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Abstract: Cancer is one of the diseases that kill the most women in the world, with breast cancer being
responsible for the highest number of cancer cases and consequently deaths. However, it can be prevented by
early detection and, consequently, early treatment. Any development for detection or perdition this kind of cancer
is important for a better healthy life. Many studies focus on a model with high accuracy in cancer prediction,
but sometimes accuracy alone may not always be a reliable metric. This study implies an investigative approach
to studying the performance of different machine learning algorithms based on boosting to predict breast cancer
focusing on the recall metric. Boosting machine learning algorithms has been proven to be an effective tool
for detecting medical diseases. The dataset of the University of California, Irvine (UCI) repository has been
utilized to train and test the model classifier that contains their attributes. The main objective of this study is
to use state-of-the-art boosting algorithms such as AdaBoost, XGBoost, CatBoost and Light GBM to predict and
diagnose breast cancer and to find the most effective metric regarding recall, ROC-AUC, and confusion matrix.
Furthermore, previous studies have applied Optuna to individual algorithms like XGBoost or Light GBM, but no
prior research has collectively examined all four boosting algorithms within a unified Optuna framework, a library
for hyperparameter optimization, and the SHAP method to improve the interpretability of our model, which can
be used as a support to identify and predict breast cancer. We were able to improve AUC or recall for all the
models and reduce the False Negative for AdaBoost and LigthGBM the final AUC were more than 99.41% for all
models..
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1 Introduction

Breast cancer is the most common cause of cancer death in women according to the World Health
Organization it represents one in four cancer cases and one in six cancer deaths it’s the most commonly
diagnosed cancer in the world and estimate 2.3 million new cases and 685,000 deaths occurred in 2020
[1, 2]. In Brazil, breast cancer is also one of the most common cancers in women, for cach year of the 2023-
2025 triennium, 73,610 new cases were estimated [3]. This discase can be classified into multiple subtypes
with four widely recognized: luminal A, luminal B, HER2 and triple negative breast cancer (TNBC)[4, 5].
Estimates indicate that the incidence of cancer diagnoses is expected to increase in the coming years, with
a projected increase of almost 50% by 2040 compared to 2020 [6]. Detection in time and effective treatment
significantly enhance the chance of successful outcomes in breast cancer cases, typically identified by
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mammography performed by radiologists. The breast comprises three primary components: lobules,
connective tissue, and ducts, with cancer that typically originates in the ducts or lobules. Symptoms
of breast cancer include lumps or thickening, alterations in size or shape, dimpling, redness, pitting,
changes in the appearance of the nipple, and discharge of the nipple. Cancerous tumors represent cells
that proliferate abnormally and infiltrate surrounding tissues. Some existing diagnostic methods are
mammography, ultrasound, MRI, biopsy, clinical breast examination, and genetic testing. Breast cancer
tumors are classified as benign or malignant, with treatment choice based on grade, stage, and molecular
subtype of BC, options are surgery, radiation therapy, chemotherapy, necoadjuvant chemotherapy,y and
adjuvant chemotherapy|7].

The application of machine learning in the healthcare industry is very common and plays a significant
role due to its high performance in prediction, diagnosis, and reduction of the cost of medicine, and breast
cancer diagnosis is driven by the aspiration for improved patient outcomes, mitigation of the global impact
of the discase, and advancement in healthcare technology and research. Machine learning has demon-
strated superior predictive power in various fields, enabling more accurate forecasts and decision-making.
For our study, the use of machine learning allows us to achieve more reliable and robust predictions
compared to conventional methods, and combining machine learning with advanced optimization tools
like Optuna ensures that the models are also fine-tuned to reduce false negatives, which is critical in
healtheare.

This study will focus on boosting algorithms, especially in the new state-of-the-art decision tree, like
XGBoost, Light GBM, and CatBoost our goal here will be to optimize the recall metric, this metric is
very important because it penalizes the false positive in our model, in healthcare it is something that
you want to avoid telling somcone that they don’t have the discase when in true they have. The choice
of this gradient boosting model is because for tabular data, they almost have the same performance as
other statc-of-art algorithms such as Neural Networking, but with a less computational cost.[8, 9].

Our study integrates these boosting algorithms with Optuna, a state-of-the-art hyperparameter opti-
mization framework that leverages Bayesian optimization via Tree-structured Parzen Estimator (TPE).
This approach dynamically constructs the scarch space, enabling more efficient exploration and fine-
tuning of hyperparameters tailored to cach algorithm. By optimizing for recall, the study aims to reduce
false negatives while maintaining strong overall performance as measured by ROC-AUC and other key
metrics.

