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ABSTRACT: The chemical functionalization of cellulose nanofibrils (CNFs) was carried out using 2-aminoethyl hydrogen sulfate
as the reagent under various experimental conditions via a bimolecular nucleophilic substitution (SN2) reaction. The functionalized
CNFs were characterized by Fourier transform infrared spectroscopy-attenuated total reflectance. The results indicate that the
chemical modification was successful, as evidenced by the presence of a band at 1540 cm−1, corresponding to the N−H bond of the
amine group. Elemental analysis revealed a nitrogen content of 0.45%, and the degree of substitution was calculated to be 0.053
under the optimal reaction conditions. Atomic force microscopy analysis showed no significant changes in the morphology of the
CNFs. X-ray diffraction patterns demonstrated a decrease in the crystallinity index, from 80.8% to 71.8%. Thermogravimetric
analysis showed a slight reduction in thermal stability (onset temperature decreased from 229.4 to 227.5 °C) for the modified CNFs
compared to the unmodified samples. Differential scanning calorimetry results indicated no significant effect of the modification on
thermal behavior, with both modified and unmodified samples displaying similar thermal profiles, although the modified samples
exhibited slightly higher thermal stability.

■ INTRODUCTION

The quest to develop environmentally friendly functional
materials has sparked significant interest in cellulose due to its
biodegradability, biocompatibility, and nontoxic nature.
Cellulose possesses a wide range of advantageous properties,
including mechanical strength, thermal stability, rheological
versatility, optical, low density, high aspect ratio, and a
substantial specific surface area, making it a versatile material
for various applications.1−12 Among natural polymers, cellulose
is the most abundant on earth’s crust, forming a key
component of the cellular structures of plants, fungi, algae,
tunicates, and even certain bacterial species. Its primary
function in these systems is to provide structural support and
protection. Structurally, cellulose is composed of repeating
units of β-1,4-glycosidically linked glucose molecules, forming
a linear polymeric chain rich in hydroxyl functional groups and
exhibiting a semicrystalline nature.1−15

Cellulose can be reduced to the nanoscale through chemical,
enzymatic, and mechanical treatments, obtaining nanocellu-
lose. Nanocellulose exists primarily in two forms: cellulose
nanofibrils (CNFs) and cellulose nanocrystals. The extraction
of nanocellulose from plant fibers follows a top-down
deconstruction approach, which involves purification steps,
such as alkaline treatment and bleaching. The bacterial
cellulose is synthesized via a bottom-up approach through
microbial processes.1−17

Owing to its intrinsic properties, nanocellulose finds
applications in diverse fields, including paper production,
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textiles, packaging, bioplastics, composite materials, adhesives,
paints, coatings, food additives, emulsions, foams, hydrogels,
cosmetics, biomedicine, sensors, optoelectronics, and filtra-
tion/separation membranes.1−19

The high density of hydroxyl functional groups, particularly
primary alcohol groups, makes cellulose highly reactive,
allowing for a variety of chemical modifications. Such
modifications can enhance existing material properties or
introduce new functionalities. Examples of chemical mod-
ification reactions include acetylation, alkalization, amidation,
esterification, etherification, and oxidation, as well as
plasticization, phosphatation, silylation, and surfactant incor-
poration.4−7,10,12,14,15

This study focuses on the etherification of CNFs using 2-
aminoethyl hydrogen sulfate (2AHS) as the modifying agent.
The aim is to contribute to the body of research on
nanocellulose chemical modification and explore its potential
for developing filtration membranes capable of removing dyes
and heavy metals. Notably, 2AHS was employed by Jakubovic
(1959)20 to introduce amine groups into cellulose fibers and,
to the best of our knowledge, has not yet been used in
nanocellulose functionalization.

