‘Anais do. .-
-V Simposio Brasileiro
. de Automacao Intefigente

SN SR -1 g'de—novémbfa de 2061 -
“Hotel Continental .
... Cepela, RS

Objetivando promover e fomentar a pesquisa e o desenvolvimento em Automagéo Inteligente e dreas afins,
bem como a aproximar o meio académico de profissionais interessados na aplicacdo de automacgio
inteligente, Canela acolhe, entre os dias 7 ¢ 9 de novembro, o V Simpésio Brasileiro de Automacdo
Inteligente. O evento ¢ promovidos pela Sociedade Brasiletra de Automatica, no Hotel Continental, com o
apoio de varias entidades técnico-cientificas e do setor empresarial.

Estes anais contém o texto de 124 dos 125 artigos técnicos selecionados entre os quase 200 submetidos
(um dos artigos aceitos no foi recebido no formato adequado). Nos dias 5 e 6 de novembro realizam-se 3
minicursos preparativos para o V SBATL

Minicurso 1 - Barramento Industriais - Profa. Lucia Franco (EFEI)

Minicurso 2 - Teoria de Controle Supervisorio de Sistemas a Eventos Discretos - Prof. José¢ Eduardo
Ribeiro Cury (UFSC)

Minicurso 3 - Utiliza¢do de Robds Manipuladores em Ambientes Distribuidos de Soffware em Sistemas de
Produgdo de Elevada Eficiéncia - Prof J. Norberto Pires (Universidade de Coimbra)

O V Simposio Brasileiro de Automagéo Inteligente (V SBAI) d4 continuidade a seguinte sequéncia de
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Plenaria 1 - Real time constraints in intelligent control

P Albertos, A. Crespo, J. Simé - Valencia University - Spain

Plenaria 2 - A Universal Smart Transducer Interface

Hermann Kopetz - TU Wien - Austria

Plenaria 3 - Integration of fieldbus systems and telecommunications in the industrial automation

aread

Peter Neumann- [FAK - Germany
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Profa. Lucia Franco (EFEI)

Minicurso 2 - Teoria de Controle Supervisorio de Sistemas a Eventos Discretos

Prof. José Eduardo Ribeiro Cury (UFSC)

Minicurso 3 - Utilizagao de Rob8s Manipuladores em Ambientes Distribuidos de Software em
- Sistemas de Producdo de Elevada Eficiéncia

Prof. J. Norberto Pires (Universidade de Coimbra)

Sessiio 1 - Robos Cooperativos

Sessio 2 - Algoritmos Genéticos 1

Sessiio 3 - Processos Quimicos

Sessiio 4 - Logica Nebulosa

Sessdao 5 - Controle de Robds

Sessao 6 - Sistemas Hibridos e Algoritmos

Sessdo 7 - Robds Moveis

Sessio 8 - Redes Neurais - Aplicagdes

Sessdo 9 - Controle Ndo Linear

Sessao 10 - Sistemas de Manufatura

Sessdo 11 - Processamento de Imagens - Aplicagdes
Sessdio 12 - Sistemas de Energia

Sessao 13 - Sistemas Informatizados

Sessdo 14 - Hardware

Sessao 15 - Redes de Petr:

Sessao 16 - Sistemas Inteligentes Aplicados a Robdtica
Sessao 17 - Controle de Processos

Sessiao 18 - Algoritmos Genéticos 11

Sessao 19 - Sistemas Supervisores
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Sessdo 1
Robds Cooperativos
Quarta-feira, 7 de novembro de 2001

-10:00 - 12:00

COMPORTAMENTOS REATIVOS PARA SEGUIR PISTAS EM
=lUM ROBO MOVEL GUIADO POR VISAO

REINALDO A. C. BIAN
SILVA SIMOES, ANNA
COSTA

. ISIMULATING LOOSELY AND TIGHTLY COUPLED MULTI-
== ROBOT COOPERATION

Luiz Chaimowicz, Mario

1032]A SIMPLE TESTBED FOR COOPERATIVE ROBOTICS

Guilherme Augusto Silva
Pimentel e Mario Fernan

DETECCAO DE FALHAS DO TIPO JUNTA PASSIVAE
1033|RECONFIGURACAO DE CONTROLE EM ROBOS
COOPERATIVOS

Renato Tinos, Marco He
Bergerman

Silvia Silva da Costa Bot.

1137IMechanisms: a new approach to robots teams cooperation
1138}An Efficient Case-Based System - Preliminary Results

Flavio Tonidandel Marci

Sessao 2

Quarta-feira, 7 de novembro de 2001

Algoritmos Genéticos |

-10:00-12:00

IDESENVOLVIMENTO DE MODELOS DE INFERENCIA
UTILIZANDO PROGRAMACAO GENETICA

MARCOS A. EVAN
NEVES JR,, HEITO

X-OVER Parameter Control for GA-optimizer dedicated to
1035 Eigenstructure Assignment/LQR designs - Part I - Problem
Formulation

- 1Joao V. da Fonseca N

X-OVER Parameter Control for GA-optimizer dedicated to
|26 Eigenstructure Assignment/LQR designs - Part II - Computational
Simulations and Performance Analysis

