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There has been an increasing interest in stochastic processes that are defined over product
spaces in many branches of applied sciences, including climate modeling, atmospheric sci-
ences, geophysical science, and even finance. Our work provides the mathematical foun-
dations for certain classes of stochastic processes that are defined over special classes
of product spaces. Specifically, let d, k be positive integers. We call generalized spaces
the Cartesian product of the d-dimensional sphere, 𝕊d, with the k-dimensional Euclidean
space, ℝk. We consider the class 𝒫 (𝕊d × ℝk) of continuous functions 𝜑 ∶ [−1, 1] ×[0,∞) → ℝ such that the mapping C ∶ (𝕊d × ℝk)2 → ℝ, defined as C ((x, y), (x′, y′)) =𝜑 (cos 𝜃 (x, x′), ‖y − y′‖), (x, y), (x′, y′) ∈ 𝕊d × ℝk, is positive definite. We propose linear
operators that allow for walks through dimensions within generalized spaces while preserving
positive definiteness.

Keywords: Positive Definite Functions, Montée Operators, Descente Operators, Spheres,
Euclidean Spaces, Generalized Product.

11.1. Introduction

11.1.1. Context

The paper deals with positive definite functions over what we term generalized spaces, that
is, product spaces that involve manifolds of different natures. In fact, those are defined here
as the Cartesian product of the k-dimensional Euclidean space with a d-dimensional unit
sphere. Albeit this work is of clear mathematical essence, it provides the foundations of
stochastic processes over product spaces as certified by the increasing interest in several
branches of applied sciences. Somemotivations to consider the present framework are listed
below.

This is an open access book chapter co-published by World Scientific Publishing and ADIA Lab RSC Limited.
It is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC) License.
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(a) There has been an increasing interest from several branches of statistics, machine
learning, and finance, for positive definite functions defined over these product spaces,
and the reader is referred to the recent review by Porcu et al. [1]. The applications to real
cases are ubiquitous, ranging from climate and atmospheric sciences to deep learning on
manifolds.

As far as finance is concerned, Gaussian processes play a central role in financial mod-
eling. The field of econometrics has devoted much effort to the modeling of financial time
series [2]. The Brownian motion is essential to the pricing of financial derivatives [3]. The
Ornstein–Uhlenbeck process is often used to develop investment and trading strategies [4].
Gaussian processes are one-dimensional applications of the general concept of Gaussian
random field (GRF). We motivate some of the uses of GRFs in finance. A key feature of
financial datasets is time and spatial dependence. Coetaneous observations from variables
in close proximity tend to be more similar. For example, returns from US stocks last month
are more similar to returns from US stocks this month than returns from US stocks 1 year
ago or returns from Chinese stocks last month. Willinger et al. [5] noted that a Brownian
motion with drift does not replicate the time dependence observed in asset returns. Not sur-
prisingly, GRFs have attracted considerable interest among researchers interested in mod-
eling the joint time-space dynamics of financial processes. To cite a few examples, Refs. [6]
and [7] modeled the term structure of interest rates as a two-dimensional random field. In
their models, time increments are independent, while the correlation structure between bond
yields of different maturities can be modeled with great flexibility. Kimmel [8] enhanced
this approach by adding a state-dependent volatility. Albeverio et al. [9] introduced Lévy
fields to the modeling of yield curves. Özkan and Schmidt [10] applied random fields to
incorporate credit risk into the modeling of yield curves. As important as the term structure
of interest rates is, it is not the only financial application of Gaussian fields. At least two
further applications stand out: option pricing and actuarial modeling. For example, Hain-
aut [11] proposes an alternative model for asset prices with sub-exponential, exponential,
and hyper-exponential autocovariance structures. Hainaut sees price processes as condi-
tional Gaussian fields indexed by time. Under this framework, option prices can be com-
puted using the technique of the change of numeraire. Biffis and Millossovich [12] applied
random fields to modeling the intensity of mortality in an attempt to incorporate cross-
generation effects. Biagini et al. [13] built on that work to price and hedge life insurance
liabilities.

(b) Several branches of spatial statistics and computer sciences are interested in the
simulation of random processes defined over generalized spaces, and we refer the reader to
Ref. [14]. It turns out that the use of these operators becomes crucial when associated with
turning band techniques [15], which allow for simulation of a given random process from
projections on lower dimensional spaces.

(c) Projection operators for radial positive definite functions allowed to build posi-
tive definite functions that are compactly supported over balls embedded in k-dimensional
Euclidean spaces. This inspired a fertile literature from spatial statistics with the goal of
achieving accurate estimates while allowing for computational scalability. For instance, the
tapering approach [16] is substantially based on this idea.
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(d) There is a fertile literature from projection operators for symmetric (or radially sym-
metric) distributions, where radial symmetry is intended with respect to the composition of
a given candidate function with the classical 𝛼-norms [17].

11.1.2. Literature review

Let ℝk denote the k-dimensional Euclidean space, and let 𝕊d be the d-dimensional unit
sphere embedded inℝd+1. Let ‖ ·‖ denote Euclidean distance and 𝜃(x, y) ∶= arccos(⟨x, y⟩)
denote the geodesic distance in𝕊d, with ⟨., .⟩ denoting the dot product inℝd+1. A continuous
function C ∶ ℝk → ℝ is called radially symmetric if there exists a continuous function
f ∶ [0,∞) → ℝ such thatC(x) = f∘‖x‖, x ∈ ℝk, with ∘ denoting composition. The function
f is called the radial part of C. Radial symmetry is known as isotropy in spatial statistics
[18]. A function C ∶ 𝕊d × 𝕊d → ℝ is called geodesically isotropic if C(x, y) = g ∘ 𝜃(x, y)
for some continuos function g ∶ [0, 𝜋] → ℝ.

Positive definite functions that are radially symmetric over k-dimensional Euclidean
spaces have a long history that can be traced back to Ref. [19]. Projection operators that
map a positive definite radial mapping fromℝk intoℝk±h, for h a positive integer, have been
considered in Matheron’s clavier spherique [15, 20]. Matheron coined the terms descente
and montée to define special operators that will be described throughout. The terms origi-
nate from an appealing physical interpretation in a mining context. These projection oper-
ators have then been investigated by Ref. [21], and subsequently by Refs. [22–24] in the
context of positive definite radial functions that are additionally compactly supported on
balls embedded in ℝk with given radii. The work by Daley and Porcu [18] provides a
general perspective of such operators, in concert with some generalizations of the previ-
ously mentioned works. These linear operators have turned out to be very useful to estab-
lish criteria of the Pólya type for radially symmetric positive definite functions [25], as
well as in the definition of multiradial positive definite functions [26]. In probability the-
ory, similar projection operators turned useful in the seminal paper by Ref. [17] and in
Ref. [27].

Positive definite functions that are geodesically isotropic on d-dimensional spheres
have been characterized in Ref. [28]. Projection operators for this class of functions have
been studied to a limited extent only, and we refer to the recent papers by Ref. [29] and
more recently to the same authors [30, 31]. Properties of these operators have then been
inspected in Ref. [32].

11.1.3. The problem and our contribution

The characterization of projection operators on product spaces of the type 𝕊d×ℝk has been
elusive so far. The only exception is Ref. [33], who consider the product space 𝕊d ×ℝ, and
projections that are defined marginally for the sphere only.

Our paper contributes to the literature as follows. In Section 11.2, we provide the nota-
tions and basic literature. In Section 11.3, we define the Descente and Montée operators on
the generalized space 𝕊d × ℝk. The main results are statement in Section 11.4, and their
proofs are in Appendix A.

