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Abstract—Modern frequency stability schemes are static and
reactive. They are based on fixed settings and they do not consider
the dynamic nature of the grid. These schemes operate only after
the system enters a critical state. This work proposes a proactive
approach based on the particle filter and spectral clustering.
Future frequency values are estimated through the particle
filter. This makes it possible to generate an optimized response.
This optimization includes establishing areas for distributed
control using dynamic system data via spectral clustering. The
performance of the concept is evaluated via Matlab simulations
using IEEE test systems. The results show that the technique
proposed was able to stabilize the test system in the aftermath
of a disturbance while providing optimized corrective actions.

Index Terms—Dynamic Estimation, PMU, Synchrophasor,
Power System Stability, Underfrequency Control, Filters.

I. BACKGROUND

A. Motivation and Literature Review

The modern grid is complex and dynamic, yet most pro-
tection and control schemes are static: They are based on
fixed settings and do not take into consideration dynamic
grid conditions [1]. In the context of underfrequency load-
shedding (UFLS), fixed thresholds decide whether the scheme
operates or not [2]. Operation is normally carried out at the
feeder level with little to no feedback [1]. Equally troubling
is the process used for developing these UFLS settings. This
process involves running a finite number of simulations, which
only covers a few of the operating scenarios the system can
encounter [3]. These factors lead to two commonly observed
issues: delayed operation and overshedding. In other words,
corrective actions are taken only after the system has already
entered a critical state, and the amount of compensation used
is usually higher than necessary [2]. The introduction of
intentional delays and operation based on the rate of change
of frequency (RoCoF) have added some degree of flexibility
to these schemes, however as the grid continues to evolve, the

limitations of static schemes are becoming more evident [1],
[2].

In order to overcome these challenges, research has pro-
posed the use of adaptive and predictive schemes. The premise
is that an adaptive scheme will eliminate the need to develop
fixed settings from simulations, and allow the scheme to make
decisions based on real-time data [4]. Also, by being able
to predict that the system is heading towards an unstable
condition, corrective actions can be optimized [5].

Most techniques in literature shame a common founda-
tion, they propose the use of PMUs for gathering real-time
measurements, and then processing these measurements as
a time series [2], [5]. A variety of methods are used for
producing predictions for instance, autoregressive models are
used in [6], model predictive control methods are used in [7],
linearized power flow equations are used in [8], the output of
synchronous condensers is monitored in [9], and polynomial
curve-fitting is utilized in [10].

While the solutions discussed in this section have served
as inspiration for this work, they have several limitations in
common including: Reliance on high PMU reporting rates,
centralized architectures, complex decision making algorithms,
lack of robustness during highly dynamic events, the derivation
of either purely numerical models or strictly physics-based
models. Moreover most of these techniques do not explore
the impact of uncertainty.

B. Contributions

The work presented in this paper is an extension of previous
research on the application of the particle filter (PF) in power
system stability. The PF is fed PMU data and generates
predictions a few seconds into the future. This allows the
algorithm to optimize a response that stabilizes the system
[11], [12]. The goal of this work is to address the limitations of
the techniques discussed in the previous section, and to bring
this solution one step closer to being implementable. With that
goal in mind, the focus of this paper is on the integration of a979-8-3503-5518-5/24/$31.00 ©2024 IEEE
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clustering module used to establish areas of frequency control
based on dynamic system conditions.

The rest of this paper is organized as follows: Section II
provides information regarding the proposed scheme archi-
tecture, spectral clustering, and the optimization algorithms
being used. Section III covers the PF and the equations used
to calculate load-generation imbalances. Section IV provides
an overview of the solution and the sequence of operation.
The performance of the proposed solution is then evaluated
through case studies in Section V. Finally, closing remarks are
provided in Section VI.

II. CLUSTERING AND OPTIMIZATION

A. Distributed Operation

This work is based on a distributed architecture that lever-
ages Phasor Measurement Units (PMU), and other devices
capable of supporting synchrophasors to gather real-time data
reflecting the state of the system. One of the main benefits
of a distributed architecture is that it streamlines the data
transfer process by reducing the amount of information sent
to processing nodes [13]. Under this configuration PMUs
are grouped based on observability, and only selected PMUs
communicate with groups other than their own [5].

