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Abstract: Climate variability, intensified by climate change, poses significant challenges
to agriculture, affecting crop development and productivity. Integrating seasonal weather
forecasts (SWF) into crop growth modelling tools is therefore essential for improving agri-
cultural decision-making. This study assessed the uncertainties of raw (non-bias-corrected)
temperature forecasts from the European Centre for Medium-Range Weather Forecasts
(ECMWF) SEAS5 seasonal (seven-month forecasts) to estimate the spring–summer maize,
melon, sunflower, and tomato crops cycle from 2013 to 2022 in the Caia Irrigation Scheme,
southern Portugal. AgERA5 reanalysis data, after simple bias correction using local weather
station data, was used as a reference. The growing degree-day (GDD) approach was applied
to estimate the crop cycle duration, which was then validated against ground truth and
satellite data. The results show that SWF tend to underestimate maximum temperatures
and overestimate minimum temperatures, with these biases partially offsetting to improve
mean temperature accuracy. Forecast skill decreased non-linearly with lead time, especially
after the second month; however, in some cases, longer lead times outperformed earlier
ones. Temperature forecast biases affected GDD-based crop cycle estimates, resulting in
a slight underestimation of all crop cycle durations by around a week. Nevertheless, the
forecasts captured the overall increasing temperature trend, interannual variability, and
anomaly signals, but with marginal added value over climatological data. This study
highlights the potential of integrating ground truth and Earth observation data, together
with reanalysis data and SWF, into GDD tools to support agricultural decision-making,
aiming at enhancing yield and resources management.

Keywords: temperature; growing degree-days; ERA5 reanalysis data; decision-support

1. Introduction
Climate variability represents a major source of uncertainty in agriculture and has been

exacerbated by climate change. This impacts crop development and productivity [1–5]. The
Mediterranean region, a climate change hotspot [6,7], is experiencing raising temperatures,
shifting precipitation patterns, and an increase in extreme weather events, such as droughts
and heatwaves (e.g., [8]). Such events can disrupt crop growth conditions and ultimately
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threaten agricultural production [9–11]. Climate variability further increases the complex-
ity of agricultural production and the decision-making processes of farmers and other
stakeholders. Uncertainty about future weather conditions hampers seasonal planning,
increases risks, and frequently results in production and economic losses. It may also have
negative environmental impacts [12–14]. Therefore, accessible and innovative tools are
needed to support decision-making and to help cope with climate uncertainty [15]. This
could be achieved through the use of early warning systems and the integration of climate
forecasts into crop growth modelling tools and resource management strategies [16–19].

Crop growth and productivity are highly dependent on climatic conditions, particu-
larly temperature [20–23]. Changes in the temperature regimes affect the crop development
rates, ultimately impacting quantity and quality of yields [24,25]. Several authors have
reported that, in the absence of major biotic and abiotic stresses, crop development rates
are generally assumed to be linearly related to temperature. This relationship is used in the
growing degree-days (GDD) approach [21,26,27]. The GDD approach accumulates heat
units above a lower threshold temperature (base temperature) and considers an upper limit
above which development stops. This provides a simplified yet effective way of estimating
crop growth stages and crop cycle duration. Although more complex modelling approaches
are widely used, particularly to simulate crop–climate interactions, e.g., AquaCrop crop
growth model [28], they require extensive input data, calibration, and technical knowledge,
making them less accessible for routine use by farmers, water managers or technicians [29].
In contrast, the GDD approach provides a practical and intuitive decision-support tool
that enables timely adjustments in agricultural planning and management. Therefore,
GDD-based estimates are particularly suitable for operational applications [30,31].

Seasonal forecasts (SWF) aim to provide insight into the expected weather conditions
over the coming months, as well as any deviations from long-term averages. Despite
the inherent unpredictability of the atmosphere, advances in modelling have improved
the reliability of these forecasts, establishing them as valuable decision-making tools in
agriculture [32–34]. Several studies have focused on using SWF to estimate the timing of
specific phenological stages [35,36], as well as for predicting early season yields [18,37–42].
Furthermore, some studies have emphasised the added value of using SWF compared
to historical climatological data in an agricultural context [43–45]. Although SWF have
limitations, such as varying accuracy depending on region, season and variables of inter-
est [35,46,47], recent studies show that integrating seasonal temperature forecasts with
crop growth models can effectively support decision-making by providing early estimates
of crop development and productivity [16,48,49]. However, their practical application in
Mediterranean agriculture remains limited due to uncertainties in forecast accuracy and
the complexity of their use [50,51].

Incorporating seasonal temperature forecasts into a GDD tool enables proactive ad-
justments to planting and harvesting. This helps farmers adapt to climate variability and
mitigate the risks associated with unpredictable seasonal shifts (e.g., early frosts, heatwaves
or droughts). It will also enable more efficient resources management, particularly wa-
ter, and promote yield optimisation by ensuring that crops develop within specific time
windows. This study aims to assess how accurately the raw (non-bias-corrected) seasonal
temperature forecasts, provided by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) SEAS5 predict the duration of spring–summer crop cycles in a water-scarce
region of southern Portugal. The specific objectives of this work are: (1) to assess the accu-
racy and skill of the SWF in predicting maximum, minimum, and mean temperature; (2) to
evaluate the influence of lead time on forecast performance; (3) to estimate the performance
of crop cycle length estimation using the GDD approach driven by SWF. The novelty of
the current study lies in the comprehensive assessment of the practical utility of seasonal
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forecasts for supporting agricultural decision-making, achieved by combining direct val-
idation of temperature forecast skill and indirect validation of its accuracy in estimating
crop growth cycles. This study is a step towards identifying the practical potential and
constraints to the widespread adoption of such simplified tools.