 T
ra

ns
ac

tio
ns

 o
f 

A
D

IA
 L

ab
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 D

E
 S

A
O

 P
A

U
L

O
 o

n 
09

/0
1/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



294 Transactions of ADIA Lab

11.2. Notations and Background

Let X,Y be nonempty sets. A function C ∶ (X × Y)2 → ℝ is called positive definite if, for

any finite system {ak}Nk=1
⊂ ℝ and points {(xk, yk)}Nk=1

⊂ X × Y, the following inequality is
preserved:

N∑
k=1

N∑
h=1

akC ((xk, yk), (xh, yh)) ah ≥ 0.
We deal with the case X = 𝕊d and Y = ℝk, for d and k being positive integers. Additionally,
we suppose C to be continuous and that there exists a continuous function 𝜑 ∶ [−1, 1] ×[0,∞) → ℝ such that

C ((x, y), (x′, y′)) = 𝜑 (cos 𝜃 (x, x′), ‖y − y′‖), (x, y), (x′, y′) ∈ 𝕊d × ℝk. (11.1)

We call 𝒫 (𝕊d × ℝk) the class of such functions, 𝜑. Analogously, we call 𝒫 (𝕊d) the class
of continuous functions 𝜓 ∶ [−1, 1] → ℝ such that for the function C in Eq. (11.1) it is
true that, for y = y′,C ((x, y), (x′, y)) = 𝜑 (cos 𝜃 (x, x′), 0) = 𝜓 (cos 𝜃 (x, x′)). The class𝒫 (ℝk) is defined analogously. The classes 𝒫 (ℝk) and 𝒫 (𝕊d) have been characterized

by Refs. [19] and [28], respectively. The class 𝒫 (𝕊d × ℝk) has been characterized by
Ref. [34] through a uniquely determined expansion of the type

𝜑(x, t) = ∞∑
n=0

f dn (t)C(d−1)/2
n (x), (x, t) ∈ [−1, 1] × [0,∞),

where the functions f dn belong to 𝒫 (ℝk), n ∈ ℤ+, and∞∑
n=0

f dn (0)C(d−1)/2
n (1) < ∞. (11.2)

The expansion above is uniformly convergent on [−1, 1] × [0,∞). The coefficients func-
tions f dn are called d-Schoenberg functions of 𝜑. The functions C(d−1)/2

n are the Gegenbauer
polynomials of degree n associated with the index (d − 1)/2 [35].

Proposition 3.8 in Ref. [34] shows that if 𝜑 belongs to the class 𝒫 (𝕊d × ℝk), then it is
continuously differentiable with respect to the first variable.

It is also important to note that a continuous function x ∈ [−1, 1] ↦ 𝜑(x, t) has an
Abel summable expansion for each t ∈ [0,∞) in the form [see the proof of Theorem 3.3 in
Ref. [34] 𝜑 (x, t) ∼ ∞∑

n=0

f dn (t)C(d−1)/2
n (x), (11.3)

where

f dn (t) = 𝜍dn ∫1

−1

𝜑 (x, t)C(d−1)/2
n (x)(1 − x2)d/2−1

dx, (11.4)

and 𝜍dn are positive constants.
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11.2.1. Some useful facts

Arguments in Ref. [19] prove that, for every n = 0, 1,…, each function f dn ∈ 𝒫 (ℝk) in Eq.
(11.2) admits a uniquely determined Riemann–Stieltjes integral representation of the form

f dn (t) = ∫∞
0

Ωk (tr) dFn (r), t ∈ [0,∞), (11.5)

where Fn is a non-negative bounded measure on [0,∞). The function Ωk : [0,∞) → ℝ is
given by

Ωk (t) = Γ ( k
2
)(2

t
)(k−2)/2

J(k−2)/2 (t), (11.6)

where J𝜈 is the Bessel function of the first kind of order 𝜈 given by

J𝜈 (t) = ( t
2
)𝜈 ∞∑

m=0

(−1)m
m!Γ (m + 𝜈 + 1) ( t2)2m .

We follow Ref. [18], and we call Fn the k-Schoenberg measure of f dn . We also note that
we are abusing notation when writing Fn instead of Fd

n. This last notation will not be used
unless explicitly needed.

Some technicalities will be exposed here to allow for a neater exposition. The derivative
function of the functionΩk is uniformly bounded, and it is given by (see Refs. [18, 24, 26]).

dΩk

dt
(t) = Ω′

k (t) = −1
k
tΩk+2 (t), t ≥ 0. (11.7)

Also, ||Ωk(t)|| < 1 = Ωk (0), t > 0. (11.8)

Since limt→∞Ωk(t) = 0 for k > 0 (see Ref. [18]), we have

∫∞
t

uΩk (u) du = (k − 2)Ωk−2 (t), t ≥ 0. (11.9)

Some properties of Gegenbauer polynomials will turn out to be useful throughout. For
instance, we can invoke 4.7.14 in Ref. [35] to infer that

dC𝜆
n

dx
(x) = (C𝜆

n)′ (x) = 𝛿𝜆C𝜆+1
n−1 (x), − 1 ≤ x ≤ 1, (11.10)

and, as a consequence

∫x

−1

C𝜆
n (x) dx = 1𝛿𝜆 (C𝜆−1

n+1 (x) − C𝜆−1
n+1 (−1)), (11.11)

where

𝛿𝜆 = {2𝜆, 𝜆 > −1/2(𝜆 ≠ 0),
2, 𝜆 = 0. (11.12)
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Theorem 7.32.1 and Equation 4.7.3 in Ref. [35] show that, for 𝜆 > −1/2,||C𝜆
n (x)|| ≤ C𝜆

n (1) = Γ (n + 2𝜆)Γ (n + 1) Γ (2𝜆) , x ∈ [−1, 1]. (11.13)

Also, it is true that

C𝜆−k
n+j (1)
C𝜆
n (1) ≤ Γ (2𝜆)Γ (2𝜆 − 2k) ∶= 𝜚𝜆,k, ∀n ∈ ℤ+. (11.14)

The following inequality (see Ref. [36]) will be repeatedly used in the manuscript:| f (t)| ≤ f (0), t ∈ [0,∞), f ∈ 𝒫 (ℝk) .
We will also make use of the following fact: if 𝜑 ∶ [−1, 1] × ℝ → ℝ has a derivative 𝜑x

with respect to the first variable for each t ∈ [0,∞) and if both functions have Gegenbauer
expansions of the form

𝜑x (x, t) ∼ ∞∑
n=0

f 𝜆n (t)C𝜆
n (x), 𝜑x (x, t) ∼ ∞∑

n=0

̃f 𝜆+1

n (t)C𝜆+1
n (x), (11.15)

(x, t) ∈ [−1, 1] × [0,∞), theñf 𝜆+1

n−1 (t) = 𝛿𝜆 f 𝜆n (t), n ∈ ℤ∗+, 𝜆 > 0. (11.16)

The proof is very similar to the Proof of Lemma 2.4 in Ref. [30] and we omit it for the sake
of brevity.

11.3. An Historical Account on Montée and Descente
Operators

Beatson and zu Castell [31] defined theDescente andMontée operators for the class𝒫 (𝕊d).
Specifically, the Descente 𝒟 is defined as

(𝒟f)(x) = d
dx

f (x) = f ′ (x), x ∈ [−1, 1] ,
provided such a derivative exists. The Montée ℐ is instead defined as

(ℐf)(x) = ∫x

−1

f (u) du, x ∈ [−1, 1].
Beatson and zu Castell [31] has shown that f ∈ 𝒫 (𝕊d+2) implies that there exists a constant,𝜅, such that 𝜅 + ℐf ∈ 𝒫 (𝕊d). Also, f ∈ 𝒫 (𝕊d) implies 𝒟f ∈ 𝒫 (𝕊d+2). The implications
in terms of differentiability at x = 1 are nicely summarized therein.