B. Spectral Clustering

The term spectral refers to techniques based on the analysis
of eigenvalues. Eigenvalues hold important information related
to the characteristics and the relationships between the states
of a system [14]. Spectral clustering is a technique that
uses eigenvalues and eigenvectors as a means of dimension
reduction to increase clustering efficiency [15].

In this work eigenvalues are derived from a Laplacian
matrix. Laplacians are widely used in powers systems to
formulate admittance matrices. Instead of using admittance
values to built the matrix, power flow measurements are used.
The use of power flow values instead of admittance parameters
provides access to dynamic load-generation data, which is
critical for the process of establishing areas [16] . Off-diagonal
entries of the Laplacian, or weights w, are derived from power
flows as follows:

wij = wji =

{
|Pij |+|Pji|

2 if eij ∈ E
0 otherwise

(1)

where power flows from i to j, and from j to i are
represented by Pij and Pji respectively. e represents the edges,
or power flow connections, that are part of the overall collec-
tion of branches E [16]. These weights are then summed to
determine the corresponding diagonal entries of the Laplacian.

di =

n∑
j=1

wij (2)

d is referred to as the weighted degree of the node, and is
equivalent to the sum of the edges connected to the node.

Edge weights and node degrees are arranged in the Lapla-
cian per eq. 3 as follows:

[L] =


di if i = j

−wij i ̸= j and eij ∈ E
0 otherwise

(3)

The Laplacian is then normalized per:

LN = D−1/2LD−1/2 (4)

Normalizing the Laplacian adds flexibility to the solution,
especially when working with a diverse set of weights in
higher dimensions [16].

The next step is referred to as spectral embedding, and it
consists of using r eigenvectors of LN to map the nodes of
the system in the r-dimensional Euclidean space Rr. It is in
this new space where the clustering takes place. A variety of
clustering algorithms can be used for this purpose including
k-means [16].

In order to ensure the algorithm produces a suitable set of
areas, constraints are put in place, this is a process called
constrained spectral clustering [15]. Two parameters used to
optimize the clustering algorithm are now defined.

The first one is the boundary of an area. Boundary measures
the impact that removing or islanding, a set of nodes will have
on the overall system. The boundary is calculated as the sum
of the edge weights linking the potential area or set of nodes
S, to nodes belonging to other sets.

∂(S) =
∑

i∈S, j /∈S

wij (5)

A large boundary value indicates a highly connected set
of nodes, which can lead to a high power flow disruption if
removed.

The second parameter is the volume of an area. Volume
measures the total power flow - both internal and external of
an area.

vol(S) =
∑
i∈S

di (6)

Mathematically this is defined as the sum of the weighted-
degrees of the nodes in set S. Boundary and volume are then
used to assess the quality of an area as follows:

ϕ(S) =
∂(S)

vol(S)
(7)

The ϕ(S) of an area quantifies the expected external power
flow disruption relative to the volume of the area. Low values
of ϕ(S) indicate that an area’s external power flows make
up only a small portion of the total power flow of that area.
This makes an area with a low ϕ(S) a prime candidate for
potential islanding since both internal and external power flow
disruptions would be expected to be minimal [16].
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C. Optimized Response

An objective function is used to guide the clustering process.
Eq. 8, aims to minimize the highest ϕ(S) value of the
clustering arrangement as follows:

ρG(k) = min
∅̸=S1,...,Sk⊆V

max
1≤i≤k

(ϕ(Si)) (8)

In other words, eq. 8 selects the clustering solution where the
highest values of ϕ(S) are the lowest. Additional constraints
such as the creation of coherent generator groups or the
exclusion of selected power lines can be integrated into the
objective function as shown in [16].

One of the main advantages of spectral clustering comes
through the use of the Cheeger inequality. This inequality
streamlines the optimization process by providing a range of
suitable solutions. For a case where k = 2 the inequality is as
follows:

v2
2

≤ ρG(2) ≤
√
2v2 (9)

Focusing on a set of solutions offers a significant improve-
ment in terms of efficiency, compared to evaluating solutions
from a much larger set [16]. More information about the
Cheeger inequality including a generalized derivation for k ≥
2 can be found in [15]. Once the areas have been established,
a second layer of optimization, in this case a mixed-integer
linear programming (MILP) algorithm, is carried out for each
area. The MILP algorithm considers the load-generation bal-
ance within each area to generate an optimized response. The
algorithm below finds a combination of additional capacity
from the sources and identifies feeders that can be dropped in
order to balance the system [11], [12].

