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Unitary description of the Jaynes-Cummings model under fractional-time dynamics
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The time-evolution operator corresponding to the fractional-time Schrödinger equation is nonunitary because
it fails to preserve the norm of the vector state in the course of its evolution. However, in the context of
the time-dependent non-Hermitian quantum formalism applied to the time-fractional dynamics, it has been
demonstrated that a unitary evolution can be achieved for a traceless two-level Hamiltonian. This is accomplished
by considering a dynamical Hilbert space embedding a time-dependent metric operator concerning which the
system unitarily evolves in time. This allows for a suitable description of a quantum system consistent with
the standard quantum mechanical principles. In this work, we investigate the Jaynes-Cummings model in the
fractional-time scenario taking into account the fractional-order parameter α and its effect in unitary quantum
dynamics. We analyze the well-known dynamical properties, such as the atomic population inversion and the
atom-field entanglement, when the atom starts in its excited state and the field in a coherent state.
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I. INTRODUCTION

Many developments at the interface of physics and frac-
tional calculus have been drawing attention. The cornerstone
of this approach lies in substituting the n-order derivative
∂n

z f (z) by fractional-order differential operators denoted as
Dα

z f (z), which represents fractional derivatives of order α

acting on the function f (z) with respect to the variable z.
The specific definition of the operator depends on the underly-
ing mathematical functions involved [1]. Interesting fractional
calculus applications appear in statistical physics, particularly
in the context of continuous-time random walks (CTRW)
to model transport phenomena. CTRW offers a versatile
framework for modeling anomalous diffusion processes, often
observed in complex systems with memory effects and nonlo-
cal interactions. In the spatial domain, the fractional derivative
leads to the emergence of Lévy flights [2]. These are char-
acterized by jumps with power-law distributed step lengths,
resulting in a diffusion process with long-tailed probability
densities. Conversely, incorporating a fractional derivative in
the temporal domain leads to subdiffusive behavior [3]. This
signifies slower-than-expected diffusion, often observed in
systems with heterogeneous environments or trapping mech-
anisms. The choice of which domain (spatial or temporal)
to introduce the fractional derivative depends on the specific
physical mechanisms governing the transport process.

A branch of quantum physics rooted in fractional calculus
has emerged as a powerful framework for understanding the
behavior of quantum systems with nonlocal, non-Markovian,
and long-range interactions. This burgeoning field encom-
passes diverse areas such as Lévy flights over quantum paths
[4], optics [5,6], PT -symmetric systems [7], the nonlin-
ear variable-order time fractional Schrödinger equation [8],
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disorder in the vibrational spectra [9], time-dependent (TD)
quantum potentials [10], and anomalous diffusion in a three-
level system [11]. An experimental demonstration by Wu et al.
[12] investigated spontaneous emission from a two-level atom
in anisotropic one-band photonic crystals. They elegantly em-
ployed fractional calculus to resolve an unphysical bound state
anomaly arising when the resonant atomic frequency deviates
from the photonic band gap. This anomaly, characterized by
an infinitely long lifetime, vanishes when the emission peak
aligns with the band gap [13].

In this realm, states are described by the fractional
Schrödinger equation (FSE), originally proposed by Laskin.
Unlike the conventional Schrödinger equation, Laskin’s for-
mulation replaces the standard second-order spatial derivative
with a fractional Laplacian operator, which is based on the
Riesz derivative [14–17]. This modification enables the FSE
to model nonlocal interactions and memory effects, essential
for understanding quantum systems’ transport phenomena.
Furthermore, Naber [18] has proposed a fractional-time
Schrödinger equation (FTSE) assuming the Caputo fractional
derivative in the place of the ordinary time derivative in such
a way that the equation is written as

iα h̄α
C
0Dα

t |�α (t )〉 = Ĥα|�α (t )〉, (1)

with

C
0Dα

t (·) =
∫ t

0
dτ

(t − τ )−α

�(1 − α)

d

dτ
(·), (2)

defining the fractional Caputo derivative for α ∈ [0, 1). Ĥα

represents the fractional Hamiltonian, and h̄α the fractional-
Planck constant used as a scale factor (see Ref. [18]), and
therefore, we may consider all the variables and Planck con-
stant in Eq. (1) as dimensionless quantities. In Ref. [18], it
is argued that the imaginary unit is raised to the same power
as the time coordinate by performing a Wick rotation. More
details about this issue are discussed in Ref. [19]. FTSE

