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Abstract: Soil health is typically evaluated using physical, chemical, and biological parame-
ters. However, identifying cost-effective and interpretable metrics remains a challenge. The
effectiveness of ecological outcome verification (EOV) in predicting soil health in grazing
lands was assessed at 22 ranches. Sixty-four soil samples were analyzed using the Haney
soil health test (HSHT) and phospholipid fatty acid (PLFA). Of 104 variables, 13 were
retained following principal component analysis (PCA), including variables associated
with plant community, carbon dynamics, and microbial community structure. Soils with
enriched microbial and organic matter (SOM) characteristics supported a healthier eco-
logical status, as corroborated by greater EOV scores. Water-extractable organic carbon
(WEOC) was positively correlated to plant functional groups, whereas SOM was positively
correlated with plant biodiversity and functional groups. Total bacteria were positively
correlated with all EOV parameters. Microbial biomass (MB) was positively correlated
with both water and energy cycle indexes, whereas arbuscular mycorrhizal fungi (AMF)
was positively correlated with the water cycle. From the multiple regression analyses,
water infiltration emerged as a key predictor of soil respiration and WEOC. Overall, the
ecological outcomes measured by EOV have the potential to serve as a proxy for soil health,
providing a practical tool for producers to make informed land management decisions.

Keywords: EOV; soil health; soil organic matter; carbon; microbes; PLFA test; Haney soil
health test

1. Introduction

Grazing lands are the largest and most diverse resource in the world, covering 60%
of the world’s agricultural land, and play a crucial role in supporting soil and ecosystem
functions, such as water, energy, and biodiversity cycles [1,2]. The capacity of soil to
function as a vital living ecosystem is vital for the sustainability of ranching operations and
rural socioeconomic development [3]. Recognizing the key role soil plays in producing
food, sustaining plant and animal productivity, and enhancing environmental quality [4],
soil health has been gaining increased attention in recent years. Soil health indicates
the capacity of soil to function as a vital living system to sustain biological productivity,
promote environmental quality, and maintain plant and animal health [5,6].

Healthy grazing land soils are crucial for sequestering carbon, preserving soil organic
matter (SOM), and nutrient cycling, which help mitigate climate change and improve
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resilience during extreme weather events [7]. Soil health is typically evaluated using a
variety of physical, chemical, and biological parameters, which provide insights into soil
functionality [8,9] and support producers’ assessment of soil functioning and long-term
sustainability [10]. Soil properties such as SOM content, water infiltration rates, nutrient
availability, and microbial activity are frequently monitored by researchers and producers
to assess soil health. However, identifying the most effective and interpretable metrics
remains a challenge.

The Haney soil health test (HSHT), which is based primarily on soil biological activity,
has emerged in recent years as a new approach to assessing soil health [11]. This test
quantifies soil health by incorporating both soil chemistry and biology into decision-making
tools. Although the HSHT is promising due to its focus on linking soil biology with soil
fertility and soil health, it may need extensive field evaluation and refinement in contrasting
soils and climates across the United States [12].

The phospholipid fatty acid (PLFA) test has become one of the most common methods
to study soil microbial structure [13] since microbial activity is a crucial determinant of
nutrient cycling, OM decomposition, and overall soil fertility [14,15]. While traditional
metrics focus largely on chemical and physical properties, a shift toward incorporating
biological assessments, especially soil microbial diversity, could provide a more holistic
understanding of soil health [16]. These metrics, however, also suffer from the challenge
of interpretation. Currently, microbial biomass and diversity do not have clear and uni-
versally applicable thresholds, which makes it difficult to correlate them directly to land
management outcomes.

