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f Federal Institute of Education, Science, and Technology of Pará, Campus Santarém, Av. Mal. Castelo Branco, 621, Interventoria, Santarém, PA 68020-820, Brazil

A R T I C L E  I N F O

Keywords:
Environmental covariates
Ferralsol
Predictive modeling
Remote sensing
Soil color

A B S T R A C T

Soil drainage is an essential factor that influences plant growth and various biophysical processes, such as 
nutrient cycling and greenhouse gas fluxes. Therefore, soil drainage maps are fundamental tools for managing 
crops, forests, and the environment. This study compared two approaches to mapping soil drainage classes in the 
state of São Paulo, Brazil, using geographic information systems (GIS). The first approach employed expert 
knowledge (EK) to develop a simple model based on soil color and texture, while the second used machine 
learning (ML) with an extensive set of covariates and a decision tree algorithm. To evaluate the full, operational 
implementation of soil mapping, this study assessed the two approaches in terms of accuracy, labor efficiency, 
transferability, interpretability, and agreement/disagreement statistical methods. In terms of accuracy, the ML- 
based strategy showed greater agreement with the reference map (53 %) compared to the EK approach (50 %). 
However, the EK strategy was more time- and resource-efficient, as well as being more transferable and inter
pretable due to the simplicity of its rules based on soil properties. Given its higher interpretability and ease of 
application, the EK approach was recommended as the most suitable for operational soil drainage mapping in 
tropical environments.

1. Introduction

Demand for detailed soil information has increased over the years as 
a means of supporting not only land management for agriculture but also 
the roles of soil in ecosystems (Brevik et al., 2016). The gap between this 
demand and the state of legacy soil maps is becoming even greater in 
developing countries such as Brazil. Here, most available soil maps are 
incomplete or insufficient to support public policies and other applica
tions involving soil resources (Santos et al., 2015).

An important characteristic lacking in most Brazilian maps is the soil 
drainage class, defined as the frequency and duration of wet periods or 

degree and frequency the soil matrix is free of water saturation (Soil 
Science Division Staff, 2017). A soil drainage class is used as an indicator 
of the general conditions of water movement in the soil, which is pri
marily influenced by climate and regulated by soil texture, structure, 
and topography (Troeh, 1964; Gerardin and Duerue, 1990; Fausey, 
2005). Information on soil drainage becomes essential because it con
trols several processes in the soil, such as the decomposition of soil 
organic matter (Wickland et al., 2010), distribution of soil organic car
bon (Raymond et al., 2012), and microbial adaptations (Graça et al., 
2021). Subsequently, soil drainage informs management decisions, such 
as irrigation rate, cow stocking rates, dry matter production (Fitzgerald 
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et al., 2008) and which plant species are more suitable for a specific area 
(Levine et al., 1994).

The description of soil drainage is usually performed in terms of 
seven discrete units or classes varying from very well to poorly drained, 
depending on the proportion and rate of water infiltration. Rather than 
directly observing the long-term hydrologic conditions of a site, 
drainage class tends to be interpreted from soil morphological features 
such as soil color, texture class, and the presence of redoximorphic 
features that are observed when soil profiles are described in the field. 
Soil color and redoximorphic features reflect processes that take place in 
the soil due to the duration of water saturation, specifically oxidation 
and reduction of iron. Well aerated and drained soils usually present 
reddish, brownish, and yellowish colors, which are characteristic of the 
presence of iron in the oxidized form. In these soils, water is removed 
rapidly, especially if coarse-textured soils are present. In poorly drained 
soils, however, gray and dark colors reflect the presence of organic 
matter and silicate minerals, and altered forms of iron that have been 
reduced or removed from the system due to the presence of water during 
extended periods (Franzmeier et al., 2001).

On the other hand, the depth to the water table can be more useful 
than morphological characteristics for describing soil drainage classes 
(Mackintosh and Van Dern Hulst, 1979). This concept relates to soil 
sequences along a slope, known as catena, and is grounded in 
soil-landscape relationships. Hillslope positions—summit, shoulder, 
backslope, footslope, and toeslope—are crucial in governing water 
movement (Schaetzl et al., 2022). Well-drained soils with deep water 
tables are typically on uplands and upper backslopes, while poorly 
drained soils with higher water tables are usually at the slope’s bottom.

Evaluating landscapes and allocating land areas into drainage classes 
is a complex task that relies on spatial predictions of observable surface 
variables. Traditionally, creating soil drainage class maps involves two 
steps: 1) field observations and allocation of drainage classes and 2) 
applying knowledge from observed soil profiles to areas where direct 
observation is impractical. In the second step, pedologists use their 
mental models, that is, their perceptions and knowledge acquired over 
time from prior experiences, scientific understanding, and technical 
intuition, in addition to the understanding of soil-landscape relation
ships. Previous studies have relied on expert knowledge, morphological 
characteristics, and the experiences of pedologists (Hudson, 1992). For 
example, Gerardin and Duerue (1990) proposed a method for assessing 
natural soil drainage in forest soils to assist non-specialists. Their 
approach, which involved measuring various geomorphological, topo
graphical, edaphic, and vegetation variables, showed promise but was 
site-specific, limiting its broader applicability.

Traditional techniques have produced valuable soil maps for over a 
century; however, reliance on tacit knowledge can lead to in
consistencies among experts (Bouma, 1973; Kerebel and Holden, 2013). 
To address this issue, quantitative frameworks for mapping soil drainage 
classes have emerged, utilizing mathematical calculations and statistical 
tools to describe the landscape’s relationship with drainage classes. For 
instance, Troeh (1964) developed 3D equations to derive landscape 
parameters related to soil drainage, establishing a strong correlation. 
Bell et al. (1992) proposed a "soil-landscape model" using multivariate 
discriminant analysis to identify variables that optimally separate soil 
drainage classes, achieving a 74 % agreement with field survey data.