2470-0045/2025/111(2)/024110(8) 024110-1 ©2025 American Physical Society

https://orcid.org/0000-0002-4177-1237
https://ror.org/036rp1748
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.024110&domain=pdf&date_stamp=2025-02-11
https://doi.org/10.1103/PhysRevE.111.024110


DANILO CIUS PHYSICAL REVIEW E 111, 024110 (2025)

solutions have been investigated in many settings, including
the fractional dynamics of free particles [18] and particles
under the influence of δ potentials [20]. A mathematical
correspondence between the FTSE and the fractional-time
diffusion equation [18–20], viewed as describing a non-
Markovian process. Also, a connection between classical
geometric diffusion and quantum dynamics is elucidated in
Ref. [21], wherein continuous-time quantum walks are repre-
sented as quantum analogs of turbulent diffusion within comb
geometry.

Recent advances in quantum information science, driven
by theoretical and experimental breakthroughs, have signifi-
cantly expanded our understanding of information processing
at the quantum level, leading to quantum cryptography
[22], quantum teleportation [23], quantum metrology [24],
quantum control [25], and quantum computing [26]. While
fractional calculus offers a rich mathematical framework for
describing complex phenomena, its application to quantum
information problems remains relatively unexplored. In this
sense, Zu and coworkers [27,28] analyze the role of the
memory effect of FTSE in the time evolution of a single
quantum state and quantum entanglement by considering the
Jaynes-Cummings (JC) model [29], describing the interaction
between a single atom and a single mode cavity. This in-
teraction exhibits fascinating quantum phenomena like Rabi
oscillations and entanglement, providing insights into funda-
mental light-matter interactions and laying the groundwork
for advancements in quantum technologies. The two-level
system interacting with the light field in the fractional scenario
is also investigated in Refs. [30,31].

Our work proposes a unitary associated with the fractional-
time evolution of the JC model, guided by the formalism
developed in Ref. [32]. The key concepts underlying such
formalism are revisited in Sec. II, where we briefly discuss
the nonunitary nature of fractional time-evolution operator
stemming from the Caputo derivative and establish a connec-
tion with TD non-Hermitian quantum formalism [33,34]. This
connection is created by constructing a TD Dyson map, which
is related to the dynamical Hilbert space metric. In Section III,
we introduce the JC model and the fractional-time evolution
operator by solving the FTSE and obtain an equivalent unitary
time-evolution operator that describes the dynamics within the
conventional quantum mechanical formulation. Subsequently,
in Secs. IV and V, we respectively analyze the collapse and
revival phenomena, and quantify the entanglement dynamics
of an atom interacting with a coherent field through the von
Neumann entropy. Our conclusions follow in Section VI.

II. NON-HERMITICITY
AND THE FRACTIONAL-TIME SCENARIO

The FTSE may generate many undesired results, such as
the nonexistence of stationary energy levels, nonunitarity of
the evolution, and consequently, the nonconservation of prob-
ability, as discussed in Ref. [35]. It becomes evident when we
transform the FTSE in a usual Schrödinger-like equation with
an effective TD non-Hermitian Hamiltonian operator. It can be
explicitly shown by applying the Riemann-Liouville deriva-
tive operator RL

0 D1−α
t on both sides of the Eq. (1), and utilizing

the fractional differentiation property for α ∈ (0, 1] [36],

expressed as
RL

0 D1−α
t

C
0Dα

t |�α (t )〉 = ∂t |�α (t )〉, (3)

where

RL
0 Dα

t (·) = d

dt

∫ t

0
dτ

(t − τ )−α

�(1 − α)
(·), (4)

Eq. (1) becomes

ih̄∂t |�α (t )〉 = i1−α h̄

h̄α

Ĥα
RL

0 D1−α
t |�α (t )〉. (5)

Note that the effective Hamiltonian is non-Hermitian, which
implies a nonunitary time evolution of the quantum state. In
this sense, different proposals have been made to map the
fractional nonunitary evolution operator into a unitary one
[32,35,37,38]. In particular, in Ref. [32], a unitary evolution
for a traceless non-Hermitian two-level system evolving under
FTSE was established by applying the TD non-Hermitian
quantum formalism [33,34,39].

