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Abstract: Kinematically exact rod models were a major breakthrough to evaluate com-
plex frame structures undergoing large displacements and the associated buckling modes.
However, they are limited to the analysis of global effects, since the underlying kinemat-
ical assumptions typically take into account only cross-sectional rigid-body motion and
ocasionally torsional warping. For thin-walled members, local effects can be notably im-
portant in the overall behavior of the rod. In the present work, high-fidelity simulations
using elastic 3D-solid finite elements are employed to provide input data to train a Deep
Neural Newtork-(DNN) to act as a surrogate model of the rod’s constitutive equation. It is
capable of indirectly representing local effects such as web/flange bending and buckling at
a stress-resultant level, yet using only usual rod degrees of freedom as inputs, given that it
is trained to predict the internal energy as a function of generalized rod strains. A series of
theoretical constraints for the surrogate model is elaborated, and a practical case is studied,
from data generation to the DNN training. The outcome is a successfully trained model for
a particular choice of cross-section and elastic material, that is ready to be employed in a
full rod/frame simulation.

Keywords: geometrically exact rod; surrogate models; Deep Neural Network; Machine Learning

1. Introduction
Kinematically exact rod models have been studied for many decades. Beginning from

2D model from Reissner [1], the subject only matured when finite rotation parametrization
was consistently derived, with works such as Argyris [2] and Ibrahimbegovic’s [3]. From
then on, the 3D formulation was conceived: works from Simo [4,5] can be regarded as
the pioneer ones with fully 3D description, despite inconsistent linearization of the weak
form. Following contributions improved certain aspects of Simo’s initial formulation.
Classical works such as Pimenta and Yojo [6] and Ibrahimbegovic [7] already featured
consistent linearization. Up to those works, only Timoshenko-like assumptions had been
considered: shear flexible cross-sections that performed only rigid body motion in the
space. Such assumptions are not suitable for problems featuring torsion. For this reason,
efforts were made to introduce additional warping degree of freedom (DOF), inspired by
classical Vlasov’s work [8], see, e.g., Vu Quoc and Simo [9], Campello and Pimenta [10,11],
Gruttmann [12] and Gonçalves [13]. Another limitation was that only truncated constitutive
equations (or strain measures, which renders the same effect) were available, preventing
certain global buckling modes from being detected. This motivated works from, Campello
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and Lago [14] and Kassab et al. [15], which for the first time employed the complete
constitutive equation for Saint-Venant’s and Simo-Ciarlet’s hyperelastic materials, solving
issues related to critical load detection and post-critical path development in patological
cases. Other works focused on introducing inelastic behavior in the geometrically exact
thin-walled rods, e.g., [12] and Kassab et al. [16,17]. Some authors also tried to introduce in
the formulation extra DOFs to represent cross-sectional distortion. Multiple approaches
are possible, such as adding linear combination of distortion modes (e.g., Pimenta and
Campello [18], Dasambiagio [19] and Gonçalves [20]).

It is the spirit of this work to be able to capture in a lower-order representation local
effects, an impossible task if one attains to the classical stress integration constrained to the
rods kinematics. Automating the process of finding constitutive equation is a state-of-art
subject. In recent works, Lorenzis and collaborators [21–23] have been using techniques
that relies on assembling a library of building blocks for constitutive equations, specially
chosen to satisfy desirable mechanical properties, such as objectivity and polyconvexity.
Even though this approach works remarkably well for finding constitutive models with
minimal amount of parameters for 3D solid elements, it is not suitable for operating in
terms of generalized stress resultants/generalized strains for rods. Since the quantities
of interest are not stresses themselves, but rather its integrals over the cross-section, the
usual building blocks and mechanical requirements might not suit the present needs. For
instance, it is not reasonable to require polyconvexity at this level. Also, since there is direct
dependence on the cross-section geometry and the mechanical behavior of the structure,
it is not trivial to define an appropriate sub-base of the function space to undergo the
optimization problem.

DNNs are powerful tools to solve inverse problems. Different engineering applications
have benefited from this approach, not only in solid mechanics. They excel in tasks that
traditionally would require multiple evaluations of expensive high-fidelity simulations,
such as reliability analysis [24] and topological optimization [25–27]. It has also been
largely used for model order reduction in scenarios that a restricted amount of control
parameters are used to predict global behavior across an extended domain [28], to extract
homogenized properties [29,30]. By adding information about the underlying physics, less
amount of training data is needed [31,32]. Also, complex tasks such as mesh discretization
and multiscale analysis are possible [33]. Real-time control problems also benefit from
data-based approaches, such as in [34]. For the aforementioned reasons, the choice was
to construct a Deep Neural Network-based (DNN-based) surrogate constitutive equation.
By using generalized rod strains and internal energy evolution from high-fidelity 3D-solid
finite element simulations, a framework that relies solely on synthetic data was formulated.