Currently, digital soil mapping is the primary method for spatially 
predicting soil drainage classes. Common covariates include optical and 
radar remote sensing images (Cialella et al., 1997; Peng et al., 2003; 
Niang et al., 2012), terrain derivatives (Zhao et al., 2013), electrical 
conductivity (Kravchenko et al., 2002), magnetic susceptibility (Grimley 
et al., 2008; Asgari et al., 2018) and soil color (Malone et al., 2018). 
Despite its advances, field descriptions of soil drainage classes are still 
essential before employing digital mapping techniques. Most studies 
relied on field descriptions or legacy soil maps. An exception is Malone 
et al. (2018), who defined soil drainage classes based on soil color 
groups. They predicted these classes using terrain attributes and 

machine learning, marking the first quantitative attempt to define soil 
drainage classes with information on soil color from legacy data.

In this research, we compared two strategies for mapping soil 
drainage classes in Brazil. The first was based on expert knowledge (EK), 
in which maps of soil color and texture were used to predict the soil 
drainage class. The second strategy was based on machine learning 
(ML), in which soil sampling points with the labeled soil drainage class 
were used in conjunction with environmental covariates to spatially 
predict the distribution of soil drainage classes in the study area. An 
existing soil drainage class map was used as a reference. Finally, we 
compared and selected the most appropriate strategy between EK and 
MK based on their best performance, taking into account four criteria 
(accuracy, labor efficiency, transferability, and interpretability), and 
agreement and disagreement accuracy statistical method.

2. Materials and methods

2.1. Study site description

The study area is in southeastern Brazil, in the state of São Paulo, 
covering an area of approximately 2574 km2 (Fig. 1). The study area is 
part of the Rio Paraná Basin, where 2309 soil samples were collected 
from various collection points (Fig. 1a). It is characterized by gentle 
slopes, undulating hills, and rolling uplands, with elevation varying 
between 450 and 950 m.a.s.l. The region’s climate is classified as Cwa in 
Koppen’s climatic classification, which is characterized by dry winters 
and hot summers with mean annual precipitation of 1200 mm and a 
mean annual temperature of 24 ◦C (Alvares et al., 2013). In the study 
area, 83 % of the land is used for agriculture and pasture, 9 % for forest, 
savanna, and forest plantations, and the remaining corresponds to urban 
areas and water. More than 40 % of the agricultural land is cultivated 
with sugarcane, almost 15 % with pasture, 22 % with a mixture of 
agriculture and pasture, and 3 % with soybean and other perennial and 
temporary crops (Souza et al., 2020).

The main soil classes in the area according World Reference Base for 
Soil Resources (WRB, 2014), with the corresponding Brazilian Soil 
Classification System in parenthesis, are Acrisols (Argissolos), Ferralsol 
(Latossolos), Arenosols (Neossolos), Cambisol (Cambissolos) and Nitisol 
(Nitossolos) (Fig. 1b) (Rossi, 2017). In the study area, three acrisols (PA, 
PVA, and PV) are found, the main differences of which are related to soil 
color. PA (Yellow Acrisol) has a hue of 7.5YR in the first 100 cm of the B 
horizon, PV (Red Acrisol) has a hue of 2.5YR, and PVA (Red Yellow 
Acrisol) represents a gradient between PA and PV with a hue varying 
from red to yellow. Four Ferralsol can be found in the study area: LH 
(Humic Ferralsol), LA (Yellow Ferralsol), LV (Red Ferralsol), and LVA 
(Red Yellow Acrisol Ferralsol), whose differences in classification are 
also due to soil color, except for LH, which has higher organic matter 
content than the others. Two suborders of Arenosols are found in the 
study area: RQ (Quartzarenic Arenosols), a sandy soil, and RL (Lithic 
Arenosols), which has a lithic contact in the first 50 cm. Finally, the 
Nitisol, being, Red Nitisol (NVf) with high presence of iron oxides are 
common and the Haplic Nitisol (NX), which is a soil class that does not 
fit in the other categories of this soil order.

The lithological formation is complex and consists of diverse sedi
mentary rocks, including sandstone, siltstone, shale, unconsolidated 
clay, and alluvial deposits (Fig. 1c). The spatial arrangement of these 
lithological formations is also depicted in Fig. 1c. For a detailed 
description of the area’s geology, the readers are referred to Bonfatti 
et al. (2020).

2.2. Strategies for mapping soil drainage classes

The strategies evaluated in this study were based on expert knowl
edge (EK) and machine learning (ML). We used an existing soil drainage 
class map as a reference for accessing accuracy. The more appropriate 
mapping strategy was selected based on a set of criteria related to the 
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implementation and results of the mapping procedure. A thorough 
description of each step is given in the following sections.

The reference drainage map used for accuracy assessment was 
generated based on soil classes previously mapped by Mello et al. (2021)
(Fig. 2). A conventional soil class map was created at a scale of 1:20,000, 
incorporating environmental variables such as drainage and relief at
tributes, drainage classes, and satellite images to extend the soil map 
over a larger area. A point grid with a resolution of 30 × 30 m was 
established to refine the map further to extract soil and variable infor
mation. Subsequently, these data were used to calibrate a random forest 
model, with cross-validation employed to fine-tune model selection and 

optimize performance. Each soil class in the map by Mello et al. (2021)
has a corresponding drainage class (Table S1), assigned by an expert 
using descriptions from other soil maps available for the country and 
knowledge of soil-landscape relationships for each soil class. For 
simplicity, we used only five classes to represent drainage, ranging from 
very well drained (Class 1) to poorly drained (Class 5). The reference soil 
drainage map (Fig. 2b) shows that the study area is predominantly 
(39 %) Class 2 (well drained), followed by Class 3 (moderately drained), 
which accounts for 37 % of the area. Drainage classes 1, 4, and 5 
represent 13 %, 9 %, and 2 % of the area, respectively.

