100 cm) (Figure S1). These maps were created based on data from
1500 observations acquired through various soil surveys conducted by
the Geotechnologies by Soil Science Group (GEOCIS, https://esalqgeo
cis.wixsite.com/english) between 2010 and 2019.

The 0-20 cm layer map was used as the topsoil and the 80-100 layers
were averaged to represent the subsoil. We addressed the two primary
soil layers that significantly influence soil composition, which we have
designated as the ’surface’ layer (0-20 cm) and the 'undersurface’ layer

a) Color Code Textural class Code Drainage description Class
Red 1 Very sandy (Clay content <150 g kg') 1 Very well drained Class 1
Brown 2 Sandy (Clay content <250 g kg'!) 2 Well drained Class 2
Yellow 3 Loam (250 > Clay content <350 g kg!) 3 Moderately drained Class 3
Gray 4 Clayey (350 > Clay content <=600 g kg') 4 Imperfectly to poorly drained  Class 4
Black 5 Very clayey (Clay content > 600 g kg'!) 5 Very poorly drained Class 5

D) il sl | ool Subsei | Fnel drimge

1/5 1/5 Class 3 Class 3 Class 3

C/T: Color/texture code
Code 1/5: red color and very clayey soil
Class 3 (drainage): moderately drained

Red soil with very clayey texture (1/5)
in both topsoil and subsoils

Fig. 3. Measurement in soil classes using a) A table for assigning codes based on soil color and texture class, which were then interpreted by expert knowledge (EK)
to predict drainage class. The final drainage class was determined by an expert after evaluating the relationships between the topsoil and subsoil; and b) An example
of assigning drainage class based on the color and texture of the topsoil and subsoil. The soil drainage class was assigned based on the combination of color/texture
(CT) codes from the topsoil and subsoil layers.
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(80-100 cm). The soil color maps were classified into five groups (red,
brown, yellow, gray, and black) to represent the sequence of five soil
drainage classes, varying from very well to poorly drained, similar to the
approach presented in Malone et al. (2018). The data for the mentioned
attributes can be viewed in Figure S1 and Table S1 in the supplementary
material.

The classified soil color and textural maps were combined in ArcGIS
Pro using the “combine” tool to join the maps and define a numerical
code to represent the color and textural groups (Fig. 3). For example, red
soil with a very clayey texture had the code 1/5 while a gray soil with a
very clayey texture had the code 4/5. With this procedure, 24 color/
texture codes for each layer were obtained (topsoil and subsoil, Table S3
in the supplementary material). After this procedure, a drainage class
was assigned to each color/texture code by an expert pedologist for each
layer. Both layers were then considered to define the final drainage
class. The theory and experience guiding the assignment of drainage
class by an expert pedologist to each color/texture code, and the final
drainage class through the consideration of the two layers, were based
on a threefold approach: i) a comprehensive examination of the relevant
literature concerning the relationship between soil color and drainage,
ii) three decades of hands-on experience in pedology involving soil
profile investigations and field surveys, and iii) developing an adapta-
tion of the international system of drainage classes (drainage classes
recognized by the Natural Resource Conservation Service - NRCS)
(Schaetzl, 2013) tailored to Brazilian conditions and soils, while taking
into account the nuances of the Brazilian Soil Classification System
(SIBICS, 2018). More details can be found in Tables S2 and S3 of the
supplementary materials.

2.2.2. Soil drainage mapping by machine learning (ML)

The ML strategy used 2309 locations observed by the Geo-
technologies in Soil Science Group between 2000 and 2020. Each sam-
ple point had its respective soil drainage class confirmed in the field. The
stack of covariates supporting the ML was derived from elevation,
remotely sensed, and previous soil maps. These spatially exhaustive
variables and sampling points labeled for soil drainage class were
analyzed by a decision tree algorithm (C5.0) to build a model for pre-
dicting soil drainage classes at unseen locations. Unlike EK, the ML-
based strategy does not rely on using only two soil variables (color
and texture) but instead a set of variables that seek to represent pro-
cesses related to the distribution of soil drainage classes in the
landscape.

