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Abstract: The application of non-imaging hyperspectral sensors has significantly enhanced the study
of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF)
and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared
(UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal
component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight
structural and ultrastructural (biophysical) traits in green and purple Tradescantia leaves. The main
results demonstrate that specific hyperspectral vegetation indices (HVIs) markedly improve the
precision of partial least squares regression (PLSR) models, enabling reliable and nondestructive
evaluations of plant biophysical attributes. PCA revealed unique spectral signatures, with the first
principal component accounting for more than 90% of the variation in sensor data. High predictive
accuracy was achieved for variables such as the thickness of the adaxial and abaxial hypodermis
layers (R2 = 0.94) and total leaf thickness, although challenges remain in predicting parameters
such as the thickness of the parenchyma and granum layers within the thylakoid membrane. The
effectiveness of integrating ChlF and hyperspectral technologies, along with spectroradiometers and
fluorescence sensors, in advancing plant physiological research and improving optical spectroscopy
for environmental monitoring and assessment. These methods offer a good strategy for promoting
sustainability in future agricultural practices across a broad range of plant species, supporting cell
biology and material analyses.

Keywords: chemometrics; chlorophyll a fluorescence; hyperspectral vegetation indices; partial least
squares regression; principal component analysis; optical spectroscopy; UV-VIS-NIR-SWIR

1. Introduction

The use of non-imaging hyperspectral or proximal sensors along with chlorophyll fluo-
rescence techniques has made substantial progress in evaluating the biophysical characteris-
tics of leaves and plants. These state-of-the-art methods offer insights into the physiological
conditions of plants, facilitating an extensive understanding of their responses to diverse
environmental factors [1,2]. In addition to traditional assessment methods, these sensor
technologies enable new ways to monitor plant health and detect changes in the biophysical
attributes of leaves, aligning structure and ultrastructure components while optimizing
sustainable agricultural practices and plant management [3]. The integration of biophysical
analyses is important for improving predictive models, enhancing our understanding of
plant-environment interactions, and guiding precision agriculture, ultimately contributing
to more resilient and sustainable ecosystems.
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Chlorophyll fluorescence (ChlF) curves are invaluable resources for gauging plant
health by accurately mapping pigment levels and other biochemical properties, such as
protein and carbohydrate content [4,5]. These curves measure the fluorescence emitted by
chlorophyll a and provide critical information on photosynthetic efficiency and plant stress
responses [6,7]. In this sense, the ChlF curve data reveal variations in biophysical properties
at the cellular level, which is important for understanding and modeling plant behavior.
The ability of this technique to detect early stress indicators before visible symptoms occur
makes it particularly effective for proactive agricultural and environmental management
and contributes valuable insights to the fields of plant physiology and ecology [8].

Ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) hyperspec-
tral and chlorophyll fluorescence imaging and non-imaging sensors generate comprehen-
sive spectral profiles, capturing detailed plant information across a broad spectrum of
wavelengths [9–11]. In particular, non-imaging sensors allow swift data collection without
a spatial biophysical context, which is highly efficient for large-scale or remote-sensing
evaluations [12–14]. The precision and accuracy of these sensors for detecting minor physi-
ological changes significantly increase their ability to monitor biophysical responses, as
reviewed in detail [6,7].

The cellular and foliar architecture of plants is correlated, with various chloroplastic
cells and leaf optical properties, such as thylakoid granum, adaxial hypodermis, chloroplast
number, total leaf thickness, and parenchyma thickness [15,16]. Structural components
such as the epidermis, hypodermis, and leaf parenchyma are crucial for maintaining the
biomechanical integrity of plant tissues. Modifications of these cells and tissue arrange-
ments can differ greatly and are influenced by factors such as leaf area expansion and
cellular structural changes due to biophysical compounds [17–20]. These variations offer
significant insights into the adaptive mechanisms of plants under environmental condi-
tions [21–23]. Recent research has shown that fluorescence techniques and hyperspectral
sensors use different methods to analyze and predict biochemical and biophysical com-
pounds to monitor the biophysical properties of the leaves, steams, and roots of lettuces,
tomatoes, and ornamental plants [11,24,25]. These tools assess changes in cellular size and
volume correlated with water content and respond to pigment content, indirectly reflecting
variations in concentrated pigments such as chlorophylls and carotenoids correlated with
chloroplast numbers or thylakoid stacking in cells [26–28].

In leaves with biochemical and biophysical variations, optical properties such as
reflectance, transmittance, and absorbance are primarily shaped by structural features,
including thickness, cell organization, and mesophyll composition [11,29–31]. These prop-
erties are further influenced by biochemical elements, particularly pigment concentration
and type, which affect light absorption and distribution. In Tradescantia plants, the use
of these three spectral modes along with fluorescence data provides a precise evaluation
of the biophysical mechanisms governing light interactions. This approach enhances the
prediction of structural traits, such as leaf thickness, while efficiently estimating key bio-
chemical components such as pigments. Additionally, the use of these sensors, along with
others, has proven effective in analyzing foliar structural and ultrastructural components
with interaction light with matter, or in this example for tissue plants [10,32–35].

Hyperspectral Vegetation Indices (HVIs) utilize reflectance values across different
wavelengths to assess the plant growth status, health, and photosynthetic efficiency. For
example, recent advancements have highlighted the value of HVIs in analyzing extensive
datasets from both chlorophyll fluorescence and hyperspectral measurements [36–39]. For
example, HVIs simplify complex spectral data into manageable indices, facilitating large-
scale monitoring of biophysical and physiological conditions. These indices can identify
regions and bands in which key biophysical components show significant changes. HVIs
can detect variations in chlorophyll content, water stress, and nutrient levels [7,40,41]. When
combined with chlorophyll fluorescence data, HVIs enhance the ability to differentiate
areas with varying photosynthetic rates or stress responses, enabling precise mapping of
biophysical markers across landscapes [9,42,43].
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Principal Component Analysis (PCA) is a powerful statistical method used to handle
the complex, high-dimensional nature of hyperspectral and fluorescence data [11,43]. This
technique effectively reduces data dimensionality while retaining most of the variance and
uncovering the underlying patterns within the samples. PCA is particularly useful for
determining the optimal number of principal components needed to capture essential data
features and balancing information retention with noise reduction in datasets. The β-loadings
from PCA clearly highlight spectral peaks, revealing the “fingerprints” of physical properties
in the dataset, which are correlated with many biophysical parameters [11,24,44,45]. By
combining PCA with regression coefficients from various spectral curves, such as OJIP and
hyperspectral reflectance, transmittance, and absorbance curves, a more comprehensive
analysis integrating biochemical and biophysical insights is possible using prediction
models [17,28,46].

The second main method of development is Partial Least Squares Regression (PLSR),
a robust method for predictive modeling with hyperspectral data that can manage highly
collinear and multivariate datasets. PLSR projects predictor variables (spectral bands)
onto a new subspace defined by latent variables that account for the predictor variance
and their correlation with the response variable. This method is particularly beneficial
when the number of predictors exceeds the number of observations [11,36,47]. PLSR
effectively addresses multicollinearity among spectral bands, reducing predictors to a
smaller set of uncorrelated components, while capturing key response variable patterns.
Combining PLSR with cross-validation techniques enhances model stability and predictive
performance, making it the preferred choice for handling complex, large hyperspectral
datasets [11,36,47].

Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI) models
have made significant contributions to biophysical analysis, particularly in predicting and
selecting the most relevant wavelengths for hyperspectral data [2,36,48]. For example, ran-
dom forests and Convolutional Neural Networks (CNNs) have been successfully applied
to detect subtle variations in plant health and stress indicators, whereas Support Vector
Machines (SVMs) [49] have been effective in classifying spectral data [50]. These advanced
techniques allow automated feature selection and can identify critical spectral regions
without human intervention. Despite these advancements, PLSR models have proven to be
efficient, offering high predictive accuracy and robust performance in scenarios where inter-
pretability and computational simplicity are key, making them a reliable choice alongside
ML and DL models [37,43,51–53].

This study focused on improving the prediction of biophysical parameters using
chlorophyll fluorescence kinetics and hyperspectral sensors in two Tradescantia species.
The primary objective was to identify spectral bands in hyperspectral data that correlate
strongly with chlorophyll a fluorescence, aiding in the estimation of eight biophysical
parameters in green and purple Tradescantia leaves. By integrating advanced hyperspectral
sensors for reflectance, transmittance, and absorbance data with fluorescence kinetics and
utilizing multivariate statistical methods, such as PCA and PLSR, we hypothesized that
the prediction accuracy for these parameters could be significantly enhanced, even with
variations in leaf coloration (Figure 1).
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2. Material and Methods
2.1. Plant Materials and Experimental Analysis

The species of Tradescantia spathacea and Tradescantia pallida, which were chosen for their
unique biophysical characteristics, were grown in 2-L pots at the Botanical Garden affiliated
with the State University of Maringá, Brazil. The conditions within the greenhouse included
exposure to natural light, with temperatures ranging from 22 to 26 ◦C and a prolonged light
period of 16 h. The irrigation schedule was set to twice a day, once at 8 a.m. and then again
at 6 p.m., to ensure regular soil hydration. For a thorough evaluation, leaf samples were
harvested from different sections of the plant. This research aimed to conduct an in-depth
hyperspectral reflectance analysis and detailed biophysical examination of 200 leaf samples,
the results of which are presented in Figure 1.

2.2. Chlorophyll a Fluorescence Measurement

Chlorophyll a fluorescence was measured using an infrared gas exchange analyzer
(IRGA) paired with a Multiphase Flash™ Fluorometer (LI-6800-01; LI-COR Inc., Lincoln,
NE, USA). The sensor detects chlorophyll fluorescence at wavelengths greater than 720 nm.
Leaves were dark-acclimated for 12 h before being subjected to a saturating light pulse of
15,000 µmol m−2 s−1 for 1 s to induce chlorophyll a fluorescence, ensuring the closure of
all reaction centers [11,29].

2.3. Hyperspectral Optical Properties of Leaves

The reflectance and transmittance properties of the leaves were simultaneously measured
using a FieldSpec® 3 spectroradiometer with an ASD Contact PlantProbe® (ASD Inc., Boulder,
CO, USA). The spectroradiometer featured a VNIR detector with a 512-element silicon array
for the 350–1000 nm range, a SWIR 1 detector with a graded index InGaAs photodiode for
the 1001–1800 nm range, and a SWIR 2 detector for the 1801–2500 nm range. The standard
white reference plates were used for calibration. During the measurements, a high-intensity
light beam was directed at the adaxial leaf surface, and reflectance and transmittance were
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recorded. The absorbance was calculated using the formula A = 1 − (R + T), ensuring precise
measurements across a broad wavelength spectrum [11,29].

2.4. Sample Preparation and Microscopy
2.4.1. Sample Preparation for Microscopy

The leaf samples were prepared for optical microscopy (OM), transmission electron
microscopy (TEM), and scanning electron microscopy (SEM). The samples were cut into
small pieces, quickly submerged in a fixative solution of 2.5% glutaraldehyde and 2%
paraformaldehyde in 0.05 M cacodylate buffer (pH 7.2), and left for six hours. The samples
were fixed with a solution of 1% osmium tetroxide and 1.6% potassium ferrocyanide in
the same buffer. After fixation, the samples were contrasted with 0.5% uranyl acetate for
12 h and dehydrated with a graded acetone series. Some samples were reserved for SEM,
whereas others were embedded in Spurr low-viscosity epoxy resin and sectioned using an
ultramicrotome [11,29].

2.4.2. Optical Microscopy

Leaf sections, 1 µm thick, were stained with 1% toluidine blue in borax buffer and
briefly heated to enhance staining. A Leica ICC50 optical microscope (Leica Inc., Buffalo
Grove, IL, USA) was used to observe the anatomical features, and quantitative analysis
was performed using ImageJ (https://imagej.nih.gov/ij, accessed on 20 April 2024) and
Image-Pro Plus version 4.5 software (Media Cybernetics Inc., Rockville, MD, USA) [11,29].

2.4.3. Scanning Electron Microscopy (SEM)

The samples prepared for SEM were dried using the CPD-030 Bal-Tec dryer (Bal-
Tec AG, Balzers, Liechtenstein, Germany) critical-point drying method, mounted on alu-
minum stubs with carbon tape, and coated with gold. Observations were made using a
Quanta 250 scanning electron microscope (FEI Company, Hillsboro, OR, USA) operating at
15–20 kV, and quantitative analysis was conducted using Image-Pro Plus version 4.5 soft-
ware (Media Cybernetics Inc., Rockville, MD, USA) [11,29].

2.4.4. Transmission Electron Microscopy (TEM)

Ultrathin sections (60–70 nm) using an ultramicrotome (MTX Powertome X, Boeckeler
Instruments, RMC Products, Phoenix, AZ USA) were placed on copper grids, contrasted
with 3% uranyl acetate and lead citrate, and observed under a JEOL JEM-1400 transmission
electron microscope Leica Microsystems Inc., Buffalo Grove, IL, USA) at 80 kV. A detailed
examination of the cellular ultrastructures was performed, and the data were analyzed
using the Image-Pro Plus version 4.5 software (Media Cybernetics Inc., Rockville, MD,
USA) [11,29].

2.5. JIP Test and Hyperspectral Parameters Based on Hyperspectral Vegetation Indices with
Optimal Wavelengths

To assess whether selecting the two most responsive hyperspectral wavelengths could
enhance the predictive accuracy of eight biophysical parameters, including adaxial epi-
dermis thickness (µm), adaxial hypodermis thickness (µm), parenchyma thickness (µm),
abaxial hypodermis thickness (µm), total leaf thickness (µm), chloroplast count, granum
height (nm), and thylakoid layer thickness, we examined all potential combinations of
two spectral bands using the normalized difference vegetation index formula, as proposed
by Crusiol et al. (2023) [51]. Each combination, representing a unique hyperspectral veg-
etation index (HVI), was correlated with leaf structural and ultrastructural parameters
through Pearson’s correlation coefficient (r) and the coefficient of determination (R2), using
a custom-written IDL code. Hyperspectral data were collected using a ground-based sen-
sor covering the full spectral range of 350–2500 nm [25,29]. The resulting matrices were
visualized as contour maps. Additionally, the reflectance, transmittance, and absorbance

https://imagej.nih.gov/ij
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data for the selected wavelengths were analyzed, as were the fluorescence responses from
0 to 1 s, expressed through OJIP curves captured by a fluorescence sensor.