Algorithm 1 Load Balance Optimization

Initialisation:
A = Source capacity available
B = Sensitive loads available to be shed (feeder level)
C = Non-critical loads available to be shed (feeder level)
cT1 = Cost of source actuation
cT2 = Cost of shedding sensitive loads
cT3 = Cost of shedding non-critical loads
b = Calculated load excess

1: Minimize J = ct1x+ ct2y + ct3z
s.t. Ax+By + Cz ≥ b

2: Return Selected agents in A, B, and C

Additional constraints can be added to the MILP process to
meet a wide range of performance specifications.

III. DYNAMIC PREDICTIONS AND COMPENSATION

A. Particle Filter

The PF is an estimation algorithm that combines Bayesian
inference with the Monte Carlo method. A collection of parti-
cles are continuously updated and compared to measurements
to estimate an underlying probability distribution. This is done
by assigning weights to the particles and redistributing them

Fig. 1: Estimated Probability Distribution

Fig. 2: Particle Based Sampling

according to their proximity to the measurements. When these
particles are assigned weights, the collection of particles be-
comes a probability distribution. The average of the weighted
particles is then used to estimate the location of the object
being measured. These ideas are illustrated in figures 1 and 2.

A major advantage the PF holds over other popular filters
such as the KF, is that the PF is not limited to Gaussian
distributions. The use of weighted averages allows the PF
to adapt to virtually any probability distribution. This is of
particular importance as research has shown that real-life
electrical measurements follow a diverse set of probability
distributions, beyond the widely assumed Gaussian distribution
[11], [12]. Another advantage of the PF is its ability to
deliver strong performance in the presence of uncertainty. In
many cases uncertainty such as noise, enhances the estimation
process [11], [12].

B. Prediction Horizon

Bayesian filters follow a sequential process of predictions
and corrections. In general, these predictions have horizons
of k + 1 steps into the future [11], [12]. In order to perform
the calculations presented in this work, these horizons have
to be extended. In order to accomplish that, this work uses
a variation of the Taylor series to redefine the horizon of the
predictions. The first and second derivatives of frequency f ,
are used to create a vector called Artificial Data Points (ADPs).
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ADPi = ADPi−1 + tf ′ + t2f ′′ (10)

t is the time window used for the derivatives, this work
uses the reporting rates of the measurements as reference.
The creation of the ADP vector is a sequential process that
starts with the last measurement, ADPi−1, and leverages the
first (f ′) and second (f ′′) derivatives of frequency to create
a trajectory that is later processed by the PF. The number of
ADPs needed for a desired horizon can be determined from:

NADP = tpfm (11)

The number of ADPs required, or NADP , is a function of
the reporting rate of the measurements fm, measured in frames
per second, multiplied by the time horizon of the prediction
tp, measured in seconds [11], [12].

The ADP generation process is summarized as:

Algorithm 2 ADP Generation

Initialisation:
ADPi−1 = Last measurement
f ′ = Average first derivative in last 10 measurements
f ′′ = Average second derivative in last 10 measurements
NADP = Number of ADPs required

1: for i = 1 to NADP do
2: ADPi = ADPi−1 + tsf

′

f ′ = f ′ + tsf
′′

3: end for

C. Compensation Calculation

When the system is predicted to be entering an unstable
condition, calculations are carried out to find the amount of
compensation needed to restore stability. The equations used to
determine this quantities are derived from the swing equation.

L =
RpH(1− f2

p

f2
1
)

pf(fp − f1)
(12)

L represents the excess loading in the system. Power factor
is represented by pf . Parameter f is the frequency. Subscript
1 indicates the current frequency value, while subscript p
represents the predicted frequency value generated by the PF.
Rp is the rate of change of frequency. Subscript p indicates
that R is a predicted value. This parameter is found by taking
the difference between the current and predicted frequency
values and dividing it by the time window ts as follows:

Rp =
fp − f1

ts
(13)

In this work the inertia constant H is assumed to be known,
however it can be estimated using the methods described in
[11], [12].