One of the challenges associated with assessing soil health on grazing lands is the cost
and complexity of laboratory analyses. Many soil health metrics require sophisticated tests
that can be unaffordable for producers, particularly those managing large areas. Addition-
ally, interpreting these results is not straightforward. The diversity of land uses, soil types,
and management practices adds another layer of complexity to soil health assessments. Soil
varies greatly across different regions, even within the same land area, making it difficult
to establish benchmarks that can be applied universally [17]. Grazing intensity, movement
patterns, and vegetation types further affect soil properties, meaning the impact of a given
management practice varies depending on the specific context [18,19]. Consequently, un-
derstanding soil health requires an approach that incorporates this complexity, rather than
relying on a one-size-fits-all set of metrics.

In recent years, alternative grazing land assessment frameworks, such as ecological
outcomes verification (EOV), have emerged as a more accessible means for producers to
track ecological health by focusing on outcomes like plant diversity, water infiltration, and
soil parameters [20]. Establishing correlations between EOV indicators and parameters
from laboratory-based methods such as HSHT and PLFA tests is a critical step in validating
its usefulness. Once these correlations are established, EOV could serve as a valuable proxy
for the more costly and labor-intensive soil health assessments, allowing producers to
make data-driven decisions while saving time and resources. This creates opportunities for
further research into how EOV aligns with biological, physical, and chemical soil metrics,
particularly in the context of grazing land management.

This study aimed to identify soil and vegetation metrics that best reflect soil health in
grazing lands and explore the relationship between soil health assessments and ecological
outcomes. Lastly, we investigated the potential for EOV to serve as a proxy for soil health,
providing an accessible tool for producers. Our integrative approach may help bridge
the gap between field-based ecological assessments and laboratory-based soil health tests,
enhancing the ability of producers to make informed decisions that support the outcomes
of their grazing management.
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2. Materials and Methods
2.1. Site Selection and Description

This study was conducted on two ranches at Noble Research Institute (NRI) and
20 privately owned ranches in the US Southern Great Plains and Cross Timbers (CRT)
ecoregion, across 26,255 ha and 18 counties in Oklahoma and Texas (Table S1).

Private ranches were selected based on responses from an online survey distributed
widely to pasture-based beef cattle (Bos spp.) producers in OK and TX. They were cate-
gorized based on a spectrum of grazing management practices. More information about
producer recruitment and categorization methods can be found in Vivas and Hodbod [19].

The main land use of these livestock operations was cow—calf beef cattle production,
and they varied in terms of amount and type of native rangelands and introduced pastures.
The native rangelands comprised native tall and mid grasses along with forbs and some
woody shrub species. Dropseed (Sporobolus spp. R. Br.), little bluestem [Schizachyrium
scoparium (Michx.) Nash], silver bluestem [Bothriochloa laguroides (DC.) Herter], broomsedge
bluestem (Andropogon virginicus L.), and Indiangrass [Sorghastrum nutans (L.) Nash] were the
most prevalent native grass species, while bermudagrass [Cynodon dactylon (L.) Pers.] and
Johnsongrass [Sorghum halepense (L.) Pers.] were the most common introduced grass species.
Soil orders included Mollisol, Alfisol, Vertisol, and Inceptisol with a broad range of textures.
The climate is humid subtropical (Cfa according to Képpen classification) characterized by
hot summers and cold winters with rainfall historically ranging from 683 to 1196 mm yr~1.
Rainfall data were obtained from weather stations near the Oklahoma [21] and Texas [22]
ranches. More information about the ranches is provided in Table S1.

2.2. Field Sampling

At each NRI ranch, six monitoring sites were established, while at each of the
20 privately owned ranches, a single site was established, resulting in a total of 32 monitor-
ing sites. Comprehensive above- and below-ground assessments were conducted at these
sites. The monitoring sites (approximately six ha) were selected based on their representa-
tion of the ranches’ typical grazing management while assuring consistent land use and
soil types. Sampling occurred in June 2022 at the NRI ranches and from July to October
2023 at the privately owned ranches.

