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LETTER TO THE EDITOR

Mapping correlated Gaussian patterns in a perceptron

J F Fontanarit and R Meir

Division of Chemistry, Mail Code 164-30 CH, California Institute of Technology, Pasadena,
CA 91125, USA

Received 10 May 1989, in final form 19 June 1989

Abstract. We study the performance of a single-layer perceptron in realising a binary
mapping of Gaussian input patterns. By introducing non-trivial correlations among the
patterns, we generate a family of mappings including easier ones where similar inputs are
mapped into the same output, and more difficult ones where similar inputs are mapped
into different classes. The difficulty of the problem is gauged by the storage capacity of
the network, which is higher for the easier problems.

The use of statistical mechanics techniques in the analysis of feedback neural networks
has led to a deep understanding of the equilibrium properties of these systems (Amit
et al 1987). Feedback neural networks, e.g. the Hopfield-Little model (Hopfield 1982,
Little 1974), have a non-trivial dynamics which possesses a huge number of attractors.
Part of these attractors can be imprinted in the network through a learning procedure
which specifies the strengths of the couplings between the neurons, thus allowing the
network to be used as an associative memory (Hopfield 1982). On the other hand,
single-layer feedforward neural networks, e.g. Rosenblatt’s perceptron (Rosenblatt
1962), have a rather dull dynamics but a very rich learning process which had been
fully studied in the 1960s through rigorous mathematical analysis, simulations on
digital computers and by constructing an actual machine (Block 1962, Minsky and
Papert 1969).

Recently Gardner (1988) and Gardner and Derrida (1988) have successfully
rederived some of the results concerning the maximum storage capacity of the percep-
tron in the framework of the equilibrium statistical mechanics (see also Opper (1988,
1989) for a more recent contribution). The architecture of the perceptron considered
in those studies is shown in figure 1. The input layer consists of N neurons {£,==%1,i=
1,..., N}, each one connected to the output neuron S = =1 through the couplings J..

Figure 1. The architecture of a single-layer perceptron consisting of N input neurons £,
each one connected to the output neuron S through the couplings J;.
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Given the states of the neurons in the input layer and the coupling strengths, the state
of the output neuron is given by

S=Sgn(§: J,f,). (1)

The perceptron’s task is to learn the mapping between p input patterns {£,i=
1,...,N;u=1,...,p} and p output states {S*, u =1, ..., p}. To achieve this, there
must exist a vector J =(J;, J5,..., Jn) such that the p equations

N
“=sgn(,§lli§¢‘) pw=1,...,p (2)

are simultaneously satisfied. If such a vector does exist, then the perceptron learning
algorithm (Rosenblatt 1962) is guaranteed to converge.

The feasibility of a mapping by a perceptron depends strongly on the statistical
properties of the patterns (Minsky and Papert 1969) as well as on the number of
patterns {Cover 1965). For random input patterns and large N, Gardner (1988) has
found that the maximum number of patterns that can be correctly mapped into their
respective outputs is 2N, a result first derived by Cover (1965). Correlations among
the patterns were introduced by considering statistically independent biased patterns

(S*)=(¢)=m (3)
(gL EN=m'+(1-m?)8,.8; (4)

where me[0,1]. These correlations increase the maximum storage capacity of the
perceptron (a.) defined as the ratio between the maximum number of patterns correctly
mapped and the number of input neurons N (Gardner 1988). However, this formula-
tion includes only mappings which associate similar input patterns to the same output.
The more interesting mappings where similar inputs can be associated with different
outputs cannot be studied in the context of biased patterns.

In order to study a more general mapping, we notice that the terms which contain
the information about the statistical properties of the patterns in (2) have the form
(= S*¢Y. In this letter we consider mappings where ¢ = (¢!, ¢7, ..., ¢F) are dis-
tributed according to

= 1 1T a1y ;
P(Q)—WCXP( 28id7 L) Vi (5)
where the correlation matrix ¢ is given by
by =(LE LN =[E+(1-0)3,.]. (6)

With this choice of ¢ one can show that P({;) exists only if 1+(p—1)é> 0, which
guarantees that the determinant in (5) is positive. We assume that different sites are
uncorrelated; the only correlations we consider are those between different patterns.
Moreover, we also assume that the outputs §* = 1 are chosen at random. Actually
we are making a Gaussian or mean-spherical approximation, ((£¥)%) =1, of the Ising
spins of the original model. Nevertheless, since most of the real-world applications
of the perceptrons involve mappings of continuous variables into one of the two classes
represented by the output neuron, this Gaussian approximation is attractive by itself.
The parameter ¢ which appears in (6) is defined as

¢=(S"S"¢r €D n# v (7)
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Hence >0 (£<0) corresponds to mappings which lead similar inputs to equal
(different) outputs. For ¢ =0 one recovers the random mapping. It is well known that
the ¢ <0 mappings are difficult problems for the perceptrons.

Next we follow Gardner (1988) in calculating the fraction of the phase space of
the vectors J which satisfy (2),

V=N"" J'm HdJ,-H@(N““Z.I,{f‘—k)&(Z]f—N) (8)

where O(x)=1 for x>0 and 0 otherwise. The parameter k=0 ensures that noisy
versions of the input patterns are mapped into the same class as the non-corrupted
patterns. The spherical constraint J>= N defines the norm of the vectors J and

N=J_ HdJ&(Zﬂ ) 9

o !

is the volume of the J phase space.

