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ABSTRACT

Given an associative and commutative ring R with unity and
two loops L and M with inverse property, we investigate con-
ditions under which the loop ring RL is isomorphic to RM. In
particular, we prove that GF(2). the field with two elements,
determines the five Moufang loops of order 24. Also we give a
description of the decomposition as a direct sum of simple alge-
bras of the loop algebra of the smallest Moufang loop over a field
with characteristic different from 2 and 3.
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1 Introduction

A loop is a set L together with a binary operation (¢g,h) — ¢.h for
which there is a two-sided identity and with the property that the left and
right multiplication maps determined by any element of L are one-one and
onto.

Over an associative and commutative ring R with identity, one can con-
struct the loop ring RL in the same way we construct a group ring.

A loop L is said to be a loop with inverse property, or a I.P. loop if for
all z,y € L the following identities hold:

7l (zy) =y
(&5).y~" = 2.

The isomorphism problem for loop ringsis a version for loops of a classical
question set by R.M. Thrall in 1947 for group rings. which here we may
roughly state as follows: given a ring R and two loops L and M when will
the ring isomorphism RL = RM imply the loop isomorphism L = M 7 In
an affirmative answer we are used to saying that the ring R determines the
loop L.

Some answers are given in recent years for certain classes of loops (see,
(11], (12], (1], [2], [3], [4]). In this paper we prove some results for loop rings
of 1.P. loops.

2 Background and Notation

The (loop) commutator of two elements @ and y of a loop L is the element
in L, denoted by (z,y), such that 2y = (yz).(2,y). The subloop generated
by all commutators of a loop L is called its commutator subloop and we will
denote it by L'

The (loop) associator of three elements 2, y and z of a loop L is the ele-
ment in L. denoted by (z,y.z), such that (2y)z = (2(yz)).(v,y.z). The
subloop generated by all associators of a loop L is called its associator
subloop and we will denote it by A(L).

We observe that if L is a I.P. loop then for all 2, y and = in L. we have
that

(z,y) = (y2)~".(2y)
(z,9,2) = ((zy)2) " (2(¥=))
A subloop N of a loop L is said to be a normal subloop of L if for
all 2 and y in L we have that z(yN) = (a2y)N
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(Na2)y = N(ay)
zN = Nz
If N is a normal subloop of a loop L we can define the quocient loop N

If R is an associative and commutative ring with identity and N is a

y . L
normal subloop of a loop L, the natural epimorphism L — v extends to

a ring epimorphism RL — R [—f—l] whose kernel, denoted Ag(L : N), is the

ideal of RL generated by elements of the form 1 —n. n € N. In the special
case L = N, the homomorphism above described maps }" a,g € RL to
S a, € R. This map called the augmentation map , has a kernel written
Ag(L) rather than Ag(L : L), which is known as the augmentation ideal of
RL.

From these definitions it follows that for a normal subloop N of L,
L ] RL

Ar(L:N)= RL.Ar(N) and R[Xf &

~ Ag(L:N)

In [6], R.H. Bruck showed that for any loop L. the subloop B(L) gener-
ated by all associators and all commutators of L is a normal subloop. We
will call B(L), the associator-commutator subloop of L .

Then for 1.P. loops we can state the following proposition which gener-
alizes a result by D. Coleman [9] for group rings.

Proposition 2.1 Let R be an associative and commutative ring with iden-
tity. Let L and M be I.P. loops with associator-commutator subloops B(L)

. M
and B( M) respectively. Then RL = RM umplies that R [E({JL_)] ~R [E(—H—)]
p : : L b &
Proof: Consider the natural epimorphism L — B(L) and its ring exten-

sion RL — R [B(L)] whose kernel is Ag(L : B(L)) = RL.Ar(B(L)).

For all a,/3,vyin RL,let [RL, RL] denote the left ideal of RL generated
by the elements of the form a/J — Ja, and [RL, RL, RL] denote the left ideal
of RL generated by the elements of the form a(j37y) - (afi)y.

We claim that Ag(L : B(L)) = [RL,RL]+ [RL,RL,RL).

In fact, [RL, RL] is generated over RL by elements of the form 2y — ya
with 2,y in L and, since 2y —yx = a2y —2y.(y,2) = 2y.(1 = (y.2)), it follows
that [RL.RL) C Ar(L : B(L)). In the same way, [RL. RL. RL) is generated

over RL by elements of the form a(yz)—(ay)z with x,yand = in L and. since
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z(yz) = (zy)z = 2(y2) — (2(y2))(2,9,2) = (2(y2)).(1 = (2, y. 2)). it follows
that [RL, RL,RL) C Ap(L : B(L)). Hence [RL,RL) + [RL,RL,RL} C
ARr(L: B(L)).