2. Materials and Methods
This study analyses the quality, skill, and usability of SWF data produced by the

ECMWF for predicting the duration of the growing cycle of various spring–summer crops.
This assessment used the SWF temperature data ingested in the GDD approach. The
procedure followed the flowchart in Figure 1 and included the collection and Quality
Assurance and Quality Control (QAQC) assessment of the different sources of temperature,
i.e., the observed weather data (2013–2022), the AgERA5 reanalysis data, and SWF data.
Ground truth and remotely sensed crop cycle data from previous studies [52] developed in
the targeted Caia Irrigation Scheme were used as a baseline for the GDD approach. The
need for bias correction of the AgERA5 reanalysis data were assessed prior to its use. After
appropriate bias correction, the AgERA5 data were used as “observations” in the direct
validation of the SWF data. The indirect validation of the SWF was performed by analysing
the estimated crop cycle lengths using the cumulative GDD approach (Figure 1).

Figure 1. Flowchart with the schematic representation of the seasonal forecast assessment procedure.
CIS—Caia Irrigation Scheme; GDD—Growing Degree-Day; SF—Seasonal Weather Forecasts.

2.1. Study Site Brief Characterisation

The current study was conducted at the Caia Irrigation Scheme (CIS) in Elvas, Alentejo
region, southern Portugal (Figure 2). The CIS has been in operation since 1969 and is
currently managed by the Caia Water Users Association (Caia WUA). It covers an area
of approximately 7000 hectares and supplies water to over 800 farmers [52]. Water from
the Caia Reservoir on the Caia River is distributed through an open channel system with
upstream control, following a fixed rotation schedule that limits water allocation per hectare
to each farmer. Irrigation is mainly drip irrigation (82%), followed by sprinkler irrigation
(17%)—mainly center pivots—while surface irrigation accounts for approximately 2% of
the total irrigated area.
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Figure 2. Localization of the Caia Irrigation Scheme, Elvas, Portugal, weather station, reanalysis, and
SWF grids.

According to the Caia WUA, cropping patterns in the CIS have changed in recent
decades, shifting from annual crops to highly profitable permanent orchards, primarily
of olive (Olea europaea L.) and nuts (almonds and walnuts). Currently, olive orchards are
the main crop in the CIS [52,53]. However, annual crops such as maize, winter cereals,
processing tomato, and various oilseed and vegetable crops remain an important part of CIS
production. For the current study, the main irrigated crops were selected, i.e., maize (Zea
mays L.), melon (Cucumis melo L.), sunflower (Helianthus annuus L.) and tomato (Solanum
lycopersicum L.).

According to the FAO classification [54], the main soils in the CIS are Fluvissols (45%),
Luvissols (30%), and Calcissols (19%). Overall, the soils in the CIS are well-suited for
irrigated agriculture, with a variety of textures (loamy-sand, silty-clay, clay) and structure,
adequate drainage capacity, and gentle slopes (<6%) [55].

The region has a typical temperate Mediterranean climate, characterised by hot and
dry summers. According to the Köppen–Geiger classification [56], it is classified as a Csa.
The long-term (2002–2021) average annual precipitation is approximately 505 mm, of which
around 25% occurs between April and September. The mean temperature is around 16.7 ◦C.
The average maximum temperature exceeds 30 ◦C during the summer months, while the
average minimum temperature falls below 5 ◦C in the winter months (Figure 3). The Elvas
region is considered a climate change hotspot, so preparedness and adaptation measures
are essential [57,58].

2.2. Atmospheric Data
2.2.1. Ground Truth Data

The ground-based meteorological data were obtained from a weather station belonging
to the operational network of automatic agrometeorological stations installed across the
major irrigated areas of the Alentejo region. This network is managed by the Centro
Operativo e de Tecnologia de Regadio (COTR). The station is located within a 5 × 5 m
grass-covered area, and comprises a central data acquisition unit, and a set of sensors. Air
temperature is measured using a Thies Clima thermohygrometer (model 1.1005.54.000),
with a measurement range of −30 to 70 ◦C and a response time of 20 s. Sensor readings
are taken every 10 s and compiled into hourly and daily reports. The data are stored in
Data Taker 500 loggers and transmitted automatically between 01:00 and 02:00 each day.
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Daily validated data are made available to users through the COTR platform. Further
information is provided by Oliveira et al. [59]. Daily maximum (Tmax, ◦C) and minimum
(Tmin, ◦C) temperature weather data covering the period 2013–2022 was collected from
the meteorological station of Caia, Elvas (38◦53′27′′ N, 07◦08′23′′ W, 208 m a.s.l) which
is located close to the CIS and within a 10 km radius of the crop plots observed during
2017–2019.

Figure 3. Long-term (2002–2021) historical meteorological characterisation of the Caia Irrigation
Scheme (38◦53′27′′ N, 07◦08′23′′ W, 208 m a.s.l.), Elvas, Portugal. (Blue bars—precipitation; orange
line—Tmax; pink line—Tmean; green line—Tmin).

2.2.2. Reanalysis

To address the issue of the point location weather dataset and, therefore, upscaling
to the CIS, a reanalysis dataset was considered for this study. The AgERA5 (version 1.1)
daily reanalysis dataset provided by the ECMWF and available in the Copernicus Climate
Change Service Data Store was selected [60]. The AgERA5 dataset is based on the forcing
of ECMWF ERA5 hourly data and has been developed for agricultural and agroecological
studies (e.g., [61,62]). AgERA5 covers the period from 1979 to the present day, (one month
prior to the date of access) on a global grid with a resolution of 0.1◦ and includes a large
number of atmospheric and surface variables. In the current study, the six grid cells
covering the CIS area were selected, and Tmax and Tmin data for the decade 2013–2022 were
collected. To account for the differences in altitude between the weather station and the
reanalysis grid points, a temperature correction was applied using a constant lapse rate,
i.e., ratio of the variation in temperature and the variation in altitude, of 6.5 ◦C per km.
This is a standard value for mid-latitude regions [63–65]. This adjustment improved the
agreement between the reanalysis and the observed temperatures.