HVI =
Wavelength 1 − Wavelength 2
Wavelength 1 + Wavelength 2

(1)

2.6. Statistical Analyses
2.6.1. Descriptive, Univariate, and Multivariate Statistical Analyses

Descriptive statistics included count, mean, median, minimum, maximum, and co-
efficient of variation (CV). Pearson’s correlation was used to explore the relationships
between the biochemical and biophysical attributes. Statistical analyses were performed
using Statistica 10® (StatSoft Inc., Tulsa, OK, USA) and R statistical package (R Core Team,
2020), with graphical representations created using SigmaPlot 10.0 (Systat Software, Inc.,
San Jose, CA, USA), Excel 365 software (Microsoft Office Professional 2024, Sunnyvale, CA,
USA), and CorelDraw 2020® editor (Corel Corp., Ottawa, ON, Canada).

2.6.2. Principal Component Analysis (PCA)

PCA reduces the dimensionality of hyperspectral data by identifying the principal
components that capture the most variance within a dataset. This method effectively
filters out noise and highlights the most relevant spectral features, enabling more accurate
analysis of biophysical parameters without overfitting or underfitting the model [53–58].

2.6.3. Spectroscopy Data Analysis via Partial Least Squares Regression (PLSR)

The hyperspectral data were mean-centered and analyzed using PLSR to develop
prediction models for JIP test parameters. The data were split into training (75%) and
prediction (25%) datasets. Calibration and cross-validation were used to assess model per-
formance, with metrics such as R2, RMSE, and RPD used to evaluate the quality, precision,
and accuracy [59].

3. Results
3.1. Statistical Description of the Biophysical Compounds

Table 1 shows the results of the descriptive statistical analysis of various biophysical
compounds measured in the leaves of Tradescantia spathacea and Tradescantia pallida, with
200 samples per parameter (Table 1).

Table 1. Descriptive statistics of the biophysical parameters. The data included the mean, median,
minimum, maximum, and coefficient of variation for each parameter. (n = 200).

Parameter Count (n) Mean Median Minimum Maximum CV (%)

Adaxial epidermis (µm) 200 102.7 88.0 61 162 23.94
Adaxial hypodermis (µm) 200 323.4 325.7 212 452 25.79
Parenchyma thickness (µm) 200 252.6 251.3 224 296 3.80
Abaxial hypodermis (µm) 200 170.5 164.7 117 246 25.53
Total leaf thickness (µm) 200 849.1 820.5 735 978 7.02
Number of chloroplast 200 21.2 20.5 14 32 22.23
Granum height (nm) 200 522.5 531.9 75 1000 37.29
Thylakoid layer-granum 200 25.2 26.0 4.0 53.0 33.80

The descriptive analyses revealed that the mean thickness of the adaxial epidermis
was 102.7 µm, the median thickness was 88.0 µm, the minimum thickness was 61 µm, and
the maximum thickness was 162 µm, with a coefficient of variation of 23.94%. The adaxial
hypodermis thickness had a mean of 323.4 µm, a median of 325.7 µm, a minimum of 212 µm,
and a maximum of 452 µm, with a coefficient of variation of 25.79%. The parenchyma
thickness had a mean of 252.6 µm, a median of 251.3 µm, a minimum of 224 µm, and a
maximum of 296 µm, with a coefficient of variation of 3.80%. The abaxial hypodermis
thickness had a mean value of 170.5 µm, a median value of 164.7 µm, a minimum value of
117 µm, and a maximum value of 246 µm, with a coefficient of variation of 25.53%. The
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total leaf thickness had a mean of 849.1 µm, a median of 820.5 µm, a minimum of 735 µm,
and a maximum of 978 µm, with a coefficient of variation of 7.02% (Table 1).

The mean number of chloroplasts per cell was 21.2, with a median of 20.5, a minimum
of 14, and a maximum of 32, with a coefficient of variation of 22.23%. The mean granum
height was 522.5 nm, the median height was 531.9 nm, the minimum height was 75 nm, and
the maximum height was 1000 nm, with a coefficient of variation of 37.29%. The thickness
of the thylakoid layers within the granum had a mean of 25.2 nm, a median of 26.0 nm, a
minimum of 4.0 nm, and a maximum of 53.0 nm, with a coefficient of variation of 33.80%
(Table 1).

3.2. Cluster Heatmap of Biophysical Parameters in Tradescantia Species

The hierarchical clustering heatmap (Figure 2) shows the biophysical parameters of
the leaves of two species: Tradescantia spathacea (indicated in red) and Tradescantia pallida
(indicated in green). The heatmap visualizes the Z-scores for various measured parameters,
facilitating the comparison and identification of patterns across species (Figure 2).
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The clustering dendrogram revealed distinct groupings. Specifically, T. spathacea
presented greater Z-scores (indicated by more intense red hues) for parameters such
as thylakoid layer granum, granum height, and adaxial hypodermis, suggesting that T.
spathacea has more substantial structural attributes than T. pallida (Figure 2). Conversely, T.
pallida displayed lower Z-scores (shades of blue) for these parameters, indicating relatively
reduced biophysical characteristics.

Furthermore, the number of chloroplasts and total leaf thickness varied significantly
among the species. T. spathacea tended to have a greater number of chloroplasts and
greater leaf thickness, which could imply a greater photosynthetic capacity and structural
robustness. The parenchyma thickness and adaxial epidermis also differed notably, with T.
pallida exhibiting thicker parenchyma and adaxial epidermis, potentially contributing to its
adaptive traits (Figure 2).

3.3. Analysis of Chlorophyll a Fluorescence and Spectral Properties

Compared with that of T. pallida, the chlorophyll a fluorescence of T. spathacea was
distinctly changed (Figure S1A). The fluorescence measurements for T. spathacea, shown
with green lines, revealed higher yields than the red–pink lines, which represent T. pallida
at multiple observation points. We examined several parameters, including the initial
fluorescence (O), intermediate phases (J, I), and peak (P). T. spathacea consistently presented
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elevated values, indicating differences in photosynthetic competency and light absorption
capacity (Figure S1). The difference in fluorescence yield was statistically significant, as
evidenced by the values of F = 230.85, accuracy (Acc) = 0.98, and Kappa (K) = 0.96 (refer to
Figure S1A).

The reflectance spectra showed considerable variations between the two species at spe-
cific wavelengths. In the UV–VIS spectrum (350–700 nm), a notable difference was observed
at 544 nm, where T. spathacea had a higher reflectance. The most significant difference is
observed at 700 nm in the NIR range (700–1300 nm). In the SWIR1 spectrum (1300–1800 nm),
the key difference appeared at 1441 nm, and in the SWIR2 range (1800–2500 nm), it appeared
at 2488 nm. These results were statistically significant, with F = 58.71, Acc = 0.90, and
K = 0.80, underscoring the importance of these wavelengths for species differentiation
based on reflectance properties (Figure S1B).

Transmittance measurements revealed significant differences at specific wavelengths.
In the UV–VIS spectrum, the largest difference was observed at 400 nm. In the NIR
spectrum, it was 1125 nm, in the SWIR1 spectrum at 1607 nm, and in the SWIR2 spectrum
at 2175 nm. These results, with low p-values, suggest the potential of using transmittance
at these wavelengths to distinguish between the two species. The transmittance data were
characterized by F = 47.17, Acc = 0.85, and K = 0.70 (Figure S1C).

