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An original diagnostic method is proposed for identifying broken rotor bars based on a new technique for
decomposing electric signals obtained by measurements, the Orthogonal Component Decomposition
technique. This decomposition shows to be an efficient fault-specific feature extractor, and a broken
bar simulation is used to determinate the relationships between the decomposition products and the
fault phenomena. The efficiency of the information extraction is evaluated by Kruskall-Wallis variance
analyses and Support Vector Machines on experimental signals, where the fault occurrence is detected,
and the fault severity, given by the number of broken bars, is also diagnosed. The experimental signals
are obtained by measurements from induction machines operating with different torque levels and dri-
ven either directly by the grid or frequency inverters. The proposed diagnostic method does not depend
on frequency analysis and spectral resolution and comprises the Orthogonal Component Decomposition
and Support Vector Machines. Furthermore, the results demonstrate the effectiveness of the information
extraction since high diagnostic accuracy is achieved in low-torque situations and in a broad range of slip
values. Additional analyses support that the proposed decomposition should be further investigated for
many other applications on event detection.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Induction machines (IMs) are one of the main electromechani-
cal devices used in industries and are widely used in electric power
systems in wind-power generators and bulb hydro-power turbines
[1]. With advances in power electronics and the advent of high-
performance microprocessors, three-phase induction machines
(TIMs) have been used in various types of industrial applications,
including those with variable speed requirements.

Although IMs present good efficiency and long life with low
maintenance costs, they are dynamic systems subjected tomechan-
ical and electrical faults, which may lead to interruptions in manu-
facturing processes and economic losses. By knowing when an
electric machine requires maintenance, costly unscheduled shut-
downs and the inefficient use of electric power could be avoided.

Faults in rotor bars constitute about 10–20% of the total faults in
TIMs [2], which leads to a significant reduction in the life cycle of
these devices, decreases average torque and mechanical vibration
[3–5]. Moreover, broken bars in TIMs represent a cumulative and
destructive event, since neighboring bars also deteriorate due to
mechanical and thermal stresses [2,3,6,7]. In this context, broken
bars should be early detected by a fault identification system.

Fault identification methods are widely applied for diagnosing
abnormal events in the operation of several dynamic systems.
These methods are based on the monitoring of different variables
and signal processing techniques [8]. Different types of variables
were used in several efforts for fault detection and classification
in TIMs, such as stator voltage and current [9–14], active and reac-
tive power [15–17], torque profile [4,18], and vibration analysis
[19].

In this sense, signal processing of such monitored variables is
essential for a reliable and accurate diagnostic in any electrical sys-
tem [3,20]. Therefore, results from signal processing must contain
powerful fault-characterization indices for intelligent classifiers or
statistical methods to complete the diagnostic process. Signal pro-
cessing methods range from time and frequency domains to
time-frequency domain [21], such as statistical measurements
[20], Hilbert Transform [14], Fast Fourier transform (FFT), and
Wavelet Transform (WT) [3,22–24].
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Most studied feature-extraction techniques for the detection of
broken rotor bars are based on the spectral analysis (MCSA) of sta-
tor currents. [13,24–27]. Broken rotor bars cause rotor asymme-
tries and distortion in stator currents, which incurs in some
fault-characteristic frequencies in the spectrum of such currents.
Fault-specific lower and upper sidebands in the stator current
spectrum are found at f 1;2 ¼ 1� 2ksð Þf s ¼ 1� kfbð Þ, where k is an
integer, s is the slip, f s is the supply frequency, and f b is called
the sideband frequency and is given by 2sfs. The exact location of
these sidebands in the spectrum depends directly on the slip,
and their amplitudes depend on the physical position of broken
bars, number of broken bars and also on the load profile [28–31].

A well-known fact in the diagnosis of TIMs is that it is harder to
identify a broken bar with frequency-based analysis of stator cur-
rents when the machine is lightly loaded, because of the proximity
of the sidebands with the fundamental frequency and the small
disturbance caused by the fault at low-load conditions [10,6,32].
Hence, the accuracy of frequency-based techniques depends on
spectral resolution and needs a large data acquisition interval to
minimize leakage [3], which could obscure the fault-specific fre-
quency sidebands. In the same way, diagnostic methods based on
the analysis of stator-current envelopes also present identification
difficulties in low-torque conditions [10].

Moreover, when frequency-domain techniques are used and
slip increases, frequencies f 1;2 get pushed away from the funda-
mental frequency. As a selected number of frequency points
around the fundamental is used as inputs to classifiers, diagnostic
accuracy could drop, since diagnostic systems could lose track of
sidebands by just using data points that are close to the fundamen-
tal frequency. Hence, to bypass this drawback on high-slip situa-
tions, processing algorithms need to dynamically choose some
frequency data points by having prior knowledge of the speed of
the machine.

Statistical methods can undertake the detection and classifica-
tion task of whether a machine is in a healthy or faulty condition
after fault-specific features were extracted by the processing of
monitored variables. However, several approaches combine signal
processing tools with concepts of intelligent systems, such as neu-
ral networks [33,34], fuzzy logic [35,36], Support Vector Machines
(SVMs) [37], particle swarm optimization [38], genetic algorithms
[39], and Bayesian classifiers [10,18].

Several efforts in fault detection have been made using the
combination of signal processing and intelligent systems. Nonethe-
less, the majority of these methods use frequency-domain trans-
forms, mainly based on the MCSA. Frequency-domain transforms
are even used on those methods based on the analysis of instant
active and reactive powers [16,15].