■ MATERIALS AND METHODS
Materials. The 3% aqueous suspension of CNFs used in

this study was supplied by Suzano S.A. Sodium hydroxide
(NaOH) and 2AHS (98%) were obtained from Sigma-Aldrich
and used without further purification.
Chemical Functionalization. To functionalize the CNFs,

the hydroxyl groups were first activated by treatment with a
2.6% sodium hydroxide solution at room temperature for one
h under magnetic stirring with a reflux condenser in place.21−24

Subsequently, the etherification reaction was conducted by
adding the modifying agent 2AHS dropwise to the activated
CNFs at a molar ratio of [2AHS]:[OHcel] = 1. The reaction
was carried out under reflux with stirring in an inert nitrogen
atmosphere.
After the chemical modification, the resulting samples were

thoroughly washed with deionized water to remove electrolytes
and oven-dried at 70 °C for 24 h. Figure 1 illustrates the CNF
modification reaction.
Chemical Characterization. An experimental design of 22

was implemented, resulting in four experiments where the
reaction factors�time and temperature�were varied. The
experimental conditions for the samples are listed in Table 1.
Fourier Transform Infrared Spectroscopy. To evaluate the

success of the reaction, Fourier transform infrared spectrosco-
py-attenuated total reflectance (FTIR-ATR) measurements
were performed on all samples. Dried samples were analyzed
by using a PerkinElmer Spectrum 65 spectrometer. The spectra

were obtained at a resolution of 4 cm−1 with 64 scans across
the 4000−500 cm−1 range.
Elemental Analysis. Performed in triplicate using a

FlashSmart elemental analyzer (Thermo Scientific), we
quantified the carbon, nitrogen, hydrogen, and oxygen
contents of the samples.
The nitrogen content obtained from elemental analysis (EA)

was used to calculate the reaction yield by estimating the
degree of substitution (DS) using eq 1.25 The DS quantifies
the proportion of hydroxyl groups substituted per glucose unit
in the polymer chain, indicating the extent of amine group
incorporation.26

DS
MM N(%)

100 MM (MM N(%))
glucose

nitrogen substituent group
=

×
× ×

(1)

where MMglucose is the molar mass of glucose monomer (162 g·
mol−1), N (%) is the nitrogen content determined by EA,
MMnitrogen is the molar mass of the nitrogen atom (14 g·
mol−1), and MMsubstituent group is the mass molar of the
substituent group −CH2−CH2−NH2 (44 g·mol−1).
Atomic Force Microscopy. Micrographs were obtained

using a Bruker Dimension Icon microscope with ScanAsyst
mode. Aqueous solutions of the samples (0.05%) were
prepared, and two drops were applied to mica substrates,
which were then dried at room temperature for 24 h. The
micrographs were analyzed with NanoScope Analysis software,
and nanofibril diameters were measured (50 measurements)
using height profiles to avoid the effect of the atomic force
microscopy (AFM) tip.
X-ray Diffraction. X-ray diffraction (XRD) was performed

using a Shimadzu LabX XRD-6100 diffractometer. Samples
were previously dried in a desiccator, and measurements were
conducted under the following conditions: 40 kV, 30 mA, and
a scanning speed of 4°/min over a 2θ range of 10−30° using
Cu Kα radiation (λ = 0.15406 nm).
The crystallinity index (CI) was calculated using Segal’s

method (eq 2).27

I I
I

CI(%)
(22.5 ) (18.6 )

(22.5 )
100Segal =

° °
°

×
(2)

Figure 1. Reaction scheme for the etherification of CNFs using the 2AHS modifier.

Table 1. Experimental Conditions for the Reaction

samples etherifying reagent time (h) temperature (°C)
CNFs
1N 2AHS 1 50
3N 2AHS 2 50
5N 2AHS 1 100
7N 2AHS 2 100
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where I(22.5°) corresponds to the intensity of both crystalline
and amorphous regions, while I(18.6°) corresponds to the
intensity amorphous region.27

Thermogravimetry. Thermal behavior was assessed using a
PerkinElmer Pyris thermogravimetric analyzer. Samples (5−6
mg) were analyzed in aluminum pans at a heating rate of 10
°C·min−1 from 25 to 600 °C under a N2 flow of 20 mL·min−1.
Differential Scanning Calorimetry. Thermal transitions

were evaluated using a TA Instruments DSC 25 equipped with
a Refrigerated Cooling System (RCS 90). Samples (5−6 mg)
were sealed in hermetic pans and preheated to 120 °C for 5
min to remove residual moisture and thermal history. The
temperature range for the second heating scan was −90 to 250
°C, with a heating rate of 10 °C·min−1 under a nitrogen flow of
50 mL min−1.