In the framework established in Ref. [32], a state undergo-
ing nonunitary evolution, denoted by |�α (t )〉, may be mapped
to a state |ψα (t )〉 evolving unitarily via the TD Dyson map
η̂α (t ). This transformation is expressed as follows:

|ψα (t )〉 = η̂α (t )|�α (t )〉, (6)

such a map is assumed to be invertible. In what follows,
from the fact that |ψα (t )〉 = ûα (t )|ψα (0)〉 and |�α (t )〉 =
Ûα (t )|�α (0)〉, the Eq. (6) allows us to obtain the unitary time-
evolution operator ûα (t ) in terms of the TD Dyson map and
the nonunitary time-evolution operator as being

ûα (t ) = η̂α (t )Ûα (t )η̂−1
α (0). (7)

Assuming the nonunitary time-evolution operator Ûα (t ) is
known, our primary goal is to identify the TD Dyson map
parameters that enable the mapping of nonunitary dynamics
to a unitary one. This can be accomplished by consider that
ûα (t ) satisfies a Schrödinger-like equation

ih̄∂t ûα (t ) = ĥα (t )ûα (t ), (8)

and employing Eqs. (5), (7), and (8) to obtain the Hermitian
Hamiltonian ĥα (t ), which is given by

ĥα (t ) = η̂α (t )Ĥ eff
α (t )η̂−1

α (t ) + ih̄∂t η̂α (t )η̂−1
α (t ), (9)

where Ĥ eff
α (t ) is the effective Hamiltonian into Eq. (5):

Ĥ eff
α (t ) = i1−α h̄

h̄α

Ĥα
RL

0 D1−α
t Ûα (t ). (10)

Note that the effective Hamiltonian is not a pseudo-Hermitian
operator and, therefore, it cannot be an observable [33]. How-
ever, if a TD Dyson map can be found that transforms the
non-Hermitian Hamiltonian into a Hermitian one, it is pos-
sible to construct a dynamical Hilbert space equipped with
a modified inner product, defined as 〈�α (t )|�α (t )〉
α (t ) =
〈�α (t )|
̂α (t )|�α (t )〉, where the fractional-time evolution can
be seen as a unitary in according to modified inner product

〈�α (t )|�α (t )〉
α (t ) = 〈�α (0)|�α (0)〉
α (0)

= 〈ψα (0)|ψα (0)〉
= 〈ψα (t )|ψα (t )〉,
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in which 
̂α (t ) = η̂†
α (t )η̂α (t ) is the positive metric operator.

The above relation reflects that the probability conservation
in the fractional-time scenario can be achieved by defining
a suitable TD metric with respect to which the state evolves
unitarily. Moreover, this relation means that it is equivalent to
mapping the state that evolves nonunitarily in another system
that evolves unitarily to the usual metric. For more details
about TD non-Hermitian systems see Refs. [33,34,39–45].

III. FRACTIONAL-TIME DYNAMICS OF THE
JAYNES-CUMMINGS MODEL

A. The model

Now we analyze the JC model in the fractional-time sce-
nario revised in the previous section. The JC model is a
paradigmatic framework for understanding quantum light-
matter interactions [29]. It describes the interaction of a
two-level atom with a single quantized mode of the radiation
field. In an ideal cavity QED experiment, the atom can be
viewed as a two-level system (|g〉 and |e〉) interacting with a
single mode of the field. This interaction is described by the
JC Hamiltonian. Consider the resonant case, in which the en-
ergy difference between the two atomic levels exactly matches
the energy of the radiation field. Within the rotating-wave
approximation, the JC Hamiltonian in the interaction picture
is given by

Ĥα = h̄αμα (σ̂+â + σ̂−â†), (11)

where the field is characterized by the annihilation â and
creation â† bosonic operators satisfying the Weyl-Heisenberg
algebra [â, â†] = 1. The operators σ̂+ = |e〉〈g| and σ̂− =
|g〉〈e| are the so-called atomic transition operators, which to-
gether with the inversion operator σ̂z = |e〉〈e| − |g〉〈g| satisfy
the su(2) Lie algebra [σ̂+, σ̂−] = σ̂z and [σ̂z, σ̂±] = ±2σ̂±.
The constant μα denotes the atom-field coupling coefficient
which represents the strength of the atom-field coupling.

The model is specified via the states of both atom and
field, where the basis states of the field are the number states
|n〉, with n = 0, 1, 2, · · · . In this case, the bare states |g, n〉
and |e, n〉 provide a natural basis for the infinite-dimensional
Hilbert space representing the atom-field interaction. The
ground state corresponds to the state with the atom in the
ground state |g〉 and no photons in the cavity |0〉. In this case,
we have the relation

Ĥα|g, 0〉 = 0,

which means that spontaneous absorption from the vacuum
is forbidden. Furthermore, for each photon number n, the
Hamiltonian couples the bare states pairs |e, n〉 and |g, n + 1〉,
since

Ĥα|e, n〉 = h̄αμα

√
n + 1|g, n + 1〉

Ĥα|g, n + 1〉 = h̄αμα

√
n + 1|e, n〉.