Short- and long-term monitoring protocols were performed following the EOV
methodology [20]. A reference area was identified for the CRT ecoregion [23], described as
the best-known expression of biodiversity, site stability, and ecosystem function [24], and
used as a reference for all sites. An ecological health matrix was developed for the CRT
ecoregion encompassing 15 leading indicators: live canopy, microfauna, four vegetation
functional groups, contextually desirable rare and undesirable species, litter abundance and
decomposition, dung decomposition, wind and water erosion, soil capping, and presence
and amount of bare soil (Table S2). Functional groups and key species were determined
based on their relative abundance, their representativeness of the functional group, and
their sensitivity to grazing management. Desirable plants are species that disappear or
become rare under improper grazing management, whereas undesirable plants are favored
and become frequent under improper grazing management. Some of the ecological indica-
tors are universal, and some of them were calibrated to the specific ecoregion based on the
potential of the indicator [25]. All sites and the reference area were monitored using the
ecological health matrix designed for the CRT ecoregion (Table S2).

2.2.1. Short-Term Monitoring (STM)

Twelve sampling locations were randomly distributed within the monitoring site
(Figure 1), and the STM protocol was performed within a 15 m radius area of each location.
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Latitude and longitude were recorded at each location for future assessments. Visual
estimation of herbage mass and quality, grazing intensity, and grazing pattern and the
assessment of the 15 leading indicators described above [20] were evaluated. Each indicator
was scored based on visual appraisals by two trained observers, and the cumulative score
of all indicators was used to determine the ecological health index (EHI), which ranged
from —140 to +120.
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Figure 1. Scheme of a 6 ha monitoring site (dotted line) within a given pasture (solid line) including
twelve sampling locations (STM protocol, green circles) and the three transects (T1, T2, and T3) of the
long-term monitoring (LTM protocol, gray bars) with locations where soil cores (yellow triangles)
and water infiltration (red squares) samples were taken.

In addition to EHI, indexes for each ecosystem process were calculated using the
equation adapted from Tongway and Hindley, 2004 [26], including water cycle (WCI),
mineral cycle (MCI), community dynamics (CDI), and energy cycle (ECI) indexes, according

T=1- [(Mag‘ ﬂ 1)

where I = index value (WCI, MCI, CDI or ECI), Max = maximum possible value of the
total scores of related indicators, i = total scores of related indicators, and D = difference

to Equation (1):

between maximum and minimum possible values of the total scores of related indicators.
The indicators related to each ecosystem process are detailed in Table S3.

2.2.2. Long-Term Monitoring (LTM)

The LTM protocol was performed within the monitoring site (Figure 1). In addition
to the STM indicators, LTM provided quantitative data from lagging indicators that in-
cluded more details regarding biodiversity, water infiltration, and soil health indicators
encompassed in the HSHT.

The LTM assessment was performed along three 25 m long transects spaced 6.5 m
apart (T1, T2, and T3) [20] (Figure 1). Soil cover and plant biodiversity were estimated
using the point and flexible area method [27]. T1 and T2 were used to identify soil surface
and vegetation composition by lowering a surveyor’s pin vertically every 0.25 cm along
each transect. A total of 100 points per transect were assessed. At each point, the contact of
the pin was documented, identifying whether it intersected a plant, bare soil, litter, or rock.
If a plant was intersected, the species was recorded. An additional area (1 m strip on each



Environments 2025, 12, 85

50f19

side of T2) was used to identify and count any species that were not touched along T1 and
T2. The search for new species was then extended to the entire area between T1 and T3
(25 x 13 m) to record any plants that were not previously identified. The measurements
were used to calculate the percentage of bare ground and litter, vegetation cover (by plant
species and functional groups), and biodiversity indicators such as vegetation richness and
Shannon-Wiener index. T3 was used to score EHI using the ecological health matrix (Table
52). Indicators were scored inside a 0.5 x 25 m strip on the right side of T3 (i.e., outside of
the 25 x 13 m area). Besides the EHI, the functional indexes for each ecosystem process
were also calculated for T3 using Equation (1).