The approach is designed to indirectly take into account local effects such as
web/flange bending and buckling, while retaining only the usual rod DOFs. This fea-
ture follows from data gathered from refined (high-fidelity) simulations and, together
with the DNN-based framework itself, stands as one of the novel aspects of this work.
Physical requirements are met by construction, and automatic differentiation tools shall
allow direct introduction of the surrogate model in already existing frameworks. To employ
Machine Learning techniques in frame structures might not look particularly new. Many
works tackling different aspects of real-life challenges are available, such as usual I-section
beams [35,36], sections with openings [37–40], corrugated beams [41], reinforced concrete
beams [42–44] and even for more complex structural systems [45]. All those works have
their own merits, but we highlight that they focus on finding ultimate states (or load
bearing capacity), overlooking the stress-strain constitutive equation and state evolution
during progressive loading. This gives our work an innovative status.
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Only the bi-dimensional rod context is of interest for now, even though the input solid
models are three-dimensional. In this procedure, the biggest amount of computational
effort is data generation.

This is a work in progress, and the current scope is to provide:

• description of the theoretical requirements of the modelled energy function;
• practical aspects about the NN implementation;
• illustrative example.

In the present work, the surrogate model that is actually trained is restricted to the
2D frame case for a specific geometry (cross-section and member length). We envision on
setting the stage for developing more robust surrogate models in future works. Those are
intended to be used within already existent rod FEM frameworks. On a future work, full
rod model implementation will take place. By using automatic differentiation tools (native
from many ML environments), one shall be able to calculate first and second derivatives
w.r.t strains to recover stress resultants and material tangent stiffness, respectively. In the
present work, Pytorch v2.4.0 [46] is used to implement the DNN.

The organization of the paper is as follows: in Section 2, the basic description of
the rod model is displayed. In Section 3, minimal requirements of the surrogate model
and implementational aspects are described. In Section 4, a practical case is studied, and
different DNN architectures are explored. Finally, in Section 5 we close the paper with
our conclusions.

Throughout the text, the notation is as follows (except where clearly stated otherwise):
Greek and Latin italic lowercase letters are scalar quantities (a, b, α, β, . . . ), bold Greek
and Latin italic lowercase represent vectors (a, b, α, β, . . . ) and bold Greek and Latin italic
uppercase denote second order tensors in three-dimensional Euclidean space (A, Ω, . . . ).
Summation convention over repeated indices is adopted (Einstein’s notation), with Greek
letter indices ranging from 1 to 2 and Latin indices from 1 to 3. Derivative with respect
to the rod’s axial coordinate is represented by (◦)′ and partial derivatives by either ∂(◦)

∂(⋆)

or (◦),(⋆).

2. A Brief Description of the Base Rod Model
The basic rod model of interest is the one described in Campello and Pimenta [10],

Campello and Lago [14] and Kassab et al. [15]. General considerations about nonlinear
solids mechanics and its application in structures can be found in works such as [47,48]. For
the sake of completeness and for compatibility with our previous work, the full 3D formu-
lation is shown along this section. However, this work is restricted to the 2D case, in which
only some of the degrees of freedom of the full 3D description are needed. Appropriate
remarks are provided where needed to reduce the complete formulation to the desired
2D context.

The kinematics of the rod model are summarized in Figure 1.
For a rod with reference length Lr and cross-sectional area Ar, it is defined a straight ini-

tial configuration, taken as the reference one. In the reference orthonormal base {er
1, er

2, er
3},

the reference axial direction is er
3, whereas {er

1, er
2} defines the cross-sectional reference

plane. Thus, points of the reference domain are defined by the vector field

ξ = ar + ζ, (1)

where ar = ξαer
α, {ξ1, ξ2} ∈ Ar is the director vector that maps the cross-sectional points

w.r.t to the cross-sectional origin and ζ = ζer
3, ζ ∈ Ωr = [0, Lr] is the axial reference

position, both in the reference configuration. The current configuration is obtained by the
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composition of a cross-sectional rigid body motion (axial displacement u and cross-sectional
rotation tensor Q) and a warping w, rendering

x = z + y, (2)

with
z = ζ + u, y := a + w, a = Qar, w := pψe3. (3)

Figure 1. Description of kinematics for the rod model.

The rotation tensor Q is parametrized by means of Euler-Rodrigues formula

Q = I +
sin θ

θ
Θ +

1 − cos θ

θ2 Θ2, (4)

in which θ is the rotation vector with magnitude θ = ||θ|| and Θ = skew(θ). For the
warping displacement w, p is the magnitude associated to the warping shape function
ψ. The relevant kinematical quantities are now collected in the generalized displacement
vector d = [u, θ, p]T .

Following the same development as in the previous works, one can define the back-
rotated deformation gradient tensor Fr = QT F

Fr := I + γr
α ⊗ er

α + γr
3 ⊗ er

3, (5)

with
γr

α = ψ,α per
3, γr

3 = ηr + κr × yr + ψp′er
3, (6)

and ηr := QTz′ − er
3, κr := QTκ, κ := axial(Q′QT). Now, the generalized strain vector is

defined as εr := [ηr, κr, p, p′]T .
The weak form of the equilibrium is given by (see [10,15] for details)

δW = δWint − δWext =
∫

Ωr
σr · δεrdζ −

∫
Ωr

f̂ · δddζ= 0, ∀δd, (7)
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where σr is the vector of (back-rotated) cross-sectional stress-resultants, given by

σr :=


nr

mr

Q
B

 =
∫

Ar


τr

3

(ar + pψer
3)× τr

3

ψ,ατr
α · er

3 + ψτr
3 · (κr × er

3)

