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ABSTRACT

We probe the conduction-band offsets (CBOs) and confined states at GaAs/GaAsNBi quantum wells (QWs). Using a combination of
capacitance–voltage (C–V) measurements and self-consistent Schr€odinger–Poisson simulations based on the effective mass approxima-
tion, we identify an N-fraction dependent increase in CBO, consistent with trends predicted by the band anti-crossing model. Using the
computed confined electron states in conjunction with photoluminescence spectroscopy data, we show that N mainly influences the con-
duction band and confined electron states, with a relatively small effect on the valence band and confined hole states in the quaternary
QWs. This work provides important insight toward tailoring CBO and confined electron energies, both needed for optimizing infrared
optoelectronic devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172295

It has been reported that dilute fractions of N and Bi incorporated
into GaAs lead to significant bandgap reductions1–7 while maintaining
lattice-matching with GaAs. In particular, it was recently shown that a
N:Bi ratio¼ 0.83 is needed for lattice matching of the quaternary
GaAsNBi to GaAs.8 In addition to this material’s promise for infrared
detectors and laser diodes,9–14 solar cells based upon the quaternary
GaAsNBi were recently reported.15

For GaAsNBi, several theoretical models predict that dilute N
fractions lower the GaAs conduction band edge (CBE), while dilute Bi
fractions raise the GaAs valence band edge (VBE), both on the order
of 100meV for every 1% N or Bi.16–21 Thus, co-incorporation of N
and Bi is expected to enable independent control of the conduction-
band offset (CBO) and valence-band offset (VBO) with respect to
GaAs. Beyond computational studies, both C–V measurements and
THz spectroscopy have been used to quantify the CBO and VBO of
the ternaries. For example, CV measurements of GaAs0.97N0.03/GaAs
reveal a CBO of 4006 10 and a VBO of 116 2meV,22,23 and electro-
reflectance measurements of GaAsN thin films and multi-quantum
wells (MQWs) reveal a CBO/D Eg of 0.85.

24 In addition, THz spectros-
copy of GaAs1–yBiy/GaAs suggests that CBOs range from 90 to
210meV and VBOs range from 130 to 530meV for yBi from 0.03 to

0.117.4 To date, measurements of the CBO and VBO for the quater-
nary GaAs1–x–yNxBiy/GaAs have not been reported.

Here, we report on the N-fraction dependence CBOs and con-
fined states at GaAs/GaAs1–xNx and GaAs/GaAs1–x–yNxBiy single
QWs. We use carrier concentration profiles from C–V data and con-
finement energies from photoluminescence (PL) spectroscopy, in con-
junction with Schr€odinger–Poisson simulations of the energy band
profiles, to extract the CBOs and confined electron and hole states at
the QW interfaces. This work provides important insight into tailoring
the CBO, the VBO, and the confined state energies, all critical parame-
ters for performance of quaternary infrared devices.

For this study, we prepared a series of QWs and reference sam-
ples by molecular-beam epitaxy. Ternary GaAsN and quaternary
GaAsNBi QW were sandwiched between GaAs:Si layers (300 and
690nm), as shown in Fig. 1. To probe the CBOs and confined state
energies, QW thicknesses of 10nm were targeted to achieve a two-
dimensional electron gas (2DEG) with single sub-band occupancy.
Confirmation of the 2DEG was achieved via temperature-dependence
measurements of capacitance and dissipation, as described in the sup-
plementary material. As shown in the scanning transmission electron
microscopy (STEM) image in Fig. 2(a), energy-dispersive x-ray
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spectroscopy (EDS) in Fig. 2(b), and the cross-sectional TEM image in
Fig. 2(c), the 10 nm quaternary QW has a graded lower interface and
an abrupt upper interface with maximum yBi¼ 0.018, likely due to Bi
surface segregation during epitaxy.25–27 The reference samples con-
sisted of GaAs:Si, GaAs1–xNx, and GaAs1–x–yNxBiy films. N mole frac-
tions of xN¼ 0.03 (GaAsN) and xN¼ 0.007, 0.019, and 0.024
(GaAsNBi) were determined using x-ray rocking curves in conjunction
with nuclear reaction analysis as described in Ref. 28.

Room temperature C–V measurements were conducted using a
Keithley 4200 semiconductor parameter analyzer with AC
voltage¼ 30mV, frequency¼ 1MHz, and DC bias swept from 0.5 to
�10V. For comparison, the measured and computed carrier concen-
tration, n̂, at a depth z from the Schottky contact were calculated using
the depletion approximation:

z ¼ Kse0A
C

; (1)

n̂ zð Þ ¼ � 2
qKse0A2d 1=C2ð Þ=dV ; (2)

where Ks is the GaAs dielectric constant, e0 is the permittivity of free
space, A is the contact area, q is the elementary charge, and V is the
DC reverse bias.