2.2.2.1. Environmental covariates. A total of 603 environmental cova-
riates were considered in a digital soil mapping framework. All terrain
derivatives were calculated using SAGA GIS, GRASS GIS, and ArcGIS
Pro. The majority (552) of these derivatives were obtained from a digital
elevation model (DEM) with a resolution of 5 m. These derivatives are
scale-dependent and were calculated in a GIS using a moving window,
typically 3 x 3 cells; however, we considered analysis scales ranging
from 15 to 5070 m. Eight terrain derivatives, including slope gradient,
northness, mid-slope position, and curvatures, resulted in a total of 69
raster layers for each derivative. Additionally, derivatives that do not
use moving windows were included, such as vertical distance to the
channel network (VDCN) and the topographic wetness index (TWI).
Remote sensing products from Sentinel-2A (S2A) and Landsat were also
incorporated. For the S2A, images from the dry season (April to October)
and the moist season (October to April) from 2015 to 2020 were pro-
cessed on the Google Earth Engine platform. The Normalized Difference
Vegetation Index (NDVI) and the Synthetic Soil Image (SYSI) were also
obtained following the methodology proposed by Dematte et al. (2018).

Not all environmental covariates were used for spatial modelling. A
Spearman rank correlation analysis was performed to select those that
had the highest correlation with the drainage class. Considering the
raster layers that were obtained at different analysis scales, only the one
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with the highest correlation was selected. For example, among the 69
raster layers of slope gradient at different analysis scales, the slope
gradient at 115 m (slp_115m, window size of 15 x 15 cells) was chosen.
The same was performed on all-terrain derivatives with multiple anal-
ysis scales, satellite images, and the SYSI. The final covariate stack
consisted of 23 raster layers. The environmental covariates that were
selected and used in the modelling process are shown in Table 1.

2.2.2.2. Building and validating ML model. The sample points were
randomly divided into two sets: 70 % of the data (1616 samples) was
utilized for model building, while the remaining 30 % (693 samples)
served for independent validation. The predictive model was imple-
mented in the R software using the C5.0, caret, and raster packages
(Hijmans; Van Etten, 2016; Kuhn, 2020; Su et al., 2021) a decision tree
approach derived from the C4.5 and ID3 algorithms created by Quinlan
(1986). This supervised machine learning algorithm builds a classifica-
tion model based on training data with known classes to identify the best
rules for splitting the data. Validation involved predicting drainage
classes for each sample using a test dataset. Model accuracy, defined as
the number of correct predictions divided by the total predictions, was
assessed using a confusion matrix. Additionally, the kappa index, user’s
accuracy (UA), and producer’s accuracy (PA) were calculated. PA re-
flects the map maker’s accuracy, while UA indicates the reliability from
the map user’s perspective. The Shapley value statistic was employed to

Table 1

Environmental covariates used for spatially modelling soil drainage classes with
their corresponding abbreviation. The analysis scale corresponds to the different
moving windows used to represent some terrain derivatives at different spatial
scales. The last column (‘Selected’) represents the environmental covariates that
were selected after analyzing their relationship with soil drainage.

Environmental nLayers  Abbreviation Analysis Selected
covariates scales

Slope gradient 69 slp 15-5070 m slp_075m
Profile curvature 69 pre 15-5070 m  prc_115m
Plan curvature 69 ple 15-5070 m  plc_1110m
Northness 69 nnes 15-5070 m nnes_3630m
Eastness 69 enes 15-5070 m enes_3630m
Cross-sectional 69 ceurv 15-5070 m ccurv_115m
curvature

Longitudinal 69 leurv 15-5070 m  lcurv_115m
curvature

Relative elevation 69 rel 15-5070 m rel_3090m
Topographic 1 TWI NA YES

wetness index

Mid-slope position 1 mslp NA YES

Vertical distance 1 VDCN NA YES

to channel

network

Multi-resolution 1 MRVBF NA YES

valley bottom

flatness

Soil color subsoil 6 (Hue, value NA All

and topsoil and chroma)

Sentinel —2A 9 S2A dry NA S2A_dry_swirl
bands - dry season

Sentinel —2A 9 S2A moist NA S2A_moist_swirl
bands - moist

season

Sentinel—2A 2 S2A NDVI dry NA S2A_NDVI_moist
Normalized S2A NDVI

Difference moist

Vegetation Index

Sentinel —2A 2 S2A NDRE NA S2A_NDRE _dry
Normalized dry

Difference Red- S2A NDRE

Edge Index moist

Synthetic Soil 6 SYSI NA SYSI_swir2
Image

nLayers: number of raster layers or bands for each covariate. NA means that
these environmental covariates were not submitted to any other calculations
involving moving windows to represent different analysis scales.
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assess the contributions of environmental covariates to drainage class
predictions.