ψτr
3 · er

3

dAr, (8)

in which nr is the vector with three components of back-rotated shear and axial forces, mr

is the vector that holds three components of back-rotated bending and torsional moments,
Q is the bi-shear and B is the bi-moment, for the columns τr

i of the back-rotated first

Piola-Kirchoff stress tensor Pr = QTP = τr
i ⊗ er

i . Also, f̂ :=
[
n̂ µ̂ B̂

]T
is the vector of

applied external resultants, with external forces n̂, external pseudo-moments µ̂ and external
bi-moment B̂ as defined in [15]. In the mentioned bibliography, one finds also definitions
of the tangent stiffness operator, necessary for numerically solving Equation (7) through
Newton-Rapson iterations. This operator has three terms: material, geometric and external
loading. Here, it is only of interest to mention the material tangent stiffness D.

In order to effectively compute σr and D, a constitutive equation must be chosen. Here,
we assume that the material is hyperelastic, thus a specific energy function Ψel = Ψ̂el(εr)

exists, wherefrom σr := ∂Ψel

∂εr . In the current context, Ψel itself is not known beforehand and
the goal of this work is to employ a DNN to generate a surrogate model for it. Moreover,
it is the spirit of this work to be able to represent local effects (flange/web bending and
buckling) by means of such reduced order surrogate model. Even though only global DOFs
are present, the constitutive equation shall take into account such effects from appropriate
training of the surrogate model. Once an expression for Ψel is established, automatic
differentiation tools can be used to evaluate

σr :=
∂Ψel

∂εr and D :=
∂σr

∂εr =
∂2Ψel

∂εr∂εr . (9)

We recalll that in the context of geometrically-exact rod theories, the usual approach is
to take a continuum mechanics material behavior through an energy function Ψel , compute
the stresses via differentiation of the energy w.r.t. the strains (different stress-strain conju-
gate pairs maybe used), and then, and then directly integrate the stresses as in Equation (8),
for obtaining the cross-sectional resultants. Ultimately, the stress resultants σr are function
of εr and of the cross-section geometry. This standard procedure is followed in many es-
tablished formulations, and is thoroughly demonstrated in our previous work [15], where
we also show the importance of using un-truncated forms of the resulting constitutive
equation for correctly capturing the needed strain coupling for certain buckling problems.
Usually, this integration does not have a closed form solution (numerical integration is
usually required) and the approach is limited by the rod assumptions. Here, the approach
is different: we abandon the direct integration of stresses and write the stress resultants
as derivatives of the internal energy function, respecting the definition of hyperelastic
materials. By doing this, one can avoid limitations that arise from direct imposition of rod
assumptions, provided that enough data is avaiable to fine-tune the energy function. Here,
data is gathered from refined simulations with 3D solid finite elements.

For the current work, only two-dimensional rod problems are of interest, as in a
Timoshenko rod. Therefore, from now on, it is assumed that u1 = θ2 = θ3 = p = 0,
ηr

1 = κr
2 = κr

3 = p′ = 0, nr
1 = mr

2 = mr
3 = B = Q = 0. From the rod DOFs, generalized

strains and stresses, only u2, u3, θ1, ηr
2, ηr

3, κr
1, nr

2, nr
3 and mr

1 are non-zero. To simplify the
notation, from now on the vectors d, εr and σr refers to the original ones but with the zero
values suppressed.
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3. Building and Training the Surrogate Model
A given prismatic rod member is characterized by its reference cross-sectional area

Ar, length Lr and material properties (parameters and constitutive equation at stress-strain
continuum level). Therefore, the constitutive equation that connects generalized rod strains
(εr) and generalized rod stresses (σr) shall depend on those characteristics.

In the present work, we do not intend to create a surrogate model that is capable of
dealing with any cross-section and material properties, as an immense amount of training
data would be required. Instead, we choose to focus on a specific geometry (Ar and Lr)
and with fixed material properties, see Section 4 for details. Of course, this limits the
applicability of the proposed framework. Our current implementation should be regarded
as a proof of concept of an innovative approach. However, for the chosen geometry, we
shall allow a comprehensive set of boundary conditions when training our surrogate model.

One of the outcomes of the proposed approach is that it shall be able to detect local
effects such as softening-like behavior as the local buckling progresses. As for illustration,
one can see in Appendix B that at higher strain rates, the energy curves becomes straight,
which indicates loss of stiffness and maximum load bearing capacity for the cross-section.
To some extend, this phenomena looks like a softening that occurs in the inelastic context,
such as in [49], but in the fully elastic domain. Differently from simpler multi-linear ap-
proaches (see [50]), that rely on defining simplified stress-strain diagrams, the generated
model is actually nonlinear, and shall naturally take into account the intricate strain cou-
pling that arises in finite strain scenario. Even though this global effect is recovered for the
low-order surrogate model, information about the local buckling modes are lost. This is
not an issue for us here, since local studies can always be performed as a post-processing
step in a higher-order framework, whilst the computationally challenging global solution
is achieved efficiently within low-order models.