For the GaAs1–x–yNxBiy QW, PL spectra were collected at 4.25K
using a 532nm continuous-wave laser with excitation power of 5mW.

FIG. 1. Sample structure for GaAsN and GaAsNBi QWs. 10 nm ternary GaAsN and
quaternary GaAsNBi QW were sandwiched between GaAs:Si layers (300 and
690 nm). Following MBE growth, chrome/gold (200/2000 Å) Schottky contacts were
evaporated through a shadow mask with 680 lm diameter circular openings.

FIG. 2. (a) Scanning transmission electron microscopy (STEM) image, (b) line-cut
energy-dispersive x-ray spectroscopy (EDS) data, and (c) cross-sectional transmis-
sion electron microscopy image of 10 nm quaternary QW. In (b) and (c), a graded
lower interface and an abrupt upper interface are apparent. The black squares in
(b) are the EDS data points, showing a maximum yBi¼ 0.018; and the blue dashed
line is the boxcar averaging of the EDS data.

FIG. 3. C–V data for (a) the GaAs:Si reference and (b) the GaAsN QW. In (b), the
solid curves correspond to C–V data, while the dashed line corresponds to in next-
nano computations, with CBO¼ 360meV. For reference sample (a), the capaci-
tance monotonically decreases from �0.4 to �0.1 nF as the bias voltage sweeps
from 0 to 10 V. For GaAsN QW in (b), a platform-like feature, indicated by an
upward arrow, is apparent, due to the electron accumulation in the QW regions.
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Subsequently, the Varshni model was used to estimate the PL emission
energy at 300K

Eg Tð Þ ¼ Eg 0ð Þ � aT2

bþ T
; (3)

where a¼ 4.3–6.8� 10�4eV/K and b¼ 119–378K.29

Capacitance–voltage profiles for (a) the GaAs:Si reference and (b)
the GaAsN QW are presented in Fig. 3. As the bias is swept from 0 to
10V, the capacitance decreases from �0.4 to �0.1 nF. For the refer-
ence samples, the capacitance decreases monotonically with increasing
reverse bias voltage. For reverse biases in the range of 3–5V, a
platform-like feature, indicated by an upward arrow, is likely due to
electron accumulation in the QW.30,31 Similar platform-like features
are observed in the C–V data shown in Fig. 4 for (a) the GaAs:Si refer-
ence sample and (b)–(d) the GaAsNBi QWs. The C–V data in Figs. 3
and 4 was converted to electron density vs depth using Eqs. (1) and
(2), with an emphasis on the vicinity of the QW, resulting in the plots
shown in Fig. 5.

To quantify the CBOs, we compare the C–V-determined
electron density profiles with those computed using 1D
Schr€odinger–Poisson simulations in the effective mass approx-
imation using nextnano. To extract the best fit values of the
CBO and fixed charges, we performed a sensitivity analysis, as
described in the supplementary material. For GaAsN/GaAs
QW, our resulting best fit values are CBO¼ 3606 40 meV and

interfacial fixed charge¼�6.65� 1011 jej/cm2, as shown in
Fig. 5(a). The CBO value is consistent with 4006 10 meV
reported for a GaAs0.97N0.03/GaAs QW23 and 349 meV inter-
polated from electroreflectance measurements of GaAsN films
and QWs.24

For the quaternary QWs with xN¼ 0.7%, 1.9%, and 2.4%,
yBi¼ 1.8%, the measured and simulated electron density and conduc-
tion band (CB) edge profiles are shown in Figs. 5(b)–5(d). In this case,
the Bi segregation in the quaternary layers is modeled as step-like CBE
profiles, and a similar sensitivity analysis is utilized to determine the
best fit values for the CBOs and the fixed charges. The CBO values
range from 3056 10 to 3656 30 meV with interfacial fixed charges
ranging from �3 to �5.5� 1011 jej/cm2. The trend of increasing CBO
with xN value is consistent with predicted trends. However, the specific
CBO values exceed those predicted by the band-anticrossing
(BAC)18,19 and the linear combination of isolated nitrogen resonant
states (LCINS) models.32 Indeed, the layers likely include N configura-
tions that are not accounted for in the BAC and LCINS models, such
as N–As or N–N pairs sitting on an arsenic site, termed “split intersti-
tials.” These split interstitials may contribute to a reduced effective
bandgap of GaAsN and GaAs(N)Bi.