It is important to realize that the soil class map in Fig. 1 is based on 

Fig. 1. Study area with a) sampling point locations, b) legacy soil class map at 1:250,000 obtained from Rossi (2017), with soil classes named according to the 
Brazilian Soil Classification System and the corresponding WRB in parenthesis, and c) Lithological map with a spatial resolution of 30 m, obtained from Bonfatti et al. 
(2020). The map unit names in parenthesis correspond to the main geological formations according to the Brazilian classification (IGG, 1996). Neossolos in this map 
represents the Neossolos Quartzarênicos.
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broader lithological and soil type data, designed to give an overview of 
the area’s soil types and their formation factors, particularly lithological 
substrates that also influence drainage intensity. On the other hand, the 
soil map in Fig. 2 is derived from a more detailed dataset specifically 
tailored to analyze the relationship between soil type and drainage class.

2.2.1. Soil drainage mapping by expert knowledge (EK)
The strategy based on EK used soil color and textural classes as base 

maps and applied an expert’s mental model to determine how those 
covariates indicated drainage class. Soil color variables (hue, value, and 

chroma) along with texture class maps were obtained from Mendes et al. 
(2021), who predicted these properties for two layers (0–20 cm and 
80–100 cm) (Figure S1). These maps were created based on data from 
1500 observations acquired through various soil surveys conducted by 
the Geotechnologies by Soil Science Group (GEOCIS, https://esalqgeo 
cis.wixsite.com/english) between 2010 and 2019.

The 0–20 cm layer map was used as the topsoil and the 80–100 layers 
were averaged to represent the subsoil. We addressed the two primary 
soil layers that significantly influence soil composition, which we have 
designated as the ’surface’ layer (0–20 cm) and the ’undersurface’ layer 

Fig. 2. Soil class map (a) and the resulting soil drainage class map (b) used as reference, with drainage classes varying from well drained (Class 1) to poorly drained 
(Class 5). Cambisols (CX), Gleisols (GX), Ferralsols (LH, LA, LV, LVA), Nitisols (NV, NX), Acrisol/Lixisol (PA, PV, PVA), Arenosol/Regosol (RL, RQ, RR), and 
Planosol (TX).

Fig. 3. Measurement in soil classes using a) A table for assigning codes based on soil color and texture class, which were then interpreted by expert knowledge (EK) 
to predict drainage class. The final drainage class was determined by an expert after evaluating the relationships between the topsoil and subsoil; and b) An example 
of assigning drainage class based on the color and texture of the topsoil and subsoil. The soil drainage class was assigned based on the combination of color/texture 
(CT) codes from the topsoil and subsoil layers.
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(80–100 cm). The soil color maps were classified into five groups (red, 
brown, yellow, gray, and black) to represent the sequence of five soil 
drainage classes, varying from very well to poorly drained, similar to the 
approach presented in Malone et al. (2018). The data for the mentioned 
attributes can be viewed in Figure S1 and Table S1 in the supplementary 
material.

The classified soil color and textural maps were combined in ArcGIS 
Pro using the “combine” tool to join the maps and define a numerical 
code to represent the color and textural groups (Fig. 3). For example, red 
soil with a very clayey texture had the code 1/5 while a gray soil with a 
very clayey texture had the code 4/5. With this procedure, 24 color/ 
texture codes for each layer were obtained (topsoil and subsoil, Table S3
in the supplementary material). After this procedure, a drainage class 
was assigned to each color/texture code by an expert pedologist for each 
layer. Both layers were then considered to define the final drainage 
class. The theory and experience guiding the assignment of drainage 
class by an expert pedologist to each color/texture code, and the final 
drainage class through the consideration of the two layers, were based 
on a threefold approach: i) a comprehensive examination of the relevant 
literature concerning the relationship between soil color and drainage, 
ii) three decades of hands-on experience in pedology involving soil 
profile investigations and field surveys, and iii) developing an adapta
tion of the international system of drainage classes (drainage classes 
recognized by the Natural Resource Conservation Service - NRCS) 
(Schaetzl, 2013) tailored to Brazilian conditions and soils, while taking 
into account the nuances of the Brazilian Soil Classification System 
(SIBICS, 2018). More details can be found in Tables S2 and S3 of the 
supplementary materials.

2.2.2. Soil drainage mapping by machine learning (ML)
The ML strategy used 2309 locations observed by the Geo

technologies in Soil Science Group between 2000 and 2020. Each sam
ple point had its respective soil drainage class confirmed in the field. The 
stack of covariates supporting the ML was derived from elevation, 
remotely sensed, and previous soil maps. These spatially exhaustive 
variables and sampling points labeled for soil drainage class were 
analyzed by a decision tree algorithm (C5.0) to build a model for pre
dicting soil drainage classes at unseen locations. Unlike EK, the ML- 
based strategy does not rely on using only two soil variables (color 
and texture) but instead a set of variables that seek to represent pro
cesses related to the distribution of soil drainage classes in the 
landscape.

2.2.2.1. Environmental covariates. A total of 603 environmental cova
riates were considered in a digital soil mapping framework. All terrain 
derivatives were calculated using SAGA GIS, GRASS GIS, and ArcGIS 
Pro. The majority (552) of these derivatives were obtained from a digital 
elevation model (DEM) with a resolution of 5 m. These derivatives are 
scale-dependent and were calculated in a GIS using a moving window, 
typically 3 × 3 cells; however, we considered analysis scales ranging 
from 15 to 5070 m. Eight terrain derivatives, including slope gradient, 
northness, mid-slope position, and curvatures, resulted in a total of 69 
raster layers for each derivative. Additionally, derivatives that do not 
use moving windows were included, such as vertical distance to the 
channel network (VDCN) and the topographic wetness index (TWI). 
Remote sensing products from Sentinel-2A (S2A) and Landsat were also 
incorporated. For the S2A, images from the dry season (April to October) 
and the moist season (October to April) from 2015 to 2020 were pro
cessed on the Google Earth Engine platform. The Normalized Difference 
Vegetation Index (NDVI) and the Synthetic Soil Image (SYSI) were also 
obtained following the methodology proposed by Demattê et al. (2018).