■ RESULTS AND DISCUSSION
Fourier Transform Infrared Spectroscopy. Figure 2

illustrates the characteristic bands of cellulose in the FTIR-

ATR spectrum. The stretching around 3500 cm−1 and 3200
cm−1 is attributed to hydroxyl (OH) groups. Peaks near 2800

cm−1 and 1430 cm−1 correspond to asymmetric and scissor
stretching of the methylene bonds, respectively. The band at
1320 cm−1 is associated with the flexion of OH groups, while
those between 1200 cm−1 and 1400 cm−1 represent CH2
stretching within the pyranose ring. The region between 900
cm−1 and 1200 cm−1 exhibits high absorption and overlapping
signals related to C6−O and pyranose C−O−C stretching,
while the peak at 890 cm−1 corresponds to glycosidic bond
stretching.28−30

The key vibrational bands of the 2AHS reagent are also
highlighted in Figure 2. A broad region between 3250 and
3131 cm−1 corresponds to the aliphatic amino group. Peaks at
2967 cm−1 and 2927 cm−1 are associated with CH2 bonds. A
medium-to-strong-intensity band between 1635 and 1609
cm−1 is attributed to symmetric angular deformation of NH2.
Bands in the range of 1466−1455 cm−1 correspond to angular
deformation of CH2. The region between 1300 and 1250 cm−1

is indicative of C−N stretching. Peaks in the 910−660 cm−1

range are associated with out-of-plane angular deformation of
amine groups and near 757 cm−1 represent asymmetric angular
deformation of CH2.

29,31

To identify aliphatic primary amines, the main absorption
bands in the infrared spectrum include (i) two medium-
intensity bands near 3555 cm−1 and 3300 cm−1, corresponding
to asymmetric and symmetric N−H stretching, respectively,
which may shift to higher wavenumbers due to hydrogen
bonds; (ii) a band near 2780 cm−1 attributed to N−CH2
stretching; (iii) bands in the range of 1640−1550 cm−1,
representing in-plane angular deformation of H−N−H; (iv) a
band between 1300 and 1250 cm−1, assigned to C−N
stretching, and this band is difficult to visualize due to the
presence of aliphatic ethers in cellulose, but changes in its
intensity are indicative of successful grafting; (v) the region
1260−1020 cm−1, associated with C−N stretching vibrations;

Figure 2. FTIR spectra of the samples: (black) CNFs; (red) 2AHS;
(green) 1N; (blue) 3N; (sky blue) 5N; (violet) 7N.

Figure 3. FTIR spectra with an expanded scale in regions (a) and (b): (black) CNFs; (red) 2AHS; (green) 1N; (blue) 3N; (sky blue) 5N; (violet)
7N.

Table 2. EA of the Samples

samples C (%) H (%) N (%) DS

CNFs 41.69 8.69 0.00 0.00
1N 41.53 5.89 0.10 0.012
3N 45.35 6.90 0.45 0.053
5N 39.77 5.64 0.06 0.007
7N 42.43 5.93 0.11 0.013
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and (vi) a low-intensity band between 850 and 600 cm−1,
attributed to out-of-plane angular deformation of NH2.

29,31

The spectra regions (a) and (b) from Figure 2 are expanded
in Figure 3a,b, respectively.
The success of the reaction is evidenced by the increased

intensity of the methylene group grafted into the CNFs, and
bands near 3000 cm−1 and 2850 cm−1 represent CH2
asymmetric and symmetric stretching,29,30,32,33 respectively,
as shown in Figure 3a.
Additionally, a new low-intensity band at 1540 cm−1 (Figure

3b) corresponds to the angular deformation of the N−H
group, further supporting the successful reaction. A noticeable
increase in the band near 1460 cm−1, associated with in-plane
angular deformation of the CH2 group, is also observed. A soft
band at 1260 cm−1 attributed to C−N stretching is present in
the modified CNFs but absent in the unmodified sample.34

Elemental Analysis. The results from EA and the DS
calculated by using eq 1 are presented in Table 2.