Soil water infiltration was measured by installing two single-ring infiltrometers
(16 cm diameter x 11.5 cm depth), one 5 m away from the north side of T3 and one 5 m
away from the south side of T1, both outside of the 25 x 13 m area (Figure 1). The forage
was clipped to ground level with electric grass clippers, and all vegetation was removed
without disturbing the surface of the soil. Each ring was installed until it was halfway
into the soil surface. Soil was then gently pressed against the inner edges of the ring to
prevent water from leaking out through the sides. An initial wetting was performed by
pouring 450 mL of water onto plastic cling film inside the ring and then carefully removing
the film to allow water to wet the soil surface. After the water infiltrated, an additional
450 mL of water was added into the ring, and the time (in minutes) required for the water
to infiltrate was recorded; therefore, the longer the time, the slower the infiltration rate. If
the infiltration time exceeded 30 min, it was recorded as greater than 30 min [20].

Two soil samples composed of approximately 15 soil cores (2.5 cm diameter, 15 cm
depth) were collected from each monitoring site. The depth of 15 cm was selected because
it is the most representative of root systems and nutrient uptake. Samples were collected
5 m away from the north side of T1 and 5 m away from the south side of T3, both outside
of the 25 x 13 m area (Figure 1). Samples were kept on ice in labeled Ziploc bags and were
refrigerated until shipping to the laboratory (Regen Ag Lab, LLC, Pleasanton, NE, USA)
for HSHT and PLFA analyses.

2.3. Laboratory Analyses
2.3.1. Haney Soil Health Test

The HSHT is a laboratory dual-extraction procedure for estimating the overall health
of agricultural soils [28]. Soil samples were air-dried and processed into 2 mm particles. A
two-gram soil sample was extracted with deionized water and analyzed for total water-
extractable nitrogen, water-extractable organic nitrogen (WEON), and water-extractable
organic carbon (WEOC).

Other aliquots of the soil (2 g) were treated with a combination of organic acids (malic,
citric, and oxalic acids) for the extraction of plant available nutrients, such as total and
inorganic P, ammonium, nitrate, K, Mg, Ca, Na, Zn, Fe, Mn, Cu, S, and Al on Inductively
Coupled Argon Plasma (ICAP) [29].

Analyses of pH, soluble salts, and available K, N, and P were also performed. Available
nutrients include inorganic and potentially mineralizable forms [28].

Soil organic matter was estimated by the loss of ignition (LOI). A two-gram soil sample
was placed in a dry oven (105 °C) for two hours and then weighed prior to being placed in
a mulffle furnace (360 °C) for two hours and 15 min. Once cooled, samples were weighed,
and LOI was calculated by the difference between dry weight and ash weight, divided by
ash weight.

Soil respiration was measured by rewetting a soil sample via capillary action with
deionized water at a 2:1 soil-to-water ratio, incubating for 24 h at 24 °C, and quantifying
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the carbon dioxide produced using SR-1 Soil Respiration System created by Soil Health
Innovations, LLC (Pleasanton, NE, USA) [28].

2.3.2. Phospholipid Fatty Acid Test

The PLFA analysis was used to estimate total soil microbial biomass. Soil microbial
PLFA were extracted from freeze-dried soil samples using a chloroform-methanol extrac-
tion mixture modified to incorporate a phosphate buffer [30]. The PLFA portion of the fatty
acids was removed by solid phase extraction (SPE) and then methylated. Samples were ana-
lyzed on a gas chromatographic using Agilent’s ChemStation and MIDI's Sherlock software
systems. The gas chromatographic was equipped with a 25 m Ultra 2 (5%-phenyl)-methyl
polysiloxane column provided by J&W Scientific (Folsom, CA, USA). The abundance of
individual fatty acids was determined as nmol g~ of dry soil, and PLFA concentrations
were calculated based on the 19:0 (methyl nonadecanoate, Cy0H40O;) internal standard
concentration. Standard nomenclature was used to describe PLFA parameters. Overall,
microbial community composition represented by PLFA-related parameters was separated
into bacteria and fungi groups.