Not all environmental covariates were used for spatial modelling. A 
Spearman rank correlation analysis was performed to select those that 
had the highest correlation with the drainage class. Considering the 
raster layers that were obtained at different analysis scales, only the one 

with the highest correlation was selected. For example, among the 69 
raster layers of slope gradient at different analysis scales, the slope 
gradient at 115 m (slp_115m, window size of 15 ×15 cells) was chosen. 
The same was performed on all-terrain derivatives with multiple anal
ysis scales, satellite images, and the SYSI. The final covariate stack 
consisted of 23 raster layers. The environmental covariates that were 
selected and used in the modelling process are shown in Table 1.

2.2.2.2. Building and validating ML model. The sample points were 
randomly divided into two sets: 70 % of the data (1616 samples) was 
utilized for model building, while the remaining 30 % (693 samples) 
served for independent validation. The predictive model was imple
mented in the R software using the C5.0, caret, and raster packages 
(Hijmans; Van Etten, 2016; Kuhn, 2020; Su et al., 2021) a decision tree 
approach derived from the C4.5 and ID3 algorithms created by Quinlan 
(1986). This supervised machine learning algorithm builds a classifica
tion model based on training data with known classes to identify the best 
rules for splitting the data. Validation involved predicting drainage 
classes for each sample using a test dataset. Model accuracy, defined as 
the number of correct predictions divided by the total predictions, was 
assessed using a confusion matrix. Additionally, the kappa index, user’s 
accuracy (UA), and producer’s accuracy (PA) were calculated. PA re
flects the map maker’s accuracy, while UA indicates the reliability from 
the map user’s perspective. The Shapley value statistic was employed to 

Table 1 
Environmental covariates used for spatially modelling soil drainage classes with 
their corresponding abbreviation. The analysis scale corresponds to the different 
moving windows used to represent some terrain derivatives at different spatial 
scales. The last column (‘Selected’) represents the environmental covariates that 
were selected after analyzing their relationship with soil drainage.

Environmental 
covariates

nLayers Abbreviation Analysis 
scales

Selected

Slope gradient 69 slp 15–5070 m slp_075m
Profile curvature 69 prc 15–5070 m prc_115m
Plan curvature 69 plc 15–5070 m plc_1110m
Northness 69 nnes 15–5070 m nnes_3630m
Eastness 69 enes 15–5070 m enes_3630m
Cross-sectional 
curvature

69 ccurv 15–5070 m ccurv_115m

Longitudinal 
curvature

69 lcurv 15–5070 m lcurv_115m

Relative elevation 69 rel 15–5070 m rel_3090m
Topographic 
wetness index

1 TWI NA YES

Mid-slope position 1 mslp NA YES
Vertical distance 
to channel 
network

1 VDCN NA YES

Multi-resolution 
valley bottom 
flatness

1 MRVBF NA YES

Soil color subsoil 
and topsoil

6 (Hue, value 
and chroma)

NA All

Sentinel− 2A 
bands - dry season

9 S2A dry NA S2A_dry_swir1

Sentinel− 2A 
bands - moist 
season

9 S2A moist NA S2A_moist_swir1

Sentinel− 2A 
Normalized 
Difference 
Vegetation Index

2 S2A NDVI dry 
S2A NDVI 
moist

NA S2A_NDVI_moist

Sentinel− 2A 
Normalized 
Difference Red- 
Edge Index

2 S2A NDRE 
dry 
S2A NDRE 
moist

NA S2A_NDRE_dry

Synthetic Soil 
Image

6 SYSI NA SYSI_swir2

nLayers: number of raster layers or bands for each covariate. NA means that 
these environmental covariates were not submitted to any other calculations 
involving moving windows to represent different analysis scales.
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assess the contributions of environmental covariates to drainage class 
predictions.

2.3. Comparison between reference soil drainage map and those from EK 
and ML strategies

The soil drainage maps obtained from the EK and ML strategies were 
compared with the reference map in two ways. First, a cell-by-cell 
comparison was conducted by subtracting the EK and ML-based maps 
from the reference map to assess their agreement. The resulting differ
ence maps showed positive, negative, and zero values, indicating the 
discrepancies between the EK and ML drainage maps relative to the 
reference data.

Next, the soil drainage class at each sampling location shown in 
Fig. 1 was extracted from the three maps, and two confusion matrices 
were created. During this process, it was noted that Class 5 was not 
present among the values extracted from the ML-based soil drainage 
map, leading to its exclusion from the comparison and resulting in only 
four classes being presented in the confusion matrices. Accuracy, kappa 
values, along with user accuracy (UA) and producer accuracy (PA), were 
calculated from the confusion matrices.

Additionally, we employed the agreement accuracy and disagree
ment accuracy methods to evaluate the predictive performance of the 
ML and EK strategies (Pontius Junior and Millones, 2011). The R soft
ware (R Core Team, 2023) was used to calculate these performance 
parameters. The terms "agreement accuracy" and "disagreement accu
racy" are commonly used in predictive model evaluation and are part of 
model evaluation metrics. Agreement accuracy measures the percentage 
of agreement between predicted and observed maps, while disagree
ment accuracy gauges the percentage of correct predictions when the 
model disagrees with the observed map (Pontius Junior and Millones, 
2011).

2.4. Selecting the most appropriate strategy for mapping soil drainage 
classes

Based on the appropriate operational strategy for mapping soil 
drainage classes in tropical environments, each map was evaluated 
using four key criteria for the overall soil mapping process (accuracy, 
labor-efficiency, transferability, and interpretability) and a statistical 
method for agreement and disagreement accuracy. Scores of 1 (good), 2 
(moderate), or 3 (poor) were assigned to each criterion, considering our 
experience with the respective strategies based on expert knowledge 
(EK) and machine learning (ML) for generating soil drainage class maps.

For the first criterion, accuracy was evaluated by model performance 
expressed by the kappa value of the confusion matrices obtained be
tween the strategies and the reference map. Accuracies higher than 0.5 
received a value of 1 while accuracies between 0.3 and 0.5 and lower 
than 0.3 received the values of 2 and 3, respectively. This division was 
clearly arbitrary and involved the adaptation of the table from Landis 
and Koch (1977). While these divisions are clearly arbitrary, they pro
vide useful ’benchmarks’ for discussing the interpretation of results.