The 4.25 K PL spectra for quaternary QWs are shown in
Fig. 6(a). For all three quaternary QWs, emissions in the range
of 1.18–1.22 eV, labeled “Eo,” are the effective band gaps and
attributed to recombination from the confined electron (E1

e),

FIG. 4. C–V data for (a) the GaAs:Si reference and (b)–(d) the GaAsNBi QWs. In (b)–(d), the solid curves correspond to C–V data while the dashed lines correspond to next-
nano computations, with CBO¼ 305, 350, and 365meV. For the reference sample in (a), the capacitance monotonically decreases from �0.35 to �0.1 nF with bias voltage
from 0 to 10 V. For the GaAsNBi QWs in (b)–(d), the platform-like features are apparent in voltage ranging from 2 to 4 V.
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hole ground states (Eh). In addition, the higher energy emissions
at �1.35 eV, labeled “E1,” are attributed to recombination from
the first excited electron (E2e) and Eh. For the quaternary QW
with the lowest xN, a localized N-related state lies within the
bandgap, resulting in the �1.06 eV emission labeled “EN.”

33–36

For the quaternary QWs with higher xN values as the CB edge is
lowered, the intensity of emission from the N-localized states is
decreased,21 similar to the Bi-states in valence band.37

To determine the positions of the hole ground states, we com-
bine the CBOs and E1e from C–V data and nextnano simulations
with the Varshni-model estimates of room temperature PL emission
energies. The values of Eh are calculated by EgGaAs – E1e – Eo, as

shown in Fig. 6(b). Table I presents the CBOs, room temperature PL
emission energies, the values of Eh, and the energy difference
between electron ground states and first excited electron states (E1e
– E2e). The values of Eh show a relatively weak dependence on N
fraction, consistent with earlier reports for GaAsN QWs, MQWs,
and thin films that suggest a relatively small VBO compared to
CBO.22–24,38 Thus, for GaAsNBi, N mainly influences the values of
the CB, E1e, with a relatively small effect on the values of valence
band (VB) and Eh. Finally, E

2
e � E1e is 100–110meV, comparable to

the value of E1 – Eo (110–170meV), suggesting that E1 is due to the
recombination from the first excited electron and the hole ground
states.

FIG. 5. CBE and electron density vs depth profiles for (a) the ternary GaAsN QW and (b)–(d) the quaternary GaAsNBi QWs. The solid curves correspond to the C–V data,
while the dashed lines correspond to nextnano computations using the listed CBO values. In all cases, the electron ground states and first excited states in the QWs are indi-
cated by the solid gray and orange lines, respectively. For (b)–(d), the Bi segregation in the quaternary layers are modeled as step-like CBE profiles.

TABLE I. Conduction band offset (DEc), confined electron energy (E
1
e), confined hole energy (Eh), effective bandgap (Eo), and energy of N-related (EN) with respect to the con-

duction band edge of GaAs. E2e � E1e is 100–110meV, comparable to the value of E1-Eo (110–170meV), suggesting that E1 is due to recombination from E2e and Eh. Note that
“Eo Varshni @RT” and “E1 Varshni @ RT” are Varshni-model estimates of room temperature values of Eo and E1.

xN
(NRA)

yBi
(EDS)

DEc (eV)
(C–V)

EN (eV)
PL @4.25K

Eo (eV)
PL @4.25K

Eo (eV)
Varshni @RT

E1 (eV)
PL @4.25K

E1 (eV)
Varshni @RT

E1e (eV)
(nextnano) Eh (eV)

E2e – E1e (eV)
(nextnano)

0.7% 1.8% 0.305 1.06 1.22 1.14 1.34 1.25 0.247 0.04 0.1
1.9% 1.8% 0.35 0.98 1.18 1.1 1.36 1.27 0.292 0.03 0.1
2.4% 1.8% 0.365 0.97 1.18 1.1 1.36 1.27 0.303 0.02 0.11
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In summary, we have examined the CBO, VBO, and confined
state energies for GaAsNBi/GaAs. The trend of increasing CBO with
the xN value is consistent with predicted trends. Meanwhile, the N
fraction in GaAsNBi has a relatively small effect on the values of the
VB and Eh, consistent with earlier studies of GaAsN. This work pro-
vides important insight for tailoring CBOs and confined electron ener-
gies for improving infrared optoelectronic device applications.

See the supplementary material for details of epitaxial growth,
quantification of compositions and in-plane strains and presentation
of evidence for two-dimensional electron gas (2DEG) formation within
the QWs. In addition, the key parameters for nextnano simulations,
including electron effective masses, conduction band offsets (CBOs)
and interfacial fixed charges, and the description of sensitivity analysis
for extracting best fit values and error bars of CBOs are included.
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