On the other hand, the equality 1 — gh = (1 — ¢) 4+ ¢.(1 — /) for all ¢, h
in L shows that Ar(L : B(L)) is generated over RL by elements of the form
1-(z,y)or1l—(a,y,z)with z,y and z in L.

Since 1 — (2,y) = 1 = (yx)~'.(2y) = (ya)~'.(y2 — 2y) and. since 1 —
(z,y,2) = 1= ((2y)2) " (2(y2)) = ((zy)2) " [2(yz) = (zy)z2), it’s easy to see
that Ar(L : B(L)) C [RL,RL]+ [RL,RL,RL).

Now given an isommphism ¢:RL — RM, we have that
@(Agr(L : B(L) ¢([RL,RL)+ [RL, RL RL]) =
[RM,RM] + [RL RL RL] = Agr(M : B(M)). Consequently. ,» induces
an isomorphism between the corresponding factor rings and finallv we have
that

L RL - RM

- - N M
R[B(L)J T Ar(L:B(L)) T Ar(M :B(M)) ~ [Bw)]

is an abelian group we can state the following

L
Observing that B
Corollary 2.2 Let Q be the rational field. Let L and M be 1.P. loops
with associator-commutator subloops B(L) and B(M) respectively. Then

L M
L= ] es th & .
Q QM implies that B(L) - B

M

B L)] Q [b’(.\])
sult follows by a classical result by S.Perlis and G.L.Walker [13]. D

Proof: ¥From proposition 2.1 we have Q { ] The re-

Corollary 2.3 Let F be a prime field with characteristic p. Let L and
M be I.P. loops with associator-commutator subloops B(L) and B(M), re-

is a p-group. Then FL = FM implies that

spectively, such that

B(L)
L . M
B(L)  B(M)’
P F ition 2.1 I ['[—————L ] o 1’[ i J The
¥ . . . ! 2. o ave [ -~ . > re-
roof: From proposition we lave B BV
sult follows by a classical result by W.E.Deskins [10. Theorem 8. D

A loop L is said to be a Moufang loop if for all 2, y.z in L one of the
following equivalent Moufang identities holds:
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(xy)(zz) = (2(y
((z2)y)z = z(af
((zy)a)z = z(y(22))

According to [14, Theorem 1V.1.4], Moufang loops are P.I. loops, and
Lagrange’s theorem holds for them [7].

In [8], O. Chein and E.G. Goodaire defined RA2 loops as being loops
whose loop ring over any field of characteristic 2 is an alternative nonasso-
ciative ring. There they proved that RA2 loops are Moufang loops. They
also proved (Corollary 2.12, p.667) that for any RA2 loop L, A(L) C L".
Then, in this case B(L) = L.

As a particular case of corollary 2.2, we can state the following

Corollary 2.4 Let Q be the rational field and L and M be RA2 loops such
M

ik

And as a particular case of corollary 2.3, we can state the following

Corollary 2.5 Let F be a prime field with characteristic p. Let L and M
M

L
be RA2 loops such that o is a p-group. Then FL = FM wmplies i = Tk

In [7], O. Chein classified all nonassociative Moufang loops whose order
is smaller than 32. There are 5 nonassociative Moufang loops of order 24,
which we have displayed in table 1. using the notation for loops and groups

as in (7).
L B(L) -I— RA2 loop!
B(L)
Iy = ]UM(D(,Z) ('3 CQ X CQ X CQ yes
Ly = Myy(G12,Cax Cy) | (3 Ca x Cy yes
L3 = A424(442) Aq ('-2 no
L4 = .’u“(G]z,?) (V(; ('2 X (1-2 no
L5 = Af)q((‘;lz,Q) (‘(; ('2 X ('2 no

Table 1

In the presence of corollary 2.3. table 1 shows us that to study the
isomorphism problem for those 5 loops over the field F' = G'F(2). the field
with 2 elements. we just need to study it for the two last loops of the
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table. Using a computer program, we count the non-null elements in the
respective loop algebra whose square is null. In FL; we have found 67,583
such elements and in F'Ls we have found 22,527 such elements. Then we
can establish the following

Corollary 2.6 The field GF(2) deternunes all nonassociative Moufang loops
of order 24.