This paper describes an efficient feature extraction technique
for diagnosing broken rotor bars based on a time-domain mathe-
matical technique for decomposing electric signals, named the
Orthogonal Component Decomposition (OCD), that can overpass
some of the difficulties already discussed. The OCD technique
was successfully used in [40] for detection of high-impedance
faults in distribution systems, and a careful presentation of the
novel technique was made in [41]. Differently from other very use-
ful signal transforms and decompositions, as the FFT, in which sig-
nals are decomposed into some predefined orthogonal basis, the
OCD technique does not decompose signals in pre-established
basis but uses the signals that are being analyzed as the basis for
the decomposition. Accordingly, the decomposition products are
highly sensitive to the system operation and are strongly related
to the system operating parameters and power consumption. In
fact, this information on electric parameters and power consump-
tion allow the tool to track different events, such as faults, changes
in load and operating conditions in a dynamic electrical system.
Based on the aspects mentioned above, the main contributions
of the proposed method are: i) Fault analysis is made in the time
domain so that frequency-domain transforms are not required.
With signal decomposition in the time domain, a heuristic under-
standing of the fault process can be made by observing the trends
of the products of the decomposition; ii) The decomposition is not
based on a system of predefined basis, i.e., the decomposition basis
is determined directly from the electric signals being analyzed. The
decomposition products are sensitive to the system operation.
Therefore, it is shown that the OCD is an effective fault-specific fea-
ture extractor even when machines are lightly loaded, which eases
the classification made by intelligent systems or statistical meth-
ods; iii) With the proposed method, by using the new signal pro-
cessing tool, the high-slip tracking problem is overcome since the
method is processed on the time-domain. Even when machines
have a high slip, a reliable fault signature is extracted without prior
knowledge of the speed of the machine.

Variance analyses were performed to demonstrate the effec-
tiveness of the OCD technique as a fault-specific feature extractor.
Moreover, to present a complete diagnostic method, SVM classi-
fiers were trained offline with experimental data in order to diag-
nose faulty motors. Experimental data consist of electric signals
that were processed with the OCD technique. The machine learn-
ing algorithm could then identify the faulty machines as well as
the severity of the fault, which is considered as the number of bro-
ken bars.

2. Mathematical and computational concepts

2.1. Orthogonal Component Decomposition technique (OCD)

The OCD is a new signal processing technique designed for elec-
tric power systems, mainly assisting the identification of nonlinear
processes and events, such as faults and changes in the operating
condition of these systems. The technique is a method that decom-
poses the electric signals being analyzed into the own signals and
not into pre-established basis. Therefore, the resulting decomposi-
tion products, named the orthogonal components, are sensitive to
the system operation and power consumption.

The OCD is based on two principles derived from linear algebra
concepts. A careful presentation of the OCD can be found in [41].
However, as the technique was recently proposed, a brief summary
is presented in this paper.

2.1.1. Principle 1 – decomposition into orthogonal quantities
Consider two continuous, finite, and periodic functions, from an

electrical system: i tð Þ and v tð Þ. Thus, a derivative function _i tð Þ and
an integrative function ~i tð Þ can be expressed in (1) and (2), respec-
tively. These functions can be considered as vectors belonging to
the R1 vector space.

_i tð Þ ¼ di tð Þ
dt

ð1Þ
d~i tð Þ
dt

¼ i tð Þ ð2Þ

The purpose of the OCD is to outcome products that are highly
sensitive to the electrical system parameters and power consump-
tion. Therefore, a decomposition as formulated in (3) would surely
be very interesting for this purpose. One can observe that Signal
v tð Þ is decomposed into four parts. Voltage quantity vp tð Þ is pro-
portional to the system current and hence carries out a resistance
(R) information through coefficient c1. Furthermore, coefficient c2
in quantity vqk tð Þ carries out an inductance (L) information, since
this component is proportional to the derivative function of the
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current. Finally, c3 carries out a capacitance (1C) information since
vq� tð Þ is proportional to the integrative function of the current.
The last quantity in (3) is made necessary as the signal v tð Þ in
R1 may not be spanned by just the three quantities mentioned.
Consequently, the last quantity of the decomposition carries out
information that can not be modeled by passive electric elements.

v tð Þ ¼ c1i tð Þ|fflffl{zfflffl}
vp tð Þ

þ c2_i tð Þ|fflffl{zfflffl}
vqk tð Þ

þ c3~i tð Þ|fflffl{zfflffl}
vq� tð Þ

þvd tð Þ ð3Þ

It is essential that the components in which a signal is decom-
posed are linearly independent and orthogonal to each other, in
order to the c coefficients in (3) to be independent. In [41] it is
shown that a continuous, finite, and periodic function f tð Þ is mutu-

ally orthogonal to its derivative function _f tð Þ and integrative func-

tion ~f tð Þ, which, are not orthogonal to each other, being collinear
(anti-parallel) if f tð Þ is purely sinusoidal.

Accordingly, an orthogonalization process, as shown in (4) is
necessary to make all quantities in (3) independent. The new
orthogonal triplet, which v tð Þ will be decomposed into, is now

given by i tð Þ; _i tð Þ, and a new vector i? tð Þ, which is obtained by a
Gram-Schmidt orthogonalization.

i? tð Þ ¼ ~i tð Þ �
~i tð Þ; _i tð Þ
D E
k_i tð Þk2

_i tð Þ ð4Þ

After the orthogonalization process, the decomposition can be re-
written as formulated in (5). Thus, all the quantities of the decompo-

sition are entirely independent, where~i tð Þ was substituted by i tð Þ?.
v tð Þ ¼ c1i tð Þ|fflffl{zfflffl}

vp tð Þ

þ c2_i tð Þ|fflffl{zfflffl}
vqk tð Þ

þ c3i
? tð Þ|fflfflffl{zfflfflffl}

vq? tð Þ

þvd tð Þ ð5Þ

It is important to state that if the signals are purely sinusoidal,

then _i tð Þ and ~i tð Þ are anti-parallel and i? tð Þ is null. Therefore, the
existence of the latter highlights reactive phenomena in non-
purely sinusoidal systems, being an efficient index for detecting
nonlinear events in power systems [41,40].

