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1 Introduction 

A loop is a set L together with a binary operatiou (g, h) -- g.h for 
which there is a two-sided identity and with the property that the left and 
right multiplication maps determined by any element of L are one-one and 
onto. 

Over an associative and commutative ring R with identity, one can con­ 
struct the loop ring RL in the same way we construct a. group ring. 

A loop L is said to be a loop with inuerse propertsj, or a J.P. loop if for 
all x, y E L the following identities hold: 

x-1 .(xy) = y 
(xy).y-1 = x. 

The isotnorphism probleni for loop rings is a version for loops of a classical 
question set by R.M. Thrall in 1947 for group rings, which here we may 
roughly state as follows: given a. ring R and two loops L and M when will 
the ring isomorphisrn RL ==' RM irnply the loop isornorphisrn L ==' M ? ]n 
an affirmative answer we are used to saying that the ring R deterniines the 
loop L. 

Sorne answers are given in recent years for certa.in classes of loops (see , 
[11], [12], [l], [2], [3], [4]). In this paper we prove some results for loop rings 
of I.P. loops. 

2 Background and N otation 

The (loop) cominutator of two elements x and y of a loop L is the elernent 
in L, denoted by (x,y), such that xy = (yx).(x,y). The subloop generated 
by all cornrnutators of a. loop L is ca.lled its commuiaior subloop and we will 
denote it by L'. 

The (loop} associutor of three elements x, y and z of a. loop L is the ele­ 
rnen tin L. denoted by (x,y,z), such tha.t (:i:y)z = (:i:(yz)).(x,y.z). The 
subloop generated by all associators of a. loop L is called its ossociator 
subloop and we will denote it by A( L ). 

We observe that if L is a I.P. loop then for all .1:, y and ::: 111 L. we have 
that 

(x,y) = (yx)-1.(.i·y) 
(x,y,z) = ((xy)z)-1.(:r(yz)). 

A subloop N of a loop L is said to be a nornial suliloop of L if for 
all x and y in L we have tha.t x(yN) = (.7:y )N 
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(Nx)y = N(xy) 
xN = Nx . 

. . L If N is a normal su bloop of a loop L we can define the quocteni loop N . 
If R is an associative and commutative ring with identity and .N is a. 

normal subloop of a loop L, the na.tura.I epimorphism L - ~ extends to 

a ring epimorphism RL--. R [.~'] whose kernel, denoted LlR(L: 1\1 ), is the 
ideal of RL generated by elements of the form 1 - n, n E J\'. In the special 
case L = N, the hornornorphism a.bove described maps L o9g E RL to 
L o:9 E R. This map called the auqmentation map , has a kernel written 
b.R(L) rather than b.R(L: L), which is known as the au.qnieniaiion idealof 
RL. 

From these definitions it follows tha.t for a. norma.l subloop N of L, 

R [!:_] !::::; RL 
N - LlR(L:N) 

In [6], R.H. Bruck showed that for any loop L. the subloop B{L) gener­ 
ated by all associators and all commuta.tors of L is a. norrual subloop. We 
will call B(L ), the associator-conunuiator subloop of L . 

Then for I.P. loops we can state the following proposi tion which gener­ 
alizes a result by D. Coleman [9] for group rings. 

Proposition 2.1 Let R be an associative and commutative ring with ulen­ 
tity. Let Land M be l.P. loops with associaior-conunutator subloops B(L) 

andB(M) respectivelsj. ThenRL ~ RM implies tluu R [BtL)] ~ R [B;;f)]· 

Proo]: Consider the natural epirnorphism L - _L_ and its ring exten­ 
B( L) 

sion RL-+ R [BtL)] whose keruel is b.R(L: B{L)) = RL.;;:.R(B(L)). 

For all a,/3,1 in RL, let [RL,RL] denote the left ideal of RL genera.ted 
by the elements of the form o·/3- /30, and [RL, RL, RL] denote the left ideal 
of RL genera.ted by the elernen ts of the form o:(f3~r) - ( o,(3), . 