2.3. Comparison between reference soil drainage map and those from EK
and ML strategies

The soil drainage maps obtained from the EK and ML strategies were
compared with the reference map in two ways. First, a cell-by-cell
comparison was conducted by subtracting the EK and ML-based maps
from the reference map to assess their agreement. The resulting differ-
ence maps showed positive, negative, and zero values, indicating the
discrepancies between the EK and ML drainage maps relative to the
reference data.

Next, the soil drainage class at each sampling location shown in
Fig. 1 was extracted from the three maps, and two confusion matrices
were created. During this process, it was noted that Class 5 was not
present among the values extracted from the ML-based soil drainage
map, leading to its exclusion from the comparison and resulting in only
four classes being presented in the confusion matrices. Accuracy, kappa
values, along with user accuracy (UA) and producer accuracy (PA), were
calculated from the confusion matrices.

Additionally, we employed the agreement accuracy and disagree-
ment accuracy methods to evaluate the predictive performance of the
ML and EK strategies (Pontius Junior and Millones, 2011). The R soft-
ware (R Core Team, 2023) was used to calculate these performance
parameters. The terms "agreement accuracy" and "disagreement accu-
racy" are commonly used in predictive model evaluation and are part of
model evaluation metrics. Agreement accuracy measures the percentage
of agreement between predicted and observed maps, while disagree-
ment accuracy gauges the percentage of correct predictions when the
model disagrees with the observed map (Pontius Junior and Millones,
2011).

2.4. Selecting the most appropriate strategy for mapping soil drainage
classes

Based on the appropriate operational strategy for mapping soil
drainage classes in tropical environments, each map was evaluated
using four key criteria for the overall soil mapping process (accuracy,
labor-efficiency, transferability, and interpretability) and a statistical
method for agreement and disagreement accuracy. Scores of 1 (good), 2
(moderate), or 3 (poor) were assigned to each criterion, considering our
experience with the respective strategies based on expert knowledge
(EK) and machine learning (ML) for generating soil drainage class maps.

For the first criterion, accuracy was evaluated by model performance
expressed by the kappa value of the confusion matrices obtained be-
tween the strategies and the reference map. Accuracies higher than 0.5
received a value of 1 while accuracies between 0.3 and 0.5 and lower
than 0.3 received the values of 2 and 3, respectively. This division was
clearly arbitrary and involved the adaptation of the table from Landis
and Koch (1977). While these divisions are clearly arbitrary, they pro-
vide useful "benchmarks’ for discussing the interpretation of results.

Labor-efficiency was considered as the ease or difficulty in obtaining
the data for each strategy. In other words, if the base maps or environ-
mental covariates are easier to calculate or to obtain from other sources.
A higher value was given to the strategy that required fewer resources in
terms of the number of covariates or base maps.

Method transferability, in turn, was evaluated analogously as the
labor-efficiency criterion. This means the ranking would be higher if a
strategy was easily reimplemented in any other region with similar
characteristics to our study area.

The interpretability criterion considered how understandable the
results were for how predictions were made, especially for an audience
with no statistical background. A high value was given to strategies that
presented simple classification prediction rules or employed statistical
analyses to summarize model function in a manner that was easy to
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grasp. Finally, the criterion ratings were averaged per strategy, and the
strategy that received the lowest value was selected as the most
appropriate for mapping soil drainage classes.

Agreement accuracy refers to the percentage of cases in which the EK
and ML provide results that match our reference map. On the other
hand, disagreement accuracy represents the percentage of cases which
the EK and ML do not match with our reference map, implying the ac-
curacy of identifying cases where the methods differ or provide con-
flicting results. These statistical parameters help assess the consistency
and discrepancy between the two methods and their alignment with the
reference map in the context of the study. As the agreement accuracy
values increase, so does the percentage accuracy of the predicted map
relative to the reference map. Conversely, lower disagreement accuracy
values correspond to decreased prediction errors.