Component vd tð Þ is the signal remainder and is proved to be
orthogonal to the other decomposed quantities [41]. It can be cal-
culated as shown in (6).

vd tð Þ ¼ v tð Þ � c1i tð Þ|fflffl{zfflffl}
vp tð Þ

� c2_i tð Þ|fflffl{zfflffl}
vqk tð Þ

� c3i
? tð Þ|fflfflffl{zfflfflffl}

vq? tð Þ

ð6Þ

All the steps made to achieve the decomposition formulated in
(5) can also be made to decompose i tð Þ as demonstrated in (7).
Therefore, in an electrical system, each pair of current and voltage
results in eight orthogonal functions that are the products of the
OCD and are named orthogonal components.

i tð Þ ¼ a1v tð Þ|fflfflffl{zfflfflffl}
ip tð Þ

þa2 _v tð Þ|fflfflffl{zfflfflffl}
iq
k
tð Þ

þa3v? tð Þ|fflfflfflffl{zfflfflfflffl}
iq
?

tð Þ

þid tð Þ ð7Þ

For the pair i tð Þ and v tð Þ, eight orthogonal components are

obtained: ip tð Þ; iqk tð Þ; iq? tð Þ; id tð Þ;vp tð Þ;vqk tð Þ;vq? tð Þ;vd tð Þ. The c
and a coefficients can be calculated from the projection of the
function to be decomposed onto the triplet vectors as demon-
strated in (8) and (9).

ci ¼
v tð Þ; x tð Þh i
kx tð Þk2

ð8Þ

ai ¼ i tð Þ; y tð Þh i
ky tð Þk2

ð9Þ
when i ¼ 1; x tð Þ ¼ i tð Þ and y tð Þ ¼ v tð Þ, when i ¼ 2; x tð Þ ¼ _i tð Þ and
y tð Þ ¼ _v tð Þ and, finally, when i ¼ 3; x tð Þ ¼ i? tð Þ and y tð Þ ¼ v? tð Þ.
Moreover, w tð Þ; z tð Þh i ¼ 1

T

R t
t�T w sð Þz sð Þds, and kz tð Þk2= z tð Þ; z tð Þh i,

which is the square of the RMS value of z tð Þ.

2.1.2. Principle 2 – decomposition onto the plane of line voltages
Let vA tð Þ;vB tð Þ, and vC tð Þ be continuous functions, periodic on T

and vectors of R1 space. These functions represent phase voltages
of any three-phase system, where, vAB tð Þ;vBC tð Þ, and vCA tð Þ are the
line voltages of this system.

As line voltages of a three-phase system are obtained by the dif-
ference between two phase voltages, signals vAB tð Þ;vBC tð Þ, and
vCA tð Þ are filtered functions since any noise equally incident on
phase voltages is eliminated.

In [41] it is shown that continuous and periodic line voltages of
a three-phase system are always linearly dependent regardless of
the content of phase voltages. Therefore, line-voltage vectors in
R1 are positioned in a plane, which spans signals filtered from
common-mode noises.

In order to filter a given signal from common-mode noises, one
can project the signal onto the plane of line voltages. For example,
phase and neutral voltages vA tð Þ;vB tð Þ;vC tð Þ, and vN tð Þ and phase
and neutral currents iA tð Þ; iB tð Þ; iC tð Þ, and iN tð Þ can be projected on
the plane of line voltages.

To accomplish such projection task, the given signal must be
projected onto an orthogonal basis of the plane of line voltages.
This basis can be generated by adopting an arbitrary line voltage
as the first basis vector. The second basis vector should be orthog-
onal to the first. Therefore, the following plane basis is obtained:

vb1 tð Þ ¼ vAB tð Þ
vb2 tð Þ ¼ vBC tð Þ � hvAB tð Þ;vBC tð Þi

kvAB tð Þk2 vAB tð Þ

(
ð10Þ

After a phase signal is decomposed into the plane of line volt-
ages, one can understand the phase signal as the sum of two com-
ponents, as shown in (11). For example, take vA tð Þ; vB tð Þ; vC tð Þ,
and vN tð Þ. The first component is the planar component, i.e., the
one that was decomposed into the plane denoted as
va tð Þ; vb tð Þ; vc tð Þ, and vn tð Þ. The second component is an orthogo-
nal to the plane quantity, denoted as v�a tð Þ;v�b tð Þ;v�c tð Þ, and v �n tð Þ.
These last components are not spanned by the plane basis and
can contain other noises and nonlinear contents.

vX tð Þ ¼ bxvb1 tð Þ þ dxvb2 tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vx tð Þ

þv�x ð11Þ

where xcan assume a, b, c and n.
Coefficients b and d in (11) are calculated by the projection of

the phase signal onto the plane basis vectors:

bx ¼
vX tð Þ; vb1 tð Þ� �
kvb1 tð Þk2

ð12Þ

dx ¼
vX tð Þ;vb2 tð Þ� �
kvb2 tð Þk2

ð13Þ
2.1.3. Obtaining orthogonal components
In three-phase electric systems, both principles are used to

obtain orthogonal components, as initially proposed in [42]. Sig-
nals are first filtered, i.e., decomposed into planar and non-planar
components by using the second principle. Then each voltage/cur-
rent pair obtained can be further decomposed into electrical infor-
mation by using the first principle.

For example, a planar phase-A current ia tð Þ can be decomposed
into the triplet vectors va tð Þ; _va tð Þ, and v?

a tð Þ of the planar phase-A
voltage. Likewise, a non-planar phase-A voltage v�a tð Þ can be
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decomposed into the triplet vectors i�a tð Þ; _i�a tð Þ, and i?�a tð Þ of non-
planar phase-A current i�a tð Þ. Thus, 64 time-dependent orthogonal
signals are obtained from (14) with x ¼ a; b; c; n; �a; �b; �c; �n.