Thus, the infinite-dimensional Hilbert space H consists
of the one-dimensional subspace spanned by the ground
state vector Hground = {|g, 0〉} and the mutually decoupled
two-dimensional subspace Hn = {|e, n〉, |g, n + 1〉}. In other
words, the Hilbert space H = L2(R) ⊗ C2 decays into a

direct sum of dynamically invariant subspaces

H = Hground ⊕ H0 ⊕ H1 ⊕ H2 ⊕ · · · .

The Hamiltonian can be decomposed as a block-diagonal
matrix

Ĥα = h̄α

⎡
⎢⎢⎢⎢⎢⎣

0 01×2 01×2 · · ·
02×1 Ĥ (0)

α 02×2 · · ·
02×1 02×2 Ĥ (1)

α · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (12)

where Ĥ (n)
α is the traceless 2 × 2 matrix

Ĥ (n)
α = h̄αμ(n)

α

[
0 1
1 0

]
, (13)

which represents the Hamiltonian of the system in the two-
dimensional subspace Hn, with μ(n)

α = √
n + 1μα . A concise

treatment of the JC model can be found in Ref. [46]. Next, we
discuss how the system evolves under the FTSE and can be
described into the unitary framework.

B. Fractional time evolution

In the fractional-time scenario, the dynamic of the system
is claimed to be described by the FTSE given in Eq. (1).
The formal solution of this equation can be read as |�α (t )〉 =
Ûα (t )|�α (0)〉, where the system evolves from an initial state
|�α (0)〉 to the state |�α (t )〉 through the following time-
evolution operator Ûα (t ):

Ûα (t ) = Eα (i−αĤα tα/h̄α ), (14)

that is a nonunitary operator satisfying the initial condi-
tion Ûα (0) = 1̂. In the above equation, the function Eα (x) =∑∞

k=0 xk/�(αk + 1) is identified to be the well-known one-
parameter Mittag-Leffler function [1].

Once the Hamiltonian is represented in a block-diagonal
form, as seen in Eq. (12), the nonunitary time-evolution oper-
ator can be represented as

Ûα (t ) =

⎡
⎢⎢⎢⎢⎢⎣

1 01×2 01×2 · · ·
02×1 Û (0)

α (t ) 02×2 · · ·
02×1 02×2 Û (1)

α (t ) · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (15)

where Û (n)
α (t ) is given by

Û (n)
α (t ) =

[
C (n)

α (t ) i−αS (n)
α (t )

i−αS (n)
α (t ) C (n)

α (t )

]
, (16)

satisfying the initial condition Û (n)
α (0) = 1̂2×2. Here, the com-

plex functions C (n)
α (t ) and S (n)

α (t ) are given in the form

C (n)
α (t ) = Eα

(
i−αμ(n)

α tα
) + Eα

( − i−αμ(n)
α tα

)
2

, (17a)

S (n)
α (t ) = Eα

(
i−αμ(n)

α tα
) − Eα

( − i−αμ(n)
α tα

)
2i−α

. (17b)

While Naber’s approach to the FTSE is often regarded
as nonphysical, it remains a widely used framework for
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mathematical investigations. However, in the specific case of
α = 1/2, the solution described by the Mittag-Leffler function
acquires a meaningful physical interpretation, as discussed
in Ref. [47]. This unique feature, where the α = 1/2 frac-
tional order gains physical significance, also arises in other
approaches, as proposed in Refs. [48,49], where the frac-
tional derivative emerges naturally within their respective
frameworks.

The nonunitary nature of time evolution when consider-
ing the FTSE might be applied to mimic the effects of the
environment on quantum systems. However, this treatment
would be inherently heuristic, as nonunitarity leads to the non-
conservation of probability. For a treatment of open quantum
fractional dynamics, we suggest Ref. [50], where a framework
describing the nonunitary evolution of the density operator
that is trace preserving and completely positive for any initial
condition is developed. Nevertheless, in this work, we are
interested in establishing the conventional interpretation of
quantum mechanics, by mapping the nonunitary fractional
time-evolution operator to a unitary one by employing non-
Hermitian quantum mechanics techniques with TD metrics
[32]. This procedure enables a proper quantum-mechanical
interpretation of the fractional-time description, utilizing
a modified inner product as done in the non-Hermitian
framework [33,34].