3. Results

3.1. Predicting soil drainage classes by EK and ML strategies and
comparison with reference data

The strategy based on EK used topsoil and subsoil color and textural
classes for building numerical codes that were used to define drainage
classes. The combination of these colors and textural classes produced a
soil drainage map (Fig. 4b) in which 58 % of the area had Class 3
(moderately drained), which was mostly placed on areas with loam to
clayey texture. The second most common drainage was Class 2 (well
drained), which was characterized as having brownish color and sandy
to loam texture. This soil drainage class covered approximately 29 % of
the area. Class 1 and Class 4 were in less than 10 % of the area. Class 5,
which represented poorly drained soils with low chroma or gleyed
colors, was predicted to cover even less of the map area and was mostly
restricted to areas near rivers.

The strategy based on ML used a set of environmental covariates to
obtain a prediction model suitable for predicting soil drainage classes.
The ML-based strategy produced a soil drainage map (Fig. 4c) in which
Class 1 (very well drained) was the most common, with 33 % of the area,
followed by Class 2, Class 3 and Class 4, with 24 %, 22 % and 20 % of the
area, respectively. Class 5 (poorly drained), in turn, was predicted in
only 0.11 % of the area. Overall, the ML-based map represented a much
more even distribution across the drainage classes than the EK-based
map. Instead of a single drainage class (moderately drained) domi-
nating most of the map, the dominant soil drainage class in ML-based
map (very well drained) was only a third of the map areas, with most
of the other drainage classes sharing a similar portion of the map area.
Additional results from the ML model are presented in Table S4 and
Figure S2 of the supplementary material, in which model validation and
most important covariates are presented.

Difference maps and confusion matrices between both strategies and
the reference soil drainage map were used to investigate which strategy
developed to map soil drainage classes was most similar to the reference
map. Fig. 4d and e show the difference maps while Table 2 depicts the
confusion matrix of each strategy with the reference data. The greater
the negative or positive values in the difference maps, the higher the
difference between the respective strategy and the reference data. A
negative value meant the drainage class obtained either by EK or ML
strategies was higher (i.e., wetter) than the reference map. Meanwhile, a
positive value represented a lower (drier) drainage class. For example,
suppose at a specific cell, the value of the difference map was —2. In that
case, it means that the strategy for mapping soil drainage class predicted
a Class 3 (moderately drained) soil drainage, where the reference had a
Class 1 (very well drained). The reverse applied for positive values. Zero
values, in turn, represent areas where the predicted maps correspond to
the soil drainage class described in the reference soil map.

The first difference map (Fig. 4d) represents the values obtained after
subtracting the reference map from the predicted EK-based map. The
EK-based strategy had an agreement of 50 % with the reference map but
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Fig. 4. Reference (a), EK- (b), and ML-based soil drainage maps with their corresponding difference maps (d-e). In the difference maps, positive values indicate that
the reference map indicated wetter drainage classes than the EK- or ML-based soil drainage maps, while negative values represent areas where the reference map was
drier than the EK- or ML-based soil drainage maps. Zero values indicate areas where either EK- or ML-based soil drainage classes are equal with the reference map.

Table 2

Cell-by-cell confusion matrix between the reference drainage class map and the
drainage class maps produced by the EK and ML strategies. PA%: Producer’s
accuracy, UA%: User’s accuracy.

Reference soil drainage map

Class1 Class2 ~ Class3  Class4 Total UA
(%)

EK-based Class1 21 28 11 13 73 29
drainage Class2 233 587 138 42 1000 59

Class3 37 312 578 146 1073 54
Class4 0 3 11 86 100 86
Total 291 930 738 287 2246
PA (%) 7 % 63 % 78 % 30 %
Accuracy  0.57
kappa 0.33

Class1 Class2  Class3  Class4 Total UA
(%)

ML-based Class1 109 22 5 0 136 80
drainage Class2 159 753 194 41 1147 66

Class3 23 154 578 99 774 64
Class4 0 1 41 147 189 78
Total 291 930 738 287 2246
PA% 38 % 81 % 68 % 51 %
Accuracy  0.67
kappa 0.51

was prone to underestimating the drainage classes, especially in sandy
soils. We found that 43 % of the predicted drainage classes were be-
tween =+ 1 class from the drainage class observed in the reference map
(values 1 and —1 in Fig. 4d). The reference-ML difference map (Fig. 4e)
had an agreement of 53 % with the reference data, being 41 % between
+ 1 Class (values 1 and —1 values in Fig. 4e).