One of the heuristic justifications of why the decomposition is
sensitive to the system operation and parameters is fundamentally
tied to the fact that the c and a coefficients are linked to resis-
tances, capacitances, inductances and the remaining quantities
are linked to noise and nonlinear contents. It is important to
observe that the orthogonal components are highly sensitive to
nonlinear events because the event changes the system parameters
and the power consumption of the system.

vp
x tð Þ ¼ vx tð Þ; ix tð Þh i

ix tð Þk k2 ix tð Þ

ipx tð Þ ¼ ix tð Þ; vx tð Þh i
vx tð Þk k2 vx tð Þ

vqk
x tð Þ ¼ vx tð Þ; _ix tð Þh i

_ix tð Þk k2
_ix tð Þ

iq
k

x tð Þ ¼ ix tð Þ; _vx tð Þh i
_vx tð Þk k2

_vx tð Þ

vq?
x tð Þ ¼ vx tð Þ; i?x tð Þh i

i?x tð Þk k2 i?x tð Þ

iq
?

x tð Þ ¼ ix tð Þ; v?
x tð Þh i

v?
x tð Þk k2 v?

x tð Þ

vd
x tð Þ ¼ vx tð Þ � vp

x tð Þ � vqk
x tð Þ � vq?

x tð Þ

idx tð Þ ¼ ix tð Þ � ipx tð Þ � iq
k

x tð Þ � iq
?

x tð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ
2.2. Relationship between orthogonal components and the phenomena
of broken bars

In order to overcome problems with frequency transformations,
such as spectral resolution and leakage, one can obtain time-
dependent metrics from the orthogonal components to be used
as inputs to a classification system. For such, it is necessary to
understand the relationship between the orthogonal components
and the phenomena of broken bars.

In [43], it is shown that the instantaneous active and reactive
power consumptions of a TIM oscillate when a phenomenon of
broken bars occurs. More specifically, it is shown that the ratio
between the maximum value and the mean value of these oscilla-
tions is approximately proportional to the number of broken bars
in the rotor. In the case of healthy machines, the instantaneous
active and reactive power consumption is maintained constant.
As the orthogonal components are related to power consumption
and based in [44,17,43], a new index obtained from the orthogonal
components is proposed to be used as inputs to classification
systems.

It is verified that the index obtained by the ratio between the
maximum RMS value of an orthogonal components and its mean
RMS value within an acquisition window is approximately con-
stant for a given number of broken bars. Therefore, this index is
monotonic with the fault severity. In order to understand this
index, take the component ipA tð Þ as an example, which is not yet
projected onto the plane of line voltages:

ipA tð Þ ¼< iA tð Þ; vA tð Þ > vA tð Þ
kvA tð Þk2 : ð15Þ

Assuming that phase voltage vA tð Þ is given by:

vA tð Þ ¼
ffiffiffi
2

p
V cos xtð Þ; ð16Þ

the stator current of a machine with broken bars is given by [17]:
iA tð Þ ¼
ffiffiffi
2

p
I cos xt �uð Þ þ

ffiffiffi
2

p X1
k¼1

Ib1k cos x� kxbk

� �
t �ub1k

� 	h
þIb2k cos xþ kxbk

� �
t �ub2k

� 	i
; ð17Þ

where x is the angular frequency of the machine, xb is the angular
frequency induced by the broken bar fault, I and u are respectively
the RMS value and phase of the fundamental current. Moreover,
Ib1k; Ib2k; ub1k

, and ub2k
are the RMS values and phase of the fault-

induced sidebands.
From calculating < iA tð Þ;vA tð Þ >, one can observe that part of

the result is composed by a component regarding the motor in a
healthy condition and other component regarding the motor in a
faulty condition:

< iA;vA > ¼ 1
T

Z t

t�T
iA tð ÞvA tð Þds ¼< iA tð Þ;vA tð Þ>healthy

þ < iA tð Þ;vA tð Þ>faulty ð18Þ
The quantity < iA tð Þ; vA tð Þ>healthy, given by:

< iA tð Þ;vA tð Þ>healthy ¼ 1
T

Z t

t�T

ffiffiffi
2

p
I cos xt �uð Þ

ffiffiffi
2

p
V cos xtð Þs

¼ VI cos uð Þ ð19Þ
is the active power, as can be seen in (19). This term is time-
invariant, and hence, if there is no fault, the dot product
< iA tð Þ;vA tð Þ > is constant within a given period t; t þ T½ �. Therefore,
this constant term will multiply a normalized purely sinusoidal sig-
nal vA tð Þ

kvA tð Þk2 and the RMS values of ipA tð Þwill be constant in time. If

there is a fault, one parcel of the dot product will be constant
< iA tð Þ;vA tð Þ>healthy. However, the other parcel < iA tð Þ;vA tð Þ>faulty

will oscillate since the sidebands will make the dot product oscillate
within a given period t; t þ T½ �. This oscillating term multiplied by
the normalized purely sinusoidal signal vA tð Þ

kvA tð Þk2 will cause a modula-

tion in the orthogonal component. Therefore, the RMS values of ipA tð Þ
will oscillate within t; t þ T½ �, as shown in Figs. 1 and 2. The mean of
the RMS value is related to the parcel < iA tð Þ; vA tð Þ>healthy, which is
practically constant for any number of broken bars. The amplitude
of the oscillation is related to the amplitude of the sidebands con-
sidered inside the term < iA tð Þ;vA tð Þ>faulty, thus to the number of
broken bars. Finally, the slip of the motor will only influence the
period of the oscillations since xbk is considered inside the dot
product.