C. Unitary evolution

Indeed, the choice of TD Dyson map is not unique. To
address this, we propose a Hermitian time-dependent Dyson
map, η̂α (t ), in block-diagonal form, expressed as

η̂α (t ) =

⎡
⎢⎢⎢⎢⎢⎣

1 01×2 01×2 · · ·
02×1 η̂(0)

α (t ) 02×2 · · ·
02×1 02×2 η̂(1)

α (t ) · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (18)

with the TD Dyson map acting on the two-dimensional sub-
space Hn chosen as

η̂(n)
α (t ) = eκ (n)

α (t )eλ(n)
α (t )σ̂+eln �(n)

α (t )σ̂z/2e[λ(n)
α (t )]∗σ̂− ,

where we assume λ(n)
α (t ) ∈ C and κ (n)

α (t ),�(n)
α (t ) ∈ R with

the additional condition �(n)
α (t ) > 0. Furthermore, we can

represent the n-th subspace of the time-dependent Dyson map
as a 2 × 2 matrix in the basis {|e, n〉, |g, n + 1〉}, yielding

η̂(n)
α (t ) = eκ (n)

α (t )√
�

(n)
α (t )

[
χn

α (t ) λ(n)
α (t )[

λ(n)
α (t )

]∗
1

]
, (19)

being the function χ (n)
α (t ) = �(n)

α (t ) + |λ(n)
α (t )|2.

By applying the results of Eqs. (16) and (19) in Eq. (7), we
represent the unitary operator ûα (t ) as

ûα (t ) =

⎡
⎢⎢⎢⎢⎢⎣

1 01×2 01×2 · · ·
02×1 û(0)

α (t ) 02×2 · · ·
02×1 02×2 û(1)

α (t ) · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦, (20)

with û(n)
α (t ) = η̂(n)

α (t )Û (n)
α (t )[η̂(n)

α (0)]−1. Admitting ûα (t ) as a
unitary operator, it implies that û(n)

α (t ) must necessarily belong
to the Lie group U (2) and can be represented in the general
matrix form

û(n)
α (t ) = eiδ(n)

α (t )

[
�

(n)
α,+(t ) �

(n)
α,−(t )

−[
�

(n)
α,−(t )

]∗ [
�

(n)
α,+(t )

]∗

]
, (21)

with

δ(n)
α (t ) = 1

2 Im
[

ln D(n)
α (t )

]
, (22a)

�
(n)
α,±(t ) = ±eiδ(n)

α (t )
[
ν

(n)
α,∓(t )

]∗
, (22b)

where the function D(n)
α (t ) in Eq. (22a) is defined as D(n)

α (t ) =
[C (n)

α (t )]2 − (−1)−α[S (n)
α (t )]2. To simplify the notation, from

now on we omit the time dependence and define ν
(n)
α,± in

Eq. (22b) as follows:

ν
(n)
α,± = ± eκ (n)

α −κ (n)
α (0)√

�
(n)
α �

(n)
α (0)

[
ζ

(n)
α,± + (

λ(n)
α

)∗
ξ

(n)
α,±

]
, (23)

where ζ
(n)
α,± and ξ

(n)
α,± are given by

ζ
(n)
α,+ = i−αS (n)

α − [
λ(n)

α (0)
]∗C (n)

α , (24a)

ζ
(n)
α,− = i−αλ(n)

α (0)S (n)
α − χ (n)

α (0)C (n)
α , (24b)

ξ
(n)
α,+ = C (n)

α − i−α
[
λ(n)

α (0)
]∗S (n)

α , (24c)

ξ
(n)
α,− = λ(n)

α (0)C (n)
α − i−αχ (n)

α (0)S (n)
α . (24d)

Moreover, for û(n)
α to represent a unitary operator, the pa-

rameters of the TD Dyson map must take the form:

κ (n)
α = κ (n)

α (0) − 1

2
Re

[
ln D(n)

α

]
, (25a)

χ (n)
α =

∣∣ζ (n)
α,+

∣∣2 + ∣∣ζ (n)
α,−

∣∣2 + �(n)
α (0)eRe[ln D(n)

α ]∣∣ξ (n)
α,+

∣∣2 + ∣∣ξ (n)
α,−

∣∣2 + �
(n)
α (0)eRe[ln D(n)

α ]
, (25b)

λ(n)
α = −[

ξ
(n)
α,+

[
ζ

(n)
α,+

]∗ + ξ
(n)
α,−

[
ζ

(n)
α,−

]∗]∣∣ξ (n)
α,+

∣∣2 + ∣∣ξ (n)
α,−

∣∣2 + �
(n)
α (0)eRe[ln D(n)