2.4. Data Analysis

All statistical analyses were performed in R language using RStudio (Version
2023.12.1+402). The three subsets of data (i.e., EOV, HSHT, and PLFA) were examined for
the presence of outliers using boxplot and to identify outliers functions. Due to the abun-
dance of parameters in the dataset, a principal component analysis (PCA) was performed
in each subset separately to reduce the dimensionality of data. The prcomp function from
the ‘Stats” package was used for this purpose. Table 54 contains a detailed description of
all parameters from the three subsets included in the first PCA. Eight of the thirty-eight
variables were retained in the EOV subset. Both HSHT and PLFA subsets were reduced
from 40 and 27 to 3 and 5 variables, respectively. Both subsets were then combined, and a
new PCA was performed to identify whether ranches with healthier soils were correlated
with greater EOV scores.

To examine bivariate relationships among soil parameters and EOV indicators, Spear-
man’s correlation analysis was carried out using the rcorr function in the “‘Hmisc” package.
Multiple regression models were fitted to predict both HSHT and PLFA soil variables. A se-
quential approach by incrementally adding levels of variables was used to develop models
with increasing complexity. First, only EOV variables were used as independent variables
and HSHT and PLFA soil parameters as dependent variables. In the next level, HSHT
and PLFA were added to the EOV parameters to predict other variables. The backward
multistep selection approach was used to identify the most important covariates to predict
each dependent variable. Additionally, the presence of multicollinearity among covariates
in fitted models was examined based on the variance inflation factor [31]. Models were
selected when all independent variables were significant (p < 0.05) and had a variance
inflation factor of less than 10 [32]. All models were fitted using the Im procedure in the
‘Stats’ package.

3. Results
3.1. Principal Component Analysis

The PCA for the EOV subset is summarized in Table 1. Five out of thirty-seven variables
(Table S4) were retained in two principal components (PC), which accounted for 94.3% of
the total variance. PC1 explained 77.9% of the total variance and greater negative loadings
for CDI, EHI, and vegetation richness. PC2 explained 16.4% of the total variance, where
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the number of functional groups had a negative loading, and herbage mass presented the
greatest positive loading.

Table 1. Summary of the principal component (PC) analysis for the EOV subset, including coefficients,
eigenvalues, and variances.

EOV ! Parameters PC1 PC2
Ecological health index —0.474 0.305
Community dynamics index —0.494 0.124
Herbage mass —0.415 0.560
Vegetation richness —0.440 —0.440
Functional groups —0.406 —0.611
Eigenvalue 3.90 0.82
Total variance (%) 77.9 16.4
Cumulative variance (%) 77.9 94.3

1 Ecological outcomes verification.

The PCA for the HSHT subset retained only three variables (Table 2) out of the
forty initially assessed (Table S4). The first two PCs explained 96.6% of the total variance,
with WEOC and soil respiration with greater positive loadings in PC1 and SOM and soil
respiration with the greatest positive and negative loadings in PC2, respectively.

Table 2. Summary of the principal component (PC) analysis for the HSHT subset, including coeffi-
cients, eigenvalues, and variances.

HSHT ! Parameters PC1 PC2
Soil respiration 0.581 —0.545
Water-extractable organic carbon 0.607 —0.204
Soil organic matter 0.542 0.813
Eigenvalue 2.50 0.40
Total variance (%) 83.4 13.2
Cumulative variance (%) 83.4 96.6

! Haney soil health test.

The PCA for the PLFA subset retained five (Table 3) out of twenty-seven variables
(Table S4) in two PCs, which accounted for 92.5% of the total variance. Total fungi and total
microbial biomass had the greatest positive loadings in PC1, whereas total bacteria and
arbuscular mycorrhizal fungi (AMF) had the greatest positive and negative loadings in
PC2, respectively.