When a fault occurs, the projection of ipA tð Þonto the plane will
have a non-unitary ratio between its maximum RMS value and
mean RMS value, which can be calculated as:

Rjjipa tð Þjj ¼ max jjipa tð Þjj
meanjjipa tð Þjj : ð20Þ

The index R is very interesting since it is independent of the
load torque, this is, all motors on a healthy condition with any
value of load torque have R ¼ 1 for the orthogonal components.

To observe the dynamic relationship between orthogonal com-
ponents and a broken bar fault, an TIM with four poles was simu-
lated (2 HP, 380 V/60 Hz, 3.6 A, 28 rotor bars). The simulation was
based on the rotor asymmetry mesh model proposed in [45]. In
this simulation, the slip frequency was at 1.53 Hz and torque was
approximately 8.0 Nm (rated torque). At simulation time t = 4 s a
4 adjacent broken bar fault (4 bb) was provoked (14.3% of the total
number of bars) and simulation ran until t = 10 s. Stator currents
and supply voltages were then processed with the OCD.

Fig. 1 shows the RMS values jjvp
x tð Þjj and jjipx tð Þjj of the orthogo-

nal components vp
x tð Þ and ipx tð Þwith respect to time. It is noticeable

that the RMS values of components, with x ¼ a; b; c respond to the



Fig. 1. Orthogonal component RMS value in time for a simulated 2-hp 60-Hz four-pole 380-V 3.6-A 28-rotor-bars IM. A 4 bb (14.3% of the total number of bar) fault is
provoked in t = 4 s. Slip frequency is at 1.53 Hz and torque is approximately 8.0 Nm (rated torque).
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Fig. 2. RMS values of some orthogonal components with respect to time for a simulated 2-hp 60-Hz four-pole 380-V 3.6-A 28-rotor-bars IM. A 1 bb (3.5% of the total number
of bar) fault is provoked in t = 4 s. Slip frequency is at 1.53 Hz and torque is approximately 8.0 Nm.

L. H. B. Liboni et al. /Measurement 134 (2019) 825–834 829
fault phenomena and oscillates with frequency f b ¼ 2sfs, because
of the stator current modulation imposed by the fault-
characteristics sidebands, which in this case, is approximately
3 Hz. In this case, phases a, b, c have the same behavior, as
expected, since the current sidebands are induced in all phases
by the modulation in the rotating magnetic flux. By comparing
Figs. 1 and 2, where some components are shown for the case of
a 1 broken bar fault (1 bb) (3.6% of the total number of bars), it is
noticeable that the amplitude of this oscillations increases with
the number of broken bars.

Orthogonal components derived from neutral voltages are null,
because there is no supply-voltage imbalance and although usually
IMs have no neutral connection, the OCD processing tool formula-
tion expects the decomposition of these signals. In this way, to use
the proposed technique, a theoretical definition was adopted:
vn tð Þ ¼ va tð Þ þ vb tð Þ þ vc tð Þ and in tð Þ ¼ ia tð Þ þ ib tð Þ þ ic tð Þ.
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Components jjvqk
x tð Þjj and jjiqkx tð Þjj also react to the fault and

components jjv?
x tð Þjj and jjiq?x tð Þjj become non-zero. These compo-

nents highlight the reactive nature of broken bars [16]. Although

this signals are not power signals, jjv?
x tð Þjj and jjiq?x tð Þjj are related

to the existence of reactive parameters in non-purely sinusoidal

systems. Non-planar voltage components, jjvp
�x tð Þjj; jjvqk

�x tð Þjj;
jjvq?

�x tð Þjj, and jjvd
�x tð Þjj are null and not shown because all voltages

are symmetrical and purely sinusoidal. Therefore, no voltage quan-
tities are unfiltered. Differently, non-planar currents

jjip�x tð Þjj; jjiqk�x tð Þjj; jjiq?�x tð Þjj, and jjid�x tð Þjj are non-zero when the fault is
provoked because current modulation is present. Moreover, com-
ponents representing non-passive electric elements are null until
the occurrence of the fault.

It can be seen that components representing non-passive ele-
ments, and components representing active and reactive elements
have oscillations highly related to the fault. When real signals are
analyzed, non-planar voltage orthogonal components are non-
zero, because of noise, and orthogonal components derived from
neutral voltages are non-zero because of possible phase-voltage
imbalances.

Considering that the load torque is kept constant, the acquisi-
tion time of voltage and current signals must be large enough to
contain at least one period of oscillations of the RMS values of
the orthogonal components so that the calculation of the Rindex
could be made correctly. As the RMS values oscillate with fre-
quency fb ¼ 2sfs, the minimum acquisition time can be easily cal-
culated a priori by using the slip value when the motor is free of
load torque.

In Fig. 3, Pearson’s absolute correlation of the R index of some
orthogonal components with respect to the state of the simulated
motor (healthy or faulty with 1 bb, 2 bb, and 4 bb), in several load
torques, is plotted for an acquisition window of 3 s. It can be
observed that the indices maintain an almost-fixed correlation
value with respect to load torque. Therefore, when machines are
lightly loaded, orthogonal components still highlight the fault
occurrence. The acquisition window of 3 s is sufficient to contain
at least an integer number of oscillations for the lowest load torque
condition (1 Nm).
2.3. Feature selection and dimensionality reduction

In problems regarding pattern classification, attribute selection
is used to hand the most relevant features or variables to a given
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Fig. 3. Correlation between the R index of some orthogonal compo
classifier. Feature selection also promotes a dimensionality reduc-
tion of the input space, providing a set of more compact and rele-
vant data, and sometimes improving the performance of intelligent
classifiers.

Various techniques for reducing feature space can be found, for
example, Principal Components Analysis (PCA), in which, new
highly correlated attributes are obtained as linear combinations
of the original ones. A disadvantage of this technique is that no
unique attribute can be discarded.