Table 2 shows the confusion matrix between the strategies (rows)
and the reference data (columns). Highlighted cells represent the
number of samples that were correctly classified by both strategies.

Because Class 5 was not present in any of the sampling points, it was
excluded from the confusion matrix, reducing the total number of
samples from 2309 to 2246. Between the reference sampling points and
the ML-based strategy, an accuracy of 0.67 and kappa of 0.50 were
found. For the EK-based strategy, accuracy and kappa were lower (0.57
and 0.33, respectively).

The PA% and UA% indices were applied to assess the accuracy of
individual drainage classifications on maps generated by ML- and EK-
based strategies. Compared to reference data, the UA% for the ML
strategy ranged from 64 % to 80 %, while the EK strategy showed lower
UA% values, between 29 % and 86 %. Regarding PA%, the ML-
generated drainage map showed values ranging from 38 % to 81 %,
while the EK-based map displayed greater variability, with PA% values
ranging from 7 % to 78 % (Table 2).

The confusion matrix revealed that both ML and EK strategies tend to
overestimate well and very well-drained areas, assigning them to wetter
classes, particularly in Classes 1 and 2, where the ML strategy achieved
more correct classifications. In contrast, the EK strategy struggled with
Class 1, exhibiting low UA% and PA% indices. For Classes 3 and 4, both
strategies underestimated drainage levels to the next lower class,
although EK was more accurate in predicting Class 3, while ML per-
formed better for Class 4. The statistical agreement and disagreement
method effectively assessed strategy performance, affirming ML’s su-
perior predictive accuracy for soil drainage classification.

3.2. Selecting the most appropriate strategy for mapping soil drainage
classes

Table 2 depicts the scoring values for each criterion analyzed to
select the most appropriate strategy for mapping soil drainage classes.
The first qualitative criterion, accuracy, is represented by kappa values
of each strategy depicted in Table 2. The EK-based strategy received a
value of 2 (kappa values between 0.3 and 0.5) while the ML-based
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strategy received the higher score as it presented a kappa value of 0.51.

The second criterion, labor efficiency, considers the data needed to
build each strategy and the effort to obtain this data. A value of 1 was
assigned for the EK-based strategy, whereas a value of 2 was attributed
to the ML-based strategy.

Regarding the method transferability of both strategies, considering
the easiness of whether to transfer or to repeat the strategy to develop
these maps, EK received a value of 2 while a value of 3 was given to the
ML-based strategy, since it requires more data and machine learning
models are sometimes more difficult to replicate.

The interpretability criterion considered the easiness or not of un-
derstanding the rules for each strategy. The highest value was assigned
for the ML-based strategy because ML models are still considered black
boxes. The EK-based strategy received the lowest value because it is
based on a set of rules that can be considered easier to understand and
interpret.

In addition, we statically evaluate the predicted and observed maps
using the agreement and disagreement method (Table 3). The machine
learning (ML) strategy demonstrated superior performance, with the
highest overall agreement (0.53) and lowest overall disagreement (0.47)
compared to the Empirical Kriging (EK)-based strategy (0.45 and 0.55,
respectively) (Table 3).

4. Discussion
4.1. Agreement of soil drainage maps with reference data

In Brazil, due to tropical climate conditions and deep and permeable
soils, the existence of poor drainage classes is minimal compared to
temperate regions. This spatial pattern may compromise the represen-
tation of all drainage classes and hamper further improvement of the
map accuracy. Conversely, the almost equal agreement observed be-
tween the strategies and the reference map in the cell-by-cell approach
can be explained by the fact that a high number of samples are available
for each class, covering all the spatial domain of our study area. How-
ever, it is worth mentioning that the reference data is not free of error, as
it was conceived from a soil class map with an overall accuracy of 82 %
(Mendes et al., 2021). This needs to be considered when evaluating both
strategies, which will be discussed later.