To generate a surrogate model for specific elastic energy function, we choose a DNN-
based approach. Using synthetic data from refined 3D-solid FEM simulation as inputs, we
are going to explore two different architectures for the surrogate model:

• Direct estimation of the energy function Ψel ≈ Ψsurr
(1) = ΨNN(εr), where ΨNN is a

R8 → R function, made of densely connected linear layers and activation function
from the linear unit family (ELU, ReLU, GELU, SILU, etc.), see Figure 2a;

• Estimation of a multiplicative function that ponderates the linear elastic solution, i.e.,
the quadratic function Ψel ≈ Ψsurr

(2) = χNNΨquad, where χNN is a R8 → R function,
made of densely connected linear layers and activation function from the linear unit
family (ELU, ReLU, GELU, SILU, etc.) and a final logistic sigmoid activation layer and
Ψquad = 1

2 εrT Dεr, with the tangent stiffness for rods D (as in [11] or [15], for example),
see Figure 2b.

In both cases, the DNNs will be trained for normalized input strain (ε̃r) and energy
(Ψ̃el) values, as it will be shown in Section 3.3. The exact network architecture (either ΨNN

or χNN) should be studied for our specific case. For the current work, Pytorch [46] was
used for implementation of the DNNs.
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Figure 2. Proposed DNN architectures and properties for the current application, for (a) Ψsurr
(1) and

(b) Ψsurr
(2) .

3.1. Theoretical Considerations

The surrogate model must satisfy the following constraints:

1. Objectivity;
2. Zero strain energy for undeformed configurations: εr = o ⇒ Ψel = 0
3. Differentiability (to be able to obtain σr and D): the model must be twice differentiable,

at least in a piecewise sense (Ψel ∈ W2,∞ in Sobolev space notation), and ideally
Ψel ∈ C2;

4. Non-negative energy: Ψel ≥ 0, ∀εr

For the two proposed architectures, different measures are required to guarantee
compliance to those constraints. Condition 1 is automatically met since the argument εr

is objective (see, e.g., [6,10,11]). For Ψsurr
(1) , condition 2 is guaranteed if unbiased layers

are used alongside activation functions satisfying ϕ(0) = 0. For Ψsurr
(2) , it is satisfied by

construction, since Ψquad(o) = 0. Condition 3 is satisfied by choosing sufficiently smooth
ϕ. From conditions 1 and 2, we conclude that functions from the linear unit family are a
suitable choice for the task. Condition 4 cannot be enforced directly for Ψsurr

(1) , and shall be
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learnt during training process and the final result must be verified. However, for Ψsurr
(2) , it is

satisfied also by construction, since χNN , Ψquad > 0.
It is the spirit of the work to be able to represent in the low-level rod element in the

Finite Element Method (FEM) framework. Thus, the internal energy and its derivatives in
the integration points must be calculated. Since the authors intend to use this approach in
usual 2-noded rod elements with linear interpolation, we may write for the shape functions

N1(ι) =
1
2
(−ι + 1), N2(ι) =

1
2
(ι + 1), (10)

for natural coordinate ι ∈ [−1, 1]. With reduced integration using Gauss’s method, the
only integration point is positioned exactly at the axial mid-point (ι = 0). Thus, to solve the
equilibrium weak form (7) one need only to evaluate σr|ι=0 and D|ι=0. Conveniently, the
total internal energy of a given rod element can be approximately evaluated with

Wel =
∫

Ωr
Ψeldζ ≈ ∑

i=1,ng

wiΨel
i

ng=1
= Ψel |ι=0Lr. (11)

Thus, for this work, the specific strain energy at the integration point in the rod element
is calculated by

Ψel |ι=0 =
Wel

Lr . (12)

3.2. Data Generation

The data needed for the surrogate model is generated from a high fidelity simula-
tion (e.g., using FEM 3D solid elements). To be compatible with 2-noded rod elements,
equivalent boundary conditions (BCs) are applied only at the edges (essentially, imposed
some generalized displacement d̂ at the ends for the 2D case). Since εr is objective, training
process can be greatly simplified, given that there is no need to generate combinations of
boundary conditions that make the final configurations differ only from rigid body motion.
Hence, one can select one of the ends and clamp it (d̂ = o), while varying the opposing
end’s generalized displacement, as in Figure 3. To apply the boundary conditions in the
FEM solid models, one has to select all the nodes of the end cross section (in red in Figure 3),
and apply a composition of displacements stemming from axial displacements ū2 and ū3

and from the flexural rotation θ̄1. The latter yields both axial and transversal components,
which vary with the rotation angle and increase linearly w.r.t to the distance to the axis.
Within this approach, local elastic phenomena such as web/flange bending and buckling
are naturally dealt with in the high fidelity simulation, and information about them are
embedded in the total strain energy. Thus, one can indirectly correlate rod generalized
strain to the impact of local phenomena in the cross-sectional stress resultants.

Afterwards, the element’s total strain energy Wel is retrieved as an output of the high
fidelity simulation (in our case, FEAP 3D-solid finite element simulation). This kind of
structural simulation usually is performed using incremental loading procedures. Thus, for
an input target value of d̄, one gets a curve γd̄ vs. BWel , with 0 ≤ γ ≤ 1.
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Figure 3. Generic boundary conditions for data generation using solid elements.

Using (10), for a given value of imposed displacement at one end d̂ = γd̄, one can
evaluate the displacement d|ι=0, the associated axial derivatives d′|ι=0 and then the strain
εr|ι=0. Afterwards, one can calculate the specific energy Ψel |ι=0 using (12). The pairs(

εr|ι=0, Ψel |ι=0

)
are the required inputs for the DNN training process.