In this paper, a correlation-based feature selection (CFS) algo-
rithm addresses the attribute selection problem through a
correlation-based analysis for selecting a good set of R indices from
all the 64 orthogonal components. This attribute set is used by the
classification system to point out a broken bar phenomenon and its
severity. A good attribute set contains features that are highly cor-
related with the class, in this case, the faulty machines, but not
greatly correlated with each other [46].

The algorithm has an appropriate correlation measure called
symmetric uncertainty, based on entropy metric, and a heuristic
search strategy. The search strategy performs a greedy conserva-
tive forward search through the space of attribute subsets [46].

2.4. Support Vector Machines

SVM algorithms are used for pattern classification, regression,
and novelty detection. It has been extensively used in the area of
machine diagnostics [47]. They can be considered as learning algo-
rithms with a hidden layer and supervised training based on struc-
tural risk minimization, arising from statistical learning theory
[48]. In pattern classification problems the algorithm maximizes
the margin, which is the minimal distance between a hyperplane
separating the classes and the data points closest to this hyper-
plane. The most important vectors that define the hyperplane
position are called support vectors (SVs). The tool can be used in
high-dimensional input spaces, exhibiting good generalization.
SVM learning involves the optimization of a convex function and
does not have local minima, and few parameters are required for
tuning the learning machine [48].

Data must be mapped into a new larger input space so that the
problem in this new space becomes separable. This mapping is
done by a kernel function. Usually, in very high-dimensional input
space, the linear function, shown in (21), is the kernel of choice.

The original SVM mathematical formulation is called hard-
margin SVM, in which data are not permitted inside the margin.
However, generalization errors can be reduced by using the
5 6 7

e (Nm)

nents and the state of the motor as a function of load torque.
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concept of soft margins. According to [48], with the soft-margin
mathematical formulation, some data are allowed to violate the
margin constraints, in such cases, some of the SVs may lie within
the margin bounds. When using the soft-margin approach, the reg-
ularization parameter C controls the trade-off between achieving a
low error on the training data and minimizing the generalization
error. Moreover, in the case of an imbalance between the amount
of data in different classes, an asymmetric soft-margin parameter
can be used to avoid biased learning.

In this paper, different SVM configurations are used to classify
fault occurrence and fault severity, more specifically, multi-class
classification SVMs with Gaussian Kernel as shown in (22). All
parameters were selected via a stratified cross-validation analysis
[49].

K u;vð Þ ¼ u0 � v ð21Þ
K u;vð Þ ¼ exp �cju� v j2
� 	

ð22Þ
Fig. 4. Database instances are formed by 3 s of acquired signals in steady state
condition.

Fig. 5. Laboratory workbench with the 1-hp induction machine and data acquisi-
tion system.
3. Experimental setup and methodology

To evaluate the proposed strategy, a large experimental dataset
was obtained from healthy and faulty machines to achieve differ-
ent operating conditions, since load, fault, and supply frequency
influence the majority of diagnostic systems.

The test bench allows the connection of TIMs (1.0 HP power,
220 V/380 V supply voltage, 4 poles, 60 Hz, 34 rotor bars, and
4.1 Nm rated torque) to a direct-current (DC) generator (2 kW
power, 190 V rated field voltage, and 250 V rated armature voltage)
that works as a load. Four healthy machines were used in the
experiments:

� Normal machine with rotor interchangeability: machine with
healthy rotor, which was also adapted to receive faulty rotors
in order to simulate faults;

� Factory machine: healthy machine without any kind of
intervention;

� High-performance machine: healthy machine with same name-
plate information but with different construction materials and,

� Normal machine: machine with healthy rotor.

Four different faulty rotors were used in the experiments: one
broken bar (1 bb) (2.9% of the total number of bars), two adjacent
broken bars (2 bb) (5.9% of the total number of bars), 4 symmetri-
cal broken bars (2 � 2 bb) (11.8% of the total number of bars), con-
sisting of two pairs of adjacent broken bars in diametrically
opposed positions, and four adjacent broken bars (4 bb) (11.8% of
the total number of bars).

The analysis of several different machines is important because
it makes the classifier robust to real situations in the industry.
Although the machines and rotors are similar in nameplate infor-
mation, circuit parameters change for each one of them.

Therefore, classifiers are trained to be robust to some parameter
variations, as they should be in an industrial situation, where
machines are modified and reassembled because of coil re-
windings, bearing substitutions and parts replacement.

Stator current and supply voltage were acquired in steady-state
condition for 3 s in order to constitute the datasets, as shown in
Fig. 4. This acquisition time is sufficient to calculate the R indices
correctly. Experiments were carried out for two study cases:
direct-driven machines and inverter-driven machines. For the
direct-driven dataset, experiments were running at 60 Hz, and
each instance was obtained from a ‘machine + load’ combination,
with load torques being 0.5 Nm, 1.0 Nm, 2.0 Nm, 3.0 Nm, 3.5 Nm,
and 4.0 Nm. For the inverter-driven dataset, experiments were
running at 40 Hz, 45 Hz, 50 Hz, 40 Hz, 45 Hz, 50 Hz, and 55 Hz
55 Hz and each instance was obtained from a ‘machine+supply fre-
quency+load’ ‘machine + supply frequency + load’ combination,
with load torques also being 0.5 Nm, 1.0 Nm, 2.0 Nm, 3.0 Nm,
3.5 Nm, 0.5 Nm, 1.0 Nm, 2.0 Nm, 3.0 Nm, 3.5 Nm, and 4.0 Nm.
4.0 Nm. The inverter was controlled by V/Hz algorithm. Fig. 5
shows the laboratory workbench.