2.2.3. Seasonal Forecasts

The seasonal forecast data were provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF). This dataset is part of the Copernicus Climate Change Service
(C3S) multi-system seasonal forecast service and is available from the Copernicus Climate
Data Store (CDS) as “Seasonal forecast daily and sub-daily data on single levels”. It is
produced by the ECMWF SEAS5 (v5.1) system [66]. The dataset consists of an ensemble
of gridded data with global coverage and a horizontal resolution of 1◦, with temporal
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coverage from 1981 to the present day (with a one-month lag). The dataset includes
hindcasts (1981 to 2016) with 25 ensemble members and real-time forecasts (2017 to the
present day) with 51 ensemble members, extending 7 months into the future [32]. Daily
Tmax and Tmin forecasts, initialised on 1 April for mainland Portugal, were collected to
cover the spring–summer season; thus, the crop cycle of all the selected crops (Table 1). The
analysis below focuses on the period 2013 to 2022, using data from the grid cell closest to the
CIS (39◦00′00′′ N, 07◦00′00′′ W, 294 m a.s.l.). The CIS is entirely contained within a single
SEAS5 grid cell and the grid point closest to it was selected as representative of the region.
As each SEAS5 grid point represents an average condition within its cell, the selected point
is considered to adequately capture the average conditions within the study area.

Table 1. Crop cycle characteristics derived from NDVI satellite data (2017–2019).

Crop Year Sowing/
Planting Harvest Length CGDD

Maize
2017 Apr 25 Sep 8 137 1929
2018 May 7 Sep 11 128 1668
2019 Apr 12 Sep 8 150 1827

Melon
2017 Apr 30 Aug 29 122 1753
2018 Not available
2019 May 7 Aug 21 107 1366

Sunflower
2017 May 20 Sep 23 127 2155
2018 Apr 27 Aug 22 118 1619
2019 Apr 12 Aug 11 122 1619

Tomato
2017 Apr 25 Sep 1 130 2173
2018 Not available
2019 Apr 2 Aug 11 132 1784

2.3. Data Analysis
2.3.1. Quality Assurance and Quality Control (QAQC)

The integrity and quality of weather data, whether from weather stations or gridded
datasets, must be assessed prior to use. Poor sensor calibration, malfunctions, or lim-
ited maintenance can affect weather station measurements for different variables [67,68].
Conversely, modelled data often exhibits some bias [63,69–72]. Therefore, analysing data
consistency is mandatory, and data corrections should be applied if necessary to address
these issues [73]. The temperature data collected for this study underwent a QAQC process,
during which missing, duplicate, and suspicious records were identified and corrected as
necessary. The range and seasonal pattern of temperature values were examined to ensure
that no records showed maximum temperatures lower than minimum temperatures. The
Tmax and Tmin values were then used to calculate the daily mean temperature (Tmean) for
the three datasets.

2.3.2. Reanalysis Data Bias Correction and Validation

A set of goodness of fit indicators was used to compare TOBS and TREAN in order to
assess the need for bias correction, including the following: (i) the regression coefficient
(b0) of a forced to the origin (FTO) linear regression; (ii) the coefficient of determination
(R2) of an ordinary least squares (OLS) linear regression; (iii) the root mean square error
(RMSE); (iv) the normalised root mean square error (NRMSE, %), calculated as the ratio of
the RMSE to the mean of the observed values (O), providing a dimensionless measure of
the relative error of the model; and (v) the Nash and Sutcliff [74] model efficiency (EF). A
similar approach has been used in previous studies [63,71,75–77].
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The use of these metrics highlighted the need for bias correction in the reanalysis data.
A simplified approach was adopted for both Tmax and Tmin by adding a constant c(month)
to the uncorrected TREAN unc as follows:

c(monthi) = TREAN unc(monthi)− TOBS(monthi) (1)

Due to the small temperature differences within the study area, the correction factor
for each variable was calculated using the reanalysis grid point closest to the Caia weather
station (38◦53′60′′ N, 07◦05′60′′ W, 226 m a.s.l.) and then applied to all reanalysis grid
points within the CIS.

2.3.3. Seasonal Forecasts Direct Validation Approach

The first assessment of SWF performance was based on a direct comparison be-
tween temperature data from the reanalysis dataset and SWF datasets for the same period
(2013–2022). Temperature values were assessed at two levels, monthly and seasonal. The
monthly assessment evaluated whether the SWF performance remained consistent over
time (April, May, June, July, August, September, October). The seasonal analysis evaluated
the overall forecast performance by averaging both Tmax and Tmin during April–September.
This type of analysis uses a combination of the deterministic approach, which uses the SWF
ensemble median, and a probabilistic approach, which uses all members of the forecast
ensemble. The methodology adopted for each indicator is summarised in Table A1. The
average of the six AgERA5 grid points was used as the reference for the comparison.

Analytical and statistical approaches were used to evaluate the precision and re-
liability of the ECMWF SEAS5 seasonal forecasts for the CIS. The analytical analysis
involved producing box and whisker plots showing the forecast ensemble members along-
side the reanalysis values for seasonal averages of Tmax, Tmin and Tmean. This approach
made it possible to visualise errors in the SWF in relation to reanalysis, and to assess the
ability of the forecasts to detect temperature anomalies and trends. In addition to the
above mentioned goodness of fit indicators, other statistical performance metrics were
used to quantify the accuracy and skill of the SWF for each variable (Tmax, Tmin and
Tmean): Bias Percentage (PBIAS), Mean Absolute Error (MAE), Standardised Anomaly
Index (SAI) [78,79], Anomaly Correlation Coefficient (ACC) [80] and Continuous Ranked
Probability Skill Score (CRPSS) [80–84]. Table A1 summarises the information relative to
each indicator.

Significance tests were conducted to evaluate the statistical significance of forecast
performance metrics. Pearson’s correlation t-test was used for ACC indicator to assess
whether the correlation between reanalysis and forecasted anomalies differed from zero,
while one-sample t-tests were applied for MAE and PBIAS to determine whether the mean
absolute differences and mean differences (bias), respectively, were significantly different
from zero (α = 0.05).