The comprehensive application of Optuna for hyperparameter tuning across four boosting algorithms
represents a significant advancement in optimizing predictive performance for breast cancer classification,
something not extensively explored in prior studics.

The final goal is to develop a machine learning model with improved performance and without overfit-
ting, however, in some cases it is crucial to find a way to explain the model, especially if some important
decision about the result of the model will be taken [10], and in that case, SHAP is very powerful in
explaining the black box model. This helps in the final diagnosis by a methodology that can classify the
variables in our model[11, 12] but not only that an explained model can help us to find if there had been
any data leaks and our model is overfitting [13].

To our knowledge, this study is the first to combine these four boost algorithms with Optuna for
hyperparameter optimization. Previous studies have focused on individual algorithms or different op-
timization techniques. By integrating these advanced techniques, our study not only improves model
performance but also enhances interpretability, addressing a critical need in machine learning-driven
medical diagnostics.

2 Related Work

In recent years, there has been an increase in the use of machine learning techniques in the healtheare
arca, especially in the detection of breast cancer [14] which usually relies on metrics such as ROC-AUC
or accuracy [15, 16].

One notable application is in breast cancer detection, where deep learning methodologies have shown
promise in computer-aided diagnosis [17]. For example, in [18], a comprehensive overview was provided
for the detection and localization of calcification and breast masses. Additionally, [19] used a combination
of supervised (Relief algorithm) and unsupervised (Autoencoder, PCA algorithms) techniques for feature
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selection, integrated into a Support Vector Machine (SVM) classifier, resulting in accurate and timely
detection of breast cancer.

Other rescarchers have also used the data set mentioned in [20], achieving notable results. For ex-
ample, in [21], the Random Forest and Support Vector Machine (SVM) models achieved an accuracy
of 96.5%. In a comprchensive study conducted by [22], various algorithms including SVM, Naive Bayes
(NB), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic Regression (LR),
Multilayer Perceptron (MLP), Lincar Discriminant Analysis (LDA), XGBoost (XGB), Ada-Boost, and
Gradient Boosting (GBC) were explored. GBC achicved the best accuracy with 99.12%. Additionally,
[23] split the data into a set of training 70% and tests 30%, employing six classification models: Lincar
Support Vector Classification (SVC), Support Vector Classification (SVC), K-Nearest Neighbor (KNN),
Decision Tree (DT), Random Forest (RE), and Logistic Regression (LR). Random Forest obtained the
highest accuracy of 96.49%, while comparing various performance metrics such as accuracy, AUC, pre-
cision, recall, and Fl-score. Furthermore, in [24], SVM, Random Forest, Logistic Regression, Decision
tree (C4.5), and K-Nearest Neighbors (KNN) were compared based on metrics including AUC, precision,
sensitivity, accuracy, and F-Measure. SVM achieved a higher efficiency of 97.2% in the AUC metric.
Furthermore, [25] reported a higher accuracy using SVM, with a training accuracy of 99.68%. Their
findings contribute to rescarch exploring machine learning techniques for healtheare applications.

In the study by [26], various algorithms including Support Vector Machine, K-Nearest Neighbour,
Naive Bayes, Decision Tree, K-means, and Artificial Neural Networks were evaluated, with Artificial
Neural Networks achieving the highest accuracy of 97.85%. On the other hand, [27] employed Deep
Learning with Adamés optimization for classification, resulting in a final system accuracy of 96%. In
the research conducted by [28], Logistic Regression, Support Vector Machine, Random Forest, Decision
Tree, and AdaBoost were utilized, with an impressive accuracy of 98.57%. Furthermore, [29] divided
the dataset into a training/test split of 0.67 and 0.33, employing the Random Forest and XGBoost
algorithms. The best performance was attained by Random Forest with an accuracy of 74.73%. Lastly,
[30] explored classification and clustering algorithms, with decision tree and Support Vector Machine
models demonstrating the best performance, achieving an accuracy of 81%. However, the clustering
algorithm only achieved 68% accuracy. In [31] they study the Wisconsin Breast Cancer (Original) data
sct [32], they used min-max normalization for feature scaling and built classifiers using K-nearest neighbor
(KNN), SVM, and Logistic Regression. Their results showed a training accuracy ranging from 93% to
97%.