Labor-efficiency was considered as the ease or difficulty in obtaining 
the data for each strategy. In other words, if the base maps or environ
mental covariates are easier to calculate or to obtain from other sources. 
A higher value was given to the strategy that required fewer resources in 
terms of the number of covariates or base maps.

Method transferability, in turn, was evaluated analogously as the 
labor-efficiency criterion. This means the ranking would be higher if a 
strategy was easily reimplemented in any other region with similar 
characteristics to our study area.

The interpretability criterion considered how understandable the 
results were for how predictions were made, especially for an audience 
with no statistical background. A high value was given to strategies that 
presented simple classification prediction rules or employed statistical 
analyses to summarize model function in a manner that was easy to 

grasp. Finally, the criterion ratings were averaged per strategy, and the 
strategy that received the lowest value was selected as the most 
appropriate for mapping soil drainage classes.

Agreement accuracy refers to the percentage of cases in which the EK 
and ML provide results that match our reference map. On the other 
hand, disagreement accuracy represents the percentage of cases which 
the EK and ML do not match with our reference map, implying the ac
curacy of identifying cases where the methods differ or provide con
flicting results. These statistical parameters help assess the consistency 
and discrepancy between the two methods and their alignment with the 
reference map in the context of the study. As the agreement accuracy 
values increase, so does the percentage accuracy of the predicted map 
relative to the reference map. Conversely, lower disagreement accuracy 
values correspond to decreased prediction errors.

3. Results

3.1. Predicting soil drainage classes by EK and ML strategies and 
comparison with reference data

The strategy based on EK used topsoil and subsoil color and textural 
classes for building numerical codes that were used to define drainage 
classes. The combination of these colors and textural classes produced a 
soil drainage map (Fig. 4b) in which 58 % of the area had Class 3 
(moderately drained), which was mostly placed on areas with loam to 
clayey texture. The second most common drainage was Class 2 (well 
drained), which was characterized as having brownish color and sandy 
to loam texture. This soil drainage class covered approximately 29 % of 
the area. Class 1 and Class 4 were in less than 10 % of the area. Class 5, 
which represented poorly drained soils with low chroma or gleyed 
colors, was predicted to cover even less of the map area and was mostly 
restricted to areas near rivers.

The strategy based on ML used a set of environmental covariates to 
obtain a prediction model suitable for predicting soil drainage classes. 
The ML-based strategy produced a soil drainage map (Fig. 4c) in which 
Class 1 (very well drained) was the most common, with 33 % of the area, 
followed by Class 2, Class 3 and Class 4, with 24 %, 22 % and 20 % of the 
area, respectively. Class 5 (poorly drained), in turn, was predicted in 
only 0.11 % of the area. Overall, the ML-based map represented a much 
more even distribution across the drainage classes than the EK-based 
map. Instead of a single drainage class (moderately drained) domi
nating most of the map, the dominant soil drainage class in ML-based 
map (very well drained) was only a third of the map areas, with most 
of the other drainage classes sharing a similar portion of the map area. 
Additional results from the ML model are presented in Table S4 and 
Figure S2 of the supplementary material, in which model validation and 
most important covariates are presented.

Difference maps and confusion matrices between both strategies and 
the reference soil drainage map were used to investigate which strategy 
developed to map soil drainage classes was most similar to the reference 
map. Fig. 4d and e show the difference maps while Table 2 depicts the 
confusion matrix of each strategy with the reference data. The greater 
the negative or positive values in the difference maps, the higher the 
difference between the respective strategy and the reference data. A 
negative value meant the drainage class obtained either by EK or ML 
strategies was higher (i.e., wetter) than the reference map. Meanwhile, a 
positive value represented a lower (drier) drainage class. For example, 
suppose at a specific cell, the value of the difference map was − 2. In that 
case, it means that the strategy for mapping soil drainage class predicted 
a Class 3 (moderately drained) soil drainage, where the reference had a 
Class 1 (very well drained). The reverse applied for positive values. Zero 
values, in turn, represent areas where the predicted maps correspond to 
the soil drainage class described in the reference soil map.

The first difference map (Fig. 4d) represents the values obtained after 
subtracting the reference map from the predicted EK-based map. The 
EK-based strategy had an agreement of 50 % with the reference map but 
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was prone to underestimating the drainage classes, especially in sandy 
soils. We found that 43 % of the predicted drainage classes were be
tween ± 1 class from the drainage class observed in the reference map 
(values 1 and − 1 in Fig. 4d). The reference-ML difference map (Fig. 4e) 
had an agreement of 53 % with the reference data, being 41 % between 
± 1 Class (values 1 and − 1 values in Fig. 4e).

Table 2 shows the confusion matrix between the strategies (rows) 
and the reference data (columns). Highlighted cells represent the 
number of samples that were correctly classified by both strategies. 

Because Class 5 was not present in any of the sampling points, it was 
excluded from the confusion matrix, reducing the total number of 
samples from 2309 to 2246. Between the reference sampling points and 
the ML-based strategy, an accuracy of 0.67 and kappa of 0.50 were 
found. For the EK-based strategy, accuracy and kappa were lower (0.57 
and 0.33, respectively).

The PA% and UA% indices were applied to assess the accuracy of 
individual drainage classifications on maps generated by ML- and EK- 
based strategies. Compared to reference data, the UA% for the ML 
strategy ranged from 64 % to 80 %, while the EK strategy showed lower 
UA% values, between 29 % and 86 %. Regarding PA%, the ML- 
generated drainage map showed values ranging from 38 % to 81 %, 
while the EK-based map displayed greater variability, with PA% values 
ranging from 7 % to 78 % (Table 2).