α ]
, (25c)

where the TD Dyson map parameter �(n)
α = χ (n)

α − |λ(n)
α |2,

with the condition that χ (n)
α > |λ(n)

α |2, since we are assuming
�(n)

α as a positive function. The functions in Eq. (22b) sat-
isfy the relation |� (n)

α,+|2 + |� (n)
α,−|2 = 1, which comes from

the fact of | det û(n)
α |2 = 1. Note that the coefficients of the

unitary operator û(n)
α depend only on the parameters of the

fractional-time evolution operator and the initial values of the
parameters of the TD Dyson map, which are incorporated
into the functions ξ

(n)
α,± and ζ

(n)
α,±. For more details on those

calculations, see Ref. [32].

IV. POPULATION INVERSION

The collapse and revival of atomic oscillations is a distinc-
tive feature observed in the interaction of a two-level atom
with a quantized electromagnetic field inside a cavity de-
scribed by the JC model [46]. When the cavity field is initially
prepared in a coherent state and interacts with the two-level
atom, the system exhibits a fascinating dynamical behavior
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FIG. 1. Time evolution of the population inversion Wα (t ) for different values of α. It is considered initially the atom in the excited state
and the field in the coherent state with β = 2, and the initial values of Dyson map parameters being κα (0) = 0, �α (0) = 1 and λα (0) = 0. The
atom-field coupling is μα = 1. Then, we analyze for α = 1.00 (a), α = 0.75 (b), α = 0.60 (c), and α = 0.50 (d), α = 0.45 (e), α = 0.40 (f),
α = 0.30 (g), and α = 0.25 (h).

characterized by the following stages: (i) initial Rabi oscilla-
tions: at the beginning, the atom exchanges energy with the
quantized field, resulting in oscillations of the atomic popula-
tion between the ground and excited states; (ii) collapse: the
distribution of photon number states within the coherent field
leads to dephasing, causing the Rabi oscillations to decay; (iii)
revival: after a certain period, the oscillations rephase, and the
atomic population oscillations reappear. The timing of these
revivals is determined by the properties of the coherent state
and the parameters of the system.

We aim to analyze the atomic population inversion de-
pending on the α parameter within a unitary framework. We
consider an initial state where the atom is excited and the
field is in a coherent state: |ψα (0)〉 = |e〉 ⊗ |β〉, where |β〉 =∑∞

n=0 cn|n〉 where cn = e−|β|2/2βn/
√

n! with β ∈ C. The sys-
tem evolves in according to |ψα (t )〉 = ûα (t )|ψα (0)〉, leading
to

|ψα (t )〉 =
∞∑

n=0

[
Aα

e,n(t )|e, n〉 + Aα
g,n(t )|g, n + 1〉], (26)

where the probability amplitudes are

Aα
e,n(t ) = cneiδ(n)

α (t )�
(n)
α,+(t ), (27a)

Aα
g,n(t ) = −cneiδ(n)

α (t )
[
�

(n)
α,−(t )

]∗
. (27b)

The probability of finding the atom in the excited state with
the field having n photons is Pα

e,n(t ) = |Aα
e,n(t )|2. In contrast,

the probability of finding the atom in the ground state with the
field having n + 1 photons is Pα

g,n+1(t ) = |Aα
g,n(t )|2. Further-

more, we can marginalize the probability over the field states,
by summing over all possible photon numbers to obtain the
probability of finding the atom in an excited or grounded state,
which are given, respectively, by Pα

e (t ) = ∑∞
n=0 |Aα

e,n(t )|2 and

Pα
g (t ) = ∑∞

n=0 |Aα
g,n(t )|2. We then calculate the population in-

version over time, which is given by the mean value of the
inversion operator,

Wα (t ) = Pα
e (t ) − Pα

g (t )

=
∞∑

n=0

[∣∣Aα
e,n(t )

∣∣2 − ∣∣Aα
g,n(t )

∣∣2]
. (28)

In Fig. 1, we illustrate the time evolution of the popula-
tion inversion Wα (t ) by considering the atom-field coupling
μα = 1 for a coherent state with β = 2 and different values
of the parameter α. The initial conditions for the TD Dyson
map are set as κ (n)

α (0) = 0, �(n)
α (0) = 1, and λ(n)