The tour de force by Ref. [31] has then been generalized by Ref. [33]: let d ∈ ℕ and𝜑 ∶ [−1, 1] × ℝ → ℝ be continuous functions. The Montée ℐ and Descente 𝒟 operators
are defined, respectively, by

ℐ (𝜑) (x, t) ∶= ∫x

−1

𝜑 (u, t) du, (x, t) ∈ [−1, 1] × [0,∞), (11.17)
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when f is integrable with respect to the first variable, and

𝒟(𝜑)(x, t) ∶= 𝜕𝜑𝜕x (x, t), (x, t) ∈ [−1, 1] × [0,∞) . (11.18)

They prove that if 𝜑 ∈ 𝒫 (𝕊d × ℝ), then 𝒟𝜑 ∈ 𝒫 (𝕊d+2 × ℝ), and in their correc-

tion of Theorem 2.1, they provided conditions under 𝜑 ∈ 𝒫 (𝕊d+2 × ℝ) such that ℐ𝜑 ∈𝒫 (𝕊d × ℝ).
Montée and Descente operators with the class 𝒫 (ℝk) have been defined much earlier,

and we follow Ref. [24] to summarize them here. The Descente and Montée operators are
respectively defined as

𝒟𝜑 (t) = ⎧⎨⎩
1, t = 0𝜑′(t)

t𝜑′′(0) , t > 0, (11.19)

where 𝜑′′(0) denotes the second derivative of 𝜑 evaluated at t = 0, and

ℐ̃𝜑 (t) = ∫∞
t

u𝜑 (u) du (∫∞
0

u𝜑 (u) du)−1 . (11.20)

Gneiting [24] proved that if 𝜑 ∈ 𝒫 (ℝk), k ≥ 3, and u𝜑(u) is integrable over [0,∞),
then ℐ̃𝜑 ∈ 𝒫 (ℝk−2). Invoking standard properties of Bessel functions in concert

with direct inspection, Ref. [24] proved that, if 𝜑 ∈ 𝒫 (ℝk) and 𝜑′′(0) exists, then𝒟𝜑 ∈ 𝒫 (ℝk+2). Under mild regularity conditions, the operators 𝒟 and ℐ̃ are inverse
operators: ℐ̃ (𝒟𝜑) = 𝒟(ℐ̃𝜑) = 𝜑.
11.3.1. Descente and Montée operators on generalized spaces

We start by defining the following Descente and Montée operators. The first is actually
taken from Ref. [33]: we define the derivate operator D1 by

D1𝜑 (x, t) ∶= 𝜑x (x, t) = 𝜕𝜑𝜕x (x, t), (x, t) ∈ [−1, 1] × [0,∞) . (11.21)

The integral operator I1 is given by

I1𝜑 (x, t) ∶= ∫x

−1

𝜑 (u, t) du, (x, t) ∈ [−1, 1] × [0,∞), (11.22)

when 𝜑(u, t) is integrable over [−1, 1] for each t ∈ [0,∞).
We define

D2𝜑 (x, t) ∶= ⎧⎨⎩
1, (x, t) = (1, 0)𝜑t(x, t)
t𝜑tt(1, 0) , (x, t) ∈ [−1, 1) × (0,∞) (11.23)
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whenever 𝜑tt(1, 0) ∶= 𝜕2𝜑𝜕t2 (1, 0) exists, and
I2𝜑 (x, t) ∶= ∫∞

t v𝜑 (x, v) dv∫∞
0 v𝜑 (1, v) dv , (x, t) ∈ [−1, 1] × [0,∞), (11.24)

when v𝜑(1, v) is integrable over [0,∞) and provided the denominator is not identically
equal to zero.

The composition between the operators defined in Refs. [33] and [24] provides a new
operator, which we define here as

I3𝜑 (x, t) ∶= ∫∞
t

∫x

−1

v𝜑 (u, v) dudv, (x, t) ∈ [−1, 1] × [0,∞), (11.25)

when v𝜑(u, v) is integrable over [−1, 1] × [0,∞).
Given 𝜅 ∈ ℤ+, we define the operator I𝜅j by recurrence as:

I0j 𝜑 ∶= 𝜑, I1j 𝜑 ∶= Ij𝜑, and I𝜅j 𝜑 ∶= Ij (I𝜅−1
j 𝜑), j = 1, 2, 3.

11.4. Dimension Walks within the Class 𝒫 (𝕊d × ℝk)
This section contains our original findings. Proofs are deferred to the Appendix.

11.4.1. Descente operators

We start with a simple result, which is an extension of Theorem 2.3 in Ref. [30]. InAppendix
A, we provide a quick sketch of the main steps.

Theorem 11.4.1. If 𝜑 ∶ [−1, 1]×[0,∞) → ℝ belongs to 𝒫 (𝕊d × ℝk), then D1𝜑 belongs

to 𝒫 (𝕊d+2 × ℝk).
The next result requires instead a lengthy proof and relates about the operator D2.

Theorem 11.4.2. Let d, k ∈ ℤ∗+, 𝜑 ∶ [−1, 1] × [0,∞) → ℝ be a function in 𝒫 (𝕊d × ℝk)
and let Fn be the k-Schoenberg measures associated with the d-Schoenberg functions
of 𝜑. If
(1) ∫∞

0

r2dFn(r) < ∞, for all n ∈ ℤ+;
(2) 0 < 𝜕2𝜑𝜕t2 (1, 0) = ∞∑

n=0

∫∞
0

r2dFn(r) < ∞,

then D2𝜑 belongs to 𝒫 (𝕊d+2 × ℝk).
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11.4.2. Montée operators

In this section we consider functions 𝜑 ∶ [−1, 1] × [0,∞) → ℝ belonging to 𝒫 (𝕊d × ℝk)
as in Eq. (11.2) such that

∫∞
0

(1/r2𝜅)dFn (r) < ∞ (𝜅 ∈ ℤ∗+) . (11.26)

Thus, the functions defined by

g𝜅n (t) ∶= ∫∞
0

Ωk−2𝜅 (tr) 1
r2𝜅 dFn (r), t ∈ [−1, 1] , n, 𝜅 ∈ ℤ+, (11.27)

belong to the class 𝒫 (ℝk−2𝜅).
The first finding relates to the operator I1. Again, the proof is deferred to the Appendix.

Theorem 11.4.3. Let k, 𝜅 ∈ ℤ∗+ and d be an integer such that d > 2𝜅. If 𝜑 ∶ [−1, 1] ×[0,∞) → ℝ is a function in 𝒫 (𝕊d × ℝk) such that u ↦ I𝜅−1
1 𝜑(u, t) is integrable over[−1, 1] for each t ∈ [0,∞). Then, the function I𝜅1𝜑 has a representation in the form of a

Gegenbauer series:

I𝜅1 (x, t) = ∞∑
n=0

̃f d,𝜅n (t)C(d−2𝜅−1)/2
n (x), (x, t) ∈ [−1, 1] × [0,∞), (11.28)

where

̃f d,𝜅n (t) ∶= ⎧⎪⎨⎪⎩
𝜏d,𝜅 ∞∑

i=0

(−1)i𝜒n,d,𝜅
i f di (t), n = 0, 1,…, 𝜅 − 1,

𝜏d,𝜅f dn−𝜅(t), n ≥ 𝜅. (11.29)

The functions f dn are the d-Schoenberg functions of 𝜑 as in Eq. (11.2), the positive constant𝜏d,𝜅 ∶= (∏𝜅
j=1 𝛿(d−2j+1)/2)−1

and the coefficients

⎧⎪⎨⎪⎩
𝜒0,d,𝜅
i ∶= 𝜅−1∑

j=1

(−1)j+1𝜒 j−1,d,𝜅−1
i C(d−2𝜅−1)/2

j (1) − (−1)𝜅+1
C(d−2𝜅−1)/2
i+𝜅 (1),

𝜒n,d,𝜅
i ∶= 𝜒n−1,d,𝜅−1

i , n = 1, 2,…, 𝜅 − 1, (11.30)

satisfy ||𝜒n,d,𝜅
i

|| ≤ ϒn,d,𝜅C(d−1)/2
i (1), n = 0, 1,…, 𝜅 − 1, i ∈ ℤ+, (11.31)

where, for each n = 0, 1,…, 𝜅 − 1 and 𝜅 ∈ ℤ∗+, ϒn,d,𝜅 is a positive constant that depends

only on d. Moreover,∑∞
n=0

̃f d,𝜅n (0)C(d−2𝜅−1)/2
n (1) < ∞.