2.3.4. Seasonal Forecasts Indirect Validation Approach

In this study, the performance of SWF was evaluated using an indirect approach by
analysing its performance in calculating crop growth stages and cycle length. The time
required for a plant to reach a given growth stage is directly related to the amount of
temperature accumulation over time [21,85,86]. This relationship is referred to as growing
degree-days (GDD). Therefore, the GDD approach was used to determine the length of
the crop cycle. In the current study, it was assumed that GDD represents the cumulative
sum of temperatures above a baseline threshold (Tbase) required to reach a given growth
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stage [20], and that development ceases above an upper temperature limit (Tupper) [27,86].
Therefore, GDD values were computed as follows:

GDD =


0, Tmean ≤ Tbase

Tmean − Tbase, Tbase < Tmean < Tupper

Tupper − Tbase, Tmean ≥ Tupper

(2)

The crop cycles for the crops selected for the current study were derived from a
thorough analysis of vegetation indices (NDVI) using Google Engine tools (Table 1). This
analysis was conducted for the 2017, 2018, and 2019 years across the main production areas
of maize, melon, sunflower, and tomato crops within the CIS. These durations represent
the mean values of crop cycle durations across all farms within the CIS that cultivated each
selected crop. In other words, they are the mean values of the ensemble of farms. The
durations were validated using ground truth data provided by the Caia WUA, and some
farms were surveyed in 2017. Melon and tomato crops were not identified within the study
area in 2018. Further details on image processing can be found in the study by Ferreira
et al. [52].

Having determined the length of each growth stage in days, the cumulative growing
degree-days (CGDD) requirements were calculated using the observed (weather station)
temperature data (Table 1). These CGDD values are within the reference values proposed
by Pereira et al. [68] for crops not subject to biotic and abiotic stresses and were applied
throughout the study period to determine crop cycles using reanalysis and SWF data.

Two types of analysis were performed. The first was a decadal analysis (2013–2022)
that used 2017 GDD data as a reference (Table 2). This reference was maintained in the
other years to evaluate the impact of climate variability on the forecast performance for
crop cycle prediction. According to the Caia WUA, the sowing/planting and harvesting
dates in 2017 are closer to the usual dates in the CIS. Therefore, the results presented in this
study refer to 2017. The second analysis focused on the three years with NDVI-derived
phenology data and considered CGDD variability across 2017, 2018, and 2019.

Table 2. Temperature and CGDD requirements to complete each crop growth stage and for the total
crop season for maize, melon, sunflower, and tomato in Caia Irrigation Scheme, Portugal (Adapted
from Ferreira et al. [52]).

Crop Sowing/
Planting

Length
(Days)

Tbase
(◦C)

Tupper
(◦C)

Initial
CGDDini

Develop.
CGDDdev

Mid-Season
CGDDmid

Harvest
CGDDlate

Total
CGDD

Maize 25 Apr 137 10 32 136 342 856 596 1929

Melon 30 Apr 122 10 38 356 428 525 445 1753

Sunflower 20 May 127 8 30 392 574 738 451 2155

Tomato 25 Apr 130 7 28 347 646 944 236 2173
Tbase is the base temperature (◦C); Tupper is the cut-off temperature (◦C); CGDD is the cumulative growing
degree-day; Develop.—development stage.

The same statistical metrics used in the direct validation were applied to the crop
cycle lengths (Table A1) to assess the performance of ECMWF SEAS5 forecasts in accu-
rately predicting the crop cycle length, thus supporting crop management decisions in
southern Portugal.
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3. Results and Discussion
3.1. Reanalysis Correction and Validation

The analysis showed that the Tmax and Tmin reanalysis data are highly correlated
with the weather station observations, with R2 values above 0.98. However, the reanalysis
data show a general tendency to underestimate Tmax (b0 = 0.94) and to overestimate Tmin

(b0 = 1.15) compared to the observations (Figure 4). Table 3 summarises the accuracy of
the reanalysis estimates relative to the observations before and after the simplified bias
correction. The results show small errors for Tmax (NRMSE < 10%), while the errors for
Tmin are quite high (NRMSE = 26%). The EF values for both Tmax and Tmin are high
(>0.80). As Tmax and Tmin have opposite tendencies, the Tmean results are much better, with
NRMSE < 6% and EF = 0.98. After the simplified bias correction, based on monthly mean
differences between the observed and reanalysis data, the performance of the reanalysis
temperature estimates for Tmax, Tmin, and Tmean improves. Initial biases and estimation
errors are substantially reduced, particularly for Tmin, with the NRMSE decreasing to 16%.
This confirms the validity and appropriateness of the correction approach. The good results
obtained for Tmean are further improved after bias correction. This leads to consistent and
accurate agreement between the reanalysis and the observed data.

Figure 4. Comparison of ground truth (observed) and reanalysis (predicted) maximum (•) and
minimum (•) temperature data (left) before correction and (right) after correction.

The results of this study are consistent with those reported in the literature, which
highlight the good performance of various reanalysis products in reproducing temperature
variables, particularly ERA5, for which R2 values are generally above 0.90. Several studies
have reported RMSE values around 2 ◦C when comparing reanalysis data with ground
truth data. Examples include the study by Vanella et al. [76], which was carried out
at several locations in Italy, including island environments, and the study by Jiménez-
Jiménez et al. [87] which was carried out in Mexico. In line with our results, other authors
(e.g., [87,88]) have found that reanalysis Tmean generally performs better than Tmax and



Agronomy 2025, 15, 1291 10 of 23

Tmin, while a better agreement is often found for Tmax than for Tmin [63,75,89]. Several
studies have reported that reanalysis datasets tend to slightly underestimate Tmax and
overestimate Tmin before bias correction, including studies in Italy [75,77,89], Greece [90],
and Portugal [63], as well as studies on a global scale [88]. Simple bias corrections based on
monthly regional mean differences between ground-based measurements and reanalysis
data may be an effective tool to improve the performance of reanalysis data [89].