Joao V. da Fonseca N

ALGORITMOS GENETICOS NO PROBLEMA DE
1009 BALANCEAMENTO DE LINHAS DE MONTAGEM: UMA
APLICACAO REAL NUMA LINHA AUTOMOTIVA

SOLIVAN ARANTE
SILVERIO LOPES,
RAMOS DE ARRUD
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074 Ot.imizagéo do Sequenciamento de veiculos numa linha de montagem |Favio C. Malinowski,
- “futilizando algoritmos genéticos Heitos S. Lopes
ALGORITMOS GENETICOS PARA O PROBLEMA DE o
| 100/ ANINHAMENTO NA INDUSTRIA DE EMBALAGENS: UM ROBERTO SELOW,
ESTUDO COM MODELOS REDUZIDOS FLAVIO NEVES JR.
Sessiao 3

Processos Quimicos
Quarta-feira, 7 de novembro de 2001 - 14:30 - 16:30

s Analise e Controle de uma Unidade FCC do tipo Kellog Romero G. de Souza, Maur
~Orthoflow F Aumit Bhaya
IDENTIFICACAO DE PROCESSO DE UMA UNIDADE DE Willi o
1123/ CRAQUEAMENTO CATALITICO UTILIZANDO REDE illiam G. Vieira; Ana Mar
NEURAL Carvalho

o ldentificacao de Sistemas Dinamicos Utilizando Bases de Gustavo Henrique da Costa
" ~=2IFuncoes Ortonormais: Aplicacao ao Processo Benchmark FCC  |Cardori do Amaral
IDENTIFICACAO MULTIVARIADA DO PROCESSO DE o
| 166/ CRAQUEAMENTO CATALITICO DO PETROLEO USANDO |” Vianni M. I Santos, Mau
REDES NEURAIS ARTIFICIAIS ¢ Florival R. Carvalho

Integrating Real-Time Optimization into the Model Predictive
~——Controller of the FCC System

A. C. Zanin, M. Tvrzska de

ARGIMIRO R. SECCHL, J
TRIERWEILER, LUIS A.
CUNHA, GUSTAVO A N

- FCC DYNAMIC MODELING: FIRST PRINCIPLES OR
~==SYSTEM IDENTIFICATION?

Sessao 4
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Quarta-feira, 7 de novembro de 2001 - 14:30 - 16:30

RS O Uso de Possibilidade como Medida de Similaridade na Flavia Oliveira Santos de
“*Classificacio Baseada em Exemplares em Dominios Fuzzy Carmo Nicoletti o
Maria M. Garcia Lorenzo
1084/Maquina de aprendizaje para la generacion de reglas borrosas Leticia Arco Garcia, Yaile
Bello Pérez

JM.C. Rosa, R. Tanschen
Zanini, C.H. Klein, K.V. B
L.H. Salis, N.A. Souzae S

Aplicacio de Fuzzy Clustering a Banco de Dados de Amostra
—“Domiciliar da Populagio da Ilha do Governador, RJ

OTIMIZACAO DE UM SISTEMA NEBULOSO BASEADO EM

H112JUMA ESTRATEGIA EVOLUTIVA COM OPERADOR Leandro dos Santos Coelh
| ADAPTATIVO DE MUTACAO - o S
11 /15/UM CONTROL ADOR NEBULOSO TSK APLICADO EM UM . [Fabio Meneghetti Ugulino
LS ISTEMA PARA ISOLAMENTO DE VIBRACOES Yoneyama

UM SIMULADOR VOLTADO PARA O ENSINO ASSISTIDO [EMERSON A. D’ AQUIN
2POR COMPUTADOR DE CONTROLADORES NEBULOSOS ALEXANDRE EVSUKO
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Sessiio 5
Controle de Robds
o Quarta-feira, 7 de novembro de 2001 -

17:00 - 19:00

Controle Distribuido do Robd PUMA 560 Usando Uma Rede Neural
Auto-Organizavel Temporal

Guilherme de A. Barret
Christof Ducker, Helge

JICONTROLE DE UM ROBO-MANIPULADOR SCARA

UTILIZANDO COMPENSACAQ NEURAL DE ATRITOS

Vitor I. Gervini , Sebast
Alexandre 1. Gervini, L
Vagner S. Rosa

JUNDERACTUATED MANIPULATOR ROBOT CONTROL BY

STATE FEEDBACK LINEARIZATION VIA MU-SYNTHESIS

Marco Henrique Terra

JCONTROL OF ROBOT MANIPULATORS

A STUDY OF ANTI-WINDUP TECHNIQUES APPLIED TO THE

R. Reginatto, E. R. De

ROBOS MANIPULADORES SUBATUADOS: CONTROLE H-
INFINITO NAO LINEAR VIA REPRESENTACAO QUASE-LPV

Adriano G. A. Siqueira

CONTROLE H-INFINITO NAO LINEAR DE ROBOS

Adriano G. A. Siqueira

MANIPULADORES VIA REPRESENTACAO QUASE-LPV
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Quarta-feira, 7 de novembro de 2001 -

17:00 - 19:00

tusdt

Modeling Hybrid Systems using Petri Nets

Marcia V. Costa M_lra
N. Lima

1Us9

Uma Abordagem Baseada em Mapas Auto-Organizaveis de Kohonen
Aplicada ao Problema de Roteamento de Veiculos