Corollary 11.4.4. Under the conditions of Theorem 11.4.3, there exists a bounded func-
tion H𝜅 on [−1, 1] × [0,∞) such that H𝜅 + I𝜅1𝜑 belongs to 𝒫 (𝕊d−2𝜅 × ℝk).
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Remark 11.4.5. Direct inspection shows that 𝜒0,d,𝜅
i ≥ 0, for 𝜅 = 1, 2. Therefore,𝜒1,d,𝜅

i , 𝜒2,d,𝜅
i …, 𝜒𝜅−1,d,𝜅

i ≥ 0 for all 𝜅 ≥ 2 and i ∈ ℤ+.
Remark 11.4.6. By Remark 11.4.5, if f d2n+1 ≡ 0 for all n, then I𝜅1𝜑, for 𝜅 = 1,2, belongs

to the class 𝒫 (𝕊d−2𝜅 × ℝk). Therefore, our result generalizes the corrected version of
Theorem 11.2.1 in Ref. [33].

We can modify the functions ̃f d,𝜅n , n = 0, 1,…, 𝜅 − 1, in Eq. (11.28) so that the new
quasiMontée operator belongs to𝒫 (𝕊d−2𝜅 × ℝk). Theorem 11.4.7 sheds some light in this
direction.

Theorem 11.4.7. Let the functions ̃f d,𝜅n ∈ 𝒫 (ℝk), n ≥ 𝜅, and h𝜅1,n, h𝜅2,n ∈ 𝒫 (ℝk) be as,
respectively, defined at Eqs. (11.29) and (A.5).

Let k, 𝜅 ∈ ℤ∗+ and let d be an integer such that d > 2𝜅. Let 𝜑 ∶ [−1, 1] × [0,∞) → ℝ
be a function in 𝒫 (𝕊d × ℝk) such that u ↦ I𝜅−1

1 𝜑(u, t) is integrable over [−1, 1] for each
t ∈ [0,∞). If
(1)

∞∑
n=0

C(d−1)/2
n (1)∫∞

0

dFn(r) < ∞;

(2) There exists a constant K > 0 such that ∑∞
n=0 C(d−1)/2

n (1)dFn(r) ≤ K, 0 ≤ r < ∞,
then there exist 2𝜅 constants An and Bn, n = 0,…, 𝜅 − 1, such that

I𝜅,A0..A𝜅−1,B0..B𝜅−1

1 𝜑(x, t) ∶= 𝜅−1∑
n=0

(Anh𝜅1,n(t) − Bnh𝜅2,n(t))C(d−2𝜅−1)/2
n (x)

+ ∞∑
n=𝜅 ̃f d,𝜅n (t)C(d−2k−1)/2

n (x), (11.32)

belongs to 𝒫 (𝕊d−2𝜅 × ℝk).
Remark 11.4.8. For any An ≥ 0, n = 1,…, 𝜅 − 1 the function I𝜅,0A1..A𝜅−1,0..0

1 𝜑
belongs to 𝒫 (𝕊d−2𝜅 × ℝk). This also can be seen as a generalization of the correction of
Theorem 2.1 in Ref. [33] (to appear).

The next result is related to the operator I2.

Theorem 11.4.9. Let d, 𝜅 ∈ ℤ∗+ and k be an integer such that k > 2𝜅. If 𝜑 ∶ [−1, 1] ×[0,∞) → ℝ is a function in 𝒫 (𝕊d × ℝk) such that
(1) g𝜈n (0) = ∫∞

0

(1/r2𝜈) dFn(r) < ∞, for all n ∈ ℤ+ and 𝜈 ∈ {1, 2,…, 𝜅}.
(2) 0 ≠ ∑∞

n=0 g(𝜈)n (0)C(d−1)/2
n (1) < ∞, for 𝜈 ∈ {1, 2,…, 𝜅},
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then the function I𝜅2𝜑 has a representation in Gegenbauer series in the form

I𝜅2𝜑 (x, t) = 1∑∞
n=0 g𝜅n (0)C(d−1)/2

n (1)
∞∑
n=0

g𝜅n (t)C(d−1)/2
n (x) . (11.33)

The functions g𝜅n are defined in Eq. (11.27), and Fn are the k-Schoenberg measures of the
d-Schoenberg functions of 𝜑.

Moreover, I𝜅2𝜑 belongs to 𝒫 (𝕊d × ℝk−2𝜅).
We finish this part with the Montée operator I3.

Theorem 11.4.10. Let 𝜅 ∈ ℤ∗+, d, and k be integers such that d, k > 2𝜅. If 𝜑 ∶ [−1, 1] ×[0,∞) → ℝ is a function in 𝒫 (𝕊d × ℝk) such that
(1) g𝜈n (0) = ∫∞

0

1

r2𝜈 dFn(r) < ∞ for all n ∈ ℤ+ and 𝜈 ∈ {1, 2,…, 𝜅};
(2)

∞∑
n=0

g𝜈n (0) = ∞∑
n=0

∫∞
0

1

r2𝜈 dFn(r) < ∞, for and 𝜈 ∈ {1, 2,…, 𝜅},
(3)

∞∑
n=0

g𝜈n (0)C(d−2𝜈−1)/2
n+𝜈 (1) < ∞, for and 𝜈 ∈ {1, 2,…, 𝜅},

then the function I𝜅3𝜑 has a representation in Gegenbauer series in the form

I𝜅3𝜑 (x, t) = ∞∑
n=0

h𝜅n (t)C(d−2𝜅−1)/2
n (x), (x, t) ∈ [−1, 1] × [0,∞], (11.34)

where

h𝜅n (t) ∶= ⎧⎪⎨⎪⎩
𝛾d,k,𝜅 ∞∑

i=0

(−1)i𝜒n,d,𝜅
i g𝜅i (t), n = 0, 1,…, 𝜅 − 1,

𝛾d,k,𝜅g𝜅n−𝜅(t), n ≥ 𝜅, (11.35)

with 𝛾d,k,𝜅 ∶= ∏𝜅
j=1

k−2j𝛿(d−2j+1)/2 > 0 and ∑∞
n=0 h𝜅n (0)C(d−2𝜅−1)/2

n (1) < ∞. The functions

g𝜅n are defined in Eq. (11.27) and belong to the class 𝒫 (ℝk) and 𝜒n,d,𝜅
i are given in

Eq. (11.30).

Remark 11.4.11. By Remark 11.4.5, if g𝜅2n+1 ≡ 0 for all n, then I𝜅3𝜑, for 𝜅 = 1, 2, belongs
to the class 𝒫 (𝕊d−2𝜅 × ℝk−2𝜅).
Corollary 11.4.12. Under the conditions of Theorem 11.4.10, there exists a bounded func-
tion H𝜅 on [−1, 1] × [0,∞) such that H𝜅 + I𝜅3𝜑 belongs to 𝒫 (𝕊d−2𝜅 × ℝk−2𝜅).