V\ie cla.im that b.R(L: B(L)) = [RL,RL]+ [RL,RL,RL]. 
In fact, [RL, RL] is genera.ted over RL by elements of the form xy - y.T 

with :i:, y in Land, since xy-yx = xy-xy.(y,x) = xy.(l-(y,x)), it follows 
tha.t [RL, RL] C .6.R( L : B( L) ). In the sa.me wa.y, [ RL. RL RL] is generated 
over RL by elements of the forru :L"(y.:)-(.1:y).: with .t,y and ; in Land. since 
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x(yz)- (xy)z = x(yz)- (x(yz)).(x,y,z) = (.r(y.:-)).(1- (.1:, y. z)). it follows 
that [RL, RL, RL] C t:..R(L : B(L )). Hence [RL, RL] + [RL, RL, RL] c 
t:..R(L: B(L)). 

On the other hand , the equality I - gh = ( 1 - g) + y.( J - h) for all g, h 
in L shows that t:..R(L: B(L)) is generated over RL by elemen ts of the form 
1- (x,y) or 1- (x,y,z) with x,y and z in L. 

Since 1 - (x,y) = 1- (yx)-1.(xy) = (y:rt1.(y:r - xy) and. since 1- 
(x,y,z) = 1-((.ry)zt1.(x(yz)) = ((xy)z)-1.[x(yz)-(xy)z], it's easy to see 
that t:..R(L: B(L)) C [RL, RL] + [RL, RL, RL]. 

Now given an isomorphism 'P: RL __, RM, we have that 
ip(t:..R(L : B(L )) ) = cp([RL, RL] + [RL, RL, RL]) = 
[RM,RM] + [RL,RL,RL] = t:..R(M : B(M)). Consequently . .p induces 
an isomorphisrn between the corresponding factor ri11gs and finally we have 
that 

R[-L-]~ RL ~ RM ~R[~] 
B(L) - t:..R(L: B(L)) - t:..R(M: B(M)) - B(M) 

Observing that BtL) is an abelian group we can state the following 

Corollary 2.2 Let Q be the ratioiial field. Lel L and M be J. P. loop s 
with associaior-commutator subloops B( L) and B( M) respectivelsj. Then 

QL ,..._, Q ~1 . 1 · I L ,..._, M = 11 imp ies t iat B( L) = B( M). 

Proof: From proposition 2.1 we have Q [-L-] ~ Q [B.H ] . There- B(L) (M) 
sult Iollows by a classical result by S.Perlis and G.L.Walker [13]. D 

Corollary 2.3 Let F be a pritne field with cbaracterisiic p. Let L and 
M be J.P. loops with associatot-commutator subloops B(L) and B(M), re- 

spectively, such that _L_ is a p-grnup. Then F L ~ F M iinplies thal 
B(L) 

D 

_L_~~ 
B(L)- B(M) 

Pmof: From propositiou 2.1 we have F [BtL)] ~ F [Bt.~J J. There- 
sult follows by a classical result by W.E.Deski11:, [10. Theorcm >-;]. D 

A loop L is said to be a Moufang loop if for all .T, !J . .:- in L one of the 
following equivalent Moufang identities holds: 
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(:z:y)(zx) = (x(yz)).1: 
((zx)y)x = z(x(yx)) 
((xy)x)z = x(y(xz)) 

According to [14, Theorem IV.1.4], Moufang loops are P.I. loops, and 
Lagrange's theorern holds for thern [7]. 

In [8], 0. Chein and E.G. Goodaire defined RA2 loops as being loops 
whose )oop ring over any field of characteristic 2 is an alt.ern a ti ve non asso­ 
ciative ring. There they proved that RA 2 loops a.re Moufang loops. They 
also proved (Corollary 2.12, p.667) that for any RA2 loop L, .4(L) C L'. 
Then , in this case B(L) = L'. 