Lalinka C. T. Gomes e

[O77

Autdnomos hibridos: modelagem e andlise de sistemas de transferéncia
“le distribui¢io de gas natural

Robson A.Ealvo, Cle
Silva, Ricardo J. Marti
Junior, Lucia V. R. Ar

fus ]

o Algoritmo k-Vizinhos mais Préximos

Uma Proposta para o Tratamento de Valores Desconhecidos Utilizado

Gustavo E.A.P.A. Bati
Monard

Llud

IMPROVING CONVERGENCE TO AND LOCATION OF
ATTRACTORS IN DYNAMIC GAMES

Eduardo Camponoéar
and Haoyu Zhou

Iy

UMA METODOLOGIA DE PROJETO DE CONTROLADORES
HIBRIDOS INTELIGENTES APLICADO NO CONTROLE ATIVO
DE UMA VIGA FLEXIVEL

RAFAEL LUIS TEIX
FRANCISCO RIBEIR

Sessao 7
Robds Mébveis

Quinta-feira, 8 de novembro de 2001 - 10:00 - 12:30

SISTEMA ROBUSTO PARA A ESTIMAGCAOQ VISUAL DA
POSICAO DE SISTEMAS MOVEIS A PARTIR DE MARCOS
VISUAIS PLANARES

Guilherme Augusto Silva
Fernando Montenegro Ca

“JAUTONOMOUS AERIAL ROBOTS

Geraldo F. Silveira, Jose
K. Madrid, Samuel S. Bu

TOWARDS VISION GUIDED NAVIGATION OF

“IMAGERY

Geraldo F. Silveira, Jose
Machado, Samuel S. Bue

ROBOT NAVIGATION METHODOLOGY FROM AERIAL

Controlador neural nebuloso auténomo de direg@o e velocidade
9] - . .
“ipara robos moveis

Paulo R. Crestani, Mauri
Fernando J. Von Zuben

iMARCELO ROSENTH
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CONTROLE DISTRIBUIDO DO ROBO PUMA 560 USANDO
UMA REDE NEURAL AUTO-ORGANIZAVEL TEMPORAL

- -
-
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GUILHERME DE A. BARRETO, ALUIzio F. R. ArRatJo

Departamento de Engenharia Elétrica, Universidade de Sao Paulo (USP)
Aw. Trabalhador Sancarlense, {00, Séo Carlos, SP, 13560-950
{gbarreto, aluizioa} @sel.eesc.sc.usp.br

CHrisTor DUCKER, HELGE RITTER

Departamento de Ciéncia da Computagdo, Universidede de Bielefeld
P. O.-Boz 100131, Bielefeld, Alemanha, 38501
{chrisd, helge} @techfak.uni-bielefeld.de

Resumo— Neste artigo ¢ proposto um sistema de controle distribuido para robds manipuladeores baseado
¢ uma rede ueural auto-organizdvel, chamada rede competitiva e hebbiana temporal (CHT). Esta aprende
¢ reproduz trajetérias complexas por meio de dois conjuntos de conexdes sindpticas: counexOes competitivas
de propagagdo para [rente armazenam os estados individuais de uma trajetéria, enquanto conexdes hebbianas
laterais codificam a ordem temporal dos estados dessa trajetdria. Uma ferramenta de comunicagao distribuida
¢ utilizady junto com a rede CHT no planejamento em tempo real de trajetérias para um robdo PUMA 3560. A
perfurmance do sistema proposto ¢ discutida e comparada com outras abordagens por redes neurals.

Abstract— A distributed robot control system is proposed based on a temporal self-organizing neural network,
called competitive and temporal hebbian (CTH) network. The CTH network can learn and recall complex
trajectories using two sets of synaptic connections: competitive feedforward weights that encode the individual
states ol the trajectory, and hebbian lateral weights that encode the temporal order of trajectory states. A
distributed processing scheme is proposed to evaluate the CTH network in point-to-point, reul-time trajectory
plunning of a PUMA 360 robot. The performance of the proposed system is discussed and compared with other

neural network approaches.

Key Words— self-organization, neural networks, robotics, trajectory planning, distributed control.

1 Introdugao

Com fregléncia, tarefas envolvendo robds mani-
puladores possuemn umna natureza seqiiencial bem
definida pela ordens temporal das posigdes que o
braco de robd deve assumir ao longo de um cami-
nho preestabelecido. Em geral, esta informagéo
temporal ndo é incorporada ao processo de apren-
dizagery de uma rede neural artificial (RNA), de
forma tal que apenas transformagbes sensorio-
motoras estdticas (cinemadtica inversa, por exem-
plo) podem ser aprendidas. Nestes casos, a ordem
temporal da tarefa robdtica é estabelecida pelo
projetista da rede. Uma alternativa interessante
consiste em usar RNAs lemporais, visto que elas
incorporam automaticamente 0s aspectos seqiien-
cials da tarefa robdtica de interesse durante a fase
de creinamento. Durante uma fase posterior de re-
producio da trajetdria armazenada, o estado atu-
al do robé é fornecido como entrada para a RNA
temporal que. por sua vez, fornece como saida o
proximo estado a ser alcangado pelo robd. Este
pracedimento ¢ repetido até que toda a trajetdria
seja reproduzida (Barreto e Arayjo, 2001).