As previously mentioned, we can replace the functions h𝜅n , n = 0, 1,…, 𝜅 − 1, with
others such that the new quasi Montée operator belongs to 𝒫 (𝕊d−2𝜅 × ℝk−2𝜅). Theorem
11.4.13 provides a construction in this sense.
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Theorem 11.4.13. Let 𝜅 ∈ ℤ∗+, d, and k be integers such that d, k > 2𝜅. Let 𝜑 ∶ [−1, 1]×[0,∞) → ℝ be a function that belongs to the class 𝒫 (𝕊d × ℝk) satisfying the hypotheses
of Theorem 11.4.10. If additionally, the k-Schoenberg measures Fn of the d-Schoenberg
functions of 𝜑 satisfy

(1)
∞∑
n=0

g𝜈n (0)C(d−1)/2
n (1) = ∞∑

n=0

C(d−1)/2
n (1)∫∞

0

1

r2𝜈 dFn(r) < ∞, for and 𝜈 ∈{1, 2,…, 𝜅},
(2) There exists a constant K > 0 such that

∞∑
n=0

C(d−1)/2
n (1)dFn(r) ≤ K, 0 ≤ r < ∞;

then there exist 2𝜅 constants An and Bn, n = 0,…, 𝜅 − 1, such that

I𝜅,A0..A𝜅−1,B0..B𝜅−1

3 𝜑(x, t) ∶= 𝜅−1∑
n=0

(Anh̃𝜅1,n(t) − Bnh̃𝜅2,n(t))C(d−2𝜅−1)/2
n (x)

+ ∞∑
n=𝜅 h̃𝜅n (t)C(d−2𝜅−1)/2

n (x). (11.36)

The functions h𝜅n ∈ 𝒫 (ℝk), n ≥ 𝜅 and h̃𝜅1,n, h̃𝜅2,n ∈ 𝒫 (ℝk) are defined, respectively, in
Eqs. (11.35) and (A.10).

Remark 11.4.14. For any An ≥ 0, n = 1,…, 𝜅 − 1, the function I𝜅,0A1..A𝜅−1,0..0
3 𝜑 belongs

to 𝒫 (𝕊d−2𝜅 × ℝk−2𝜅).
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APPENDIX A

Proof of Theorem 11.4.1. Since 𝜑 belongs to 𝒫 (𝕊d × ℝk), then 𝜑 is continuously differ-
entiable with respect to the first variable (see Ref. [34, Proposition 3.8]) and has a Gegen-
bauer expansion as Eq. (11.3). Also 𝜑x has a Gegenbauer expansion in the form

𝜑x(x, t) ∼ ∞∑
n=0

̃f d+1

n (t)C(d+1)/2
n (x).

Using Eqs. (11.15)–(11.16), the remainder of the proof follows as in Ref. [30,
Theorem 11.2.3]. ■

Proof of Theorem 11.4.2. Let 𝜑 be a function as in Eq. (11.2). By Eq. (11.7),

df dn
dt

(t) = ∫∞
0

−1
k
tr2Ωk+2 (tr) dFn (r) .

Deriving term by term, we obtain𝜕𝜑𝜕t (x, t) = ∞∑
n=0

df dn
dt
(t)C(d−1)/2

n (x)
= −1

k

∞∑
n=0

(∫∞
0

Ωk+2(tr)r2dFn(r))C(d−1)/2
n (x). (A.1)

By Lemma 3 in Ref. [37], we have

d2f dn
dt2

(0) = −1
k
∫∞
0

r2dFn(r).
Thus, 𝜕2𝜑𝜕t2 (x, 0) = −1

k

∞∑
n=0

(∫∞
0

r2dFn(r))C(d−1)/2
n (x), x ∈ [−1, 1]. (A.2)

In particular, 𝜕2𝜑𝜕t2 (1, 0) = −1
k

∞∑
n=0

(∫∞
0

r2dFn(r))C(d−1)/2
n (1) . (A.3)

Thus, by Eqs. (A.1) and (A.3), for x ∈ [−1, 1 ) and t > 0, we have

D2𝜑 (x, t) = 𝜑t(x, t)
t𝜑tt(1, 0) = 1∑∞

n=0 ∫∞
0 r2dFn(r)

∞∑
n=0

gdn (t)C(d−1)/2
n (x), (A.4)

where the functions gdn (t) ∶ [0,∞) → ℝ are defined by

gdn (t) ∶= ∫∞
0

Ωk+2 (tr) r2dFn(r).
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We invoke Hypothesis (1) to imply that gdn ∈ 𝒫 (ℝk+2). Thus, the series in Eq. (A.4)
converges absolutely and uniformly on [−1, 1] × [0,∞). Hence, letting x = 1 and t = 0 in
the expression of the series in Eq. (A.4) provides

1∑∞
n=0 ∫∞

0 r2dFn (r)
∞∑
n=0

gdn (0)C(d−1)/2
n (1) = 1 = D2𝜑 (1, 0) .

Therefore, D2𝜑 is a continuous function on [−1, 1] × [0,∞) having a representation series
as in Eq. (11.2) with d-Schoenberg functions gdn ∈ 𝒫 (ℝk+2). Since, by (2),

∞∑
n=0

gdn(0) = ∞∑
n=0

∫∞
0

r2dFn(r) < ∞,
we can conclude that D2𝜑 belongs to 𝒫 (Sd × ℝk+2). ■

Proof of Theorem 11.4.3. We prove the statement by induction on 𝜅 ∈ ℤ∗+.
Step 𝜅 = 1 : We have

I11𝜑(x, t) = I1𝜑(x, t) = ∫x

−1

𝜑(u, t)du.
By Eqs. (11.2) and (11.11), integrating term by term, we obtain

I11𝜑(x, t) = ∞∑
n=0

f dn (t) 1𝛿(d−1)/2 (C(d−3)/2
n+1 (x) − C(d−3)/2

n+1 (−1)) .
Since C(d−3)/2

n+1 (−1) = (−1)n+1C(d−3)/2
n+1 (1), we have

I11𝜑(x, t) = ∞∑
n=0

̃f d,1n (t)C(d−3)/2
n (x)

where

f̃
d,1
n (t) ∶= ⎧⎪⎨⎪⎩

1𝛿(d−1)/2
∞∑
i=0

(−1)i𝜒n,d,1
i f di (t), n = 0

1𝛿(d−1)/2 f dn−1(t), n ≥ 1,
where 𝜒0,d,1

i = C(d−3)/2
i+1 (1) and, by Eq. (11.14),

0 ≤ 𝜒0,d,1
i = ||||C(d−1)/2

i (1)C(d−3)/2
i+1 (1)

C(d−1)/2
i (1)

|||| ≤ 𝜚(d−1)/2,1⏟⎵⏟⎵⏟ϒ0,d,1
C(d−1)/2
i (1),

which implies ||(−1)i𝜒0,d,1
i f di (t)|| ≤ ϒ0,d,1fi(0)C(d−1)/2

i (1)
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and by Eq. (11.2), the series in the definition of ̃f d,1n is uniformly convergent on [0,∞).
Again by Eq. (11.14), for n ≥ 1,|||f̃ d,1n (0)C(d−3)/2

n (1)||| ≤ 1𝛿(d−1)/2ϒ0,d,1f dn−1(0)C(d−1)/2
n−1 (1).

Thus,∑∞
n=0

̃f d,1n (0)C(d−3)/2
n (1) < ∞.

Step 𝜅 = 2: By algebraic manipulation we have

I21𝜑(x, t) = ∞∑
n=0

̃f d,2n (t)C(d−5)/2
n (x)

where

f̃
d,2
n (t) ∶= ⎧⎪⎨⎪⎩

𝜏d,2 ∞∑
i=0

(−1)i𝜒n,d,2
i f di (t), n = 0, 1,

𝜏d,2f dn−𝜅(t), n ≥ 2,
with 𝜏d,2 = (𝛿(d−1)/2𝛿(d−3)/2)−1

and

𝜒0,d,2
i ∶= C(d−3)/2

i+1 (1)C(d−5)/2
1 (1) − C(d−5)/2

i+2 (1),
𝜒1,d,2
i ∶= C(d−3)/2

i+1 (1) = 𝜒0,d,1
i .