Fig. 3: Solution Overview

TABLE I: Parameters and Initial Conditions (100 MW Base)

Unit No. H pu X’d pu E pu Angle (rad)

1 500.0 0.006 1.0368 -0.1344
2 30.5 0.0697 1.1966 0.3407
3 35.8 0.0531 1.1491 0.3417
4 38.6 0.0436 1.0808 0.2985
5 26.0 0.132 1.3971 0.5088
6 34.8 0.05 1.1910 0.3376
7 26.4 0.049 1.1394 0.3499
8 24.3 0.057 1.0709 0.3070
9 34.5 0.057 1.1368 0.5335
10 42.0 0.031 1.0929 -0.0087

IV. SCHEME OVERVIEW

This section provides an overview of the complete scheme
and how the different modules complement each other. The
process begins when RoCoF thresholds are exceeded. The PF
then makes a prediction. If the PF predictions indicate that the
system is heading towards an unstable condition, then areas
are established. New PF predictions are carried out for each
area, and stages of compensation are executed as necessary.
These stages of compensation stabilize the system by using
the estimated excess loading parameters found with eq. 12,
and then identifies a combination of compensation agents
through the MILP algorithm. Commands are then sent to the
sources and breakers identified by the algorithm. This process
is summarized in figure 3.

V. CASE STUDIES

Two case studies are presented in this section. The IEEE
39-Bus test system is used for both cases. Each case starts
from the initial conditions shown in Table I. The system
is overloaded by 20% over the total generating capacity
of the system. This excess loading is split into four equal
components and introduced near machines 2, 8, 9, and 7.
The Laplacian is calculated from power-flow measurements
at least 10 seconds before the disturbances are introduced.
Predictions are made 1 second into the future. Noise is added
to the PMU measurements, and compensation is carried out
0.5 to 1 seconds after the predictions are made. This is done
to account for processing and equipment delays as well as for
latency in the communication system.
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Fig. 4: Three Area Partition

Fig. 5: Complete Frequency Response

A. Case Study I: Three Area Partition

A three area partition is selected for this test scenario. This
is illustrated in figure 4. The clustering algorithm identified
the areas in less than 0.004 seconds, which is consistent with
the results shown in [15] for a system of the same size.
The response of the area containing machines 1 and 8-10
is examined. The complete response to the disturbance is
displayed in figure 5. After a drop in frequency is identified
via the RoCoF method, a prediction is made as illustrated in
figure 6. A stage of compensation is carried out at around
1.5 seconds, and shortly after this, a new prediction is made,
as illustrated in 7. Since frequency is expected to continue
declining a stage of compensation is carried out at around 2
seconds, followed by a new prediction as shown in figure 8.
This time, given that the follow-up prediction indicates that
frequency will start to return to nominal levels, further stages
of compensation are not carried out. The rotor angles of the
machines in this area are shown in figure 9.

Fig. 6: First Prediction

Fig. 7: Second Prediction

Fig. 8: Third Prediction

B. Case Study II: Four Area Partition

A four area partition is selected for this test scenario
as depicted in figure 10. The clustering algorithm found a
solution in less than 0.005 seconds, which is consistent with
the processing time observed in the first case study and the
results in [15]. The response of the area containing machines
1-3 and 10 is examined. The complete response of this area is
illustrated in figure 11. The process begins with a prediction
at around 1 second per figure 12. The subsequent stage
of compensation and the follow-up prediction are shown in
figure 13. Since frequency is expected to increase, further
compensation is paused until a new decline in frequency is
predicted at the 3 second mark as shown in figure 14. This
leads to a new stage of compensation at around 3.5 seconds,
and a new prediction suggesting that frequency will once again
trend back to normal levels. This is illustrated in figure 15.
Rotor angles are shown in figure 16.

Additional case studies and comparisons with other tech-
niques can be found in [11] and [12]. In this work the number
of areas used for clustering was entered manually, but future
work will focus on automating this part of the process.

VI. CONCLUSION

This paper presented an extension of previous work on
predictive frequency stability via PMUs and particle filtering.
A spectral clustering module was integrated to the solution to
facilitate the process of establishing areas of frequency control.
The solution was tested via Matlab simulations and the results

Fig. 9: Rotor Angle Deviations
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Fig. 10: Four Area Partition

Fig. 11: Complete Frequency Response

Fig. 12: First Prediction

Fig. 13: Second Prediction

Fig. 14: Third Prediction

Fig. 15: Fourth Prediction

Fig. 16: Rotor Angle Deviations

were satisfactory. Future work will be focused on addressing
assumptions made during this process.
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