The confusion matrix revealed that both ML and EK strategies tend to 
overestimate well and very well-drained areas, assigning them to wetter 
classes, particularly in Classes 1 and 2, where the ML strategy achieved 
more correct classifications. In contrast, the EK strategy struggled with 
Class 1, exhibiting low UA% and PA% indices. For Classes 3 and 4, both 
strategies underestimated drainage levels to the next lower class, 
although EK was more accurate in predicting Class 3, while ML per
formed better for Class 4. The statistical agreement and disagreement 
method effectively assessed strategy performance, affirming ML’s su
perior predictive accuracy for soil drainage classification.

3.2. Selecting the most appropriate strategy for mapping soil drainage 
classes

Table 2 depicts the scoring values for each criterion analyzed to 
select the most appropriate strategy for mapping soil drainage classes. 
The first qualitative criterion, accuracy, is represented by kappa values 
of each strategy depicted in Table 2. The EK-based strategy received a 
value of 2 (kappa values between 0.3 and 0.5) while the ML-based 

Fig. 4. Reference (a), EK- (b), and ML-based soil drainage maps with their corresponding difference maps (d-e). In the difference maps, positive values indicate that 
the reference map indicated wetter drainage classes than the EK- or ML-based soil drainage maps, while negative values represent areas where the reference map was 
drier than the EK- or ML-based soil drainage maps. Zero values indicate areas where either EK- or ML-based soil drainage classes are equal with the reference map.

Table 2 
Cell-by-cell confusion matrix between the reference drainage class map and the 
drainage class maps produced by the EK and ML strategies. PA%: Producer’s 
accuracy, UA%: User’s accuracy.

Reference soil drainage map

Class1 Class2 Class3 Class4 Total UA 
(%)

EK-based 
drainage

Class1 21 28 11 13 73 29
Class2 233 587 138 42 1000 59
Class3 37 312 578 146 1073 54
Class4 0 3 11 86 100 86

​ Total 291 930 738 287 2246 ​
​ PA (%) 7 % 63 % 78 % 30 % ​ ​
​ Accuracy 0.57 ​ ​ ​ ​ ​
​ kappa 0.33 ​ ​ ​ ​ ​
​ ​ Class1 Class2 Class3 Class4 Total UA 

(%)
ML-based 

drainage
Class1 109 22 5 0 136 80
Class2 159 753 194 41 1147 66
Class3 23 154 578 99 774 64
Class4 0 1 41 147 189 78

​ Total 291 930 738 287 2246 ​
​ PA% 38 % 81 % 68 % 51 % ​ ​
​ Accuracy 0.67 ​ ​ ​ ​ ​
​ kappa 0.51 ​ ​ ​ ​ ​
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strategy received the higher score as it presented a kappa value of 0.51.
The second criterion, labor efficiency, considers the data needed to 

build each strategy and the effort to obtain this data. A value of 1 was 
assigned for the EK-based strategy, whereas a value of 2 was attributed 
to the ML-based strategy.

Regarding the method transferability of both strategies, considering 
the easiness of whether to transfer or to repeat the strategy to develop 
these maps, EK received a value of 2 while a value of 3 was given to the 
ML-based strategy, since it requires more data and machine learning 
models are sometimes more difficult to replicate.

The interpretability criterion considered the easiness or not of un
derstanding the rules for each strategy. The highest value was assigned 
for the ML-based strategy because ML models are still considered black 
boxes. The EK-based strategy received the lowest value because it is 
based on a set of rules that can be considered easier to understand and 
interpret.

In addition, we statically evaluate the predicted and observed maps 
using the agreement and disagreement method (Table 3). The machine 
learning (ML) strategy demonstrated superior performance, with the 
highest overall agreement (0.53) and lowest overall disagreement (0.47) 
compared to the Empirical Kriging (EK)-based strategy (0.45 and 0.55, 
respectively) (Table 3).

4. Discussion

4.1. Agreement of soil drainage maps with reference data

In Brazil, due to tropical climate conditions and deep and permeable 
soils, the existence of poor drainage classes is minimal compared to 
temperate regions. This spatial pattern may compromise the represen
tation of all drainage classes and hamper further improvement of the 
map accuracy. Conversely, the almost equal agreement observed be
tween the strategies and the reference map in the cell-by-cell approach 
can be explained by the fact that a high number of samples are available 
for each class, covering all the spatial domain of our study area. How
ever, it is worth mentioning that the reference data is not free of error, as 
it was conceived from a soil class map with an overall accuracy of 82 % 
(Mendes et al., 2021). This needs to be considered when evaluating both 
strategies, which will be discussed later.

The ML-based strategy had the highest agreement and accuracy in 
mapping soil drainage classes in tropical environments. This approach 
uses a set of covariates as explanatory variables of the spatial distribu
tion of drainage classes in the study area, which was not the case with 
the EK-based strategy, in which only soil color and textural maps were 
used. However, an interesting result found in the ML strategy was that 
soil color variables (hue and value in the subsoil) were second and third 
most important covariates that explained the spatial patterns of soil 
drainage classes, after the SWIR2 band of Landsat image (see supple
mentary material). Several researchers have demonstrated the impor
tance of soil color in predicting soil drainage classes as it can reveal 
insights into the local hydrological regime (Schoonover; Crim, 2015), 
where color such as red, brown, and yellow are usually associated with 

iron oxidation in soil environments where oxygen is abundant, indi
cating well-draining conditions. In other words, the soil is not perma
nently saturated or flooded, and infiltration conditions are optimal. On 
the other hand, low chroma values or gleying color are indicators of poor 
drainage and/or low iron content. This coloration is caused by water 
staying longer in the soil, favoring the reduction of iron.

The work of Malone et al. (2018) is an example, where color de
scriptions found in legacy soil maps were used to describe and spatially 
predict a soil drainage index in New South Wales, Australia. They used 
fuzzy set theory to allocate soil colors in pre-defined five color groups 
(red, brown, yellow, gray and black), which represented drainage clas
ses ranging from 1 to 5 (very well to poorly drained), similar to the rules 
built for this work. The authors argued that their soil drainage index 
incorporated tacit knowledge, and it can be used in other areas since the 
soil color/soil drainage relationships were well defined by an expert. 
The SWIR2 band, in turn, is related to the variability of clay content, 
whose absorption feature due to minerals is centred at 2200 nm (Gomez 
et al., 2018). Environmental variables that were considered to have a 
direct relationship with water movement, such as topographic wetness 
index (TWI) and multi-resolution valley flatness bottom (MRVFB) were 
less important.