Este artigo demonstra a viabilidade da apli-
cacdo de¢ redes neurals auto-organizévels tempo-
rais no controle distribuido em tempo real de
robOs manipuladores. O algoritmo de aprendiza-

gem é avaliado por sua habilidade de aprender e
reproduzir trajetdrias complexas de maneira pre-
cisa e sem ambigliidades. O restante do artigo estd
organizada da seguinte forma. Na Seqdo 2, a rede
neural é apresentada. Na Segdo 3, a plataforma
de controle robético distribuido e seus principals
componentes sdo introduzidos. Na Segdo 4, testes
com o sistema proposto no coutrole ponto-a-ponto
do robd PUMA 360 sao descritos. O artigo é con-
chufdo na Segdo 5.

2 Arquitetura da Rede Neural

A arquitetura neural utilizada neste trabalho.
chamada de rede Competitiva ¢ Hebbiana Tem-
poral (CHT), foiproposta por Barreto ¢ Araijo
(2000) e estd mostrada na Fig. 1. A rede
CHT consiste basicamente de conexdes de propa-
gacio para frente (feedforward) e conexdes la-
terais que desempenham papéis distintos na sua
dindmica. FEla possul também unidades de con-
texto na entrada e atrasadores na saida. Contu-
do, os atrasadores sdo necessirios apenas na fase
de treinamento durante a aprendizagem de tran-
sigdes de estado. A entrada da rede CHT é forma-
da por um vetor de estado s({) € R™, um vetor
de contexto fixo Cp € R™, e um vetor de con-
texto variante no tempo Cp(L.t) € Rt™. O
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Figura 1. Arquitetura da rede CHT. Por simplicidade, ape-
nas alguinas conexdces laterais sdo mostradas.

2.1 Ajuste dos Pesos Sindpticos da Rede

Un: vetor de conexdes de propagagdo para frente,
w,. J=l. Af. conecta as unidades de entra-
da w neurduio de saida J, sendo definido como
wit) = [wit) wi() wl(e)]7. onde w;(t) €
REF2070 By cada instante ¢, um certo wy é es-
colhido para armazenar o estado atual do brago
vig aprendizagens competitiva, i.e., um dnico
neuronio {(ou um pequeno grupo de neurdnios)
de safda fica responsdavel pelo armazenamento de
tal estado. Para isso, a distdncia entre o estado
atual da trajetéria s(t) e cada w; € calculada co-
mo D3(t) = (s(t) — w}(t))TP(s(t) — wi(t)), onde
P ¢ uma martriz diagonal usada para encontrar
o neurdnio vencedor haseando-se apenas em r(t).

Esta matriz ¢ definida como:
P = diag(1,,0,...,0)

oude 1, ¢ wm vetor de s, tal que dim(1,.)=
dimn(r (). Sao também definidas uma distancia
de contexto lixa, Df(ﬁ) = ||Cr(t) — Wf(i)“ e
winn distdncia de coutexto temporal, D;-r(t) =
NC (1, [_)——w}‘(t)ll‘ Enquanto Dj(t) é usada para
encontrar os) neurdnio(s) vencedor(es) da com-
petigdo atual, D (t) e D] (t) sdo usadas para re-
solver ambigiidades durante a reprodugdo das tra-
jetorias memorizadas pela rede CHT. A escolha
do neurdnio vencedor é feita com base na fungéo
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Harante & reproducho da trajecdmia armessenida
o raio e similaridade deve assumir valores maiores
{(i.e. € = 1) para evitar avaliacdes incorretas da
Eq. (1) resultantes da presenca de ruido na cotra-
da. Os neurdnios de salda sao eutdo ordenados da
seguinte forma:

f#l(t)<fu2(t) <"'<fu.\x(t) (2)

onde M ¢é o numero de neurduios de saida e
wi), ¢ = 1,...,M, ¢ v indice do i-ésimo
neurdnio de safda mais préximo de s(t). Escolhe-
se K neurdnios vencedores, {g....,ux} para
representar o estado atual s({) ¢ seu contexto
{Cr.Cr({# L)}. Em seguida, a ativacio de cada
um dos neurdnios de saida ¢ computada:

Qanaz =Un o i e -~
- Amaz — <m) (L 1), Para 4 S K

Gy,
0, Parai > K

i

Portanto, os valores de ativacic decaem linear-
mente de um valor maximo am,.: € R para j (¢),
até um valor minimo a.,i;, € R para pr(t). As
constantes Gm,r € anin 540 definidas pelo pro-
jetista da rede. O préximo passo consiste em atu-
alizar a fung@o responsabilidade R;(t) da seguinte
forma R;(t +1) = R;(1) + 3u¢;(t), onde 3 > 1
¢ chamada constante de exclusdo. Finalmente, os
vetores de pesos da rede CHT sdo ajustados:

wi(t+1) = wi(t) = na;(6)[s(t) — wi(t)]
wi(t+1) = wi(t) +na;()[Crit) = wi (0] (3)
wl(t+1) = w] (t) + e, (1)[Cr(t = 1) = wi(t)]

onde 0 < n €1 é a taxa de aprendizagem. Para
t =0, w;(0) recebe valores aleatdrios entre 0 e 1.