In another study referenced by [33], algorithms such as C4.5, Support Vector Machine (SVM), Naive
Bayes (NB), and K-Nearest Neighbor (KNN) were used. Evaluation metrics such as precision and recall
were considered, and SVM achieved an accuracy of 97.13%. In addition, [34] introduced an ensemble
voting system combining the predictions of five machine learning models, such as Random Forest, Naive
Bayes, and SVM. This ensemble system achieved an impressive accuracy of 99.28%.

The rescarchers mentioned in [35] collected data from three hospitals in Bangladesh and used five
machine learning algorithms: Decision tree, Random Forest, Logistic Regression, Naive Bayes, and XG-
Boost. Their study reported an accuracy of 94% for both Random Forest (RF) and XGBoost. Lastly,
in the study described in [36], a hybrid approach was proposed that combines the genetic algorithm and
the k-nearest neighbor (KNN). This approach produced an accuracy of 99%.

3 Methodology

For this study, a flow chart presenting the phases of this draw in Fig.1 the data were extracted from
Breast Cancer Wisconsin [20] which has 569 instances with two classes: Benign (357) and Malignant
(212) as shown in Fig.2. Furthermore, the data sct contains 31 attributes that were used for analysis
and modeling in this study. A Spearman’s correlation plot was made (Fig.3). And finally, a table was
made that contains all attributes, types, and values range in Tablel. Hyperparameter optimization was
performed using Optuna, enabling efficient exploration of a wide search space with dynamic pruning
based on early performance metrics.
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Figure 1: A flow chart presenting the phases of the baseline and final models.
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Figure 2: Wisconsin Breast Cancer Target Distribution
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Figure 3: Spearman’s correlation

Table 1: Breast Cancer Datasct

Attributes
mean radius
mean texture
mean perimeter
mean arca
mean smoothness
mean compactness
mean concavity
mean concave points
mean symmetry
mean fractal dimension
radius error
texture error
perimeter error
arca crror
smoothness error
compactness error
concavity crror
concave points error
symmetry crror
fractal dimension error
worst radius
worst texture
worst perimeter
worst arca
worst smoothness
worst compactness
worst concavity
worst concave points
worst symmetry
worst fractal dimension
target

Types
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64

nt

Values
6.981 to 28.11
9.71 to 39.28
43.79 to 188.5
143.5 to 2501
0.053 to 0.163
0.019 to 0.345

0 to 0.427

0 to 0.201
0.106 to 0.304
0.05 to 0.097
0.112 to 2.873
0.36 to 4.885
0.757 to 21.98
6.802 to 542.2
0.002 to 0.031
0.002 to 0.135

0 to 0.396

0 to 0.053
0.008 to 0.079
0.001 to 0.03
7.93 to 36.04
12.02 to 49.54
50.41 to 251.2
185.2 to 4254
0.071 to 0.223
0.027 to 1.058

0 to 1.252

0 to 0.291
0.157 to 0.664
0.055 to 0.207

Dor1l
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3.1 Datapreprocessing

Data preprocessing is an important part of every machine learning project. Normalization is a technique
to transform features to be on a similar scale, some models such as Neural networks, Support Vector
Machines (SVM), and K-nearest neighbors (KNN) need these transformations. But decision tree-based
models, like gradient boost machines used in this study, are generally robust to the scale of features
and arc not influenced by lincar transformations like normalization as much as other models. Decision
trees make splits based on thresholds for individual features, and these splits are not affected by linear
transformations(37, 38, 39).

Normalization techniques may not lead to significant performance improvements for the models used
in this study, as the data consists of numerical values and lacks any missing values, as demonstrated in 1.
As a result, other preprocessing steps such as handling missing values and encoding categorical variables
become unnecessary.

3.2 Gradient Boosting Machine

Boosting is one of the most powerful learning concepts introduced in recent decades. The idea behind
boosting is to combine the outputs of many ”"weak” classifiers to produce a powerful model, essentially
creating a “strong” learner from a combination of "weak” learners [40, 41]. Gradient Boosting Machines
(GBMs) arc a combination of additive models with gradient descent, the GBMs optimize an loss function
using the gradient descent. But this optimization is not performed in terms of numerical, instead, they
arc optimized by boosting functions in the direction of the gradient[42).