Table 3. Statistical comparison between observed maximum, minimum, and mean temperature and
the AgERA5 reanalysis (±standard deviation) (2013–2022).

Maximum Temperature Minimum Temperature Mean Temperature

Indicators Before Bias
Correction

After Bias
Correction

Before Bias
Correction

After Bias
Correction

Before Bias
Correction

After Bias
Correction

b0 0.94 ± 0.01 1.01 ± 0.01 1.15 ± 0.02 1.00 ± 0.02 1.02 ± 0.01 1.01 ± 0.00
RMSE (◦C) 1.89 ± 0.08 1.21 ± 0.40 2.52 ± 0.25 1.57 ± 0.12 1.02 ± 0.04 0.98 ± 0.03
NRMSE (%) 7.62 ± 0.32 5.58 ± 0.17 25.88 ± 2.52 16.13 ± 1.18 5.88 ± 0.21 5.63 ± 0.19

EF 0.95 ± 0.01 0.97 ± 0.00 0.80 ± 0.04 0.92 ± 0.01 0.98 ± 0.00 0.98 ± 0.00
b0 is the regression coefficient; RMSE is the root mean square error; NRMSE is the normalised RMSE; EF—Nash
and Sutcliff [74] model efficiency.

In summary, the reduction in RMSE and NRMSE values, together with the increase
in the EF values, demonstrates that the applied correction effectively reduced systematic
errors and improved agreement with the observed data.

3.2. Seasonal Forecasts Direct Validation

Direct validation involves comparing the ECMWF SEAS5 seasonal temperature fore-
casts with the AgERA5 gridded data. This allowed the assessment of the forecast system’s
performance in predicting temperature at both seasonal and monthly scales over the CIS.

3.2.1. Monthly Validation

As SWF covers a long period of time (seven months), it is important to assess their
usefulness not only in terms of overall seasonal performance, but also at different stages
within this period. The statistical accuracy indicators do not show a clear tendency for
forecast performance to deteriorate with increasing lead time (Table 4). Errors do not
consistently increase (or decrease) with the lead time; therefore, the seventh month is
not necessarily the worst across all variables, nor is the performance of the first month
necessarily the best (although it tends to be the more accurate for Tmin and Tmean). It should
be noted that the MAE is significantly different from zero for all variables in all months.
However, in the case of PBIAS, although there is a significant bias in all months for Tmin,
the same is not true for Tmean, for which there is only a significant bias in the fourth and
fifth months (Table 4).

The results also show high dispersion of the SWF-reanalysis temperature pair, par-
ticularly after the first lead month. Therefore, the results suggest that forecast accuracy
may be influenced not only by the temporal distance from the initialization date of the
forecast, but also by other factors, such as the intrinsic climatic characteristics of each
target month [91–93]. For example, depending on the target variable, regional climate
dynamics and variability patterns, mid-summer months such as July and August may be
more predictable than transition months such as April. This is true for Tmax but not for
Tmin. These results are in line with previous studies. For instance, Lalic et al. [38] reported
that temperature forecasts for May and June have a lower RMSE than those for March and
April. Similarly, Santos et al. [41] reported lower MAE in summer months compared to
transition months such as April or September, despite the forecast lead time.
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Table 4. Seasonal forecasts’ monthly temperature accuracy and skill assessment.

Variable Statistical
Indicator

1st
Month
(April)

2nd
Month
(May)

3rd
Month
(June)

4th
Month
(July)

5th
Month

(August)

6th
Month

(September)

7th
Month

(October)

Tmax

PBIAS (%) 8.54 * 9.20 * 1.49 −0.03 1.09 2.11 10.27 *
MAE (◦C) 1.91 * 2.73 * 1.53 * 1.68 * 1.15 * 1.70 * 2.70 *
RMSE (◦C) 2.16 3.04 1.94 1.93 1.34 1.86 3.24
NRMSE (%) 9.78 11.10 6.16 5.39 3.74 5.91 12.29

R2 0.52 0.48 0.00 0.30 0.09 0.06 0.07
ACC 0.72 * 0.69 * 0.06 0.54 0.30 −0.24 0.27

CRPSS −0.40 −0.16 −0.05 0.19 0.09 0.01 −0.61

Tmin

PBIAS (%) −10.01 * −10.33 * −14.41 * −17.38 * −17.22 * −16.09 * −11.28 *
MAE (◦C) 0.81 * 1.22 * 2.23 * 2.87 * 2.83 * 2.42 * 1.34 *
RMSE (◦C) 0.95 1.64 2.47 3.23 3.00 2.61 1.70
NRMSE (%) 11.78 14.85 17.26 19.57 18.23 17.85 14.89

R2 0.71 0.31 0.00 0.06 0.01 0.20 0.00
ACC 0.84 * 0.56 −0.03 0.24 −0.09 −0.44 0.03

CRPSS 0.05 0.06 −0.92 −1.15 −2.59 −1.76 −0.39

Tmean

PBIAS (%) 3.43 3.59 −3.44 −5.56 * −4.72 * −3.42 3.76
MAE (◦C) 0.70 * 1.37 * 1.63 * 1.91 * 1.44 * 1.28 * 1.08 *
RMSE (◦C) 0.88 1.57 1.82 2.27 1.73 1.54 1.48
NRMSE (%) 5.83 8.17 7.93 8.66 6.60 6.68 7.81

R2 0.62 0.42 0.00 0.10 0.01 0.05 0.06
ACC 0.79 * 0.65 * −0.04 0.32 −0.08 −0.22 0.24

CRPSS 0.28 0.25 −0.13 −0.07 −0.34 −0.03 0.08

* PBIAS, MAE, ACC statistical significance (α = 0.05).