Um conjunta de pesos laverals, m;(t) =
[mj1 mya -+ mjup]T, codifica a ordem tempo-
ral dos estados da trajetdria usando uma regra de
aprendizagem hebbiana que conecta o vencedor
da competic@o anterior com o vencedor da comn-



petigio atual:

0 Se my,.(t) #0
Aaj(t)a-(t — 1) Caso contrdrio.

(4)
unde 0 < A < 1 é uma constante. Segundo a
Eq. (1) a rede CHT “olha” um passo para trds
de modo a estabelecer um link causal referente
4 wransicdo temporal s(t — 1) — s(¢), entre dois
estados consccutivos da trajetdria.  Esta tran-
siciw ¢ codificada pelo peso lateral que conecta
0s neurdnios que geraram o0s pares de ativagdo
laa, (i = 1), a,, (1), 1 < K. A aplicagdo sucessiva
da Eqg. (4) leva a codificagao da ordem temporal
da trajetdria. Inicialmente, m;.(0) = O para todo
j.7. indicandu que nenhuma associagdo temporal
existe no comego do treinamento.

At + 1) = {

2.2 Reprodugao de Trajetdrias

O processo de reproducdo de uma trajetéria me-
morizada ¢ um esquema de controle em malha
fechada {(ver Fig. 2) consistindo de 4 passos: (1)
Inicio da reprodugao. (2) célculo das ativagdes e
das saidas, (3) geragfo dos sinals de controle do
robd, ¢ (4) dererminacio das entradas sensoriais.
Para fins de reprodugdo, faz-se sempre K = 1.

1. Inicio da Reprodugdo: Para iniclar a re-
producia (f = 0 na Fig. 2), qualquer estado
semelhante & um dos estados armazenados pode
ser apresentado a rede CHT. Este estado inicial é
chamado de estado disparador da reprodugdo. O
conrexty fixo Cp assume o valor do estado final
desta trajetdria, enquanto que os valores inicials
do contexto remporal sdo feitos iguais ao estado
disparador. A rede entdo se encarrega de repro-
duzir. de forma autdnoma, o restante da trajetdria
(t > 0 naFig. 2).

2. Cdlculo das Ativagdes e Saidas: Para
cada estado s(t), a ativagdo do neurdnio vence-
4, - ¢ calculada, indicando qual neurdnio ar-
mazenou o estado mais proximo do estado atual-
mentve na entrada da rede CHT. Em seguida, o
neurdnio vencedor (Unico neurdnio de safda com
ativagio nao-nula) ativard o neurdnio cujo vetor
de pesos armazenou o estado que vem em segui-
da ao atual estado da trajetdria. Isto é possivel
gracas & ransicio de estado aprendida durante a
fase de treinamento e codificada na conexao late-
ral que une estes dois neurénios. A equagdo de
salda ¢ dada por:

dor, a

v =g @)y )G D myr®er(t) ] (5)
r=1

onde y” (1) = L= DI(0)/ £IL, DE(W) e 7 (1) =

r=
1 — DIr)/ 0L, DY{t). A funcdo G € escolhi-
da ta) que G(u) > 0 e dG(u)/du > 0. Para
trajetdrias sem estados repetidos, o terceiro fator
no lado direito da Eq. (5) indicard corretamente

o neurGuio que armazenou o préximo estado da

trajetéria, s™*t=[r"=t 97¢*17 e que fornecerd o
préximo sinal de controle ao robd (Passo 3). Para
trajetdrias com estados repetidos, informagdo adi-
cional é necessdria, pois o terceiro termo sozinho
praduzird o mesmo valor de y;(¢) para todos os
neurdnios “candidatos™ a conter o préximo esta-
do. Estas “ambigiiidades” sdo resolvidas pelos
primeiro e segundo fatores no lado direito da Eq.
(3): o neurdnio cujo contexto arinazenado mais se
aproxima daquele atualmente na entrada da rede
€ aquele a ser escolhido.

Estado
Disparador

Proainto
Estsdo
U (3

=0 Cheve zberta
1> Chuve fechuda

Exiide medide

Figura 2. Reproducio autdnoma de trajetdrias.

3. Determinacdo dos Sinais de Controle: O
sinal de controle (&ngulos das juntas) a ser enviado
a0 robd é calculado a partir do vetor de pesos do
neurdénio com maiar valor de y;(¢) e da marriz

P=(I-P):

s s S 0
Weer! (t) = PW;' (t) =P <6uc1t> = (911(-.1-2‘ >
(6)
onde j* = argmax;[y;({)]. Note que Uer(t)
fornece os angulos associados com Tezg-
4. Determinag@o das Entradas Sensoriais:
Um conjunto de medidas sensoriais fornecem in-
formacao de realimentagdo sobre o estado atual do
braco apds a execuciao de um movimento. Quando
o brago do robd atinge a posigéo especificada por
Uer (), um novo vetor s é formado através das
medidas sensoriais da posi¢do atual do efetuador
e dos dngulos das juntas correspondentes. Este
novo vetor é entdo apresentado A rede CHT. Os
passos 2-4 sdo executados vdrias vezes até que o
final da trajetéria tenha sido alcangado.