As a particular case of corollary 2.2, we can state the following 

Corollary 2.4 Let Q be tlie raiional field and L and M be RA 2 loops such 
L M 

that QL ==' QM. Then L' ==' M'. 

And as a particular case of corollary 2.3, we can state the following 

Corollary 2.5 Let F be a prune field with choracietisiic p. Lei L and M 
L L M 

be RA 2 loops sucli that L' is a p-group. Then F L ==' F M implies L' ==' M'. 

In [7], 0. Chein classified all nonassociative Moufang loops whose order 
is smaller than 32. There are 5 nonassociative Moufang loops of order 24, 
which we have displayed in tab]e 1, using the notation for loops and groups 
as in [7]. 

I B(L) I BtL) 
L1 = M24(D6, 2) C3 C2 x C2 x C2 YfS 
L2 = M24( G12, C2 x C4) C'3 C2 x C4 YE-~ 
L3 = .M24(A4, 2) A4 C2 110 

L4 = M24(C12, 2) c6 C2 x C2 no 
Ls = M24(G12,Q) c6 C'2 x C2 110 

I RA:: loopl I 

Tablt l 

In the presence of corollary 2.3. table 1 shows u~ that to st udy the 
isornorphism problern for those 5 loops over the field F = GF( 2 ). the field 
with 2 elernent.. we just need to study it for the two last loops of the 
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table. Using a computer program , we count the non-null elements in the 
respective loop algebra whose square is null. In FL4 we h a ve found 67,583 
such elements and in F L5 we have found 22,527 such elements. Then we 
can establish the following 

Corollary 2.6 The field GF(2) tletermines all nonassociotice Moufcmg loops 
of order 24. 

3 The Semisimple Case 

When the characteristic of a field F does not di vide the ordcr of a loop L, 
R.H.Bruck in [5, Th.7 A, p.160] shows that the loop algebra F L is semisirn ple. 
In this section we will consider this case. 

We begin with a result which holds for loop rings in general and it is 
sirnilar to one by D.Coleman for group rings in [9]. 

Proposition 3.1 Lei N be a finitt nornuil subloop of a loop L aiul R be 
an associative and commuiaiioe ring with identity sucli tluit 11\'I is innc rtible 
in R. Then 

Proo]: Since IN I is invertible in R, we can define the loop ring element 

N= -1-. L n. It is easy to prove t.hat N is a central idempotent element 
INI nEN 

in RL, and we have that RL = ut.» EB RL.( 1 - N). 
Firstlv we observe that RL.( 1 - N) C !:).R(L : N). Since .6.R( L : .!V) = 

RL ./:;:,.R( N) and .6.R( N) is generated hy elements of the form 1 - 11, n E N. 
the equalities 1 - n = (l - n).(1 - N) for all n E .'\' irn ply that the reverse 
inclusion holds. So we have that RL.( 1 - N)= !:).R( L : ./\' ). 

Now we observe that 

RL. F:,· ~ RL _ = RL ~ R [~] 
. RL.(1- N) :::.R(L: !v·) /\' 

D 

Proposition 3.2 Let L be an J. P. loop and B( L) be its associator-commutator 
subloop. Let R be an associative and commuuitiue 1'ing with idcntity ruu] 
sucli that IB(L)I is inoertible in R. Suppo~e J and J are tu.o-sid ed ideals of 
RL with RL = J EB J. Tlien J is associatiue and commvloti11c if and only if 
J=:, t..R(L: B(L)). 
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Prnof: If I = ~L is associative and commutative, then we have that 

i) For all x and y in L. xy - yx = xy - xy.(y, x)= xy.( 1 - ( y. :i:)) E J, which 
implies that (xy)-1.[xy.(l - (y,x))] = 1- (y,x) E J. 

ii) For all x, y and z in L, x(yz) - (xy)z = x(yz) - (:i:(yz)).(.c,y,z) = 
( x(yz) ).( 1-( x, y, z)) E J, which implies that ( :i:( yz ))-1 .[ ( .t·( y .:- ) ).( J -( .T, y, z) )] = 
l-(x,y,z)EJ. 