{JB'm.? a:m.) = al'g minl{i,a Z L (?}(‘E)v F\,”_]_X(i) + ﬁh{x(‘); Q)) (1)
i=1
Using vectored notation:
Fpu(X) = Fru1 (X) + 0 (X) (2)
Adaboost, XGBoost, CatBoost, and Light GBM are all based on this boosting theory, they used decision
tree as their weak classifier and then some technique to improve the model in cach interation.

3.2.1 AdaBoost

Adaptive Boosting (AdaBoost) was the first to generate a strong classifier from a set of weak classifiers.
The AdaBoost algorithm generates a series of weak learners by managing a set of weights assigned to the
training data, adjusting them adaptively after cach weak learning iteration [43).

G‘(:IJ,E) = alGl(:ri) + (.1‘2(:‘2(.‘?,‘\5) + ...+ (Ika(.'L‘g) (3)

M
G(z) = sign( ) amGum(x)) (4)

m=1
In which aq, as, ays are calculated by the boosting algorithm, and cach contribution follows a weight

in G,,(x) [43].

3.2.2 XGBoost

was released in 2016, and is a highly scalable, flexible, and versatile solution, designed to properly
exploit features and overcome the limitations of previous gradient boosting. The main difference be-
tween XGBoost and other gradient algorithms is that it uses a novel regularization technique to control
overfitting[44]. Therefore, it is faster and more robust during model fitting. The regularization technique
is accomplished by adding a new term to the loss function, such as

M

L(¢) =Y L(giy) + Y Qfx) (5)
i=1 1

m=

Q) = AT + g\ |ul? (6)
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3.2.3 CatBoost

was develop by Yandex rescarcher and uses target-based statistics to avoid overfitting, only considers
previous data points to calculate the average value, avoiding data leakage, and its main feature is a built-
in permutation technique for dealing with categorical columns, one_hot max size (OHMS). CatBoost
addresses the exponential growth of feature combinations using the greedy method at cach new split of
the current tree. Furthermore, the construction is performed using symmetric trees and the algorithm
supports categorical columns [45].
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Figure 4: Ordered boosting principle [45]

3.2.4 LightGBM

Light GBM is similar to XGBoost with some alterations: a new technique for estimating information
gain called gradient-based one-side sampling (GOSS). Since one of the most time-consuming tasks in
the gradient boosting learning process is finding the split of the trees, usually some sort of sampling is
performed at this stage for efficiency purposes. With that LGBM employs a leaf-wise tree growth strategy
as opposed to level-wise, reducing the number of nodes and improving computational efficiency, and then
creating an asymmetric tree. It also provides support for categorical features [46].

XGBoost LightGBM CatBoost

Figure 5: Comparison of Tree Growth in XGBoost, CatBoost, and LightGBM [15]

3.3 DMetrics of Evaluation
3.3.1 Confusion Matrix

One of the metrics for the evaluation of a classification algorithm is a confusion matrix whose table
shows the frequency of all classifications with labels such as: True positive (TP), false positive (FP), false
negative (FN) and false negative (TN). They are calculated by organizing all data in the confusion matrix,
depending on the predicted class by our model and the actual class of cach instance in the dataset.

Table 2: Confusion matrix for the binary classification problem.

Predicted Class Actual Class
Negative Positive
Negative True Negative (TN)  False Positive (FP)

Positive False Negative (FN)  True Positive(TP)
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3.3.2 ROC-AUC

The Receiver Operating Characteristic (ROC) curve is a probability curve that illustrates the True
Positive Rate (TPR) against the False Positive Rate (FPR) across different threshold values. The Area
Under the Curve ROC (AUC) quantifies the classifier’s capability to discriminate between classes. As
discussed in [47, 48, 49], the ROC curve is calculated by plotting the True Positive Rate (TPR), or
Sensitivity, against the False Positive Rate (FPR), or Specificity, where 7T represents the threshold.

Rocy(T) =TPRy = %’;TT

Roc,(T) = FPRT = pr s

Figure 6: Two points are highlighted on the ROC curve of a classifier to show different values of Specificity
and Sensitivity.
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The AUC is defined as the area under the ROC curve and provides a measure of the classifier’s
performance across all possible thresholds, the value ranges from 0.5 to 1.

3.3.3 Accuracy
The number of correct predictions divided by the total number of input samples.

TP+TN
Accuracy = (7)
TP+ FP+TN+FN

As discussed in 2, many studies only focus on accuracy when dealing with machine learning models, such
as the Breast Cancer Wisconsin (Diagnostic) dataset. However, this metric is sensitive to the effects of
class imbalance. Consequently, the model can predict the majority class (class 0) more frequently than
the minority class (class 1). In such scenarios, although the model may show high accuracy, it could still
produce a considerable number of false negatives. In diagnostic applications of discases, it is crucial to
prioritize the reduction of false negatives.