Training and testing sample sets must be generated either procedurally, randomly, or
both, until the resulting network has attained a sufficient level of accuracy. In the current
work, the adopted procedure for data generation consists in

1. setting upper and lower boundaries for each entry of d̂, creating a hypercubic domain
for the study, see Figure 4;

2. procedurally generating solid simulation input data in the boundaries of the study
domain (i.e., vertex, edges and faces of the domains’s hypercube), equally spaced, for
training purposes (see green dots in Figure 4);

3. randomly generating solid simulation input data in the faces of the domain’s hyper-
cube, for both training and testing (see purple dot in Figure 4).

Since data is synthetic, there is no theoretical limit to the amount of generated samples.
It is suggested that the amount of testing data should be 15–25% of the training data.

In order to avoid influence of the scale of the input quantities d̂ in the sampling process,
the random picking process should be split in two: first, select randomly one face of the
hypercube (every face must have the same probability of being chosen), and then, one point
of the face is randomly chosen (with uniform probability distribution). In Figure 4, one can
see the data points generated from steps (1) and (2), alongside one randomly generated
simulation from step (3).
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Figure 4. Regular grid—maximum input displacements (green dots) and one curve with random
maximum displacement (purple dots/dashed line). Hypothetical case.

3.3. Training Process

The first step is to calculate the pairs
(

εr, Ψel
)

as specified in Section 3.2. Then,

organize the generated data as a table with ninput data lines (εrT , Ψel). Its columns are
given by

εr
i =

[(
εr

i
)(1) (

εr
i
)(2) . . .

(
εr

i
)(k) . . .

(
εr

i
)(ninput data)

]T
,

Ψel =

[(
Ψel

)(1) (
Ψel

)(2)
. . .

(
Ψel

)(k)
. . .

(
Ψel

)(ninput data)
]T

,
(13)

with

• εr
i , with i ranging from 1 to 8 for the full 3D case, and from 1 to 3 in the 2D case,

representing each generalized rod strain component;
• Ψel a vector that collects all input data for energy in the refined model simulation.

Afterwards, training follows usual NN practices. Variables should be normalized to
ensure better convergence behavior of the optimizer algorithm. The adopted normalization
factor was the maximum absolute value for each component of εr and Ψel . Hence, one gets
the normalized quantities (◦̃)

ε̃r
i =

εr
i

|εr
i |∞

, Ψ̃
el
=

Ψel

|Ψel |∞
, (14)

where |(◦)|∞ := max|(◦)|. From Equation (14), it is clear that normalized inputs satisfy(
ε̃r

i
)(k) ∈ [−1, 1] and

(
Ψ̃el

)(k)
∈ [0, 1]. Note that the rescaling process preserves the zero

strain equals zero energy condition. Let us group the normalization factors in a diagonal
matrix G = diag(|εr

1|∞, |εr
2|∞, . . . , |εr

8|∞). In the general 3D case, G will not have any zero
diagonal entries if the training set is built. Here, |εr

1|∞, |εr
1,5−8|∞ will be zero, since we are

dealing with the 2D case. One can simply ignore the normalization step for the zero vectors
εr

1,5−8. Thus, one can define

ε̃r = G−1εr. (15)
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Ultimately, we want to represent

Ψel = Ψ̂el(εr) ≈ Ψsurr(εr). (16)

However, since both strains and energy are undergoing normalization process, we are
actually training our surrogate models to predict

Ψ̃el = ˆ̃Ψel(εr) ≈ Ψ̃surr(ε̃r). (17)

Thus, for evaluation of the energy function, one simply has to perform

Ψsurr(εr) = |Ψel |∞Ψ̃el(G−1εr). (18)

Whilst, according to Equation (9), using chain rule, we get

σr =
∂Ψel

∂εr = |Ψel |∞G−T ∂Ψ̃el

∂ε̃r , D =
∂2Ψel

∂εr∂εr = |Ψel |∞G−T ∂2Ψ̃el

∂ε̃r∂ε̃r G−1. (19)

It is clear now that once the surrogate for normalized energy is built, we can directly
access both stress resultants and material tangent stiffness.

In the present work, the loss function is the sum of squared error. Thus, for a normal-

ized rod strain input ε̃r, we get the pair of normalized energy data
(

Ψ̃el
)(i)

and predicted

normalized energy
(

Ψ̃el
NN

)(i)
= Ψ̃el(ε̃r)(i). Then, the loss function is given by

EΨ = ∑
i=1,ninput data

[(
Ψ̃el

)(i)
−

(
Ψ̃surr)(i)]2

. (20)

To adjust the weight parameters of the linear layers of the DNN, Adam optimizer [51]
was employed, within a workflow that allows for either manual adjustment of the learning
rates or automatic learning rate adjustment based on plateau detection. Training was
carried so that each epoch is divided in batches, with user-defined size. To update the
DNN’s parameters, the required gradients of Equation (20) are automatically calculated
by PyTorch.