The absorbance measurements revealed notable differences at certain wavelengths
across the various spectral ranges. Some wavelengths were 495, 498, 733, and 800 nm in
the NIR region, 1575 nm in the SWIR1 region, and 2175 nm in the SWIR2 region. The low
p-values confirmed the statistical importance of these wavelengths, indicating their utility
in distinguishing between T. spathacea and T. pallida. The absorbance data revealed F = 87.94,
Acc = 0.97, and K = 0.94 (Figure S1D). Overall, the differences observed in the reflectance,
transmittance, and absorbance spectra highlight the distinct optical properties of the two
Tradescantia species (Figure S1).

3.4. Principal Component Analysis of the Spectral Data

Figure 3 shows the use of principal component analysis (PCA) to determine the
spectral properties of the leaves of T. spathacea and T. pallida via fluorescence, reflectance,
transmittance, and absorbance readings (Figure 3A–D). For example, Figure 3A shows
the PCA results for the fluorescence sensors, with T. spathacea indicated by red dots and T.
pallida indicated by green dots. The first principal component (PC1) accounted for 92% of
the variability, clearly distinguishing the two plants based on their fluorescence signatures,
whereas the second principal component (PC2) explained 6% of the variability (Figure 3).

The PCA of the reflectance data in Figure 3B shows a clear separation along PC1, which
accounts for 60% of the variation, and PC2 elucidates an additional 25%, demonstrating
unique reflectance characteristics between the species. The PCA results are depicted in
Figure 3C, revealing a marked contrast between T. spathacea and T. pallida along both
PC1 and PC2, with PC1 accounting for 77% of the total variance and PC2 contributing
17%, indicating differential species-specific transmittance traits. Figure 3D shows the
PCA related to the absorbance sensors, with PC1 representing 72% of the variation and
PC2 representing another 18%. These data suggest significant differences in absorbance
across species.

The shaded areas in each plot represent the clustering of individual observations
showing intraspecific variability. Overall, the PCA results demonstrated that these spectral
assessments were effective for differentiating T. spathacea from T. pallida, as shown in
Figure 3.

Figure 4 shows an in-depth analysis of the variance, β-loading, and regression coef-
ficients across the different spectral measurements for fluorescence, reflectance, transmit-
tance, and absorbance in the two Tradescantia species. This figure shows the contribution of
the principal components to the interpretation of spectral data.
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Figure 4A–D depicts the variance explained by the principal components for each type
of spectral measurement. The fluorescence data (Figure 4A) revealed that PC1 accounted
for 90.27% of the variance, with the subsequent components contributing significantly
less. For the reflectance data (Figure 4B), PC1 explained 60.05% of the variance, while PC2
explained 24.68%. According to the transmittance data (Figure 4C), PC1 captured 77.09%
of the variance, while PC2 accounted for 15.50%. The absorbance data (Figure 4D) indicate
that PC1 explained 72.45% of the variance, with smaller contributions from PC2 (18.08%).

The β-loading plots (Figure 4E–H) show the impact of each principal component
across the time or wavelength range, highlighting the influence of specific spectral bands.
For the fluorescence sensors (Figure 4E), the β-loadings of PC1, PC2, and PC3 showed
significant contributions across the measured time points. Reflectance data (Figure 4F)
identified key wavelengths for PC1 in the blue, green, red, NIR, SWIR1, and SWIR2 bands,
with similar influential wavelengths for PC2 and PC3. The transmittance data (Figure 4G)
highlight the crucial wavelengths for PC1 in the blue and SWIR2 bands, with consistent
influential spectral bands for PC2 and PC3. The absorbance measurements (Figure 4H) for
PC1 indicated key wavelengths spanning from the blue to SWIR2 range, which is consistent
with the results for PC2 and PC3.
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The regression coefficient plots (Figure 4I–L) further illustrate the influence of each
wavelength on the respective spectral measurements, identifying the most impactful wave-
lengths. The regression coefficients for fluorescence (Figure 4I) confirmed a significant
influence across the measured time-points. The reflectance data (Figure 4J) underscore
the importance of the blue, green, red, NIR, SWIR1, and SWIR2 bands, whereas the trans-
mittance data (Figure 4K) highlight the wavelengths in the blue and SWIR2 bands. The
absorbance data (Figure 4L) validated the relevance of wavelengths ranging from blue
to SWIR2.

Overall, the detailed analysis in Figure 4 highlights the significant contributions of
specific wavelengths and spectral bands to the variance in the fluorescence, reflectance,
transmittance, and absorbance measurements. This result showed the most influential
spectral regions for distinguishing T. spathacea from T. pallida, providing valuable insights
for further ecological and physiological research (Figure 4).

3.5. Evaluation of Hyperspectral Vegetation Indices via Fluorescence, Reflectance, Transmittance,
and Absorbance Sensors

Figure 5 shows contour plots of the coefficient of determination (R2) values from
linear regression analyses that explored the relationships between various biophysical
compounds and chlorophyll fluorescence (ChlF) over a time span ranging from 0.00001
to 1 s. These plots emphasize the strength of the correlation between fluorescence signals
and structural leaf attributes, such as adaxial epidermis, adaxial hypodermis, parenchyma
thickness, abaxial hypodermis, total leaf thickness, chloroplast count, granum height, and
thylakoid layer granum.
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Figure 5. Count plot map of the coefficient of correlation (R2). (A) Adaxial epidermis. (B) Adaxial
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increased associations. (n = 200).

Figure 5A displays the R2 values for the adaxial epidermis, which were significantly
correlated at the early time points. The transition from dark blue to light red signifies a
strong relationship, indicating a rapid response of the adaxial epidermis to fluorescence
changes. Similarly, Figure 5B (adaxial hypodermis) and Figure 5D (abaxial hypodermis) show
significant early correlations, highlighting the crucial role of these layers in ChlF dynamics.

In contrast, Figure 5C shows lower R2 values for parenchyma thickness across all time
points, depicted predominantly by blue hues, suggesting a weaker association with the
fluorescence parameters. Figure 5E (total leaf thickness) and Figure 5F (chloroplast count)
show notable correlations at early and intermediate time points, with higher R2 values
(green to red transition), indicating their significant roles in ChlF characteristics.

Figure 5G,H show minimal correlations for the granum height and thylakoid layer–
granum ratio, respectively, as indicated by the extensive dark blue regions, suggesting a
lesser impact on fluorescence within the measured timeframe.

These contour plots visually represent the temporal and quantitative relationships be-
tween the chlorophyll fluorescence dynamics and various leaf structural components. The
color gradation from dark blue to light red highlights the strongest relationships, providing
insight into the most informative moments for ChlF concerning these structural attributes.

Figures S2–S4 present contour plots that illustrate the coefficient of determination (R2)
values from linear regression analyses, which were used to assess the relationships between
the hyperspectral data (reflectance, transmittance, and absorbance) at two wavelengths
and various leaf structural attributes. These attributes include adaxial epidermis, adaxial
hypodermis, parenchyma thickness, abaxial hypodermis, total leaf thickness, chloroplast
count, granum height, and thylakoid layer-to-granum ratio.