3.3.4 Recall

The number of correct positive results is divided by the number of all relevant samples, true positive plus
false positive.
TP
TP N (8)
TP+ FN

3.3.5 Precision

The number of correct positive results is divided by the number of all relevant samples, true positive plus
false positive.
TP
7 nks} (g)
TP+ FI
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Is metric is calculated from precision and recall. There exists a trade-off in precision recall metrics, when
you increase recall, for example, it will reduce precision and vice versa. A more general F,eqsure can be
written as weighted Fleasure 0o Fg[50] .

1+ 32
B2 1

recall preciston

We can write F-M as
precision X recall

Fy = (1+ 5%

(11)

(82 x precision) + recall
Choosing [ determines the ratio by which recall is weighted higher than precision and it’s an empirical
metric [51, 52][53].

When 3 =1 the Fg is simply a harmonic mean of precision and recall also knowing as Fy or Fscore.

2 x precision X recall
=

(12)

precision + recall

3.4 Training Data

The data was divided into 65% for the training and 35% for evaluation metrics in the test using
train_test_split from sklearn.

The 65%-35% split was sclected considering the relatively small size of the dataset, ensuring sufficient
data for both training and testing phases. Furthermore, this split aligns with similar studies, allowing
for more meaningful comparisons of results [21, 22, 23, 24].

3.5 Tuning the model

The model was tuned using Optuna, an open source library that allows us to dynamically construct
the parameter search space. It is based on Bayesian optimization, more specifically employing a tree-
structured Parzen estimator (TPE)[54]. Each study in which the model is trained is in our Xj.4i, and
the metrics are calculated in X;.q.

A framework was developed to evaluate various boosting algorithms using Optuna for hyperparameter
optimization, the Fj score serving as the key performance metric in the optimization process. The
framework is designed for flexible experimentation, allowing comprehensive testing and comparison across
different boosting techniques while fine-tuning parameters to achieve optimal performance.

3.6 Explainability using SHAP

In some cases, it is extremely important to bring the explainability of the model to help with decision
making. For this, SHAP (SHapley Additive exPlanations) finds a way out specific by calculating the
contribution of cach attribute of the input to the prediction it gives and the individual importance for
cach instance, it was based on Shapley values from game theory [55, 56]

oy = 3 ERMEIZ Dl o ) (13)

z'Ca’

4 RESULTS & Discussion

Throughout the rescarch 8 models were evaluated, first, we created a baseline model and then ran Optuna
for each model trying to optimize the Iy but also evaluating other metrics such as AUC and Accuracy.
The final code can be found in GitHub.
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Figure 7: Example of SHAP showing the importance of cach input variable on the model output [57).
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Figure 8: SHAP assigning cach feature an importance valuc[58)

The first step was to load the data into Datalrames using pandas and the function describe() to
analyze the information in the dataset, max, min, mean and median values, with that information we
were able to construct table 1. Then we use the corr() function to plot the Spearman’s correlation in Fig

3 using the scaborn library.

4.1 Baseline Model

The first thing was to create our bascline models for AdaBosst, XGBoost, CatBoost and Light GBM
without tuning any of the hyperparameters, we train at our X, ,;, and evaluate the metrics in X,,.,.
The metries we evaluated were AUC, Recall, Accuracy, and F1-Score for these baseline models. Here, we

have Table 3 with these results.

Then we created the confusion matrix and plotted the ROC curve for all models.

Table 3: Bascline Models Results

Model AUC Recall Precision Accuracy F1-Score
AdaBoost  0.9968  0.969 0.9718 0.97 0.9766
XGBoost  0.9932 0.9845 0.9154 0.96 0.9695
CatBoost  0.9959  0.9922 0.9436 0.975 0.9808
LightGBM 0.9922 0.9612 0.9295 0.95 0.9612
ROC curve for the baseline models
1.0
0.8 ﬁ'
0.6
04
0.2 4 —— AdaBoost, AUC=0.9968, recall=0.969
CatBoost, AUC=0.9959, recall=0.9922
—— XGBoost, AUC=0.9932, recal|=0.9845
0.0 —— LGBM, AUC=0.9922, recall=0.9612