From i) and ii) we conclude that !:::..R(L: B(L)) C .J. 
On the other hand, if J:; t::..R(L: B(L)), from 

[ 
L ] ,...., RL I EB J '"" ffi J 

R B(L) = tlR(L:B(L)) = tlR(L:B(L)) =lr:;r; t::,.R(L:B(L))'wecan 
conclude that I is associative and commutative. D 

As a direct consequence of the proposition 3.2, we have the Iollowing 
results: 

Theorem 3.3 Let L and M be I.P. loops with associaior-commutator subloops 
B(L) and B(M) respectiuelsj. Let R be an associatioe and commutatioe 
rinq with identity sucli tliai IB( L )I and IB( M )I are inuertible in R. Thrn. 

RL = RM if and only if R [-L-] = R [_J!_] and !::.R(L : B(L)) = 
B(L) B(M) 

tlR(M: B(M)). 

Corollary 3.4 Let L and M be RA 2 loops with commuiaior subloops L' and 
M' respectively. Let F be a fielcl sucli ihat char( F) r ILI, Thrn F L = F M 

if and only if F [f,] = F [;;,] and !::.p(L: L') = !:::..p(M: M'). 

Corollary 3.5 Let L and M be RA 2 loops u-itli conunuioior subloop» L' 
and M' respectively. Ltt Q be tlic tuiioual jield. Thu, QL = QM if and 

L A1 
only if L' = M' and !:::..Q(L: L') = t::..q(M: M'). 

4 The Structure of Semisimple Loop Algebras of 
RA2 Loops 

For RA 2 loops, proposi tion 3.2 becomes 

Proposition 4.1 Let L be an RA 2 loop and L' be iis commuiuior subloop, 
Let R be an associaiive and conunutative ruu] with ideniits] ring such. tluit 
IL'I is itivertible in R. Suppose J «iul J <11·t iuio-sidcd iileals of RL with 
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RL = I EB J. Then J is associaiice and commutoti1·e if a iul on!y if J =i 
~R(L: L'). 

Then we can estab1ish the following 

Theorem 4.2 Let L be an RA 2 loop with commutaior subloop L'. Let F 
be a field such that the characieristic of F tloes not diuu]« the ortlc r of L. 
Then the semisimple loop alqebr« F L decompose» "~ o dirc ct sutn of situp!» 
cotnponenis which are ext.ensions of F by o primitii,e root of u urt i] 01· simplr 
alqebras that are not commutuiioe 1101 aswciati1)c. 

Proo]: From proposition 3.1 we have t h at FL == F [J,] EB~r(L: L'). 
Since f, is an abelian group, t.hen F [f,] == ~F((,). where (,isa. i1h- 

primitive root of unity, i = 1, ... , n, by a classical result bv S. Perlis and G .L. 
Walker [13] for cornmutative group algebras. 

Since FL is semisimple, then ~p(L: L') is also semisimplc. and ,,·e can 
t 

write ~F( L : L') == E9 A,. where A, is a simple algebra for i = J. .... I. 
z=l 

From proposition 4.1, we have t ha.t A, is neit hcr comrnutati,·e nor asso- 
ciative. D 

0. Chein has proved in [7, Th. 1, p.3.5] the followinj; result about Mo 
ufang loops, which we will need in the sequence. 

Theorem 4.3 If L is a nonassociaiiue Moufany Ioop for which every min­ 
imal set of qeiierators coiitains an elcme ni of ottler 2. t lu. n there exisis o 
nonabelian qroup G, and an element u of order 2 in L. such tluit eacli ele­ 
tneni of L may be uniquelu expressed in tlie jorm g.11°. uilicrc g E G. o = 0, l. 
and tlu product of lwo dontn.t., of L i, girrn by 

91-(92.u) = (9291 ).u 
(91.u).g2 = (9192-1 ).11 
(91.u).(g2.u) = 92-191 

Conversely, 9iven any nonabelian ljT'OUJ) G, the loop L constnicted o::; indi- 
cated above is a nonassociative Moufang loop. 