4. Numerical Example: Results and Discussion
For this work, it is of interest an I-section member, as depicted in Figure 5. It is

assumed usual elastic parameters for steel (Young’s modulus E = 200 GPa and Poisson’s
coefficient ν = 0.25), and a reference length of Lr = 24 cm. The choice of Lr is rather
arbitrary, and was taken based on numerical auxiliary tests that showed that this length
was sufficient to detect semi-waves from web/flange local buckling under simultaneous
bending and compression.

For the high-fidelity model, simulations were made with the software FEAP v7.4 [52].
Standard displacement-based 8-noded (hexaedric) solid elements were used, in a regular
mesh, as in Figure 5. Polyconvex isotropic Neo-Hookean material was employed (see
FEAP’s manual for details about the constitutive equation). The boundary conditions were
applied using FEAP’s “SPIN” command, which applies a rigid body motion to a selection
of nodes. Simulations were carried incrementally, and terminated either when the load
factor γ reached 1 or when the solver could not find further solutions by incrementing
the load factor by a given minimum threshold. For this study, it was chosen as domain
û2, û3 ∈ [−24,+24] cm and θ̂1 ∈ [−90◦,+90◦].
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Figure 5. Mesh discretization for solid reference models.

Different architectures for the densely connected DNN were compared, see Figure 2.
They were built as mentioned in Section 3. Primarily, the ELU activation function was
used, for both surrogate models Ψsurr

(1) and Ψsurr
(2) , using differently sized networks. In the

optimally model, the alternatives with GELU and SiLU functions were evaluated. See
Table 1 for details about the tested cases.

Table 1. Studied DNN architectures.

ID 1 Layers Width Activation Function (ϕ) Surrogate Model

L3_W32_ELU_psi 3 32 ELU Ψsurr
(1) = ΨNN

L5_W32_ELU_psi 5 32 ELU Ψsurr
(1) = ΨNN

L8_W32_ELU_psi 8 32 ELU Ψsurr
(1) = ΨNN

L3_W32_ELU_chi 3 32 ELU Ψsurr
(2) = χNNΨquad

L5_W32_ELU_chi 5 32 ELU Ψsurr
(2) = χNNΨquad

L8_W32_ELU_chi 8 32 ELU Ψsurr
(2) = χNNΨquad

L5_W32_GELU_chi 5 32 GELU Ψsurr
(2) = χNNΨquad

L5_W32_SiLU_chi 5 32 SiLU Ψsurr
(2) = χNNΨquad

1 All layers are fully connected and of same width. Apart from the output layer, the activation functions act
component-wise between subsequent layers.

In total, 98 procedurally generated and 82 randomly generated training inputs were
used, alongside 60 randomly generated testing cases, as depicted in Tables A1 and A2 in
Appendix A. Simulations were implemented so that the initial load factor increment was
∆γ = 2% of the total prescribed displacements and rotations. In total, 7052 generalized
strain- internal energy pairs were available for training, and 2173 for testing. A typical
deformed configuration of those simulations can be seem in Figure 6.
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Figure 6. Last converged step for input 8 (see Table A1) (see Appendix A). Both deformed and unde-
formed meshes are shown. Direction 2 is aligned with the web. Note the presence of flange buckling.

For each training epoch, data pairs were divided into 100 pairs batches, randomly
shuffled between epochs. The energy function and εr were normalized as described
in Section 3.3. From the train dataset, we obtained |ηr

2|∞ = 1.1859, |ηr
3|∞ = 0.5631,

|κr
1|∞ = 0.0321 and |Ψel |∞ = 81, 983.

In Figure 7, training progress for each of the models from Table 1 is depicted. Training
was carried until the measured errors in the test set began to increase for decreasing errors
in the training set, which would indicate overfitting.

Figure 7, alongside with results from Figures 8 and 9, allow us to conclude that even
the surrogate models with simpler architectures were able to represent the rod´s energy
remarkably well. Models with 5 and 8 layers behave similarly for the testing dataset. Also,
in spite of smaller errors for training data in models using Ψsurr

(1) , the error measure is
virtually the same when comparing testing data to their equivalent Ψsurr

(2) counterparts.
Figures 8 and 9 depict the previsions obtained with our DNNs as compared with some

of the given input (observation) data. As it can be seen, the surrogate models were able
to represent the rod´s energy remarkably well, including in large-strain configurations,
even for simpler architectures (see how well models with 3 layers perfomed in the afore-
mentioned figures). However, it is from models with 5 layers and above that accurate
predictions are consistently made across the test set, see Figures 8 and 9. It is worth men-
tioning that the proposed solutions for imposing null strain-null energy condition worked
as expected for all the cases.
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Figure 7. Training evolution of the different models. Training and testing sample sets error.
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Figure 8. Prevision of test subset T001-T010, using model (a) L3_W32_ELU_psi, (b) L5_W32_ELU_psi,
(c) L8_W32_ELU_psi, (d) L3_W32_ELU_chi. Dots are input data and lines are previsions.
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Figure 9. Prevision of test subset T001-T010, using model (a) L5_W32_ELU_chi, (b) L8_W32_ELU_chi,
(c) L5_W32_GELU_chi, (d) L5_W32_SiLU_chi. Dots are input data and lines are previsions.
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However, around zero strains, models using Ψsurr
(1) failed to comply with the non-

negativity constraint, see Figure 10. For those, several regularization strategies (that are not
reported here) were tested unsuccessfully. In light of the discussion from Section 3.1, the
remedy was to use the alternative strategy Ψsurr

(2) . Only then we were able to consistently
generate models that predict well both large and small strain energy functions, while
complying to the conditions mentioned above, see Figure 11. Therefore, from now on, the
discussion will only consider surrogate models derived from Ψsurr

(2) approach.