When analysing the correlation and anomaly prediction capability (ACC) results, a
significant decline in performance is evident, at a level of significance (α) of 0.05, from the
third month onward (Table 4). A similar pattern is observed for forecast skill, as measured
by CRPSS; however, this decline is more evident for Tmin and Tmean. These results suggest
that the raw Tmin and Tmean forecasts are mostly useful for the first two lead months,
with a sharp decline in performance thereafter. Tmax forecast skill is somewhat erratic,
demonstrating poor performance during the first three leading months and in the last
month. Bento et al. [42] also reported a clear deterioration in the skill of SEAS5 temperature
forecasts after the first month. However, it is noteworthy that, in this study, the seventh
month does not perform the worst performing month across all metrics or variables. This
supports the idea that other factors can play a significant role in forecast performance
beyond the simple effect of lead time.

It should be noted that this analysis is based on raw SWF extracted from a single
grid point in the dataset and only considers one initialization month (April). A more
extensive spatial and temporal analysis would be necessary to gain a clearer insight into the
degradation of forecast performance with lead time. Furthermore, using post-processing
techniques, such as bias correction or statistical downscaling, could significantly improve
forecast accuracy and potentially extend the temporal range of time over which forecasts
are useful. Therefore, these results should be interpreted as a preliminary assessment of raw
forecast performance, highlighting the limitations and potential for refinement. However,
these issues are beyond the scope of the current study.

3.2.2. Seasonal Validation

Figure 5 shows the results comparing seasonal temperature values from the reanalysis
with those from the SWF. The results show that the mean forecast ensemble tempera-
ture data are in good agreement with the reanalysis, with no clear tendency to over- or
underestimate the Tmean along the considered period. However, the accuracy and skill



Agronomy 2025, 15, 1291 12 of 23

indicators of the forecast data (Table 5), show that the Tmax forecast slightly underestimates
the reanalysis data, while the Tmin forecast strongly overestimates them, as reported by
other studies (e.g., [94]). These opposing biases tend to cancel each other out, reducing the
overall error in estimating Tmean (Figure 5). The results indicate that the forecasts are more
accurate in estimating Tmean than Tmax and Tmin, although a slight overestimation of Tmean

remains (Table 5). Nevertheless, the error and bias are significant for all variables at the
95% confidence level (Table 5).

Figure 5. Box and whisker plots representing seasonal forecast ensemble of temperature data for
April–September mean maximum (Tmax), minimum (Tmin), and mean (Tmean) temperatures, with
dots and red squares representing the reanalysis mean of the temperature data.

Table 5. Temperature seasonal forecast accuracy and skill assessment.

Variable PBIAS R2 MAE RMSE NRMSE ACC CRPSS

Tmax 3.48 * 0.44 1.07 * 1.25 4.05 0.66 * −0.30
Tmin −15.01 * 0.16 2.03 * 2.08 15.36 0.40 −4.33

Tmean −2.17 * 0.38 0.57 * 0.70 3.17 0.61 0.06
* PBIAS, MAE, ACC statistical significance (α = 0.05).

There is a considerable variation in the temperature bias of SWF, depending on the
forecast model, season and region. There is no consensus in the literature as some studies
report overestimation and others report underestimation. Many studies report that SWF
tends to underestimate temperatures. For example, Renan et al. [95] found a cold bias
in WRF model simulations applied to New Zealand, particularly during the southern
hemisphere summer. Similarly, Ji et al. [96] reported that the WRF model systematically
underestimated temperatures in Australia (by 2–3 ◦C for Tmax and 1–2 ◦C for Tmin). Ferreira
et al. [97] reported a cold bias in SEAS5 for South America. Furthermore, studies in
central and southern Europe [17,35,38,39,98] also reported a general underestimation of
temperature by seasonal forecasting systems. However, in the present study, the significant
overestimation of Tmin prevented a general underestimation of Tmean.

The results also show that the SWF model is more accurate and skilful in forecasting
Tmax than Tmin, as evidenced by lower estimation errors and higher R2 values (Table 5).
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However, the ensemble amplitude, which represents forecast uncertainty, is greater for
Tmax than for Tmin (Figure 5).

There was a satisfactory agreement between the SWF anomalies and those of the
reanalysis, with ACC > 0.40 (Table 5). This is especially true in the case of Tmax, where there
is agreement with a significance level of 0.05. Furthermore, the SWF skill assessed with the
SAI (Figure 6) supports these findings, suggesting that the anomaly signal was accurately
captured by the forecasts in 80% of the years for Tmax, 60% for Tmin, and 70% for Tmean.
Patterson et al. [99] reported good agreement when analysing the summer temperature
anomalies in Europe. In contrast, Calì Quaglia et al. [47] reported a negative ACC for winter
and a slightly positive value for summer for Portugal using ECMWF seasonal forecasts.

Figure 6. Standardised anomaly index (SAI) of temperature over the 2013–2022 period. Black-dashed
lines represent SWF estimates; red solid lines correspond to reanalysis-based values. (a) Tmax; (b) Tmin;
(c) Tmean.

Analysis of the results for the other skill indicator, CRPSS, shows that using SWF data
does not provide a significant advantage over the historical average (Table 5). In fact, for
Tmin, the forecasts are considerably worse than the historical baseline. Tmean is the only
variable with a positive CRPSS; however, all the values of the CRPSS are close to zero,
indicating that temperature forecasts provide no meaningful added value compared to the
historical average.

3.3. Seasonal Forecast Indirect Validation

Figure 7 shows the results of comparing forecasted and observed (reanalysis) crop
cycle duration estimates using the GDD approach (Equation (2)), highlighting key trends
and anomalies and reflecting the sensitivity of crop cycle duration estimation to temperature
biases in the input data. Table 6 summarises the results of the accuracy and skill indicators
used to assess the SWF ability to predict the crop cycle of the selected crops over the 10-year
period (2013–2022). The results show that temperature forecasts cannot perfectly replicate
the effects of climatic variability during the crop cycle.