It is clear that 0 ≤ 𝜒1,d,2
i ≤ ϒ1,d,2C(d−1)/2

i (1), with ϒ1,d,2 = ϒ0,d,1. It is not difficult to see
that

𝜒0,d,2
i = (d − 5)Γ(i + d − 1)(i + 1)Γ(d − 3)(i + d − 3)Γ(i + 3) ≥ 0

and, by Eq. (11.14),

||𝜒0,d,2
i

|| ≤ (||||C
(d−3)/2
i+1 (1)

C(d−1)/2
i (1)C(d−5)/2

1 (1)|||| +
||||C

(d−5)/2
i+2 (1)

C(d−1)/2
i (1)

||||)C(d−1)/2
i (1)

≤ (𝜚(d−1)/2,1 Γ(1 + d − 5)Γ(2)Γ(d − 5) + 𝜚(d−1)/2,2)C(d−1)/2
i (1)

= (𝜚(d−1)/2,1(d − 5) + 𝜚(d−1)/2,2)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟ϒ0,d,2
C(d−1)/2
i (1)
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By the same argument of the step 𝜅 = 1, we can conclude that the series in the definition

of ̃f d,2n for n = 0, 1 is uniformly convergent on [0,∞) and also∑∞
n=0

̃f d,2n (0)C(d−5)/2
n (1) <∞.

Induction step: Let us assume that the expression in Eq. (11.28) of I𝜅1𝜑 holds up to 𝜅, and
let us prove it holds for I𝜅+1

1 𝜑. We have

I𝜅+1
1 𝜑 (x, t) = I1 (I𝜅1𝜑)(x, t) = ∫x

−1

I𝜅1𝜑 (u, t) du.
Using the induction hypothesis and integrating term by term, for (x, t) ∈ [−1, 1] × [0,∞),
we obtain

I𝜅+1
1 𝜑(x, t) = 𝜅−1∑

n=0

̃f d,𝜅n (t)∫x

−1

C(d−2𝜅−1)/2
n (u)du + ∞∑

n=𝜅 ̃f d,𝜅n (t)∫x

−1

C(d−2𝜅−1)/2
n (u)du

= 𝜅−1∑
n=0

𝜏d,𝜅 ∞∑
i=0

(−1)i𝜒n,d,𝜅
i f di (t) 1𝛿(d−2𝜅−1)/2 (C(d−2𝜅−3)/2

n+1 (x) − C(d−2𝜅−3)/2
n+1 (−1))

+ ∞∑
n=𝜅 𝜏d,𝜅f dn−𝜅(t) 1𝛿(d−2𝜅−1)/2 (C(d−2𝜅−3)/2

n+1 (x) − C(d−2𝜅−3)/2
n+1 (−1)) .

Thus,

I𝜅+1
1 𝜑 (x, t) = 𝜏d,𝜅+1

𝜅−1∑
n=0

∞∑
i=0

(−1)i𝜒n,d,𝜅
i f di (t) (C(d−2𝜅−3)/2

n+1 (x) − C(d−2𝜅−3)/2
n+1 (−1))

+ 𝜏d,𝜅+1
∞∑
n=𝜅 f dn−𝜅(t) (C(d−2𝜅−3)/2

n+1 (x) − C(d−2𝜅−3)/2
n+1 (−1)) .

After some algebraic manipulation,

I𝜅+1
1 𝜑 (x, t) = ∞∑

n=0

f̃
d,𝜅+1

n (t)C(d−2(k+1)−1)/2
n (x),

where

̃f d,𝜅+1

n (t) = ⎧⎪⎨⎪⎩
𝜏d,𝜅+1

∞∑
i=0

(−1)i𝜒n,d,𝜅+1
i f di (t), n = 0, 1,…, 𝜅,

𝜏d,𝜅+1f d
n−(𝜅+1)(t), n ≥ 𝜅 + 1,

with

𝜒0,d,𝜅+1
i ∶= 𝜅∑

j=1

(−1) j+1𝜒 j−1,d,𝜅
i C(d−2(𝜅+1)−1)/2

j (1) − (−1)𝜅+1C(d−2(𝜅+1)−1)/2
i+𝜅+1 (1)

and 𝜒n,d,𝜅+1
i ∶= 𝜒n−1,d,𝜅

i , n = 1, 2,…, 𝜅.
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It is clear that ||𝜒n,d,𝜅+1
i

|| ≤ ϒn,d,𝜅+1C(d−1)/2
i (1), with ϒn,d,𝜅+1 = ϒn−1,d,𝜅 .

Now, by Eq. (11.14),

||𝜒0,d,𝜅+1
i

|| ≤ ( 𝜅∑
j=1

||𝜒 j−1,d,𝜅
i

||
C(d−1)/2
i (1)C(d−2𝜅−3)/2

j (1) + C(d−2𝜅−3)/2
i+𝜅+1 (1)
C(d−1)/2
i (1) )C(d−1)/2

i (1).
By induction hypothesis (11.31) and by Eq. (11.14) we obtain

||𝜒0,d,𝜅+1
i

|| ≤ ( 𝜅∑
j=1

ϒj−1,d,𝜅 (d − 2𝜅 − 3) + 𝜚(d−1)/2,2(𝜅+1))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟ϒ0,d,𝜅+1

C(d−1)/2
i (1) .

The convergence of the series in the definition of ̃f d,𝜅+1

n for n = 0, 1,…, 𝜅 and∑∞
n=0

̃f d,𝜅+1

n (0)C(d−2(𝜅+1)−1)/2
n (1) follows as in the previous steps. ■

Proof of Corollary 11.4.4. Note that, for n = 0, 1,…, 𝜅 − 1, we can rewrite ̃f d,𝜅n as

̃f d,𝜅n (t) = h𝜅1,n(t) − h𝜅2,n(t),
where

h𝜅1,n(t) ∶= 𝜏d,𝜅 ∞∑
i=0

𝜒n,d,𝜅
2i f d2i(t), and (A.5)

h𝜅2,n (t) ∶= 𝜏d,𝜅 ∞∑
i=0

𝜒n,d,𝜅
2i+1 f

d
2i+1 (t) (A.6)

Define the function H𝜅 on [−1, 1] × [0,∞) by
H𝜅(x, t) ∶= 𝜅−1∑

n=0

h𝜅2,n(t)C(d−2𝜅−1)/2
n (x) − h𝜅1,0(t)C(d−2𝜅−1)/2

0 (x)
which is bounded on [−1, 1] × [0,∞) because, by Eqs. (11.13), (11.31), and (11.2),

||H𝜅(x, t)|| ≤ 𝜏d,𝜅 𝜅−1∑
n=0

ϒn,d,𝜅 ( ∞∑
i=0

f d2i+1(0)C(d−1)/2
2i+1 (1))C(d−1)/2

n (1)
+𝜏d,𝜅ϒ0,d,𝜅 ( ∞∑

i=0

f d2i (0)C(d−1/2)
2i (1))C(d−2𝜅−1/2)

0 (1) < ∞,
for all (x, t) ∈ [−1, 1] × [0,∞).
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By Remark 11.4.5, it is clear that h𝜅1,n ∈ 𝒫 (ℝk), n = 1, 2,…, 𝜅 − 1, and also ̃f d,𝜅n ∈𝒫 (ℝk) for n ≥ 𝜅. Therefore,
H𝜅(x, t) + I𝜅1𝜑(x, t) = 𝜅−1∑

n=1

h𝜅1,n(t)C(d−2𝜅−1)/2
n (x) + 𝜏d,𝜅 ∞∑

n=𝜅 ̃f d,𝜅n (t)C(d−2𝜅−1)/2
n (x)

has an expansion uniformly convergent as (11.2) due to Theorem 11.4.3. By Theorem 11.3.3
of Ref. [34] (see Eq. (11.2)), we can conclude that the function H𝜅 + I𝜅1𝜑 belongs to the

class 𝒫 (𝕊d−2𝜅 × ℝk). ■

We observe that the function H𝜅 is not unique and that the construction presented
allows us to highlight the properties of the coefficient functions and consider the maximum
of the non-zero d-Schoenberg functions of 𝜑.
Proof of Theorem 11.4.7. By Eq. (11.5), for any constants A and B,