3 Plataforma Robdtica

Este trabalho utiliZou o robd PUMA 360, um
manipulador de 6 graus de liberdade conectado
ac controlador Unimation Mark III. Este, por
sua vez, coordena véarios controladores PID que
acionam de maneira independente os servomneca-
nismos de cada uma das juntas. Estes contro-
ladores sdo acionados por um controlador princi-
pal, a CPU LSI-11/73. Grande parte do software
do controlador original do robd PUMA foi substi-
tuido e uma estagao de trabalho SUN Sparcsys-
tem 4/370 com barramento VME foi empregada
para controlar diretamente o robé em tempo re-
al via um link de comunicagdo de alta velocidade
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(Walter ¢ Schulten. 1993). Para controlar o robd a
partir da estagdo SUN foi instalado o pacote RC-
CL/RCI (Robot Control C Library e Real-time
Cuontrol Interface) (Lloyd et al., 1988). Este con-
siste nu conjunto de bibliotecas que permite re-
quisitar a movimentagao do robé a partir de um
programa escrito em linguagem C.

Neste trabalho foi desenvolvida uma interface
sinigivel para facilitar o envio de sinais de contro-
le para o robd e a leitura de sinais de realimentacio
a partir dele. Em vez de utilizar diretamente as
fungoes du pacore RCCL/RCI (exige elevado grau
de conhecimento). o usudrio inclui no programa
em C que a rede neural é desenvolvida chamadas a
fungdes (bibliotecas) especificas que realizam, de
modo transparente para ele, o controle do robé.
Além disso. o controle pode ser feito remotamente
de gualquer computador conectado 4 rede local.

g1 Processamento Distribuido

A rede CHT ¢ o robd PUMA 560 se comunicam
de forma sincrona por meio de uma ferramen-
ta de comunicagdo denominada Distributed Appli-
cations Commnwunication Systern (DACS), desen-
volvida por Fink et ol (1995). A ferramenta

DACS ¢ baseada na arquitetura cliente-servidor

e. quando aplicada ao presente trabalho, a rede
CHT exerce o papel da aplicagdo-cliente ¢ 0 pa-
cote RCCL/RCI funciona como servidor. Tanto
a aplicacao cliente quauto o servider rodam lo-
caltuente um programna, chamado DACS-daemon,
respunsavel pela codificagao/decodificagdo e en-
deregamento correwo das requisi¢des. Cada apli-
CgR0 existente tem que se registrar no sistema
cum um nome Unico, que é passado imediata-
mente a um servidor de nomes, possibilitando
quu outras aplicagdes também possam requisi-
tar seus scrvigos.  Uma comunicagdo eficiente
entre as aplicacOes e seus respectivos DACS-
dacmon, bem como a comunicagdo entre apli-
cagdes. é possivel gragas a um conjunto de biblio-
tecas DACS e DACS-daemons que sio implernen-
tados como tarefas paralelas via threads®.

Detalhes da interagio entre duas aplicacbes
durante uma chamada remota sincrona é mostra-
da na Figura 3. Nesta figura a aplicacio denomi-
nada robot prové uma fungdo move. A aplicacio
net reside na maquina de nome caesar. Esta sabe
apenas que existe um servigo proporcionado pela
fungiauv rove disponivel em algum lugar no sis-
tema. As aplicagdes e a fungao jé estao registra-
das no servidor de nomes. Sete passos sao reali-
zados pela ferramenta DACS para executar uma
chamada remota com origem em net requisitando
a funcao niove:

1. A aplicacdo net envia uma mensagem para
o DACS-daemon local, enderegada a fun¢do move.

“En progremagdo, thread ¢ uma parte de um programa
que pode ser executada independente de outras partes.

Maquma "cacsr” (sivenue) e
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Figura 3. Interagdes durante mna chanada sincrona.

Esta mensagem ¢é rowlada como sendo do tipo
“fungdo” (necessério para encontrar a tabela de
enderecos de fungdes no servidor de nomes).

2. Usando o servidor de nomes, o DACS-
daemon determina onde a fuugéao 7nove estd lo-
calizada. O resultado dessa busca é o enderego de
rede da aplica¢do que registrou a fungio move no
servidor de nomes: robot@geppetio neste caso.

3. O DACS-daemon em caesar envia a
mensagem para o0 DACS-daemon na madquina
geppetto.

4. A aplicagdo robot é encontrada na tabela
de aplicagdes locais, assim a mensagem ¢ entregue
para a aplicagdo que prové a fungdo move. A fer-
ramenta DACS decodifica o enderego e os argu-
mentos da requisi¢do e chama a fungio apropria-
da. Apds o processamento da fungdo requisitada,
o resultado é recodificado e enderecado ao proces-
sa cliente, ou seja, net@caesar.

5. O resultado é enviado ao DACS-daemon
na méaquina geppetto.

6. Este daemon entrega a mensagem dire-
tamente ao daemon na mdaquina caesar. Note
que neste ponto nenhuma chamada ao servidor de
nomes é necessdria pois o endere¢o do processo
requisitante ja é conhecido.