Acquisition frequency for the direct-driven dataset was
3.84 kHz and 100 kHz for the inverter-driven dataset. The voltage
signals of inverter-driven motors were initially filtered before the
calculations of the OCD took place. This initial filtering is necessary
since the voltages from the inverter are switched signals. In order
to process signals with the OCD technique, voltages need to be con-
tinuous and periodic. Therefore, a low-pass finite impulse response
(FIR) filter with cut-off frequency of 300 Hz was applied to voltage
signals when machines were driven bu the inverter. This low-pass
filtering stage can also be accomplished by passive linear filters.
This low-pass filtering stage can also be accomplished by passive
linear filters.

The OCD technique was then applied to the signals on both
datasets, resulting in 64 time-domain functions. Then, the R indices
on a 3 s window frame were calculated for each orthogonal compo-
nent, producing 64 attributes. Attributes on both datasets were
normalized between 0 and 1. SVMs were then used to classify nor-
mal and faulty motors as well as the fault severity.

The performance metric for the diagnostic system was obtained
by a 10-fold stratified cross-validation classification repeated 10



Table 1
Accuracy of fault and severity classification for normal and faulty machines (1 bb,
2 bb, 2 � 2 bb and 4 bb). Direct-driven at 60 Hz and eight different load torques.
Database with 45 normal machines and 26 faulty machines.

Type Classifier No of Inputs Accuracy (%) mean (std deviation)

Fault SVM1 64 100.0 (0.0)

Fault SVM2 10 100.0 (0.0)

Severity SVM3 64 100.0 (0.0)
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times in different seeds. Therefore, training data was not used as
validation data. Stratified cross-validation ensures that each fold
has the right proportion of instances of each class, preventing
biased classification. The classes were considered as healthy, one
broken bar, two broken bars, and four broken bars. Additionally,
different seed repetitions are used to improve upon a repeated
holdout, by reducing the variance of the classification estimate,
and to prevent the overfitting of the classifiers.
Severity SVM4 10 99.46 (1.97)

Severity SVM5 10 100.0 (0.0)

SVM1 ¼ SVM2 ¼ SVM3 ¼ SVM4 (C = 1, linear kernel). SVM5 (C = 50, c ¼ 1:0, Gaussian
Kernel).
4. Results and discussions

In this study, three-phase 1-hp squirrel-cage induction machi-
nes were tested for fault diagnosis purposes. Accordingly, normal
machines and rotors with 1 bb, 2 bb, 2 � 2 bb, and 4 bb were
tested. In Fig. 6, the RMS values of the orthogonal component
ipa tð Þis shown with respect to time in different operating conditions
for direct-driven motors.

An initial statistical test was made in the direct-driven dataset
to evaluate if healthy machines are distinguishable from faulty
machines with respect to the 64 attributes of the dataset, which
are the Rindices calculated in a 3 s window frame. A Kruskal-
Wallis nonparametric one-way analysis of variance (ANOVA) cast
doubt on the associated null hypothesis, which suggests that all
instances of the dataset are from a same class with a chi-square
static of 1070.86 and 5% of significance level. This result shows that
there are noticeable differences between faulty and healthy machi-
nes with respect to the 64 attributes.

The OCD products were found to be relevant features for classi-
fying normal and faulty machines. Table 1 shows the classification
hit-rates for the direct-driven case.

Moreover, the performances of SVM classifiers with a reduced
number of inputs are also shown. The selected features were
obtained from the CFS algorithm and then used as inputs to the
SVM classifiers.

It is observed that very simple classifier models are capable of
outputting high-accuracy classification. This fact indicates that
the classification problem is separable, since a SVMwith linear ker-
nel and low C parameter, which approximates the classifier to a
hard-margin SVM, performs with an accuracy of 100%.

Table 1 also shows the severity classification hit-rates for the
direct-driven case.

It is important to point out that 2 � 2 bb and 4 bb configura-
tions are considered the same for severity classification (4 bb),
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Fig. 6. RMS values and R indices of the orthogonal component ipa tð Þ for hea
where the number of broken bars is understood as the severity
of the fault. In [50] the effects of adjacent and non-adjacent bar
breakages on fault diagnosis were studied and it is known that geo-
metric location of broken bars can affect the classification task. In
the case were Nb non-adjacent broken bars are separated by one
pole pitch, this is, by 180	 electrical, fault-specific characteristics
corresponds to Nb adjacent bar breakages. Hence, no difficulty
should arise in diagnosing the presence of 4 broken bars under
these distinct situations.

It is also important to address that attribute selection algo-
rithms can increase classifier performance because of irrelevant
and redundant attribute elimination. For a smaller number of
inputs, accuracy has not changed significantly and an SVM with
higher margin constraints and Gaussian Kernel could be used for
the classification. A natural dimensionality reduction could be
obtained by using data from only one phase of the motor, which
could reduce the number of sensors used and the cost of the diag-
nostic method. In Table 2, classification performance is shown
when Rindices from just phase A are used as inputs to classifiers.

Regarding the uncertainty of the classifiers, the standard devia-
tion measures the spread of the accuracies obtained in the several
classification experiments. The smaller the standard deviation, the
smaller the uncertainty and thus higher the confidence in the clas-
sification and the reliability of the experiment. It can be seen that
the variance of the classification is improved upon repeated exper-
iments given that the cross-validation classification is repeated 10
times in different seeds.

The Kruskal-Wallis ANOVA tested in the inverter-driven
dataset also casts doubt on the associated null hypothesis, which
suggests that all samples were from the same class with a
2 2.5 3

R = 1,035

R = 1,044

R = 1,03

lthy motors and motors with 4 bb in different load torque conditions.



Table 2
Accuracy of fault and severity classification for normal and faulty machines (1 bb,
2 bb, 2 � 2 bb and 4 bb). Direct-driven at 60 Hz and eight different load torques.
Database with 45 normal machines and 26 faulty machines. Only indices from phase
A are considered.