Figure 10. (a) Prevision of test subset T011-T020, using model L5_W32_ELU_psi. (b) Detail around
zero strains.

Since model L5_W32_ELU_chi already had enough capacity to infer accurately the
energy function, training of model L8_W32_ELU_chi was done with caution, since they
could easily overfit. We highlight that little prediction capabilities was added when going
from 5 to 8 layers. Given the sparsity of input data, we consider that the surrogate models
we generated are remarkably accurate.

The optimal models are L5_W32_ELU_chi, L5_W32_GELU_chi and L5_W32_SiLU_chi,
which have all the same amount of parameters and similar testing error. Among them,
L5_W32_SiLU_chi performed slightly better, see Figure 7. Thus, in a future work with
the fully functional rod model, the model L5_W32_SiLU_chi shall be employed. In
Figures A1–A3, prevision curves for the complete training and testing sets are available.

Using Pytorch’s automatic differentiation tools, in future works we intend to extract
the calculation graph of the derivatives of Ψel for those particular models, and directly
employ them in simulations with kinematically exact rods (recall Equation (9), those
partial derivatives represent stress resultants and material tangent stiffness). While models
with GELU and SiLu are inherently twice differentiable, studies about the second-order
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differentiability of the ELU-based models will be done to ensure no numerical issues
at runtime.

Figure 11. (a) Prevision of test subset T011-T020, using model L5_W32_ELU_chi. (b) Detail around
zero strains.

5. Conclusions
In the current work

• a DNN-based surrogate model for rod constitutive equation was successfully built;
• a set of physical constraints for the surrogate model was enunciated in Section 3.1,

alongside with measures that should be taken to guarantee compliance;
• conventional multi-layer perceptron architecture was compared to an innovative cus-

tom approach, in which the DNN acted as a multiplicative factor, applied to the usual
quadratic energy function for rods. The latter proved to perform significantly better;

• Besides the DNN-based framework itself for rod constitutive equation, the effect
of local bending and web/flange buckling was indirectly taken into account, as it
is embedded in the member´s elastic energy computed with refined (3D-solid) FE
simulations, yet retaining the usual rod DOFs in the rod model. While the local
buckling mode is not known, penalization of the energy function shall reflect the
stiffness decrease during buckling process.

• The framework is ready to be employed to full 3D-frame rod simulations, wherein the
computational gains over 3D-solid models will be much highlighted.
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Appendix A. Solid Simulation BCs Inputs for Training and Testing of
the DNN

In this appendix, the inputs for the example from Section 4 are provided. See
Tables A1 and A2.

Table A1. Training inputs. Inputs 1–98 were procedurally generated, 99–180 were randomly generated.

Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1
(cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦)

1 −24 0 0 37 −12 12 90 73 24 −24 90 109 24 19 48 145 19 −2 90
2 −24 −12 0 38 −12 −24 −90 74 24 24 −90 110 24 10 −83 146 24 −9 57
3 −24 12 0 39 −12 −24 90 75 24 24 90 111 21 10 −90 147 −24 −21 25
4 −24 −24 0 40 −12 24 −90 76 24 −12 −90 112 −24 19 −64 148 −1 −24 −75
5 −24 24 0 41 −12 24 90 77 24 −12 90 113 −14 −16 −90 149 24 −22 −34
6 −24 0 −45 42 0 −24 0 78 24 12 −90 114 −24 8 66 150 −17 −12 −90
7 −24 0 45 43 0 −24 −45 79 24 12 90 115 −20 24 89 151 −3 −24 15
8 −24 −12 −45 44 0 −24 45 80 24 0 −90 116 11 24 4 152 24 −4 −5
9 −24 −12 45 45 0 −24 −90 81 24 0 90 117 −3 −24 34 153 4 −24 −8
10 −24 12 −45 46 0 −12 45 82 24 −24 −45 118 24 10 81 154 3 −2 −90
11 −24 12 45 47 0 −12 −90 83 24 −24 45 119 24 −3 −32 155 −24 −2 6
12 −12 −24 0 48 0 −12 90 84 24 24 −45 120 11 −16 −90 156 24 3 −82
13 −12 24 0 49 0 0 −90 85 24 24 45 121 −24 12 −46 157 24 6 −19
14 −24 −24 −45 50 0 0 90 86 12 −24 0 122 −4 −13 −90 158 −24 9 −5
15 −24 −24 45 51 0 12 −90 87 12 24 0 123 −24 −24 42 159 −24 −3 15
16 −24 24 −45 52 0 12 90 88 24 −12 −45 124 −24 −3 −79 160 −24 0 18
17 −24 24 45 53 0 24 −90 89 24 −12 45 125 −8 −16 90 161 3 24 13
18 −24 0 −90 54 0 24 90 90 24 12 −45 126 24 −16 −52 162 −12 22 90
19 −24 0 90 55 0 24 −45 91 24 12 45 127 −10 15 90 163 18 24 −2
20 −24 −12 −90 56 0 24 45 92 24 0 −45 128 19 4 90 164 9 −14 −90
21 −24 −12 90 57 0 24 0 93 24 0 45 129 23 24 44 165 −24 −7 63
22 −24 12 −90 58 12 −24 −90 94 24 −24 0 130 24 −20 −75 166 3 −18 90
23 −24 12 90 59 12 −24 90 95 24 24 0 131 −13 22 90 167 12 −24 −86
24 −24 −24 −90 60 12 24 −90 96 24 −12 0 132 24 −18 −44 168 −24 −3 32
25 −24 −24 90 61 12 24 90 97 24 12 0 133 24 20 −7 169 7 −2 −90
26 −24 24 −90 62 12 −12 −90 98 24 0 0 134 −24 11 50 170 −24 −20 −69
27 −24 24 90 63 12 −12 90 99 −10 3 90 135 −7 10 −90 171 −15 −1 −90
28 −12 −24 −45 64 12 12 −90 100 −24 19 59 136 −14 12 90 172 −4 −11 90
29 −12 −24 45 65 12 12 90 101 24 −5 −11 137 −12 5 −90 173 3 −24 72
30 −12 24 −45 66 12 0 −90 102 −8 13 90 138 8 −24 −11 174 6 −14 −90
31 −12 24 45 67 12 0 90 103 −6 10 90 139 24 −22 78 175 −23 −24 54
32 −12 0 −90 68 12 −24 −45 104 −24 10 −79 140 −24 7 44 176 −9 −24 −80
33 −12 0 90 69 12 −24 45 105 6 −24 37 141 −16 −24 −45 177 24 −6 82
34 −12 −12 −90 70 12 24 −45 106 24 0 −51 142 −20 −15 −90 178 −24 −10 −84
35 −12 −12 90 71 12 24 45 107 −5 24 −83 143 11 6 90 179 −15 −21 90
36 −12 12 −90 72 24 −24 −90 108 24 −19 42 144 6 1 90 180 −17 24 39
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Table A2. Testing inputs, randomly generated.

Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1 Id û2 û3 θ̂1
(cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦) (cm) (cm) (◦)

T01 −24 −17 46 T13 −3 12 90 T25 −24 −2 29 T37 3 −12 −90 T49 0 −24 −41
T02 −22 −24 −49 T14 −24 −9 67 T26 −12 24 75 T38 −24 −12 76 T50 −24 −18 −7
T03 5 −3 −90 T15 −11 24 −57 T27 −3 −24 −10 T39 24 −10 −89 T51 −20 24 64
T04 −24 −22 −27 T16 24 −9 72 T28 −24 17 85 T40 −24 21 18 T52 −12 22 90
T05 −11 24 −9 T17 −10 20 −90 T29 −8 −18 −90 T41 24 2 82 T53 −24 −6 −66
T06 18 −24 35 T18 −24 −22 75 T30 −24 −22 −90 T42 4 −24 −38 T54 4 −14 90
T07 22 24 6 T19 −24 −17 −52 T31 3 −15 −90 T43 24 −20 83 T55 17 −14 −90
T08 −8 24 31 T20 5 −19 90 T32 0 5 90 T44 −10 24 9 T56 6 −24 89
T09 −24 1 1 T21 9 24 −52 T33 19 17 −90 T45 −24 16 66 T57 −21 −15 −90
T10 24 12 −37 T22 19 24 −28 T34 24 −23 −68 T46 23 1 90 T58 14 24 −11
T11 −24 −24 −73 T23 20 −21 90 T35 24 15 −73 T47 22 0 −90 T59 −21 24 −66
T12 16 16 90 T24 12 −24 −86 T36 −11 −9 90 T48 −15 −10 90 T60 12 24 68

Appendix B. DNN Results for Training and Testing Sets Using Model
L5_W32_SiLU_chi

Figures A1–A3 depict the prevision values for the generated testing and training
datasets, using model L5_W32_SiLU_chi (see Tables 1, A1 and A2 for details).

Figure A1. Prevision of test dataset, using model L5_W32_SiLU_chi.
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Figure A2. Prevision of train dataset, using model L5_W32_SiLU_chi, inputs 1 to 100.
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Figure A3. Prevision of train dataset, using model L5_W32_SiLU_chi, inputs 101 to 181.

References
1. Reissner, E. On one-dimensional finite-strain beam theory: The plane problem. Z. Angew. Math. Phys. Zamp 1972, 23, 795–804.

[CrossRef]
2. Argyris, J. An excursion into large rotations. Comput. Methods Appl. Mech. Eng. 1982, 32, 85–155. [CrossRef]
3. Ibrahimbegovic, A. On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 1997, 149, 49–71. [CrossRef]
4. Simo, J.C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng.

1985, 49, 55–70. [CrossRef]
5. Simo, J.; Vu-Quoc, L. A three-dimensional finite-strain rod model. part II: Computational aspects. Comput. Methods Appl. Mech.

Eng. 1986, 58, 79–116. [CrossRef]
6. Pimenta, P.M.; Yojo, T. Geometrically Exact Analysis of Spatial Frames. Appl. Mech. Rev. 1993, 46, S118–S128. [CrossRef]
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