The ML-based strategy had the highest agreement and accuracy in
mapping soil drainage classes in tropical environments. This approach
uses a set of covariates as explanatory variables of the spatial distribu-
tion of drainage classes in the study area, which was not the case with
the EK-based strategy, in which only soil color and textural maps were
used. However, an interesting result found in the ML strategy was that
soil color variables (hue and value in the subsoil) were second and third
most important covariates that explained the spatial patterns of soil
drainage classes, after the SWIR2 band of Landsat image (see supple-
mentary material). Several researchers have demonstrated the impor-
tance of soil color in predicting soil drainage classes as it can reveal
insights into the local hydrological regime (Schoonover; Crim, 2015),
where color such as red, brown, and yellow are usually associated with

Table 3

Scoring values for each criterion considered for selecting the most appropriate
strategy and based on statistical "agreement accuracy' and "disagreement
accuracy".

Criteria EK ML
Accuracy 2 1
Labor-efficiency 1 2
Transferability 2 3
Interpretability 1 3
Mean 1.5 2.25
Statistical performance parameter EK ML
Overall Agreement 0.45 0.53
Overall Disagreement 0.55 0.47
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iron oxidation in soil environments where oxygen is abundant, indi-
cating well-draining conditions. In other words, the soil is not perma-
nently saturated or flooded, and infiltration conditions are optimal. On
the other hand, low chroma values or gleying color are indicators of poor
drainage and/or low iron content. This coloration is caused by water
staying longer in the soil, favoring the reduction of iron.

The work of Malone et al. (2018) is an example, where color de-
scriptions found in legacy soil maps were used to describe and spatially
predict a soil drainage index in New South Wales, Australia. They used
fuzzy set theory to allocate soil colors in pre-defined five color groups
(red, brown, yellow, gray and black), which represented drainage clas-
ses ranging from 1 to 5 (very well to poorly drained), similar to the rules
built for this work. The authors argued that their soil drainage index
incorporated tacit knowledge, and it can be used in other areas since the
soil color/soil drainage relationships were well defined by an expert.
The SWIR2 band, in turn, is related to the variability of clay content,
whose absorption feature due to minerals is centred at 2200 nm (Gomez
et al., 2018). Environmental variables that were considered to have a
direct relationship with water movement, such as topographic wetness
index (TWI) and multi-resolution valley flatness bottom (MRVFB) were
less important.

Some examples were reported using prediction models to predict soil
drainage classes. One of the earlier works using prediction models was
the work of Bell et al. (1992) who related landscape attributes to soil
drainage classes to obtain the probability of occurrence of each class in
the field. In a similar research, Levine et al. (1994) studied the rela-
tionship of environmental covariates with soil drainage classes and
found a positive correlation with the values of NDVI, which are the
highest values associated with well-drained soils. This is an indication of
the conditions of the site for plant growth as poorly drained soils do not
provide a suitable rhizosphere environment for most roots, but they are
more fertile due to the accumulation of organic matter. Zhao et al.
(2013) used topographic and hydrological variables and artificial neural
networks to build a model for soil drainage classification. They used data
from coarse-resolution maps and aimed at improving the resolution of
the soil drainage map by using machine learning and digital soil map-
ping frameworks. In their results, the most efficient model utilized 12
linear equations corresponding to 12 landform types, which improved
soil drainage class predictions with accuracy gains ranging from 7.5 %
to 21.3 %. This approach proved to be effective in enhancing accuracy
across large and complex areas.

In recent works, machine learning and deep learning have been more
common. Beucher et al. (2019), for example, used artificial neural net-
works (ANN) to predict soil drainage classes in Denmark and compared
their performance to that obtained by a decision tree classification
(DTC) model. They used 31 covariates, which included topographical,
hydrological, and soil variables. They found that the ANN outperformed
the DTC, but the difference was just 2 %, reporting an overall accuracy
of 54 % and 52 %, respectively. Considering the contribution of the
environmental covariates, they found that the clay content in depth
(100-200 cm) was the one that contributed the most. Among the ten
most important variables, they also reported slope to channel network,
geology, vertical and horizontal distance to channel network, wetness
index and depth to groundwater. It is worth mentioning that the results
obtained by Beucher et al. (2019) with the DTC model were similar to
those reported here, with an overall accuracy of 52 % on the validation
dataset, using all environmental variables (31 in total) and differential
misclassification costs, this performance was comparable to the artificial
neural network (ANN) model, which achieved a slightly higher overall
accuracy of 54 % after variable selection. Cialella et al. (1997) also
predicted soil drainage classes by using remote sensing data and topo-
graphical variables in a decision tree algorithm. They achieved an
average accuracy of 78 % and topography being the most correlated
variable with the drainage classes followed by NDVI.