Some examples were reported using prediction models to predict soil 
drainage classes. One of the earlier works using prediction models was 
the work of Bell et al. (1992) who related landscape attributes to soil 
drainage classes to obtain the probability of occurrence of each class in 
the field. In a similar research, Levine et al. (1994) studied the rela
tionship of environmental covariates with soil drainage classes and 
found a positive correlation with the values of NDVI, which are the 
highest values associated with well-drained soils. This is an indication of 
the conditions of the site for plant growth as poorly drained soils do not 
provide a suitable rhizosphere environment for most roots, but they are 
more fertile due to the accumulation of organic matter. Zhao et al. 
(2013) used topographic and hydrological variables and artificial neural 
networks to build a model for soil drainage classification. They used data 
from coarse-resolution maps and aimed at improving the resolution of 
the soil drainage map by using machine learning and digital soil map
ping frameworks. In their results, the most efficient model utilized 12 
linear equations corresponding to 12 landform types, which improved 
soil drainage class predictions with accuracy gains ranging from 7.5 % 
to 21.3 %. This approach proved to be effective in enhancing accuracy 
across large and complex areas.

In recent works, machine learning and deep learning have been more 
common. Beucher et al. (2019), for example, used artificial neural net
works (ANN) to predict soil drainage classes in Denmark and compared 
their performance to that obtained by a decision tree classification 
(DTC) model. They used 31 covariates, which included topographical, 
hydrological, and soil variables. They found that the ANN outperformed 
the DTC, but the difference was just 2 %, reporting an overall accuracy 
of 54 % and 52 %, respectively. Considering the contribution of the 
environmental covariates, they found that the clay content in depth 
(100–200 cm) was the one that contributed the most. Among the ten 
most important variables, they also reported slope to channel network, 
geology, vertical and horizontal distance to channel network, wetness 
index and depth to groundwater. It is worth mentioning that the results 
obtained by Beucher et al. (2019) with the DTC model were similar to 
those reported here, with an overall accuracy of 52 % on the validation 
dataset, using all environmental variables (31 in total) and differential 
misclassification costs, this performance was comparable to the artificial 
neural network (ANN) model, which achieved a slightly higher overall 
accuracy of 54 % after variable selection. Cialella et al. (1997) also 
predicted soil drainage classes by using remote sensing data and topo
graphical variables in a decision tree algorithm. They achieved an 
average accuracy of 78 % and topography being the most correlated 
variable with the drainage classes followed by NDVI.

The ML approach is the most common framework used nowadays for 
mapping soil drainage classes, but its main disadvantage is that before 

Table 3 
Scoring values for each criterion considered for selecting the most appropriate 
strategy and based on statistical "agreement accuracy" and "disagreement 
accuracy".

Criteria EK ML

Accuracy 2 1
Labor-efficiency 1 2
Transferability 2 3
Interpretability 1 3
Mean 1.5 2.25
Statistical performance parameter EK ML
Overall Agreement 0.45 0.53
Overall Disagreement 0.55 0.47
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modelling, the description of the soil drainage class in the field or from 
soil reports is needed. In turn, approaches based on expert knowledge 
are only used to first describe soil profiles in the field and then use ML 
approaches to predict drainage classes at unobserved locations spatially. 
Strategies similar to that used in this work with two soil properties are 
not common.

The ML approach is the most common framework used nowadays for 
mapping soil drainage classes, but its main disadvantage is that before 
modelling, the description of the soil drainage class in the field or from 
soil reports is needed. In turn, approaches based on expert knowledge 
are only used to first describe soil profiles in the field and then use ML 
approaches to predict drainage classes at unobserved locations spatially. 
Strategies similar to that used in this work with two soil properties are 
not common. However, there were attempts to build strategies based on 
expert knowledge. This was the case of Geradin and Duerue (1990), who 
aimed to build an objective approach for mapping soil drainage classes 
in forest soils, easily accessible by non-specialists. They used topo
graphical variables (hillslope position, terrain shape, effective upper 
slope position and declivity), abundance and mottling depth, solum 
depth and humus thickness to build rules and allocate soil drainage 
classes considering the variability of these parameters. Although 
particularly useful, this approach was not used very much because it 
appeared overly site-specific and, at some point, difficult to replicate. 
Therefore, considering the accuracy and agreement with reference data, 
ML based approaches are still the better strategy for mapping soil 
drainage classes.

4.2. The most appropriate strategy for mapping soil drainage class based 
on operational criteria

Although the ML-based strategy presented the best results in terms of 
accuracy and agreement with the reference data, we evaluated three 
other criteria to select the most appropriate strategy for mapping soil 
drainage classes. The first criterion was the accuracy, which, as 
mentioned above, was the more appropriate for the ML-based strategy, 
as it had the highest kappa value and the highest agreement in the cell- 
by-cell comparison (although this latter was not used to evaluate 
accuracy).

For the second criterion, labor efficiency, the EK-based strategy 
received the lower value (1), because it required fewer resources when 
compared to the ML-based strategy (2), which required 23 environ
mental covariates (initial number of covariates: 603) to build prediction 
models to represent the spatial variability of soil drainage classes. Be
sides that, the environmental covariates used required a set of pre
processing steps that demanded considerable time and knowledge of 
statistics and mathematics. The EK-based strategy used only two soil 
properties (soil color and texture maps with accuracy > 0.6) that now 
are easily available on web platforms such as SoilGrids, for example 
Poggio et al. (2021).