α (0) = 0.
These conditions imply that the Dyson map at t = 0, η̂α (0),
is the identity operator. In this case, the initial states in
both the unitary and nonunitary representations are identical,
thus, |ψα (0)〉 = |�α (0)〉. As α decreases, the dynamics be-
gin to change. For instance, when α = 1.00 [Fig. 1(a)], we
recover the well-known population inversion dynamics of the
JC model, as the Caputo derivative reduces to the first-order
derivative in Eq. (1). For α = 0.75 [Fig. 1(b)], the population
inversion exhibits a slightly modified behavior with a longer
collapse time and fewer oscillations. For α = 0.60 [Fig. 1(c)],
irregular collapse and revival patterns emerge. Interestingly,
when α = 0.50 [Fig. 1(d)], the population inversion exhibits
a more periodic behavior, returning close to the excited state
with a period of approximately 6.18. One might expect that
further decreasing α would lead to even more regular be-
havior. However, for α < 0.5 the dynamics become highly
irregular. Sudden peaks or troughs characterize the population
inversion, and the characteristic collapse and revival patterns
diminish due to the large fluctuations. For instance, when
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FIG. 2. Time evolution of the von Neumann entropy Sα (t ) for different values of α. The horizontal dashed line indicates the upper bound
for the von Neumann entropy Smax = ln 2 ≈ 0.693. It is considered initially the atom in the excited state and the field in the coherent state with
β = 2, and the initial values of Dyson map parameters being κα (0) = 0, �α (0) = 1 and λα (0) = 0, with the atom-field coupling μα = 1. We
analyze for α = 1.00 (a), α = 0.75 (b), α = 0.60 (c), and α = 0.50 (d), α = 0.45 (e), α = 0.40 (f), α = 0.30 (g), and α = 0.25 (h).

α = 0.45 [Fig. 1(e)], the regular pattern observed for α =
0.50 disappears. A near-complete population inversion oc-
curs after the initial collapse, followed by fewer subsequent
collapses. For α = 0.40 [Fig. 1(f)] and α = 0.30 [Fig. 1(f)]
an irregular oscillations pattern with faster oscillations man-
ifests. When α = 0.25, the population inversion exhibits a
pattern of faster oscillations, but the overall dynamics remain
quasiperiodic.

Remarkably, within the unitary framework, the unique
properties of fractional derivatives can be attributed to ad-
ditional driving forces in the atom-field interaction [51].
These forces arise from combining the fractional-derivative
parameter and the TD Dyson map. This can be inferred by
representing the system in the Hn basis, where the Hermitian
Hamiltonian in Eq. (9) takes the form ĥ(n)

α (t ) ∝ μ
(n)
i,α (t )σ̂i with

i = x, y, z.

V. ATOM-FIELD ENTANGLEMENT

The entanglement phenomenon has been discussed since
the beginning of quantum mechanics [52]. It describes a sce-
nario in which the quantum states of two or more particles
become so correlated that the state of one particle cannot be
described independently of the others, even when spatially
separated. This is traditionally viewed as a manifestation of
nonseparability [53]. In Bell nonlocality, not all entangled
states violate Bell’s inequality, but any state that does violate
it must be entangled. Thus, entanglement is a necessary condi-
tion for violating Bell’s inequality [54]. This violation reflects
deviations in the statistical correlations of quantum states
from classical expectations based on local realism [55,56].
These concepts underscore the nonclassical nature of quantum

mechanics and carry profound implications for our under-
standing of reality.

We explore the influence of the FTSE on quantum entan-
glement. Previous studies [27,28] have explored entanglement
within the JC model using FTSE. Here, we analyze the entan-
glement dynamics based on the unitary framework associated
with the FTSE, using the TD Dyson map as previously dis-
cussed. To quantify entanglement in pure bipartite states, we
employ the von Neumann entropy [57], a well-established
measure of entanglement, defined as

S(ρ̂i ) = −Tr(ρ̂i ln ρ̂i ), (29)

where ρ̂i represents the reduced state of the subsystem i (with
i = a, f, referring to the atom and field, respectively). For
separable states, the von Neumann entropy yields a zero value,
indicating the absence of entanglement. In contrast, for entan-
gled states, the entropy returns a positive value, signifying the
presence of nonclassical correlations within the system. In this
case, the von Neumann entropy is symmetric with respect to
the partitions, leading to S(ρ̂a) = S(ρ̂f ).

The composite state given in Eq. (26) corresponds to the
density operator

ρ̂α (t ) = |ψα (t )〉〈ψα (t )|. (30)

Performing a partial trace over the field subsystem, we obtain
the reduced density matrix of the atom, ρ̂α

a (t ), given by

ρ̂α
a (t ) =

[
Pα

e (t ) rα (t )

[rα (t )]∗ Pα
g (t )

]
, (31)

where the diagonal terms, Pα
e (t ) and Pα

g (t ), represent the
population of the excited and grounded states, respectively,
as discussed earlier. The off-diagonal coherence term is given
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by rα (t ) = ∑∞
n=0 Aα

e,n+1[Aα
g,n]∗. Note that the trace-preserving

property of the reduced density matrix is verified, as Pα
e (t ) +

Pα
g (t ) = 1.