The ML approach is the most common framework used nowadays for
mapping soil drainage classes, but its main disadvantage is that before
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modelling, the description of the soil drainage class in the field or from
soil reports is needed. In turn, approaches based on expert knowledge
are only used to first describe soil profiles in the field and then use ML
approaches to predict drainage classes at unobserved locations spatially.
Strategies similar to that used in this work with two soil properties are
not common.

The ML approach is the most common framework used nowadays for
mapping soil drainage classes, but its main disadvantage is that before
modelling, the description of the soil drainage class in the field or from
soil reports is needed. In turn, approaches based on expert knowledge
are only used to first describe soil profiles in the field and then use ML
approaches to predict drainage classes at unobserved locations spatially.
Strategies similar to that used in this work with two soil properties are
not common. However, there were attempts to build strategies based on
expert knowledge. This was the case of Geradin and Duerue (1990), who
aimed to build an objective approach for mapping soil drainage classes
in forest soils, easily accessible by non-specialists. They used topo-
graphical variables (hillslope position, terrain shape, effective upper
slope position and declivity), abundance and mottling depth, solum
depth and humus thickness to build rules and allocate soil drainage
classes considering the variability of these parameters. Although
particularly useful, this approach was not used very much because it
appeared overly site-specific and, at some point, difficult to replicate.
Therefore, considering the accuracy and agreement with reference data,
ML based approaches are still the better strategy for mapping soil
drainage classes.

4.2. The most appropriate strategy for mapping soil drainage class based
on operational criteria

Although the ML-based strategy presented the best results in terms of
accuracy and agreement with the reference data, we evaluated three
other criteria to select the most appropriate strategy for mapping soil
drainage classes. The first criterion was the accuracy, which, as
mentioned above, was the more appropriate for the ML-based strategy,
as it had the highest kappa value and the highest agreement in the cell-
by-cell comparison (although this latter was not used to evaluate
accuracy).

For the second criterion, labor efficiency, the EK-based strategy
received the lower value (1), because it required fewer resources when
compared to the ML-based strategy (2), which required 23 environ-
mental covariates (initial number of covariates: 603) to build prediction
models to represent the spatial variability of soil drainage classes. Be-
sides that, the environmental covariates used required a set of pre-
processing steps that demanded considerable time and knowledge of
statistics and mathematics. The EK-based strategy used only two soil
properties (soil color and texture maps with accuracy > 0.6) that now
are easily available on web platforms such as SoilGrids, for example
Poggio et al. (2021).

Although the resolution of the soil property maps available on the
SoilGrids platform might not be sufficient for a specific area, it is a
straightforward way to have an idea of the variability of soil texture and
color. Another option is the availability of this information in legacy soil
maps or soil reports. This is especially important when it is not an option
to perform field surveys to describe the soil drainage of an area, which
also was mentioned as one of the limitations of the ML-based strategy. Of
course, legacy soil data and descriptions available in legacy reports
might not be sufficient to spatially represent soil drainage classes, but
they can also be an easier and less resource-requiring strategy for
obtaining information on soil drainage classes.

In the third criterion, transferability, the EK- based strategy also
received the best score (2), as it is based on a set of numerical codes that
used soil color and textural classes that are easy to apply to other areas.
The EK-based strategy did not receive the highest best value (1) because
the rules used here may apply only to tropical areas, which are not
100 % transferable to other regions where the variability of soil color
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and texture might differ. Another limitation of the transferability of the
EK-based strategy can be related to the use of soil color, if not a proper
separation of groups representing the sequence of drainage classes ex-
ists. The rules obtained from the ML strategy, in turn, were built auto-
matically by decision trees based specifically on the covariates used for
this work and might not be transferable to any other region, unless equal
conditions in terms of climate and soil are characteristic. Therefore, the
value assigned to this criterion for the ML strategy was the highest,
considering that the transferability of ML models is limited by the
feature space (Meyer and Pebesma, 2021).