7. Finalmente, o daemon cntrega a mensagem
a aplicagdo net onde o resultado ¢ decodificado e
processado pela aplicagdo requisitante. Os passos
1-7 s@o executados enquanto a rede CHT estiver
reproduzindo uma trajetdria.

-

4 Testes com o Sistema Proposto

A rede CHT f{oi previamente avaliada em tarefas
robdticas apenas por meio de simulagdes (Barreto
e Aradjo, 2000). O robd PUMA 3560 usado
oS testes a seguir pertence ao Laboratério de
Robética do Grupo de Neurcinformadtica da Uni-
versidade de Bielefeld. Alemanha. Para tanto.
urmna trajetéria com a forma aproximada de umn
oito (ou gravata borboleta!) foi gerada movendo-
se 0 brago do robd e gravando o Angulos das jun-
tas e a posigdo cartesiana resultante do efetu-
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ador du rabd em 7 posicdes (estados) ao longo
da trajetéria. Tste tipo de trajetéria tem sido
largamente usada en tarefas de reprodugio de
seqUéncias porque possui um estado que ocorre
duas vezes (¢t = 2 e t = 3), porém em diferen-
tes cuntextos temporais. A rede CHT foi entdo
treinada comn esta trajetdria e usada para contro-
lar 0 vobd PUMA conforme mostrado na Fig. 2.
As faixas de valores (em graus) para os angulos
das juntas sao os seguintes: 6, € [-120,43);
8, € [—140.-90]; 65 € [-5,90]; 64 € [-90,90);
v; € [-80.0] ¢ 65 € [30,150]. O contexto fixo,
Cp. 6 sempre feito igual ao estado final da tra-
Juetdria que. neste caso, é igual ao estado ini-
cial. Para o contexto temporal faz-se L = 2, daf
Cy(L.t) = {s(t —1),s(t — 2)}. Os pardmetros
para todos os testes sac os seguintes: M = 30,
¢ = 107% (treinamento), ¢ = 1 (reproducio),
KN =2, quar = 1, aypin =098, f = 100, 7 = 1,
e A = 0.8. Nota-se que, como 7 = 1, basta uma
unica apresentacao da trajetéria para a rede CHT
meniorizar 1odos 03 seus estados. Para os testes
yue se seguemn a velocidade do efetuador foi fixa-
da em 0.5 m/s, valor suficiente para mover o rabd
rapidamente ¢ ainda obter medidas precisas que
garantam o correto funcionamento do sistema de
controle como um todo.

A Fig. 4 moswra uma seqliéncia de posig¢des do
braco do robd PUMA 560 descrevendo a trajetéria
em vito. juntamente com o indice do neurdnio que
armazenou determinado estado da trajetdria e o
instante de tempo (posicio na seqgliéncia) corres-
poudente.  As seias indicam as transigdes de es-
tado que a rede CHT codificou. Toda posigdo al-
cangada pelo robd é medida por encoders 6ticos
montados em cada junta e entdo enviada para a
entrada da rede para dar continuidade ao proces-
30 de reproducgdo auténoma da trajetdria. Este
processo ¢ repetido até que o fim da trajetdria
tenha sido alcancada. Um polindmio é ajustado

& seqliéncia de posigdes angulares evocadas para
suavizar os movimentos do robd.

A Fig. 5 ilustra como a Eq. (3) resolve amn-
bigliidades. Nio importa que trecho da trajetdria
0 robd esteja atualmente executando, quando ele
alcanga o ponto de cruzamento (estado repetido
emt=2et=23) ele tern que decidir entre um
dos dois sentidos possiveis a seguir. Esta indecisdo
é resolvida através do uso do contexto temporal,
Cr(L,t), jd que o contexto Hxu ¢ u mesmo para
as duas ocorréncias desse estado.

Entrxda Seasorial Cunlextu Fixg Cuntextue Tempural

Figura 5. Resolvendo ambigiiidades duraute a reprodugio.

Conforme j4 menciouado, os estados s;=» ¢
St=5 S30 iguais, mas ocorrem em contextos dife-
rentes. Durante o treinamento estes estados foram
armazenados pelo neurénio j = 27 (Fig. 5). Du-
rante a reprodugdo, por exemplo, guando o robd
alcanga o estado Sg=s, a rede CHT tem que decidir
qual o préximo estado (sinal de controle) a ser en-
viado para o robd. Acompanhando as conexdes la-
terais na Fig. 3, asneurdnios j = 3 e j = 13530 o0s
candidatos a conter o proximo estado em seus ve-
tores de pesos. Como se trata de um estado repeti-
do dentro de uma mesma trajetdria e ndo um com-
partilhado com outra trajetdria, o contexto fixo
armazenado € 0 mesmo para os dois neurdnios.
Apenas o contexto temporal, Cp, contém infor-
magao que pode resolver a ambigliidade, ou seja.
os estados anteriores Co(5,L) = {s¢=4, Si=3}
Esta informacdo “casa™ perfeitamente com aquela
armazenada na porgdo inferior do vetor de pesos
wi, e, Cr(5,L) = wi. Assim. DI (t) < DT, (1),
implicando que y3 > 3. logo, o neurdnio j = 3
¢ escolhido e o préximo sinal.e controle é extraido
de w§ de acorda com a Eq. (6).