The DS and N % values for reactions introducing amino
groups into nanocellulose chains were relatively low, consistent
with previous findings: Jakubovic (1960)22 (N % = 0.09−
1.59), Pahimanolis et al. (2011)35 (N % = 0.24−0.26),
Filpponen et al. (2011)36 (N % = 0.79), and Akhlaghi et al.
(2015) (N % = 0.9).25 Saini et al. (2017)26 introduced amino
groups onto nanofibrils using a three-step reaction process and
found a similar nitrogen percentage of 0.4 with 3-aminopropyl
trimethoxysilane. The reaction described in this study was
performed in a single step.
The DS and N % values obtained in the present study are

intermediate compared with those reported in the literature.
This discrepancy may result from unequal functional group
distribution, side reactions (e.g., competition between excess
alkali and alkaline cellulose for the etherifying agent), or steric
hindrance between the reagents during the reaction.20,22,36−38

Katsura (1992)39 highlighted the challenges of accurately
determining DS values, particularly in ionic polysaccharides,
which may also contribute to the observed variation.
Atomic Force Microscopy. AFM images, shown in Figure

4, reveal that the samples are organized as bundles of CNFs.
Figure 4a,c displays the relief images, while Figure 4b,d depicts
the amplitude images of CNFs before and after chemical
modification (3N).
The modified CNFs exhibit greater dispersion compared

with the unmodified samples, as observed in the images. The
measured diameter ranges for pristine, 1N, 3N, 5N, and 7N
samples were 0.34−63.53 nm, 0.03−29.88 nm, 0.19−44.15
nm, 0.28−49.75 nm, and 0.12−19.12 nm, respectively (Table

Figure 4. AFM analysis of pristine and modified 3N samples in relief (a,c) and amplitude (b,d).

Table 3. Diameter Distribution of the CNFs

diameter (nm) frequency (%)

pristine 1N 3N 5N 7N

<1 8 14 8 6 20
1−10 50 66 60 62 70
10−20 26 14 12 24 10
20−30 6 6 4 4 0
30−40 4 0 12 2 0
>40 6 0 4 2 0
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3). This enhanced dispersion and reduction in diameter can be
attributed to the decreased intensity of hydrogen bonds,

resulting from the grafting of the ethylamine group onto the
polymeric chain.

Figure 5. Histograms diameter versus relative frequency: (a) pure, (b) 1N, (c) 3N, (d) 5N, and (e) 7N.
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The diameter distributions of the unmodified and modified
CNFs are listed in Figure 5.
It is important to note that the morphology of CNFs can

vary significantly depending on the source material and the
method used to obtain them.4,16,40 Reported diameter ranges
include 2−100 nm (Dufresne 2019);4 3−5 nm (Pinto et al.
2019);41 5−50 nm (Nechyporchuk et al. 2016);16 and 3−4 nm
(Isogai et al. 2011).42 In the Supporting Information are
presented the micrographs of others samples.
X-ray Diffraction. The diffractograms exhibit a valley at

approximately 18°, associated with the amorphous phase, and
both peaks at 15° and 22.5°, corresponding to the (110) and
(200) crystallographic planes, respectively. These features
confirm that cellulose has a type I structure. To evaluate the CI
of the CNFs samples before and after chemical modification,
Segal’s method (eq 2) was employed, which relates the peak
maximum intensity peak to the adjacent valley, as shown in
Figure 6.
The semicrystalline structure of the CNFs was preserved

after modification; however, a decrease in CI was observed
with increasing reaction time and temperature. This reduction
in crystallinity is attributed to the incorporation of ethylamine
groups inserted into nanocellulose, which disrupts the polymer
chain’s ordered arrangement due to the bulkier size of the
ethylamine groups compared to hydroxyl groups. Additionally,
the decrease in CI may be attributed to swelling processes that
occur in various solvents under acidic and basic condi-
tions.27,42,43 The results of the CI are presented in Table 4.
Thermogravimetry. Figure 7 presents the TG and dTG

curves for the unmodified CNFs and 3N sample (the sample
exhibited the highest N % yield). The TG and dTG curves for
the other samples are provided in the Supporting Information.
From the thermal events observed in Figure 7, the data

summarized in Table 5 was complied, detailing water
evaporation and cellulose degradation. Both samples exhibited
two distinct thermal events. The first, occurring between 27
and 150 °C, corresponds to water evaporation, resulting in a

Figure 6. X-ray diffractograms: (black) CNFs; (green) 1N; (blue)
3N; (sky blue) 5N; (violet) 7N.