Ah𝜅1,n (t) − Bh𝜅2,n (t) = 𝜏d,𝜅 ∞∑
i=0

∫∞
0

Ωk (tr) (A𝜒n,d,𝜅
2i dF2i(r) − B𝜒n,d,𝜅

2i+1 dF2i+1(r)) . (A.7)

Since, by Eq. (11.31),

∫∞
0

A ||𝜒n,d,𝜅
i

|| dFi (r) ≤ Aϒn,d,𝜅C(d−1)/2
i (1)∫∞

0

dFi (r),
we have

∫∞
0

(A𝜒n,d,𝜅
2i dF2i(r) − B𝜒n,d,𝜅

2i+1 dF2i+1(r)) < ∞.
By Eq. (11.31) and (1) the series in Eq. (A.7) converges absolutely and uniformly on [0,∞).

Thus,

Ah𝜅1,n(t) − Bh𝜅2,n(t) = 𝜏d,𝜅∫∞
0

Ωk(tr)d( ∞∑
i=0

A𝜒n,d,𝜅
2i F2i(r) − B𝜒n,d,𝜅

2i+1F2i+1(r)) .
By Eq. (11.31) and (2), the series ∑∞

i=0 𝜒n,d,𝜅
2i F2i and ∑∞

i=0 𝜒n,d,𝜅
2i+1F2i+1 are uniformly

bounded on [0,∞). Then we can choose An,Bn such that the series ∑∞
i=0 An𝜒n,d,𝜅

2i F2i −
Bn𝜒n,d,𝜅

2i+1F2i+1 is non-negative, which allows us to conclude that Anh𝜅1,n −Bnh𝜅2,n ∈ 𝒫 (ℝk).
The convergence uniform of the series (11.32) follows by Theorem 4.3 and the result by
Theorem 3.3 of Ref. [34] (see Eq. (11.2)). ■

Proof of Theorem 11.4.9. We will prove Eq. (11.33) by mathematical induction on 𝜅.
Step 𝜅 = 1 : We have

I2𝜑 (x, t) = 1∫∞
0 v𝜑 (1, v) dv ∫

∞
t

v𝜑 (x, v) dv.
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By Eq. (11.2), integrating term by term, we obtain

∫∞
t

v𝜑 (x, v) dv = ∞∑
n=0

(∫∞
t

v∫∞
0

Ωk (vr) dFn (r) dv)C(d−1)/2
n (x) .

Using Fubini Theorem, we have

∫∞
t

v𝜑 (x, v) dv = ∞∑
n=0

[∫∞
0

(∫∞
tr

w
r2
Ωk (w) dw) dFn (r)]C(d−1)/2

n (x) .
By Eq. (11.9), for (x, t) ∈ [−1, 1] × [0,∞),

∫∞
tr

w
r2
Ωk (w) dw = (k − 2)

r2
Ωk−2 (tr) .

Hence, for (x, t) ∈ [−1, 1] × [0,∞),
∫∞
t

v𝜑 (x, v) dv = (k − 2) ∞∑
n=0

g1
n (t)C(d−1)/2

n (x), (A.8)

where g1
n is defined in Eq. (11.27). In particular,

∫∞
0

v𝜑 (1, v) dv = (k − 2) ∞∑
n=0

g1
n (0)C(d−1)/2

n (1), (A.9)

which is nonzero and finite. By Eqs. (A.8) and (A.9), I2𝜑 has the representation given in
Eq. (11.33).

Induction step: Let us assume the expression in Eq. (11.33) of I𝜅2𝜑 holds up to 𝜅, and
let us prove it holds for I𝜅+1

2 𝜑.
We have

I𝜅+1
2 𝜑 (x, t) = I2 (I𝜅2𝜑)(x, t) = 1∫∞

0 vI𝜅2𝜑 (1, v) dv ∫
∞

t

vI𝜅2𝜑 (x, v) dv.
Note that the Hypothesis (1) guarantees that g𝜅n ∈ 𝒫 (ℝk−2𝜅) and consequently the series
in (11.33) converges absolutely and uniformly.

Using the induction hypothesis, integrating term by term, using the Fubini theorem and
Eq. (11.9), for (x, t) ∈ [−1, 1] × [0,∞), we obtain:

∫∞
t

vI𝜅2𝜑(x, v)dv = ∞∑
n=0

[∫∞
0

(∫∞
t

vΩk−2𝜅(vr)dv) 1
r2𝜅 dFn(r)]C(d−1)/2

n (x)
= (k − 2𝜅 − 2) ∞∑

n=0

[∫∞
0

Ωk−2(𝜅+1)(tr) 1

r2(𝜅+1) dFn(r)]C(d−1)/2
n (x)

= (k − 2𝜅 − 2) ∞∑
n=0

g𝜅+1
n (t)C(d−1)/2

n (x).
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In particular,

∫∞
0

vI𝜅2𝜑 (1, v) dv = (k − 2𝜅 − 2) ∞∑
n=0

g𝜅+1
n (0)C(d−1)/2

n (1),
which is nonzero and finite by (2). Therefore,

I𝜅+1
2 𝜑(x, t) = 1∑∞

n=0 g𝜅+1
n (0)C(d−1)/2

n (1)
∞∑
n=0

g𝜅+1
n (t)C(d−1)/2

n (x)
and Eq. (11.33) is proved.

Finally, given 𝜅 ∈ ℤ∗+, by (1) the d-Schoenberg functions g𝜅n of I𝜅2𝜑 belong to the

class 𝒫 (ℝk−2𝜅) and together with (2) we can conclude 0 < ∑∞
n=0 g𝜅n (0)C(d−1)/2

n (1) < ∞.
Therefore, Theorem 3.3 of Ref. [34] (see Eq. (11.2)) allows us to infer that I𝜅2𝜑 belongs to𝒫 (𝕊d × ℝk−2𝜅). ■

Proof of Theorem 11.4.10. We will prove Eq. (11.34) by mathematical induction on 𝜅.
Step 𝜅 = 1: For each (x, t) ∈ [−1, 1] × [0,∞),

I13𝜑 (x, t) = ∫∞
t

∫x

−1

v𝜑 (u, v) dudv.
Using Eqs. (11.2) and (11.5),

∫∞
t

∫x

−1

v𝜑 (u, v) dudv = ∫∞
t

∫x

−1

v
∞∑
n=0

(∫∞
0

Ωk (vr) dFn (r))C(d−1)/2
n (u) dudv.

Integrating term by term and by the Fubini theorem, we have∫∞
t

∫x

−1

v𝜑(u, v)dudv = ∞∑
n=0

[∫∞
0

(∫∞
t

vΩk(vr)dv) dFn(r)] [∫x

−1

C(d−1)/2
n (u)du] .