Figure S2 displays the R2 values for the hyperspectral reflectance data. In Figure S2A,
the adaxial epidermis shows strong correlations at specific wavelengths, particularly in the
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blue and near-infrared (NIR) regions, as indicated by the gradient from dark blue to light
red. Similarly, Figure S2B shows significant correlations for the adaxial hypodermis, with
high R2 values concentrated in the blue- and red-edge regions. Conversely, parenchyma
thickness (Figure S2C) generally resulted in lower R2 values across most wavelength
pairings, implying a weaker relationship with the reflectance data.

Figure S2D highlights the R2 values for the abaxial hypodermis, which are strongly
correlated at various wavelengths, particularly in the green and NIR regions. Figure S2E,F
show notable correlations for total leaf thickness and chloroplast count, respectively, at
several wavelengths. Strong correlations for total leaf thickness were observed in the
blue and NIR regions, whereas correlations for chloroplast count were more dispersed.
Figure S2G,H depict the minimal correlations for the granum height and thylakoid layer-
to-granum ratio, respectively, suggesting a lesser impact on the reflectance within the
measured spectral range.

Figure S3 shows contour maps of the R2 values obtained from the linear regression
analysis of the hyperspectral transmittance data. Figure S3A shows strong correlations
for the adaxial epidermis at specific wavelengths within the visible (VIS) and NIR spectra.
Similarly, Figure S3B shows significant correlations for the adaxial hypodermis, with high
R2 values in the VIS and NIR spectra. For parenchyma thickness (Figure S3C), lower R2

values were observed across various wavelength combinations, indicating a less robust
correlation. Figure S3D highlights the significant correlations for the abaxial hypodermis,
especially in the green and NIR regions. Figure S3E,F show discernible correlations for
the total leaf thickness and chloroplast count, respectively, across multiple wavelengths.
Finally, Figure S3G,H present the nominal correlations for the granum height and thylakoid
layer-to-granum ratio, respectively.

Figure S4 shows the R2 values obtained from the linear regression analysis of the
hyperspectral absorbance data. Figure S4A shows significant correlations for the adaxial
epidermis at specific wavelengths, particularly in the VIS and NIR regions at approxi-
mately 700 and 1600 nm. Figure S4B shows notable correlations for the adaxial hypodermis,
with high R2 values concentrated at approximately 700 and 1500–1700 nm. Figure S4C
shows lower R2 values for parenchyma thickness, suggesting a weaker relationship with
absorbance data. Figure S4D highlights the strong correlations for the abaxial hypoder-
mis, especially in the green and NIR regions. Figure S4E,F show notable correlations for
total leaf thickness and chloroplast count, respectively, at several wavelengths. Finally,
Figure S4G,H show minimal correlations for the granum height and thylakoid layer-
to-granum ratio, respectively, suggesting a lesser impact on the absorbance within the
measured spectral range.

3.6. Parameters Predicted by Biophysical Compounds
Calibration, Validation and Prediction Models

Table 2 and Table S1 present the statistical metrics from the partial least squares re-
gression (PLSR) models used to predict the biophysical parameters of Tradescantia species
via various spectrometric methods. These models were assessed based on their calibra-
tion and cross-validation performance using fluorescence, reflectance, transmittance, and
absorbance measurements.

The calibration model for adaxial epidermal thickness using fluorescence sensors had
an R2 of 0.92, which remained consistent during cross-validation. The root mean square
error (RMSE) values were 6.0 for calibration and 6.3 for cross-validation, with relative
prediction deviations (RPDs) of 2.62 and 2.52, respectively, indicating model robustness.
For the adaxial hypodermis, the model performed similarly well, with an R2 of 0.93 in both
calibration and cross-validation, RMSE values of 21.5 and 22.5, and RPD values of 2.79
and 2.68, respectively. The parenchyma thickness predictions exhibited moderate accuracy,
with calibration and cross-validation R2 values of 0.69 and 0.66, RMSE values of 3.0 and 3.2,
and RPD values of 1.38 and 1.34, respectively.
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Table 2. The performance of partial least squares regression (PLSR) models that use various spec-
troscopic techniques to estimate biophysical compound concentrations in Tradescantia species. The
evaluation metrics included the correlation coefficient (r), R-squared (R2), slope, offset, standard error
of prediction (SEP), root mean squared error of prediction (RMSEP), ratio of performance to deviation
(RPD), and bias, offering a detailed analysis for each sensor. (n = 50).

Sensors Parameter Maximum
Factor PLS

Predicted

r R2 Slope Offset SEP RMSEP RPD Bias

Fluorescence

Adaxial epidermis (µm) 5 0.66 0.44 0.54 45.80 22.80 22.70 1.33 2.14
Adaxial hypodermis (µm) 5 0.86 0.74 0.95 17.80 47.50 47.10 1.95 2.06

Parenchyma thickness (µm) 4 0.42 0.18 0.14 219.01 14.00 14.20 1.10 2.92
Abaxial hypodermis (µm) 5 0.42 0.17 1.30 152.80 43.70 88.80 1.10 77.53
Total leaf thickness (µm) 5 0.77 0.59 0.77 203.70 43.40 43.60 1.56 7.28
Number of chloroplast 5 0.76 0.57 0.75 5.50 3.40 3.40 1.53 0.36
Granum height (nm) 2 0.20 0.04 0.09 522.20 204.90 246.00 1.02 138.62

Thylakoid layer-granum 2 0.10 0.01 0.04 25.30 11.00 11.40 1.01 3.30

Reflectance

Adaxial epidermis (µm) 7 0.77 0.59 0.48 51.90 19.60 19.50 1.57 2.40
Adaxial hypodermis (µm) 6 0.94 0.88 0.81 62.00 29.10 28.90 2.91 1.80

Parenchyma thickness (µm) 6 0.26 0.07 0.07 236.50 14.80 15.00 1.04 3.10
Abaxial hypodermis (µm) 7 0.94 0.88 0.79 39.20 15.80 16.30 2.84 4.50
Total leaf thickness (µm) 7 0.88 0.77 0.68 274.30 31.00 31.50 2.10 6.90
Number of chloroplast 7 0.88 0.77 0.67 7.20 2.50 2.40 2.09 0.40
Granum height (nm) 7 0.11 0.01 0.06 539.10 217.10 256.80 1.01 140.00

Thylakoid layer-granum 7 0.03 0.00 0.01 25.60 11.60 11.90 1.00 3.10

Transmittance

Adaxial epidermis (µm) 7 0.76 0.57 0.55 41.20 19.50 20.10 1.53 5.30
Adaxial hypodermis (µm) 7 0.92 0.84 0.91 18.60 33.70 34.70 2.51 9.30

Parenchyma thickness (µm) 6 0.25 0.06 0.08 234.30 15.00 15.30 1.03 3.80
Abaxial hypodermis (µm) 7 0.92 0.84 0.91 26.70 17.50 20.50 2.52 10.80
Total leaf thickness (µm) 7 0.86 0.74 0.77 196.50 32.30 32.00 1.96 0.10
Number of chloroplast 6 0.82 0.68 0.77 4.70 2.80 2.80 1.76 0.20
Granum height (nm) 7 0.14 0.02 0.07 503.30 210.80 236.10 1.01 109.60