Table 4. CI Values for the Samples

samples 2θ (deg) CI (%)

minimum maximum

CNFs 18.16 21.58 80.77
1N 18.53 21.94 80.27
3N 18.86 22.3 77.47
5N 18.38 22.2 74.83
7N 18.96 21.98 71.77

Figure 7. TG and dTG curves of pristine CNFs and the modified 3N
sample.

Table 5. Thermal Events Observed in All Samples

sample water evaporation cellulose thermal degradation

Tonset
(°C)

Tmax
(°C) WL

Tonset
(°C)

Tmax
(°C)

Tend
(°C) WL

CNF 30.4 138.8 6.5 229.4 344.1 425.8 65.9
1N 25.1 77.6 5.1 228.7 361.1 440.0 67.1
3N 27.2 96.3 6.6 227.5 352.6 430.9 66.3
5N 30.6 89.8 5.2 233.1 354.8 418.5 62.6
7N 25.7 97.4 6.5 235.8 354.4 432.7 65.0

Figure 8. DSC curves of all samples: (black) CNFs; (green) 1N;
(blue) 3N; (sky blue) 5N; (violet) 7N.

Table 6. Tonset and Tp of All Samples

samples pure 1N 3N 5N 7N

Tonset (°C) 95.24 91.37 94.32 96.72 101.40
Tp (°C) 154.85 156.70 156.10 157.99 168.10
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weight loss (WL) of approximately 8%. The second event,
observed between 230 and 400 °C, is associated with cellulose
decomposition, with a WL of approximately 66% for both
samples.28,45,4628,44,45 The initial degradation temperature
(Tonset) showed a slight decrease, consistent with findings
reported in the literature.46−49

Differential Scanning Calorimetry. Figure 8 presents the
DSC curves for unmodified and modified CNFs.
All samples exhibited endothermic events, with an onset

temperature around 90−100 °C and an average temperature of
approximately 160−170 °C, corresponding to sample dehy-
dration. This behavior aligns with observations reported by de
Menezes et al. 2009,46 where modified cellulose samples lacked
well-defined melting peaks. Similarly, nanocellulose samples
analyzed by Morań et al. 200844 showed no melting peaks up
to 250 °C, with dehydration occurring in the range of 30−140
°C. Comparable findings were also reported by Hou et al.
200950 and Tozluoglu et al. 2017.51

Table 6 summarizes the initial temperature (Tonset) and the
average temperature (TP) for the dehydration event observed.
Residual humidity was detected during the analysis, even

after the sample was quenched at 120 °C for minutes, as seen
in Figure 8. The chemical modification appeared to have no
significant impact on the DSC results, with all samples
exhibiting similar thermal behavior.

■ CONCLUSIONS
In summary, CNFs were successfully chemically modified via
the SN2 reaction using 2AHS as the reagent. Among the
experimental conditions carried out, the best result was
achieved with sample 3N, which involved a reaction time of
2 h at 50 °C. The success of the chemical modification was
confirmed through FTIR-ATR analysis and the nitrogen
content obtained by EA. Morphological analysis via AFM
demonstrated that the CNFs morphology was preserved. XRD
data revealed a decrease in the CI due to the insertion of
aminoethyl groups into the polymer chain, which introduced
structural disorder. For sample 3N, the inclusion of these
groups resulted in a slight decrease in the Tonset values, as
observed in the TG and DTG curves. DSC results indicated
similar thermal behavior across all samples with thermal events
primarily associated with dehydration and the initial
decomposition of glycosidic bonds.
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