By Eqs. (11.9) and (11.11), we obtain

∫∞
t

∫x

−1

v𝜑(u, v)dudv = ∞∑
n=0

[∫∞
0

(k − 2)
r2

Ωk−2(tr)dFn(r)] ×
× [ 1𝛿(d−1)/2 (C(d−3)/2

n+1 (x) − C(d−3)/2
n+1 (−1))]

Since C(d−3)/2
n+1 (−1) = (−1)n+1C(d−3)/2

n+1 (1),
∫∞
t

∫x

−1

v𝜑(u, v)dudv = (k − 2)𝛿(d−1)/2 [( ∞∑
n=0

(−1)nC(d−3)/2
n+1 (1)g1

n(t))C(d−3)/2
0 (x)

+ ∞∑
n=0

g1
n(t)C(d−3)/2

n+1 (x)] ,
where g1

n is given in Eq. (11.27).
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Therefore,

I13𝜑(x, t) = ∞∑
n=0

h1
n(t)C(d−3)/2

n (x),
where

h1
n(t) = ⎧⎪⎨⎪⎩

𝛾d,k,1 ∞∑
i=0

(−1)i𝜒0,d,1
i g1

i (t), n = 0

𝛾d,k,1g1
n−1(t), n ≥ 1,

where 𝛾d,k,1 = (k−2)𝛿(d−1)/2 > 0. Moreover∑∞
n=0 h1

n(0)C(d−3)/2
n (1) < ∞ because, by Eq. (11.31)

and (2)–(3), we have

∞∑
n=0

||h1
n(0)C(d−3)/2

n (1)|| ≤ ϒ0,d,1C(d−3)/2
0 (1) ∞∑

i=0

g1
i (0) + ∞∑

n=1

g1
n−1(0)C(d−3)/2

n (1) < ∞
Induction step: Let us assume the expression in Eq. (11.34) of I𝜅3𝜑 holds up to 𝜅, and

let us prove it holds for I𝜅+1
3 𝜑.

We have

I𝜅+1
3 𝜑 (x, t) = I3 (I𝜅3𝜑)(x, t) = ∫∞

t

∫x

−1

vI𝜅3𝜑 (u, v) dudv.
Using the induction hypothesis, integrating term by term, using the Fubini theorem, and

Eqs. (11.27), (11.9), (11.11), and making algebraic manipulations similar to the previous
ones, for (x, t) ∈ [−1, 1] × [0,∞), we obtain

∫∞
t

∫x

−1

vI𝜅3𝜑(u, v)dudv = 𝛾d,k,𝜅 𝜅−1∑
n=0

∞∑
i=0

(−1)i𝜒n,d,𝜅
i ∫∞

t

vg𝜅i (v) dv∫x

−1

C(d−2𝜅−1)/2
n (u)du

+𝛾d,k,𝜅 ∞∑
n=𝜅∫

∞
t

vg𝜅n−𝜅 (v) dv∫x

−1

C(d−2𝜅−1)/2
n (u)du

= 𝛾d,k,𝜅 (k − 2𝜅 − 2)𝛿(d−2𝜅−1)/2 ×
[𝜅−1∑
n=0

∞∑
i=0

(−1)i𝜒n,d,𝜅
i g𝜅+1

i (t) (C(d−2𝜅−3)/2
n+1 (x) − C(d−2𝜅−3)/2

n+1 (−1))
+ ∞∑

n=𝜅 g𝜅+1
n−𝜅(t) (C(d−2𝜅−3)/2

n+1 (x) − C(d−2𝜅−3)/2
n+1 (−1))]

Thus, as in the Proof of Theorem 11.4.3,

I𝜅+1
3 𝜑(x, t) = 𝛾d,k,𝜅+1

∞∑
n=0

h𝜅+1
n (t)C(d−2(𝜅+1)−1)/2

n (x),
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where

h𝜅+1
n (t) ∶= ⎧⎪⎨⎪⎩

𝛾d,k,𝜅+1
∞∑
i=0

(−1)i𝜒n,d,𝜅+1
i g𝜅+1

i (t), n = 0, 1,…, 𝜅
𝛾d,k,𝜅+1g𝜅+1

n−(𝜅+1)(t), n ≥ 𝜅 + 1

with 𝛾d,k,𝜅+1 > 0, By (11.31) and (2)–(3),∑∞
n=0 h𝜅+1

n (0)C(d−2(𝜅+1)−1)/2
n (1) < ∞ ■

Proof of Corollary 11.4.12. We can proceed as in the Proof of Corollary 11.4.4 and rewrite
h𝜅n , n = 0, 1,…, 𝜅 − 1, as

h𝜅n (t) = h̃𝜅1,n(t) − h̃𝜅2,n(t),
where

h̃𝜅1,n(t) ∶= 𝛾d,k,𝜅 ∞∑
i=0

𝜒n,d,𝜅
2i g𝜅2i(t), and

h̃𝜅2,n (t) ∶= 𝛾d,k,𝜅 ∞∑
i=0

𝜒n,d,𝜅
2i+1 g

𝜅
2i+1 (t) . (A.10)

Define the bounded function H𝜅 on [−1, 1] × [0,∞) by
H𝜅(x, t) ∶= 𝜅−1∑

n=0

h̃𝜅2,n(t)C(d−2𝜅−1)/2
n (x) − h̃𝜅1,0(t)C(d−2𝜅−1)/2

0 (x)
By Remark 11.4.5, it is clear that h̃𝜅1,n ∈ 𝒫 (ℝk), n = 1, 2,…, 𝜅 − 1, and also h𝜅n ∈𝒫 (ℝk) for n ≥ 𝜅. Therefore,

H𝜅(x, t) + I𝜅3𝜑(x, t) = 𝜅−1∑
n=1

h̃𝜅1,n(t)C(d−2𝜅−1)/2
n (x) + ∞∑

n=𝜅 h𝜅n (t)C(d−2𝜅−1)/2
n (x)

has an expansion as Eq. (11.2) with the series uniformly convergent on [−1, 1]×[0,∞) due
to Theorem 11.4.10. By Theorem 11.3.3 of Ref. [34] (see Eq. (11.2)), we can conclude that
the function H𝜅 + I𝜅1𝜑 belongs to the class 𝒫 (𝕊d−2𝜅 × ℝk). ■

Proof of Theorem 11.4.13. As in the Proof of Theorem 11.4.7, for any constants A and B,
by Eq. (11.27),

Ah̃k1,n(t) − Bh̃k2,n(t)
= ∞∑

i=0

∫∞
0

Ωk−2𝜅(tr) (A𝜒n,d,𝜅
2i

1
r2𝜅 dF2i(r) − B𝜒n,d,𝜅

2i+1
1
r2𝜅 dF2i+1(r)) . (A.11)

Since, by Eq. (11.31),

∫∞
0

A ||𝜒n,d,𝜅
i

|| 1
r2𝜅 dFi (r) ≤ Aϒn,d,𝜅C(d−1)/2

i (1)∫∞
0

1
r2𝜅 dFi (r),
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we have

∫∞
0

(A𝜒n,d,𝜅
2i

1
r2𝜅 dF2i(r) − B𝜒n,d,𝜅

2i+1
1
r2𝜅 dF2i+1(r)) < ∞

and by Hypothesis (1) the series in (A.11) converges absolutely and uniformly on [0,∞).
Thus,

Ah̃k1,n(t) − Bh̃k2,n(t) = ∫∞
0

Ωk(tr)d( ∞∑
i=0

A𝜒n,d,𝜅
2i

1
r2𝜅 F2i(r) − B𝜒n,d,𝜅

2i+1
1
r2𝜅 F2i+1(r)) .

By (2), the series ∑∞
i=0 𝜒n,d,𝜅

2i
1

r2𝜅F2i and ∑∞
i=0 𝜒n,d,𝜅

2i+1
1

r2𝜅F2i+1 are uniformly bounded

on [0,∞). Then we can choose An,Bn such that∑∞
i=0 An𝜒n,d,𝜅

2i
1

r2𝜅F2i− Bn𝜒n,d,𝜅
2i+1

1

r2𝜅F2i+1 is

non-negative, which allows us to conclude that Anh̃𝜅1,n − Bnh̃𝜅2,n ∈ 𝒫 (ℝk). The uniform
convergence of the series (11.36) follows by Theorem 11.4.10 and the result by Theorem
11.3.3 of Ref. [34] (see Eq. (11.2)). ■
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