Thylakoid layer-granum 6 0.13 0.02 0.04 24.20 10.90 11.10 1.01 2.40

Absorbance

Adaxial epidermis (µm) 7 0.78 0.60 0.56 42.20 18.90 19.00 1.59 2.90
Adaxial hypodermis (µm) 7 0.94 0.89 0.95 14.90 27.90 27.70 3.03 0.50

Parenchyma thickness (µm) 7 0.25 0.06 0.08 235.00 14.90 15.20 1.03 3.40
Abaxial hypodermis (µm) 7 0.94 0.89 0.93 17.10 14.80 15.90 2.96 6.10
Total leaf thickness (µm) 7 0.88 0.78 0.80 174.90 29.20 30.30 2.12 6.00
Number of chloroplast 7 0.88 0.77 0.82 4.30 2.40 2.40 2.09 0.40
Granum height (nm) 7 0.02 0.00 0.01 556.80 230.70 267.60 1.00 138.90

Thylakoid layer-granum 6 0.02 0.00 0.01 26.10 12.10 12.40 1.00 3.10

Reflectance measurements for the adaxial epidermis yielded calibration and cross-
validation R2 values of 0.88 and 0.87, respectively. The RMSE values were 7.4 for calibration
and 8.0 for cross-validation, with RPD values of 2.14 and 2.00, respectively. For the adaxial
hypodermis, high accuracy was achieved, with R2 values of 0.91 for calibration and 0.89
for cross-validation, RMSE values of 25.6 and 27.6, and RPD values of 2.36 and 2.20,
respectively. Parenchyma thickness predictions were moderately accurate, with calibration
and cross-validation R2 values of 0.70 and 0.65, RMSE values of 3.0 and 3.2, and RPD values
of 1.39 and 1.32, respectively.

Transmittance measurements for the adaxial epidermis indicated R2 values of 0.88
for calibration and 0.87 for cross-validation, with RMSE values of 7.4 and 7.9, and RPD
values of 2.14 and 2.01, respectively. For the adaxial hypodermis, high accuracy was
demonstrated, with calibration and cross-validation R2 values of 0.90 and 0.88, RMSE
values of 26.3 and 28.3, and RPD values of 2.29 and 2.15, respectively. The R2 values for
predicting parenchyma thickness were 0.75 for calibration and 0.70 for cross-validation,
with RMSE values of 2.7 and 3.0 and RPD values of 1.52 and 1.40, respectively.

The absorbance measurements for the adaxial epidermis achieved R2 values of 0.89 for
calibration and 0.88 for cross-validation, with RMSE values of 7.1 and 7.7 and RPD values
of 2.23 and 2.07, respectively. The adaxial hypodermis model showed high accuracy, with
calibration and cross-validation R2 values of 0.92 and 0.90, RMSE values of 23.8 and 26.0,
and RPD values of 2.53 and 2.33, respectively. The predictions of parenchyma thickness
showed moderate accuracy, with calibration and cross-validation R2 values of 0.73 and 0.67,
RMSE values of 2.8 and 3.1, and RPD values of 1.47 and 1.35, respectively.
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For the prediction parameters of fluorescence, the model for adaxial epidermis thick-
ness demonstrated moderate predictability, with an R2 of 0.44 and an RMSEP of 22.7. The
adaxial hypodermis showed higher accuracy, with an R2 of 0.74 and an RMSEP of 47.1,
indicating model robustness. In contrast, parenchyma thickness and abaxial hypodermis
had limited predictive accuracy, with R2 values of 0.18 and 0.17, respectively. The model
for the chloroplast count had a moderate R2 of 0.57 and an RMSEP of 3.4, suggesting
reasonable reliability, as shown in Table 2.

Reflectance-based models generally produce relatively high R2 values. The adaxial
epidermis model had an R2 of 0.59, whereas the adaxial hypodermis model had an R2 of
0.88, indicating better predictability than fluorescence. However, parenchyma thickness
showed limited accuracy, with an R2 of 0.07. The model for total leaf thickness exhibited a
notable R2 value of 0.77, demonstrating a strong predictive power.

Transmittance measurements yielded robust R2 values for both the adaxial and abaxial
hypodermis, at 0.84, with RMSEP values of 34.7 and 20.5, respectively. The model for total
leaf thickness also had a high R2 value of 0.74, indicating strong predictability.

The absorbance-based models improved the R2 values for most parameters. The
adaxial epidermis model had an R2 of 0.60, whereas the adaxial hypodermis model achieved
an R2 of 0.89, both of which indicated moderate-to-strong predictive capabilities. The model
for total leaf thickness exhibited a strong R2 value of 0.78, indicating high reliability.

Overall, the PLSR models displayed varying degrees of predictability across different
spectroscopic methods. Fluorescence and reflectance methods generally provided moderate
predictability, whereas transmittance and absorbance methods showed greater accuracy for
specific parameters. The RMSEP and RPD values indicated the precision and reliability
of these models, with higher RPD values suggesting superior predictive capabilities, par-
ticularly for structural parameters, such as the adaxial and abaxial hypodermis. The bias
values highlighted areas for potential model refinement to enhance the prediction accuracy.

A comparison of the predicted and observed values in the scatter plots revealed
varying prediction accuracies across the different spectroscopic methods.

For the fluorescence sensor (Figure S5), strong correlations were observed for adaxial
and abaxial hypodermis thickness (R2 = 0.94) and total leaf thickness (R2 = 0.87), indicating
a high predictive power. However, parameters such as parenchyma thickness (R2 = −0.01)
and thylakoid layer–granum ratio (R2 = 0.05) exhibited weak correlations, suggesting
poor predictability.

The reflectance data (Figure S6) showed robust R2 values for the adaxial hypodermis
thickness (0.8) and abaxial hypodermis thickness (0.91), indicating strong predictive re-
lationships. Similar to fluorescence, parenchyma thickness (R2 = 0.18) and the thylakoid
layer–granum ratio (R2 = 0.05) were predicted less accurately.

The transmittance data (Figure S7) displayed moderate to strong correlations for
most parameters. The thicknesses of the adaxial (R2 = 0.87) and abaxial hypodermis
(R2 = 0.92) were highly predictable. However, parenchyma thickness (R2 = 0.16) and
thylakoid layer–granum ratio (R2 = 0.07) showed weak predictability.

The absorbance data (Figure S8) demonstrated moderate predictive accuracy, with
strong correlations between adaxial hypodermis thickness (R2 = 0.94) and total leaf thick-
ness (R2 = 0.8). Parenchyma thickness (R2 = −0.04) and the thylakoid layer–granum ratio
(R2 = 0.06) were poorly correlated, indicating limitations in the use of absorbance for
these measurements.

In summary, the analysis revealed that parameters such as hypodermis and total leaf
thickness, particularly fluorescence and reflectance, were consistently well predicted across
all methods. Conversely, parameters such as parenchyma thickness and the thylakoid
layer–granum ratio exhibited low predictability, highlighting areas where model refinement
was needed. A higher green color intensity in the absorbance data plots indicates stronger
correlations for specific parameters, suggesting that absorbance could be a more reliable
predictor of biophysical compounds.
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4. Discussion

Considerable progress has been made by integrating hyperspectral sensors to pre-
dict the biophysical parameters of plants. Chlorophyll fluorescence and hyperspectral
sensors collect extensive data, facilitating detailed and precise predictions that are closely
aligned with the physiological and biophysical functions. The incorporation of hyperspec-
tral vegetation indices (HVIs), along with diverse analytical tools, has led to significant
enhancements in monitoring and forecasting various structural and ultrastructural com-
pounds [60,61].