0.0

0.2 0.4 0.6 08 1.0

Figure 9: ROC Curve for the four baseline models
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AdaBoost Baseline Confusion Matrix XGBoost Baseline Confusion Matrix
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Figure 10: Confusion Matrix for AdaBoost and XGBoost

CatBoost Baseline Confusion Matrix LGEM Baseline Confusien Matrix

180 180
160 160
140 | 140
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100

Figure 11: Confusion Matrix for CatBoost and LGBM

4.2 Tuning Model Optuna

An objective function was formulated, incorporating the F metrie, to maximize it. This prioritized
improving recall by penalizing false negatives, aiming to reduce them compared to our bascline models.
Furthermore, a hyperparameter space scarch was set for cach trial in our study and, through several
empirical tests, our best results were achieved with beta = 2.7.

In the final study in Optuna, AdaBoost conducts 3074 trials, resulting in the best model achieving an
Fp of 97.58%. XGBoost, after 2830 trials, exhibited its best performance in 2,274 trials, achieving a Fj
score of 99.13%. CatBoost, subjected to 838 trials, performed better in 102 trials, achieving a Fp score
of 99.04%. LightGBM, in 3018 trials, demonstrated its highest performance in 127 trials, obtaining a Fj
score of 99.26%. In Fig 15 we have the final ROC curve for all models tuned by Optuna and their AUC
and Recall metrics. The final confusion matrix obtained is shown in Fig 16 and Fig 17.

Finally, we run SHAP for the XGBoost, CatBoost and Light GBM models, AdaBoost doesn’t have
support for SHAP values natively without changing the source code of SHAP, the results are shown in
Fig 4.2.

Table 4: Final Models Results
Model AUC Recall Precision Accuracy F1-Score Fg

AdaBoost  0.9941 0.9767 0.9436 0.965 0.973 0.9758
XGBoost  0.9956  0.969 0.9577 0.985 0.9884 0.9913
CatBoost  0.9967  0.9952 0.9436 0.98 0.9884 0.9904

LightGBM  0.9949 1.0 0.8873 0.96 0.9699 0.9926
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AdaBoost Final Confusion Matrix XGBoost Final Confusion Matrix
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Figure 12: Confusion Matrix for AdaBoost and XGBoost - Final Model
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Figure 14: SHAP for XGBoost, CatBoost, and LGBM final models

5 Conclusion

In addition to gradient-boosting models, comparisons were made with state-of-the-art convolutional neu-
ral networks and hybrid approaches, demonstrating the competitive performance of our tuned models
in the context of breast cancer detection previous studies conducted on the same dataset had obtained
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ROC curve final models
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Figure 15: ROC Curve for the final models
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Figure 16: Confusion Matrix for AdaBoost and XGBoost - Final Model
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Figure 17: Confusion Matrix for CatBoost and LGBM - Final Model

impressive accuracy, sometimes in 98-99% none of them focuses on reducing the False Negative, especially
an optimization in a Weight Fj.;,. All of our final models have an improved AUC or Recall performance
compared to our bascline. The AUC was greater than 99.41% and the recall 96.9%. In AdaBoost, we
were able to increase the recall and reduce 25% in our False Negative. In XGBoost we were not able
to increase recall performance only AUC, it was extremely hard to find a beta value to optimize in all
four algorithms, for future work it might be suggested to optimize cach algorithm separately for different
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Figure 18: SHAP for XGBoost, CatBoost, and LGBM final models

values of 8. For CatBoost we were able to increase the performance in AUC keeping the recall metrics
the same in our basecline. LightGBM was the best model to which we were able to increase both the
AUC and the recall metric, reducing the number of False Negatives. By using SHAP, we were also able
to rank the final result of our models by explanatory variables, giving, in addition to a classification, it is
possible to explain in cach case which variable had a positive or negative impact on the final prediction.

We successfully determined the key features for cach prediction in every instance within our dataset
applying SHAP in our tree models, XGBoost, CatBoost, and Light GBM. This not only gives us an casy
machine learning prediction but also ensured the model’s transparency and explainability.

Future studies could explore the use of k-fold cross-validation or other advanced resampling techniques
to improve the robustness of the results, particularly in handling imbalanced datasets. Furthermore,
incorporating more diverse datasets and testing the models in real-world clinical settings would further
validate the applicability of the proposed approach.

6 GitHub Source Code

https://github.com/joaomh /article-breast-cancer-classification-boosting.
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