Following the results of the SWF Tmean overestimation (Table 5), the results show that,
overall, the forecasted crop cycles do not differ substantially from the reference (reanalysis)
values but tend to underestimate the cycle duration (positive PBIAS) (Table 6). Notwith-
standing, the error and bias are significant (α = 0.05); on average, the underestimation is
about one week (i.e., MAE ranging from 4.8 to 8.5 days). Lower accuracy was reported
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in the study by Yang et al. [36] when using ECMWF SEAS5 forecasts to simulate the phe-
nological development of vineyards in Portugal, with a potential forecast error of up to
two weeks and an overall moderate forecast skill. Conversely, Garcia et al. [35] reported
that WRF-based seasonal forecasts could lead to significant overestimates, with maize crop
cycles in Portugal being extended by up to 60 days due to significant temperature underes-
timation by the SWF. Similar overestimates were also reported in the same study for wheat
and maize in France and Greece. The error obtained in the current study, i.e., one week,
can be considered adequate for supporting farmers’ decision-making, particularly since
the information is made available at the start of the season, i.e., seven months ahead. This
level of estimation error is comparable to that obtained using Earth observation methods to
retrieve crop growth stages from vegetation index time series. This is considered one of
the most accurate approaches currently available for characterising the crop cycle as the
accuracy is limited by the satellite revisit time [100,101]. Thus, the near real-time support
also presents lags.

Figure 7. Box and whisker plots for the crop cycle duration when estimated using the seasonal
forecasts and the reanalysis (red dots) for: (a) maize; (b) melon; (c) sunflower; (d) tomato.

Table 6. Seasonal forecast accuracy and skill assessment for the crop cycle duration estimation of
selected cereal and vegetable crops, during 2013–2022 at the Caia Irrigation Scheme.

Crop PBIAS
(%) R2 MAE

(Days)
RMSE
(Days)

NRMSE
(%) ACC CRPSS

Maize 4.5 * 0.46 7.70 * 9.44 6.5 0.68 * 0.15
Melon 4.1 * 0.39 7.10 * 8.31 6.4 0.63 0.16

Sunflower 6.2 * 0.43 8.50 * 10.88 8.1 0.66 * −0.08
Tomato 2.1 0.46 4.80 * 5.31 3.9 0.67 * 0.26

* PBIAS, MAE, ACC statistical significance (α = 0.05).
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The results for the colder year of the data series (2014) indicate longer crop cycles
for all crops. Although the ensemble did not capture the observed value within the
interquartile range around the median value, it was able to capture the variability with
a wider spread compared to other years. In this year, both the ensemble range and the
maximum value were higher, indicating that the seasonal forecasting system was sensitive
to some extent to the uncertainty associated with the atypical weather conditions and the
nature of the anomaly.

Over the 10-year period, a general trend towards shorter crop cycles is observed
(Figure 7), due to the tendency of Tmean to increase, as Espírito Santo et al. [102] reported
for Portugal. Various studies confirm this global warming trend [103,104], which signif-
icantly impacts the shortening of crop cycles and, consequently, crop yields [25,58,105].
The forecasts effectively capture this trend, and the signal of anomalies are significantly
correlated, as indicated by the ACC and SAI metrics (Table 6 and Figure 8). Therefore, these
results demonstrate the potential of using SWF to predict crop growth cycles in advance
when considering the observed climate trends in the region studied. This renders studies
using fixed dates or tabulated crop cycle lengths outdated.

Figure 8. Standardised anomaly index (SAI) of crop cycle duration for maize, melon, sunflower, and
tomato, over the 2013–2022 period in the Caia Irrigation Scheme. Black-dashed lines represent SWF
estimates; red solid lines correspond to reanalysis-based values.

It is important to note that the CRPSS values were positive for three of the four
selected crops (Table 6). These results suggest that the ECMWF SEAS5 seasonal temperature
forecasts have a reasonable skill and advantage over the historical average at estimating
crop cycle duration for the selected crops in the CIS, except for sunflower, for which the
CRPSS value was negative, but close to zero (Table 6).

In addition to assessing the ability of the SWF to estimate crop cycle duration by
replicating climate variability, the accuracy of estimating the length of crop cycles was also
evaluated, taking into account the variability in crop conditions from one year to the next,
over the 2017–2019 period. Analysis of Table 7 shows that difference in estimated crop
cycle length between the SWF and the AgERA5 data ranged from −12 to 4 days for maize,
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from −11 to 5 days for melon, from −7 to 1 days for sunflower and −6 to 4 days for tomato.
Overall, the SWF once again presents a mean difference of around one week (see Table 6).
This is within the range of variation in crop cycle duration observed using satellite data.
As shown in Table 1, there is considerable variability in GDD values and cycle lengths
across the various years (2017–2019), reflecting differences in both climatic conditions and
agronomic practices. Therefore, it can be stated that the SWF has great potential to reduce
the errors introduced by using tabulated/fixed crop cycles values, which can be inaccurate
by several weeks. This error is lower than the deviations that can result due to the use of
different cultivars, or to the use of diverse cultural practices, thus providing good prospects
for the use of SWF to support farmers’ decision-making.

Table 7. Difference in crop cycle length derived from NDVI satellite data, reanalysis AgERA5 data
and SEAS5 seasonal forecast data (SF) (2017–2019).

Crop Year Length Length
AgERA5

Length
SF

Difference
(SF-AgERA5)

Maize
2017 137 135 139 4
2018 128 128 117 −11
2019 150 148 136 −12

Melon
2017 122 120 125 5
2018 Not available
2019 107 105 94 −11

Sunflower
2017 127 125 126 1
2018 118 118 109 −9
2019 122 120 113 −7

Tomato
2017 130 129 133 4
2018 Not available
2019 132 130 124 −6

4. Conclusions
This study highlights the potential of integrating ground-based observations, Earth

observation data, reanalysis datasets and SWF data into GDD tools to support agricultural
decision-making under climate variability. The results show that the bias-corrected AgERA5
reanalysis datasets offer accurate temperature estimates, enabling effective upscaling from
point (weather station) measurements to irrigation system scale.