Type Classifier No of Inputs Accuracy (%) mean (std deviation)

Fault SVM1 16 100.0 (0.0)

Fault SVM2 6 100.0 (0.0)

Severity SVM3 16 100.0 (0.0)

Severity SVM4 6 100.0 (0.0)

SVM1 ¼ SVM2 (C = 50, c ¼ 0:75, Gaussian Kernel).
SVM3 ¼ SVM4 (C = 50, c ¼ 4:0, Gaussian Kernel).

Table 3
Accuracy of fault and severity classification for normal and faulty machines (1 bb,
2 bb, 2 � 2 bb and 4 bb). Inverter-driven at 40, 45, 50, and 55 Hz and eight different
load torques. Database with 64 normal machines and 125 faulty machines. Only
indices from phase A are considered.

Type Classifier No of Inputs Accuracy (%) mean (std deviation)

Fault SVM1 16 98.76 (1.02)%

Fault SVM2 5 98.06 (1.31)%

Severity SVM3 16 98.76 (1.02) %

Severity SVM4 6 98.49 (2.16) %

SVM1 ¼ SVM2 (C = 100, c ¼ 4, Gaussian SVM3 ¼ SVM4 (C = 100, c ¼ 8, Gaussian
Kernel).
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chi-square statistic 559.39 and 5% significance level. Similarly to
the direct-driven case, this result shows that the OCD technique
can characterize the fault occurrence even in inverter-driven
machines. Hit rates for the inverter-driven dataset are shown in
Table 3, where Rindices from phase-A signals are used as inputs.

It is noticeable that high accuracies were obtained in the diag-
nosis of inverter-driven motors. This shows the good classification
separability when the OCD technique is used for processing the
data. The slight deterioration in comparison with the classification
performances in the direct-driven dataset can be explained by the
noise induced in the acquisition system. Although the OCD has a
filtering step, current clamps were positioned inside the inverter
panel, and this may have impaired the classification. A less noisy
location could have enhanced the results.

As already discussed, the diagnosis of broken rotor bars is diffi-
cult when the machine is lightly loaded. As seen in Section 2.2,
RMS values of orthogonal components oscillate when a fault
occurs. The frequency and amplitude of these oscillations depend
on the load. However, leakage is not present and broken bar detec-
tion and identification is still possible from the R index, which is
proportional to the number of broken bars. Moreover, the correla-
tion to the fault of the R indices is robust to load condition as
showed in Fig. 3. For a more in-depth investigation, the global
direct-driven dataset was separated into 2 smaller datasets. The
first dataset contains data from no-load torque condition to less
than 40% of the rated-load torque. The second dataset contains
data of 75%–100% of the rated-load torque. These newly formed
datasets were tested again with SVM classifiers, as shown in
Table 4.
Table 4
Accuracy of fault classification for normal and faulty machines (1 bb, 2 bb, 2 � 2 bb
and 4 bb). Direct driven at 60 Hz for less than 40% rated torque dataset and for more
than 75% rated torque dataset. Only indices from phase A are considered.

Classifier No of Inputs Accuracy (%) mean (std deviation)

SVM� < 40% 16 99.34 (2.13)%
SVM� < 40% 16 99.34 (2.11)%
SVM� < 40% 5 100.0 (0.0)%
SVM� > 75% 5 100.0 (0.0)%

SVM (C = 50, c = 0.01).
It can be observed that the different levels of load torque did not
result in a severe accuracy loss. A two-tailed paired T-test confirms
that there are no differences between accuracies in the low torque
and high torque condition, with a 5% significance level. This result
confirms that by using the machine own signals as a basis for the
decomposition in the time domain, even small effects of a broken
bar can be perceived. One can also observe that although no signif-
icant changes in accuracy have occurred, the SVMs with 16 inputs
have higher standard deviation, meaning that some classifiers ben-
efit from the dimensionality reduction.

It is important to stress that other methods could undertake the
diagnostic process after the voltage and current signals were pro-
cessed with the OCD, such as statistical methods: average and kur-
tosis analysis; or other intelligent systems. As already explained,
the choice of using SVMs was based on the fact that these classi-
fiers have good performance in high-dimensional input spaces,
what ensures a fair comparison of performances between a large
set of attributes and reduced set of attributes selected from feature
selection algorithms.
5. Conclusions

This paper presents a fault diagnostic method for broken rotor
bars in three-phase induction machines based on the OCD. The
decomposition products are closely linked to the system operat-
ing condition and are heuristically related to electric parameters
and power consumption of the system. It is shown that the
products of the decomposition are a good set of fault-specific
features.

Experimental tests were used to demonstrate the method effec-
tiveness. Supply voltage and stator current of healthy and faulty
machines were monitored and then processed with the Orthogonal
Component Decomposition. Support Vector Machines, which were
optimized via cross-validation, were able to characterize and clas-
sify faulty and healthy motors regardless of the load torque.

Fault severity, represented by the number of broken rotor bars,
was also identified. Feature selection algorithms show that the
products from the decomposition are strongly correlated to a fault
occurrence and to the fault severity, but they are also redundant.
This novel method should be used together with feature selection
algorithms so not to increase computational burden. During the
training phase, all 64 components are calculate, however, after
selecting the best features, during the use of the classifier, only
few components can be calculated. Therefore, with the feature
selection, fewer attributes can be used as inputs to the diagnostic
system with little change in accuracy.

Overall, this method does not depend on frequency analysis,
spectral resolution or the number of frequency data points consid-
ered around the supply frequency.

The OCD products are very sensitive to the system operation.
This application demonstrates and supports that the novel
approach for signal decomposition can be employed in the study
of nonlinear events and fault detections on other electromechani-
cal systems. Future studies are then encouraged so that the tech-
nique becomes consolidated as a signal processing tool sensitive
to other events, such as those related to incipient faults and to
the differentiation of types of faults, such as the case of oscillating
loads and broken bars.
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