Although the resolution of the soil property maps available on the 
SoilGrids platform might not be sufficient for a specific area, it is a 
straightforward way to have an idea of the variability of soil texture and 
color. Another option is the availability of this information in legacy soil 
maps or soil reports. This is especially important when it is not an option 
to perform field surveys to describe the soil drainage of an area, which 
also was mentioned as one of the limitations of the ML-based strategy. Of 
course, legacy soil data and descriptions available in legacy reports 
might not be sufficient to spatially represent soil drainage classes, but 
they can also be an easier and less resource-requiring strategy for 
obtaining information on soil drainage classes.

In the third criterion, transferability, the EK- based strategy also 
received the best score (2), as it is based on a set of numerical codes that 
used soil color and textural classes that are easy to apply to other areas. 
The EK-based strategy did not receive the highest best value (1) because 
the rules used here may apply only to tropical areas, which are not 
100 % transferable to other regions where the variability of soil color 

and texture might differ. Another limitation of the transferability of the 
EK-based strategy can be related to the use of soil color, if not a proper 
separation of groups representing the sequence of drainage classes ex
ists. The rules obtained from the ML strategy, in turn, were built auto
matically by decision trees based specifically on the covariates used for 
this work and might not be transferable to any other region, unless equal 
conditions in terms of climate and soil are characteristic. Therefore, the 
value assigned to this criterion for the ML strategy was the highest, 
considering that the transferability of ML models is limited by the 
feature space (Meyer and Pebesma, 2021).

The last criterion, interpretability, is related to the ability to grasp 
the rules used in each strategy. The EK-based strategy again received the 
highest score, as it is based on a set of rules that consider the variability 
of soil color from red (well drained) to black (poorly drained) and the 
textural classes from sandy to very clayey. The example presented in 
Fig. 3 provides a good understanding of these rules. We decided to give 
the Ek-based strategy the highest score as we considered the facility to 
understand the numerical code presented. An example of the use of soil 
color for classifying drainage classes was presented in Malone et al. 
(2018) and was the basis for this work, which can be seen as an example 
of the facility to interpret and apply rules based on soil color. 
Conversely, although the ML strategy is based on a simple decision tree 
to simplify the process, the selection of covariates that would have more 
importance in the model and how this process happens inside the model 
is still not well understood. Besides that, as the number of covariates 
increases, the decision tree’s complexity also increases, making it 
impossible to follow all the rules and have a unique rule for a specific soil 
drainage class.

4.3. Expert knowledge and machine learning drainage maps for 
agricultural decision-makin and limitations

The machine learning (ML)-based soil drainage class mapping 
strategy demonstrated greater efficiency than the expert knowledge 
(EK) strategy in identifying soil classes with drainage restrictions, 
particularly in classes 4 and 5 (Fig. 4b and c) and areas with negative 
values (Fig. 4e). This superiority stems from the ML approach’s ability to 
incorporate a broader range of environmental covariates related to 
drainage deficiencies, compared to the EK strategy, which relies solely 
on soil color and texture. Consequently, the ML-derived soil drainage 
maps achieved higher producer’s accuracy for classes 4 and 5 than those 
generated using the EK method. In this sense, the ability of the ML 
strategy to effectively identify rare critical conditions, as reflected in 
classes 4 and 5, highlights its value for decision-making.

This distinction is significant, as drainage restrictions impose critical 
limitations on land use and management for both agricultural and 
environmental purposes (Ramalho Filho and Beek, 1995). Poor drainage 
affects oxygen availability and flow to crop roots, narrows the optimal 
soil consistency range for preparation and management, and alters 
nutrient dynamics, particularly for elements like nitrogen and reducible 
nutrients such as iron, manganese, and sulfur (Vymazal and Kröpfelová, 
2008; Lamers et al., 2012). Furthermore, poorly drained soils are vital 
considerations in agronomic planning (e.g., crop selection and drainage 
improvements) and ecosystem services (e.g., wetland conservation).

Conversely, the EK-based maps underrepresent well-drained soils 
(class 1). In practical terms, this misclassification can lead to misguided 
decision-making regarding the management of well-drained soils, 
particularly when these areas are intended for aquifer recharge pur
poses. Furthermore, such inaccuracies could have broader implications 
for other environmental and agricultural applications such as land-use 
management and planning. For instance, failing to accurately identify 
drainage-restricted soils may result in management strategies that are 
inconsistent with actual field conditions, leading to inefficiencies in 
assessing the agricultural suitability of the land and environmental 
degradation.

When assessing the transferability of the proposed methodology, it is 
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essential to consider the specific limitations of both EK-based and ML- 
based strategies. While EK-based approaches may face challenges such 
as the dependency on bare soil conditions and the resolution of texture 
maps, ML approaches require extensive training datasets and compu
tational resources. Both strategies should be evaluated in the context of 
the region’s data infrastructure, environmental conditions, and tech
nical expertise to ensure realistic applicability.

5. Conclusions

This study compared two strategies for mapping soil drainage classes 
in Brazil: one based on expert knowledge (EK) and the other on machine 
learning (ML). Both strategies achieved an agreement of approximately 
50 % with the reference map in cell-by-cell comparisons, with the ML- 
based map showing slightly higher accuracy. However, the EK-based 
strategy demonstrated significant advantages in terms of labor effi
ciency, transferability, and interpretability.

The EK approach required fewer covariates, relying mainly on soil 
color and texture, making it more resource-efficient and easier to apply 
in other regions with minimal adjustments. Its rules, derived from 
pedological knowledge, were also more interpretable. Conversely, the 
ML strategy showed better performance in point-by-point evaluations 
and provided deeper insights into spatial variability, benefiting from the 
integration of multiple environmental covariates.

Our article highlights that, while ML is more suitable for detailed 
analyses of variability and uncovering relationships between influencing 
factors, EK offers a practical and efficient solution for mapping soil 
drainage classes, especially in data-scarce environments. However, both 
strategies showed weak performance in estimating drainage classes, as 
the results suggest an equal likelihood of correct or incorrect predictions 
with either approach. Future research should focus on improving 
surface-to-subsurface predictions to enhance the applicability of these 
methods.
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