3 The Semisimple Case

When the characteristic of a field F' does not divide the order of a loop L,
R.H.Bruckin [5, Th.7A, p.160] shows that the loop algebra F'L is semisimple.
In this section we will consider this case.

We begin with a result which holds for loop rings in general and it is
similar to one by D.Coleman for group rings in [9].

Proposition 3.1 Let N be a finite normal subloop of a loop L and R be
an associative and commutative ring with identity such that |N| s invertible

mn R THCH
’)! ~J ’? 2 !l : ‘A'
[]\/] @ R( )

Proof: Since |N| is invertible in R, we can define the loop ring element

N = m Z n. It is easy to prove that N is a central idempotent element
& neN
in RL. and we have that RL = RLN@ RL.(1- N).

Firstly we observe that RL.(1 = N) C Ag(L : N). Since Ar(L: N) =
RL.AR(N) and Ag(N) is generated by elements of the form 1 —n. n € N.
the equalities 1 —n = (1-mn).(1 - N)forallne N imply that the reverse
inclusion holds. So we have that RL.(1 = N)= Ap(L:N).

Now we observe that

- RL RL v
RL.N = = . %1?[—.]
RL(1-N) Ar(L:N) A

O

Proposition 3.2 Let L be an I.P. loop and B(L) be its associator-commutator
subloop. Let R be an associative and commutative ring with identity ring
such that |B(L)| is invertible in R. Suppose I and J are two-sided 1deals of
RL with RL = 1@ J. Then I is associative and commutative if and only if
Jd 2 AL : B{L}).
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RL . o .
Proof: If I = —— is associative and commutative, then we have that

i)Forallz and yin L, 2y —yx = 2y —zy.(y,2) = 2y.(1 = (y.2)) € J, which
implies that (zy)~'.[2y.(1 - (y,2))] =1 - (y,2) € J.

ii) For all z, y and 2z in L, 2(yz) — (2y)z = a(y ) = (2(yz)) (2, y,2) =
(z(y2))-(1—(2,y,2)) € J, which implies that (2(y=))~! [(z 2).(1=(2,y,2))] =
1-(z,y,2)€J.

From i) and ii) we conclude that Ag(L: B(L)) C J.

On the other hand, if / D Ar(L : B(L)), from

L RL I1pJ J
NENN N N R
B(L) AR(L: B(L)) Ag(L : B(L)) @AR(L:B(L))
conclude that I is associative and commutative. O

As a direct consequence of the proposition 3.2, we have the following
results:

Theorem 3.3 Let L and M be I.P. loops with associator-commutator subloops
B(L) and B(M) respectively. Let R be an associative and commutative
ring with identity such that |B(L)| and |B(M)| are mnvertible in R. Then

RL = RM if and only if R [_B%LT)] =~ R [%llﬁ])] and Ar(L : B(L)) =
Agr(M : B(M)).

Corollary 3.4 Let L and M be RA2 loops with commutator subloops L' and
M’ respectively. Let F' be a field such that char(F) | |L|. Then FL = FM
: R M

if and only if F [P] > F [F} and Ap(L: L") = Ap(M : M').

Corollary 3.5 Let L and M be RA?2 loops with commutator subloops L'
and M' respectively. Let Q be the rational field. Then QL = QM if and

only zf£ = ]CT! and Aq(L: L") = AqQ(M : M').
4 The Structure of Semisimple Loop Algebras of
RA2 Loops

For RA2 loops, proposition 3.2 becomes

Proposition 4.1 Let L be an RA2 loop and L' be its commutator subloop.
Let R be an associative and commutative ring with identity ring such that
|L'| 1s invertible in R. Supposc 1 and J are two-sided ideals of RL with
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RL = I@J. Then I is associative and commutative if and only if J 5
Ap(L:L").

Then we can establish the following

Theorem 4.2 Let L be an RA2 loop with commutator subloop L'. Let F
be a field such that the characteristic of F does not divide the order of L.
Then the semisimple loop algebra FL decomposcs as a dirccl sunof simple
components which are extensions of F' by a primilive root of unity or sumple
algebras that are not commutative nor associative.

&
Proof. From proposition 3.1 we have that FIL = F [—,J @ Ar(L

L L .
Since 7 is an abelian group, then F [ ] @[ (&), where & s a 4.
primitive root of unity, = 1,...,n, by a classical xom]t by S. Perlis and G.L.