The last criterion, interpretability, is related to the ability to grasp
the rules used in each strategy. The EK-based strategy again received the
highest score, as it is based on a set of rules that consider the variability
of soil color from red (well drained) to black (poorly drained) and the
textural classes from sandy to very clayey. The example presented in
Fig. 3 provides a good understanding of these rules. We decided to give
the Ek-based strategy the highest score as we considered the facility to
understand the numerical code presented. An example of the use of soil
color for classifying drainage classes was presented in Malone et al.
(2018) and was the basis for this work, which can be seen as an example
of the facility to interpret and apply rules based on soil color.
Conversely, although the ML strategy is based on a simple decision tree
to simplify the process, the selection of covariates that would have more
importance in the model and how this process happens inside the model
is still not well understood. Besides that, as the number of covariates
increases, the decision tree’s complexity also increases, making it
impossible to follow all the rules and have a unique rule for a specific soil
drainage class.

4.3. Expert knowledge and machine learning drainage maps for
agricultural decision-makin and limitations

The machine learning (ML)-based soil drainage class mapping
strategy demonstrated greater efficiency than the expert knowledge
(EK) strategy in identifying soil classes with drainage restrictions,
particularly in classes 4 and 5 (Fig. 4b and c) and areas with negative
values (Fig. 4e). This superiority stems from the ML approach’s ability to
incorporate a broader range of environmental covariates related to
drainage deficiencies, compared to the EK strategy, which relies solely
on soil color and texture. Consequently, the ML-derived soil drainage
maps achieved higher producer’s accuracy for classes 4 and 5 than those
generated using the EK method. In this sense, the ability of the ML
strategy to effectively identify rare critical conditions, as reflected in
classes 4 and 5, highlights its value for decision-making.

This distinction is significant, as drainage restrictions impose critical
limitations on land use and management for both agricultural and
environmental purposes (Ramalho Filho and Beek, 1995). Poor drainage
affects oxygen availability and flow to crop roots, narrows the optimal
soil consistency range for preparation and management, and alters
nutrient dynamics, particularly for elements like nitrogen and reducible
nutrients such as iron, manganese, and sulfur (Vymazal and Kropfelova,
2008; Lamers et al., 2012). Furthermore, poorly drained soils are vital
considerations in agronomic planning (e.g., crop selection and drainage
improvements) and ecosystem services (e.g., wetland conservation).

Conversely, the EK-based maps underrepresent well-drained soils
(class 1). In practical terms, this misclassification can lead to misguided
decision-making regarding the management of well-drained soils,
particularly when these areas are intended for aquifer recharge pur-
poses. Furthermore, such inaccuracies could have broader implications
for other environmental and agricultural applications such as land-use
management and planning. For instance, failing to accurately identify
drainage-restricted soils may result in management strategies that are
inconsistent with actual field conditions, leading to inefficiencies in
assessing the agricultural suitability of the land and environmental
degradation.

When assessing the transferability of the proposed methodology, it is
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essential to consider the specific limitations of both EK-based and ML-
based strategies. While EK-based approaches may face challenges such
as the dependency on bare soil conditions and the resolution of texture
maps, ML approaches require extensive training datasets and compu-
tational resources. Both strategies should be evaluated in the context of
the region’s data infrastructure, environmental conditions, and tech-
nical expertise to ensure realistic applicability.

5. Conclusions

This study compared two strategies for mapping soil drainage classes
in Brazil: one based on expert knowledge (EK) and the other on machine
learning (ML). Both strategies achieved an agreement of approximately
50 % with the reference map in cell-by-cell comparisons, with the ML-
based map showing slightly higher accuracy. However, the EK-based
strategy demonstrated significant advantages in terms of labor effi-
ciency, transferability, and interpretability.

The EK approach required fewer covariates, relying mainly on soil
color and texture, making it more resource-efficient and easier to apply
in other regions with minimal adjustments. Its rules, derived from
pedological knowledge, were also more interpretable. Conversely, the
ML strategy showed better performance in point-by-point evaluations
and provided deeper insights into spatial variability, benefiting from the
integration of multiple environmental covariates.

Our article highlights that, while ML is more suitable for detailed
analyses of variability and uncovering relationships between influencing
factors, EK offers a practical and efficient solution for mapping soil
drainage classes, especially in data-scarce environments. However, both
strategies showed weak performance in estimating drainage classes, as
the results suggest an equal likelihood of correct or incorrect predictions
with either approach. Future research should focus on improving
surface-to-subsurface predictions to enhance the applicability of these
methods.
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