A Tabela 1ilustra o que acontece durante a re-
producdo da trajetéria armazenada quando o coun-
texto temporal é desconsiderado. Nesta tabela, os
neurdnios que armazenaram os 7 estados da tra-
jetdria durante o treinamento sao mostrados jun-
tamente com aqueles ativados durante a fase de
reproducdo. Nota-se que um erro ocorreu visto
que o0s neurdnios vencedores durante o treinamen-
to sao diferentes daqueles cvocados durante a re-
producdo. O significado fisico deste erro € que o
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robo nio consegue passar pelos dois lados da tra-
Jetdria emn oito, ficando preso em um deles.

L [ v=1 [ 1=2T1=3 | 1=4 Ct=5 | 1=6 | t=7 .
[T 17149 27 13 4 o 3 19

[R [ 19 27 3 19 1727 3 19
Fabela 1. Neurdnios vencedores u; ativados durante

treinamiento (T) e reproducao (R) sem contexto temporal.

5 DISCUSSAO E CONCLUSAO

Usualmente, trajetdrias sao “ensinada” ao robd
pelo método conhecido como walk-through, no
yual alguém guia o robd pela seqliéncia de posigGes
desejadas para o brago. Estas posi¢des sdo entdo
armazenadas na memoria do controlador (look-
up lable) para uma pousterior reprodugio (Fu et
al.. 1987). Este método consome bastante tempo
¢ é. muitas vezes. invidvel economicamente. Isto
ocorre em parte porque o robd fica fora de pro-
dugao durante o processo de armazenamento das
trajelorias e, em parte porque, a medida que as
trajerdrias tornam-se mais complexas, o(a) ope-
rador(a) enfrenta dificuldades para resolver sozi-
nlio potenciais ambigiiidades. Esta dltima causa
niotivou fortemente o desenvolvimento da rede
proposta neste artigo, visto que é altamente de-
sejdvel ter o processo de aprendizagem das tra-
Jetdrias complexas rdpido e com minima inter-
vencdo humana. LK importante notar também
que a rede CHT atua basicamente como elernento
planejador da trajetdria, fornecendo os valores de
referéucias (set-points) para o controlador inter-
no do robd a cada instante de tempo. O controle
dos atuadores (baixo nivel) é realizado, neste tra-
balho. usando controladores PID convencionais,
que 530 baseados na redugdo do erro de rastrea-
mento da trajetdria. Outros filosoflas de controle
e baixo nivel poderiam igualmente ser utilizadas
(por exemplo. fuzzy ou neural). Assim, a rede
CHT pode ser utilizada independentemente do
métado de controle em baixo nivel e do robd uti-
lizado.

O sinal de realimentagdo mosirado na Fig. 2
permite que a rede CHT funcione remota e au-
tonomaniente, a fim de monitorar, passo-a-passo,
v processo de reproducdo da trajetéria desejada.
A (rajetdria sé continua a ser reproduzida se o
sinal de realimentacao existir. Assim, caso algum
problema (por exemplo, colisio com obstdculos)
veorra durante a execugao do movimento, este ca-
winho de realimentagdo pode ser interrompido e
a reproducdo terminada. O método convencional
walk — through de aprendizagem e reprodugdo de
trajetdria nfo possul o caminho de realimentagao.
Neste caso, todos os estados da trajetdria sdo en-
viados para o buffer do controlador do robéd e
executados de uma dnica vez. Se algum proble-
ma ocorrer, tem-se que esperar pelo término da

execugao de toda a trajetdria para que alguma
agao fosse tomada ou entdo desligar e ligar nova-
mente o0 robd. Assimn, o esquema adotado neste
trabalho é um tipo de reprodugdo assistida de tro-
Jjetoria. Qutra propriedade da rede CHT que nao
estd presente no método convencional estd na sua
tolerdncia ao ruido e a falhas.

Além disso, o esquema proposto implemen-
ta um esquema de modelagem ¢ controle inverso
especializado (Prabhu e Garg, 1996) pois a rede
CHT é treinada para operar em regides especificas
do espago de trabalho do robd. Qutros sistemas
de controle em tempo real que usam redes auto-
organizdveis (Walter ¢ Schulten, 1993) implemen-
tam um esquema de modelagemn e controle inver-
so generalizado visto que estes tentam aprender
transformagdes sensério-miotoras globalmente. Se-
gundo Prabhu e Garg (1996), v esquema especia-
lizado tem treinamento mais rdpido e é mais pre-
ciso. Até onde se tem conheciimento, o sistema de
controle neural ndo-supervisionado e distribuido
pProposto neste artigo é o primeiro a implementar
em um robd real umm método inverso especializa-
do que leva automaticamente em consideragio as-
pectos seqlienciais (temporais) da tarefa robdtica.
Abordagens supervisionadas tém sido propostas
e apenas simuladas (Massone e Bizzi, 1989), mas
elas nao s2o adequadas para treinamento on —line
pois exigem um longo processo de treinamento.
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