Our fluorescence, reflectance, transmittance, and absorbance measurements demon-
strated varying degrees of predictive accuracy. For example, chlorophyll a fluorescence was
highly effective in predicting parameters such as adaxial and abaxial hypodermal thickness
(R2 = 0.94) and total leaf thickness (R2 = 0.87). Similarly, reflectance data showed strong
predictive power for adaxial hypodermis thickness (R2 = 0.80) and abaxial hypodermis
thickness (R2 = 0.91). Transmittance readings also yielded robust predictions for adaxial
(R2 = 0.87) and abaxial hypodermal thickness (R2 = 0.92). Absorbance measurements
provided high predictive accuracy for adaxial hypodermis thickness (R2 = 0.94) and total
leaf thickness (R2 = 0.80). Other studies that sought to relate different spectral curves
using similar approaches reported comparable values [24,25,45]. The findings presented
here align with the key advancements our research group has made from 2017 to 2024,
emphasizing the importance of analyzing spectral curves using reflectance, transmittance,
and absorbance [10,11,29–31,59,62–66]. These distinct modes of spectral acquisition capture
the varied interactions between the electromagnetic spectrum and leaf optical properties,
offering a more accurate representation of the leaf biophysical processes. Additionally, our
recent integration of fluorescence sensors with infrared gas analysis (IRGA) has improved
the analysis of not only biochemical aspects but also the structural and ultrastructural
changes across different leaf types, enhancing our overall understanding of leaf biophysics
and plant function [10,11,29–31,59,62–66].

However, some parameters, such as parenchyma thickness and the thylakoid layer–
granum ratio consistently exhibited lower predictability across all sensor types. This
suggests that the current models may not fully capture the complexity of these structures,
potentially owing to limitations in sensor sensitivity or spectral resolution for these specific
measurements. The variability in tissue composition, structural heterogeneity, and influence
of overlapping biophysical factors could also contribute to reduced accuracy. These findings
indicate that further model refinement, perhaps through the integration of additional sensor
types or advanced analytical techniques, is necessary to improve the predictive accuracy
of these parameters. These limitations highlight the need for a more tailored approach to
measuring traits that exhibit subtle optical responses [5,11,29].

The predictive models employed in this study highlight the importance of integrating
multiple sensors. The high R2 values for the key parameters validate the reliability of
these models in estimating various pigment concentrations, establishing a basis for future
research and practical applications in precision agriculture. The strong performance of our
models across different spectroscopic methods confirmed their potential for improving
plant health assessments and environmental monitoring.

This is consistent with existing studies that highlight the importance of non-imaging
hyperspectral sensors in remote sensing and improve sustainability on the basis of many
factors, such as photochemical, biochemical, and metabolic processes, as well as the mech-
anisms of plant photosynthetic reactions and their interactions with biotic and abiotic
stresses on the physiological states of plants and green chemistry. The interactions between
light and plant tissues, such as absorption, reflection, and transmission, provide crucial
insights into physiological processes. In other studies, the interactions for the precise
prediction of plant compounds enhanced the field of remote sensing and facilitated the use
of optical spectroscopy for further sample characterization [3,17,19].

Hyperspectral vegetation indices (HVIs) are particularly effective for assessing a
broad spectrum of physiological, biochemical, and structural parameters. These indices
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are vital for monitoring environmental stresses such as water and nitrogen deficiencies.
For example, narrowband HVIs are highly sensitive to fluctuations in water and nitrogen
levels, allowing for detailed evaluation of crop responses under different irrigation and
fertilization conditions [51,67].

Combining HVIs with hyperspectral measurements increases the precision of agri-
cultural interventions, optimizes resource utilization, and enhances crop management
strategies. The clear spectral differences observed in the reflectance, transmittance, and ab-
sorbance curves of T. spathacea and T. pallida further underscore the utility of these methods
for species differentiation and physiological and green chemistry evaluations [11].

4.1. Hyperspectral and Principal Component Analyses of Reflectance, Transmittance, and Absorbance

Hyperspectral sensors reveal detailed spectral data that facilitate comprehensive anal-
ysis of plant biochemical and biophysical properties. Reflectance measurements provide
essential insights into both the surface and internal structures of leaves, revealing varia-
tions in the chlorophyll content and potential cellular changes. This finding is consistent
with previous research, suggesting that changes in reflectance can indicate physiological
alterations in plant tissues. Similarly, transmittance data are critical for understanding the
light penetration and distribution within a leaf, offering insights into its structural and
functional attributes.

Given the complexity of hyperspectral datasets, advanced data-reduction techniques,
such as principal component analysis (PCA), are indispensable. In this study, PCA was
successfully applied to identify the key spectral regions associated with variations in
chlorophyll a fluorescence sensors. This is important for developing robust sensors capa-
ble of real-time monitoring of multiple biophysical parameters associated with complex
environments, which significantly enhances the precision of sensor-fusion methods for
measurements. The predictive performance of these hyperspectral measurements was
rigorously evaluated with a focus on the coefficients of variation and value ranges to
ensure data reliability across the electromagnetic spectrum. Our findings demonstrate that
appropriately applied passive sensor techniques provide detailed insights into plant health
and photosynthetic efficiency, which are crucial for accurate plant phenotyping and leaf
tissue alterations [24,68,69].

Our study also investigated the integration of various sensor types, including hy-
perspectral and chlorophyll fluorescence sensors, to enhance the predictive modeling
capabilities [12,70]. This combination broadens the applicability of the data, improves the
accuracy of the predictions, and monitors diverse plant health parameters. Therefore, hy-
perspectral non-imaging techniques have the potential to revolutionize plant physiological
research and agricultural practices. By providing a deeper molecular-level understanding
of plant dynamics, these methods offer rapid and precise insights into plant health and
phenotyping, which are essential for improving agricultural efficiency and accuracy [71].

Moreover, our results align with recent advancements in hyperspectral technology
that emphasize the importance of integrating reflectance, transmittance, and absorbance
data for a more comprehensive analysis of plant health, which aligns with tissue, cell, and
organelle analyses. Advanced algorithms and machine learning techniques are now being
used to further increase the predictive power and accuracy of hyperspectral data, making
them vital tools in modern agricultural practice [17,28,46].

Additionally, recent research has demonstrated the potential of hyperspectral non-imaging
to detect early signs of plant stress before they become visually apparent [11,17,28,29,46]. This
early detection capability is crucial for implementing timely interventions to mitigate
stress factors such as nutrient deficiencies, pest infestations, or water stress. By identifying
spectral signatures associated with specific stress responses, hyperspectral imaging can
facilitate the development of targeted treatment strategies, thereby increasing crop resilience
and yield [3,24,44,72].

Furthermore, the integration of hyperspectral data with other remote-sensing tech-
nologies, such as LiDAR and thermal imaging, presents a promising avenue for a more
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holistic understanding of plant health. LiDAR can provide detailed three-dimensional (3D)
structural information, whereas thermal imaging offers insights into plant water status and
temperature regulation. Combining these datasets with hyperspectral information allows
for a multifaceted analysis of plant physiology, leading to more precise and comprehensive
monitoring systems [1,40,73].