Evaluating the ECMWF SEAS5 raw seasonal forecasts (seven months) showed persis-
tent temperature biases, with a tendency to underestimate Tmax and overestimate Tmin, but
with small errors in the estimates of approximately 1 ◦C and 2 ◦C, respectively. These oppo-
site errors partially offset each other, resulting in improved estimates of Tmean; however, a
slight overestimation was observed. When applying the GDD approach, these temperature
biases affected accumulation, leading to a consistent underestimation of crop cycle duration
for the spring—summer crops of around eight days for maize, seven days for melon, nine
days for sunflower and five days for tomato.

Forecast skill declined non-linearly with lead time, particularly beyond the second
month, reflecting the influence of seasonal climate variability. However, the forecasts
captured important signals, such as the general warming trend over the period 2013–2022
and interannual variability, particularly for Tmax and Tmean. Skill metrics, including ACC,
SAI and CRPSS, indicated that the raw SWF provided marginal added value over historical
climatology for most crops.

Overall, the results support the use of uncorrected (raw) seasonal temperature forecasts
to inform early season planning and adaptive management practices, such as adjusting



Agronomy 2025, 15, 1291 17 of 23

planting and harvesting schedules or fertiliser management. Integrating these forecasts into
GDD-based decision-support tools could contribute to more informed decisions, promoting
yield optimisation and improving the efficiency with which resources are used, particularly
water, in water-scarce agricultural regions. Although the presented methodology can be
transferred and applied to other regions, the specific results depend on local agro-climatic
conditions and should therefore be interpreted in the context of the targeted region. Future
work should focus on applying different bias correction methods and further validating
the SWF at broader spatial and temporal scales, with the aim of improving its operational
value in climate-resilient agriculture.
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Appendix A

Table A1. Performance Metrics for Seasonal Forecast Evaluation.

Indicator Equation Description

Bias Percentage
(PBIAS) 100 × ∑n

i (Ri−Fi)

∑n
i=1 Ri

Ri is the reanalysis based value, Fi is the seasonal forecast
based value, in the year i, and n is the number of years.
Quantifies the average tendency of the forecast data to
overestimate or underestimate the reference values.
Positive values indicate forecast underestimation, while
negative values indicate forecast overestimation.
Deterministic approach using the forecast
ensemble median.

Coefficient of Determination
(R2)

∑n
i=1 (F̂i−F)²

∑n
i=1 (Fi−F)²

Fi is the seasonal forecast based value, in the year i, and n
is the number of years, F̂i is the regression line adjusted
forecast based value, F is the mean of forecast based
values. Measures the proportion of variance in the
reanalysis values explained by the forecast model.
Ranges from 0 to 1. Higher R2 values indicate that a large
proportion of the variance in reanalysis values is
explained by the forecasts. Deterministic approach using
the forecast ensemble median.

https://doi.org/10.54499/2022.04553.PTDC
https://doi.org/10.54499/2022.04553.PTDC
https://doi.org/10.54499/UIDB/04033/2020
https://doi.org/10.54499/LA/P/0126/2020


Agronomy 2025, 15, 1291 18 of 23

Table A1. Cont.

Indicator Equation Description

Mean Absolute Error
(MAE)

∑n
i=1|Fi−Ri|

n

Ri is the reanalysis based value, Fi is the seasonal forecast
based value, in the year i, and n is the number of years.
Measures the average magnitude of errors between
forecasts and reference values, without considering their
direction. Lower values indicate better accuracy.
Deterministic approach using the forecast
ensemble median.

Root Mean Square Error
(RMSE)

√
∑n

i=1 (Ri−Fi)²
n

Ri is the reanalysis based value, Fi is the seasonal forecast
based value, in the year i, and n is the number of years.
Measures the square root of the average squared
differences between forecasts and reference values.
Penalises larger errors more than MAE. Deterministic
approach using the forecast ensemble median.

Normalised Root Mean
Square Error
(NRMSE)

100 × RMSE
R

R is the mean of reanalysis based values. Provides a
dimensionless measure of the model’s relative error.
Useful for comparing performance across variables or
scales. Deterministic approach using the forecast
ensemble median.

Standardised Anomaly Index
(SAI)

T−Tc
σ

T is the mean seasonal temperature mean for a given year,
Tc is the long-term (2013–2022) mean seasonal
temperature, and σ is the standard deviation of the
seasonal temperature mean for the long-term dataset.
Measures the standardised anomaly of seasonal
temperature. Indicates how many standard deviations
the seasonal value deviates from the long-term mean.
Deterministic approach using the forecast
ensemble median.

Anomaly Correlation Coefficient
(ACC)

∑n
i=1 (F i−Fc)(Ri−Rc)

n√
∑n

i=1( Fi−Fc)
2

n ·
∑n

i=1( Ri−Rc)
2

n

Ri is the reanalysis based value, Rc the is the long-term
(2013–2022) reanalysis mean, Fi is the seasonal forecast
based value, Fc is the long-term forecast mean, in the year
i, and n is the number of years. Measures the correlation
between forecast anomalies and observed anomalies.
Ranges from −1 to 1, with positive values indicating
agreement between forecast and reanalysis anomalies.
Reanalysis anomalies were calculated relative to the
10-year reanalysis dataset, while the forecast anomalies
were calculated relative to the 10-year forecast dataset.
Deterministic approach using the forecast ensemble
median.

Continuous Ranked Probability
Skill Score
(CRPSS)

1 − CRPSF
CRPSR

CRPSF and CRPSR are the continuous ranked probability
score for the forecast and the reanalysis, respectively.
Quantifies the skill of the forecast in relation to the
reanalysis based climatology. A CRPSS of 1 means a
perfect forecast, 0 means the forecast is as good as the
reanalysis historical average, and negative values
indicate worse skill than the long-term average. This
analysis was performed using the SeaVal: Validation of
Seasonal Weather Forecasts R package. Probabilistic
approach using all the forecast ensemble members.
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