For the density matrix in Eq. (31), we denote the von
Neumann entropy by Sα (t ). Then, from Eq. (29), it follows
that

Sα (t ) = −ϑα
+(t ) ln ϑα

+(t ) − ϑα
−(t ) ln ϑα

−(t ), (32)

where the ϑα
±(t ) denote the eigenvalues of the reduced density

matrix ρ̂α
a (t ), given by

ϑ±(t ) = 1
2 ± 1

2

√
W 2

α (t ) + 4|rα (t )|2, (33)

with Wα (t ) being the population inversion expressed in
Eq. (28). To quantify the entanglement dynamics, we nu-
merically evaluate the von Neumann entropy, as defined in
Eq. (32), for different values of α. The results are depicted
in Fig. 2. In the plot, the horizontal dashed line indicates
the upper bound for the von Neumann entropy for a two-
level system, which is given by Smax = ln 2 ≈ 0.693. Similar
to the previous analysis, we set the atom-field coupling to
be μα = 1, the coherent parameter β = 2, and the initial
TD Dyson map parameters to be κα (0) = 0, �α (0) = 1 and
λα (0) = 0. The case of α = 1.00 [Fig. 2(a)] corresponds to
the well-known JC model. Starting with a separable pure state
for the field and atom, the quantum dynamics, for t > 0,
lead to increasing marginal entropy and strong entanglement
between the field and the atom [58,59]. In this case, the
entanglement reaches its maximum value at various instants
of time, while for 1 > α � 0, it approaches the maximum
with a slight deviation. For α = 0.75 [Fig. 2(b)] the entan-
glement reaches its maximum value only at the beginning
of evolution and remains oscillating below the upper bound.
When α = 0.60 [Fig. 2(c)], the entanglement oscillates with-
out reaching its maximum value within the plotted time.
For α = 0.50 [Fig. 2(d)], the entanglement exhibits a more
periodic pattern. It is characterized by an initial rise in en-
tropy, subsequent oscillations, and a quick return to a nearly
separable state, suggesting entanglement birth and death cy-
cles. As observed in the case of the population inversion, for
α < 0.50, large oscillations start to appear in entanglement
entropy. This is illustrated for α = 0.45 [Fig. 2(e)], α = 0.40
[Fig. 2(e)], α = 0.30 [Fig. 2(g)], and α = 0.25 [Fig. 2(h)].
Despite large fluctuations, the behavior for α = 0.25 is
quasiperiodic.

VI. CONCLUSIONS

To summarize, we describe the dynamics of the JC model
within a fractional-time to a unitary framework, employing
the Caputo derivative as outlined in Ref. [32] for a traceless
two-level system with a general non-Hermitian Hamiltonian.
This framework links the FTSE to the TD non-Hermitian
Hamiltonian theory [33,34], where a TD Dyson map is
constructed to define a dynamic Hilbert space with a modified
inner product with respect to which the fractional time
evolution is unitary. It circumvents the issue of nonunitarity
and aligns with quantum mechanical postulates. To apply the
results from Ref. [32] to the infinite-dimensional JC model,
we decompose it into dynamical invariant two-dimensional
subspaces. We then examine how the fractional-order
parameters within the unitary dynamics affect the collapse
and revival phenomenon, which are intrinsic to the quantum
nature of the electromagnetic field and absent in classical
systems. We also explore the atom-field entanglement
across different fractional-order parameters, revealing the
potential for both the birth and death of entanglement.
Entanglement, a genuine quantum phenomenon with no
classical analog, provides valuable insights into quantum
mechanics and is of significant interest in quantum optics
and quantum information science. As a potential application,
the population inversion dynamics described by Eq. (28)
could be emulated using a reverse engineering approach, as
presented in Ref. [60]. This approach involves designing a
time-dependent control field within the standard JC model
to achieve a specific target population inversion profile. As
a further idea, this treatment presented here also may be
applied to explore the κ-deformed JC model, where the JC
interaction is described by a time-independent non-Hermitian
Hamiltonian due to the deformation parameter [61]. We
hope our analysis stimulates further research on unitary
formulations for fractional-time and non-Hermitian systems,
potentially leading to new insights into fundamental physics.
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