Finally, the scalability of hyperspectral non-imaging technology is crucial for its appli-
cation in agriculture. Advances in sensor miniaturization and cost reduction have made
these sensors more accessible for both small- and large-scale farming. In this study, combin-
ing two sensors to measure reflectance and transmittance and then calculating absorbance,
along with fluorescence measurements, provided a more comprehensive analysis of leaf
optical properties. This approach enhances the ability to detect structural and biochemical
changes in plants and offers deeper insights than the use of a single sensor alone. In
this sense, the development of portable hyperspectral devices and their integration with
UAVs enables high-resolution regular monitoring over large areas. This supports precision
agriculture by improving resource efficiency and reducing environmental impacts. Similar
studies have highlighted that the use of multiple sensors not only improves measure-
ment accuracy but also expands the range of observable traits, providing more detailed
information for advancing agricultural research [11,17,28,29,46].

4.2. Predictive Modeling-Based Reflectance, Transmittance, and Absorbance

Merging hyperspectral data with partial least squares (PLS) modeling has emerged as
a transformative approach in plant science, greatly improving our ability to predict and
understand intricate physiological traits. Integrating measurements of reflectance, trans-
mittance, and absorbance with advanced multivariate algorithms, such as PLS, highlights
the essential role of these parameters in reflecting photosynthetic efficiency and electron
transport chain functionality. This integration significantly enhances the precision of the
predictive models [74,75].

Variable Importance in Projection (VIP), many machine and deep learning algorithm
scores, and hyperspectral vegetation indices (HVIs) are critical for identifying the most in-
formative wavelengths in hyperspectral datasets, thus improving the accuracy of predictive
models and allowing for a detailed understanding of plant characteristics. These methods
underscore the importance of identifying spectral regions that are rich in information and
are closely related to the physiological state of plants [63,76,77].

Principal component analysis (PCA) is employed to handle the complexity of large-
scale hyperspectral data by pinpointing key spectral regions associated with variations in
chlorophyll a fluorescence parameters. These spectral signatures are crucial for creating
remote sensing tools that can noninvasively evaluate plant properties such as chlorophyll
and nitrogen contents [78–80].

The predictive models derived from this integrated approach enable real-time analysis,
thereby reinforcing the efficacy of remote sensing for extensive monitoring. This aligns
with the current views on the transformative potential of these technologies for global
monitoring and productivity management. Real-time monitoring is crucial for informed
decision-making in agriculture, forestry, and other sectors that rely on remote sensing,
enhancing productivity, and sustainability [2,81].

Importantly, although significant progress has been made in applying hyperspectral
and PLS models, further research is necessary to extend these techniques to diverse plant
species and environmental conditions. Whole-spectrum models, such as PLSR, LDA, and
SVR, have shown great efficacy in classifying and predicting leaf properties. These models
provide valuable insights for interpreting chlorophyll a fluorescence data, which is crucial
for JIP test evaluations. By utilizing the full spectrum of available data, these models ensure
a thorough analysis of complex leaf attributes, including the interactions between leaf
optical properties and the intricate chemistry of molecules in variegated leaves [45,82].

In conclusion, a variety of spectroscopic methods, including those with and without
non-imaging (proximal sensor) functions, have been extensively employed to decipher de-
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tails about photochemical, biochemical, biophysical, and metabolic activities, as well as to
understand how plant photosynthesis reacts to and interacts with living organisms and envi-
ronmental stressors, influencing the physiological conditions of plants by accurate responses.

5. Conclusions

The use of hyperspectral and chlorophyll detection technologies highlights their effi-
cacy in assessing biochemical elements in Tradescantia species, thereby offering a thorough
understanding of plant health and structural anomalies. These methodologies demon-
strated high accuracy and reliability through rigorous statistical analyses, confirming their
suitability for sensor technology and chemometric studies. Identifying critical spectral
zones spanning from ultraviolet—blue to shortwave infrared is essential for noninvasive
biochemical measurements and cellular structure detection. The use of hyperspectral vege-
tation indices (HVIs) significantly improves the performance of partial least squares (PLS)
regression models. The precision of these models underscores the importance of stationary
hyperspectral and fluorescence probes for analyzing diverse foliage. The insights from
this research establish a crucial framework for integrating various standoff sensors and
hyperspectral imaging methods in botanical studies. Future research should expand these
techniques to encompass a wider variety of plant species and environmental conditions to
enhance the robustness and applicability of these models. Advancing these approaches will
confirm the pivotal role of hyperspectral sensing technologies in agricultural surveillance
and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24196490/s1, Figure S1: Spectral leaf reflectance, transmittance,
and absorbance profiles from 350 to 2500 nm. (A) Chlorophyll a fluorescence kinetics. (B) Reflectance
spectra. (C) Transmittance spectra. (D) Absorbance spectra. In these plots, T. spathacea is shown
using red–pink lines, while T. pallida is represented by green lines. Accuracy (Acc) and Kappa
coefficient (K) are noted. (n = 100); Figure S2: Reflectance by count plot map of the coefficient
of correlation (R2). (A) Adaxial epidermis. (B) Adaxial hypodermis. (C) Parenchyma thickness.
(D) Adaxial hypodermis. (E) Total leaf thickness. (F) Number of chloroplasts. (G) Granum height.
(H) Thylakoid layer-granum. Dark blue to light red indicates increased associations. (n = 200);
Figure S3: Transmittance by count plot map of the coefficient of correlation (R2). (A) Adaxial epider-
mis. (B) Adaxial hypodermis. (C) Parenchyma thickness. (D) Adaxial hypodermis. (E) Total leaf
thickness. (F) Number of chloroplasts. (G) Granum height. (H) Thylakoid layer-granum. Dark blue to
light red indicates increased associations. (n = 200); Figure S4: Absorbance count plot map of the coef-
ficient of correlation (R2). (A) Adaxial epidermis. (B) Adaxial hypodermis. (C) Parenchyma thickness.
(D) Adaxial hypodermis. (E) Total leaf thick-ness. (F) Number of chloroplasts. (G) Granum height.
(H) Thylakoid layer-granum. Dark blue to light red indicates increased associations. (n = 200);
Figure S5: Observed vs predicted data estimated by partial least squares regression (PLSR) with
hyperspectral ChlF data. (n = 50); Figure S6: The observed vs. predicted data were estimated using
partial least squares regression (PLSR) with hyperspectral reflectance data. (n = 50); Figure S7: The
measured data were compared to the data calculated via partial least squares regression (PLSR) with
hyperspectral transmittance data. (n = 50); Figure S8: Observed vs. predicted data estimated by
partial least squares regression (PLSR) of hyperspectral absorbance data. (n = 50); Table S1: The per-
formance of partial least squares regression (PLSR) models that use various spectroscopic techniques
to estimate biophysical compound concentrations in Tradescantia species. The evaluation metrics
included the correlation coefficient (r), R-squared (R²), slope, offset, standard error of prediction (SEP),
root mean squared error of prediction (RMSEP), ratio of performance to deviation (RPD), and bias,
offering a detailed analysis for each sensor. Statistical performance of the PLSR model in predict-
ing phases. Statistical metrics from the PLSR model in the calibration and cross-validation phases.
(n = 150).
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