Using the symmetric group 5'3 of order 6 we can const ruct, as in theo­ 
rem 4.3, the loop L = M12(S3, 2), the srnallest Moufang loop according to 
[7], which is also the srnallest R.4 2 loop. 

---- 
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Labeling G = 83 = {l,92,93,!J4,.95,!J6} and calling 11, = !J;, !}2,11 = 98, 
93.u = 99, 94.u = 910, 95.u = 911 and 96-u = 912, \\'e have the following !oOJ) 
table for L: 

1 92 93 94 95 96 9i 98 !}9 910 911 91 2 

92 93 1 95 96 94 98 99 97 912 910 911 

93 1 92 96 94 95 99 97 s» !}11 912 91 u 

94 96 95 1 93 92 91 u 91 1 ,</ I 2 97 ,<J~ ,</':) 

95 94 96 92 1 93 911 912 910 !}9 9i 9s 

96 95 94 93 92 1 912 910 ,</]] 98 ,<}9 97 

97 99 9s 91u 9l1 912 1 93 92 94 9,, 9ti 

9s 97 99 911 912 910 92 1 93 96 94 95 

99 9s 97 912 910 911 93 92 1 9, 96 94 

910 911 912 97 99 98 94 96 95 1 92 93 

9l1 912 910 98 97 99 9s 94 96 93 1 92 

912 910 911 99 98 97 96 95 94 92 93 1 

From this table it is easy to see that for L = M12(.5'3,2) it holds that 
L 

L' = { 1, 92, 93} ~ C3, the cyclic group of order 3 and L' ~ C2 X C2. the 
Klein group. 

Let F be a field and suppose that the characteristic of F is di:fferent 
from 2 and 3. Then the loop algebra F L is semisirnple. We will show the 
decomposition of F L as a direct sum of simple algebras. 

Applying proposition 3.1 for N = L' we have 

FL ~ F [f,] ffi6p(L: L') ~ F[C'2 x C2]EB6F(L: L') ~ 
~ F EB F EB F EB F ffi j.p( L : L') 

We are going to exhibit a F-basis for the algebra !:!.F(L: L'), 
Define 
- 1 ] 

fv = l - L' = l - 3.(1 + 92 + !JJ) = 3.(2 - 92 - !JJ) 

f1 = (92 - 9J).fv = 91 - 93 
1 h = 94-fv = 3.(29-1 - 95 - 96) 

h = (92 - 93).94.fv = 95 - 96 
1 

f4 = 97-fo = 3.(291 - 9s - 99) 

fs = ((92 - 93).9,).fv = 98 - 99 
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1 f5 = 910.fo = 3.(2g10 - Yll - 912) 
h = ((92 - 93)-910).fo = 912 - 91l 

lt's easy to see that {!0, fi, ... ,h} is linearly independent and generates 
llF(L : L') over F. Its multiplication table is 

fo fi h h f4 fs !6 h 
fo fo !1 h h f4 fs !6 h 
.f1 .f1 -3.f, h -3h Is -3(., h -3 fo 
h h -h fo -!1 !6 -h f4 - fc ·) 

h h 3h !1 s: -h -3!6 -fs -3{., 
f4 f4 - fs flj -h fu - f1 h - fa 
fs Is 3.f~ -h -3Jlj !1 j i. -h -:1,_f 2 
!6 !6 -h f4 -/5 h -h fu -fi 
h h 3.f5 -fs -3f4 -h -3h h 3/,, 

The inequality h.f1 = - h -/- fi .h = h shows th at 6F( L : L') is 
not commutative and the inequaliiy (!2 + f4).[( h + f4 ).fs)] = 2h + 2/s -/­ 
[(h + f4 ).( h + f4 )] -Is = 2fs - 2h shows that 6r( L : L') is not associ a.ti ve. 
A direct calculation shows that 6.F(L: L') is siui ple. D 
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