Walker [13] for commutative group algebras.
Since F'L is semisimple, then Ap(L : L") is also semisimple, and we can
t

write Ap(L: L") = @A,. where A, is a simple algebra for 1 = | —

1=1
From proposition 4.1, we have that A, is neither commutative nor asso-

ciative. 0
O. Chein has proved in [7, Th. 1, p.35) the following result about Mo-
ufang loops, which we will need in the sequence.

Theorem 4.3 If L is a nonassociative Moufang loop for which every min-
imal set of generators contains an elcment of order 2. then there exists a
nonabelian group G, and an element u of order 2 in L. such that each ele-
ment of L may be uniquely expressed in the form g.u®. wherc g € G.a = 0,1
and the product of two elements of L ts given by

g91-(92.1) = (9200 ).u

(91.u).92 = (919271 )u

(91-u).(g2.u) = g2 ¢
Conversely, given any nonabelian group G, the loop L constructed as indi-
cated above is a nonassociative Moufang loop.

Using the symmetric group S3 of order 6 we can construct, as in theo-
rem 4.3, the loop L = M;4(S53,2), the smallest Moufang loop according to
[7], which is also the smallest RA2 loop.
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Labeling G = S3 = {1,92,93,94.95, 96} and calling v = g7, g2.u = gs,
g3.U = g9, ga-U = §10, §5.U = gn and gg.u = g1, we have the following loop
table for L:

1 g2 93 94 95 Ge | 97 9s 9o G0 9n 92
92 93 1 95 g6 9a | 9s 99 97 912 Yo Yn
g3 1 g2 g6 94 95 | 99 91 9z gn Gz Yo
ga 96 95 1 g3 G2 1Go yn G2 g7 Ys  Yv
gs 94 96 92 1 g3 |gn g2 G Yo 97 98
g6 95 94 93 g2 1 g2 g0 g 98 Y9 Y7
T 9o 98 %o 9n G2 | 1L g3 g2 91 Y5 Yo

7 99 9u 912 G| 92 1 93 9 Y1 Y5
99 9s 97 912 Y10 9|93 92 1 95 Y6 Y4
gio 91 G2 97 g9 9s | 91 G 95 1 92 g3
g 912 %o 98 97 99 | 95 94 96 93 1 g
Gi2 G0 9 99 9gs 97 | 96 95 91 92 g3 1

From this table it is easy to see that for L = M;,(53,2) it holds that
3
{1,92,93} = C3, the cyclic group of order 3 and = ~ (') x ("5, the
Klein group.

Let F be a field and suppose that the characteristic of I is different
from 2 and 3. Then the loop algebra FL is semisimple. We will show the
decomposition of F'L as a direct sum of simple algebras.

Applying proposition 3.1 for N = L' we have

L
FL2F [—E] @AF(L: L) = FlCox Ci) AF(L: L) =
2 FRFOF@FrPAr(L: L)
We are going to exhibit a F-basis for the algebra Ap(L : L').
Define

fU:I—L’: —%(J+92+95)“‘(2* 92 = 93)
hi=(g )lf=r/z—y.;
f2—94f=3(2‘/1‘9' 96)

fs=(92-¢ J)lg o =95 — 96
f4”.‘/zf—§(2J"—Ja 99)

fs = ((92—93).97)-fo = g8 — 99
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1
fo = g10.fo = 5-(2910 = 911 = 12)
fr=((92 = 93)-910)-fo = 912 — g1
It’s easy to see that {f,, f1,..., f} is linearly independent and generates
Ap(L : L") over F. Its multiplication table is

fo hH fa f3 fs fs Je fr
fol B i fa s fa fs Je fq
hlh =3f. fs =3fs fs =3f f- -3f
L2 -fs fo -H fo -fr fi —fs
falfs 3f; N 3f, -fr =3fe —-fs -3Lu
fi | fa = fs fo a7 Jo ot ) f2 ’fff
s\ fs 3.fs —fz =3fs fi 3, —fs -3
f(s fe —f." Ja —~ifs f2 —fs Jo =Ji
follz 36 —fs =3fs ~fs =3 NH 3)

The inequality fo.fi = —f3 # fi.f» = f3 shows that Ap(L : L') is
not commutative and the inequality (f, + f4).[(f2 4 fa).f5)] = 2[3 + 2fs #
(fa+ fa)-(fo+ fa)]-fs = 2fs — 2f3 shows that Ap(L : L") is not associative.
A direct calculation shows that Ap(L : L) is simple. o
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