In the thermodynamic limit the sensible physical quantity is (1/ N)(In V) which,
as usual, is calculated through the often claimed unreliable, but nevertheless popular,
replica trick

(In v>=1"i33<vnz_l. (10)

In the following we assume that the number of input patterns (p) is proportional to
N, p=aN. Introducing the integral representation of the theta function

© p e}
®(N“”ZJ{’§¢‘—k>=J d;::J dx;zexp[ixg(Az—N—”ZZJ,{r)] (11)
i k -0 i

for each pattern u and each replica p, and performing the averages over the Gaussian

4
<exp[iN"'/2§iixﬁ]?{f‘}>=exp[ ZNZZZX xZJETTLr {1)] (12)

[T ij uv po

one can write (V") as

(V= N J [1dE, J 1l d"’”dF"“de"’ IR, exp[N(Got+ aGi+ Gy (13)

p<a 277./N p 277/p
where
== 2 Gpo(F,,+caR,R,) aZr (R, +3cr,)+3 ZE (14)
p<o
G,=ln{HJ- J’ ——exp[Zx (iA,+ R, — -3y x‘,x(,qp,,]} (15)
p V- p<o
Gz=1n{Hf dJ, exp[ Y EJi+ Y F,,(,JpJL,]} (16)
p J - [ p<a
with g,, and r, defined by
1 o
Goo =7 2 Z JoU; (17)
1 2
r,=— Y xt (18)
Pu=1
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and, in order to obtain a sensible thermodynamic limit, we have made the rescaling
¢=c¢/p. Inthe limit N - oo the integrals in (13) may be readily calculated by steepest-
descent integration. Assuming that the saddle point is replica symmetric,

Goc =4 Foo=F p<o (19)
r,=r R,=R E,=E (20)
the integrations in (15} and (16) are easily performed, so that we finally obtain
1 * 1 aR?* 1 1 g
— = = ————+=In(1- - — 21
N(ln Vi=a Lw Dt 1n<2erfc(A)) 2e-g9) 2 n(l—gq)+ > 1= (21)
where
k—R-gq"
A=r—75 22
[2(1 )]1/2 ( )
dt t2)
Dt = 23
(2 )1/2 exp( 2 ( )
erfc(x) =2 j D (24)

and we have eliminated the saddle-point parameters E, F and r since they are trivially
related to g and R, which are then obtained by solving the saddle-point equations

_,. 124\ J ®  exp(-A%)
R—2c( 217) o D! erfc(A) (25)
1=q\"* [* 5, ep(=A) o
q= 20(277) J'_cth erfc(A) (k—R q t). (26)

Since g, given by (17), is the inner product of two different vectors which solve (2),
we expect that at & = o, (where V - 0) g tends to 1 (Gardner 1988). Hence taking the
limit g1 in (25) and (26), we obtain

5 1 R*} R R

R+k=c[Wexp<——2—) —Eerfc(—\/—.z.” (27)
L1+ R R R R?

a;'= 5 erfc(ﬁ) "G exp(—-?) (28)

with R=R -k Fixing ¢ and k, we can solve (27) for R and then use this result in
(28) to obtain a.. Figure 2 shows a. as a function of ¢ for several values of k. For
large, positive ¢ one finds a.=c/2 in agreement with the fact that the perceptron
performs well on mappings leading similar inputs to similar outputs. For small ¢ one
finds

2_8_k+4_c k<<1
_ 2w
¢ ]1+2¢

k>»1

recovering Gardner’s results for c=0. As ¢~ -1, R diverges to —o0 and for c<—1
there is no real value of R which satisfies (27), since the determinant of the correlation
matrix appearing in (5) becomes negative.
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Figure 2. The maximum storage capacity a. as a function of the correlation parameter ¢
for k=0,1.5,1.7,1.8,2. Larger values of k increase the robustness of the perceptron to
noisy effects in the input patterns.

The mapping with the statistical properties we described can be easily obtained by
first generating the {; according to the probability distribution given in (5). The outputs
{S* = +1} are chosen randomly with equal probability. Knowing ¢! and §¥, the input
patterns are given by &4 =¢¥S* for every u and i This procedure implies that the
input patterns are not independent of the output,which is perhaps a more realistic
assumption than the commonly assumed independence. Finally we remark that the
replica symmetric ansatz for the saddle-point parameters proved to be reliable in the
study of the random mapping, ¢ =0 (Gardner 1988), and we believe this result also
holds for non-zero c.

We have also extended Gardner’s calculations (for random mappings) to the case
where all the connections are positive (or negative). We find in this case that the
storage capacity decreases from 2N to N. This result may be of interest for hardware
implementations of the perceptron. Another result we have obtained is that the
maximum number of patterns that can be stored in a perceptron with interactions of
order x is po..=a N™/x! where a.=2 (x=2) independent of x, in contrast to the
results of Gardner (1987) for the Hopfield model.

Summarising, we have studied the performance of a single-layer perceptron in
realising the mapping of random, Gaussian distributed, input patterns into one of the
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two classes represented by the state of the output neuron. By introducing non-trivial
correlations among the patterns we were able to study a family of mappings including
easier ones where similar inputs are mapped in the same class and more difficult ones
where similar inputs are mapped into different classes. The difficulty of the problem
is gauged by the storage capacity of the network, which is higher for the easier problems.

We thank the referee for pointing out a flaw in the original version of the manuscript.
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