Table 3. Summary of the principal component (PC) analysis for the PLFA subset, including coefficients,
eigenvalues, and variances.

PLFA 1 Parameters PC1 PC2
Microbial biomass 0.478 0.080
Total bacteria 0.432 0.456
Total fungi 0.479 —0.202
Arbuscular mycorrhizal fungi 0.412 —0.761
Saprophytic fungi 0.431 0.407
Eigenvalue 412 0.51
Total variance (%) 82.4 10.1
Cumulative variance (%) 82.4 92.5

! Phospholipid fatty acid test.
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The PCA, including both HSHT and PLFA subsets, is summarized in Table 4. PC1
explained 62.0% of the total variance and showed greater positive loadings for total fungi,
total microbial biomass, and saprophytic fungi. The second PC, which explained an
additional 22.5% of the total variance, was characterized by strong negative loadings from
all HSHT parameters (i.e., soil respiration, WEOC, and SOM) and positive loading for AMF.
Statistical summaries of the selected variables are provided in Table S5.

Table 4. Summary of the principal component (PC) analysis for both HSHT and PLFA subsets,
including coefficients, eigenvalues, and variances.

HSHT ! and PLFA 2 Parameters PC1 PC2
Soil respiration 0.282 —0.483
Water-extractable organic carbon 0.325 —0.467
Soil organic matter 0.268 —0.466
Microbial biomass 0.407 0.258
Total bacteria 0.387 0.127
Total fungi 0.408 0.264
Arbuscular mycorrhizal fungi 0.316 0.420
Saprophytic fungi 0.402 0.045
Eigenvalue 4.96 1.80
Total variance (%) 62.0 225
Cumulative variance (%) 62.0 84.5

1 Haney soil health test, 2 Phospholipid fatty acid test.

Monitoring sites located in the top-left quadrant were characterized by low values of
HSHT and PLFA parameters, while sites in the top and bottom-right quadrants presented
greater PLFA and HSHT values (Figure 2). On the other hand, sites in the bottom-left
quadrant had low PLFA and intermediate HSHT values. Based on this distribution, sites
located on the right-side quadrants were considered the healthiest soils in the dataset. The
average values of all parameters according to the distribution of sampling sites in the
quadrants are shown in Table 5. Sites displayed on the right side presented greater average
values of HSHT, PLFA, and EOV parameters compared to those on the left side.
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Figure 2. Principal component analysis biplot of Haney soil heath test and phospholipid fatty acid test
parameters, including 32 monitoring sites (blue dots). SR: soil respiration, WEOC: water-extractable
organic carbon, SOM: soil organic matter, MB: total microbial biomass, Bacteria: total bacteria, Fungi:
total fungi, AMF: arbuscular mycorrhizal fungi, SF: saprophytic fungi.
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Table 5. HSHT, PLFA, and EOV parameters averaged according to the distribution of sampling sites
in the quadrants of the HSHT /PLFA PCA biplot.

Right-Side Left-Side
Parameters SD SD

Quadrants Quadrants
Sites (n) 13 - 19 -
HSHT !
Soil respiration, mg kg_1 176 151 60.7 35.9
Water-extractable organic carbon, mg kg~ 257 70.1 186 35.7
Soil organic matter, % 3.50 1.57 2.16 1.40
PLFA 2
Microbial biomass, ng g ! 4904 1464 1710 939
Total bacteria, ng g~ 1142 314 432 247
Total fungi, ng g~ 823 290 167 158
Saprophytic fungi, ng/g 423 208 73.5 64.8
Arbuscular mycorrhizal fungi, ng g_1 401 226 93.4 107
EOV 3
Ecological health index, score 37.6 23.2 19.4 22.3
Water cycle index, score 27.7 3.65 22.3 10.3
Mineral cycle index, score 46.6 8.54 41.9 11.3
Energy cycle index, score 114 417 7.36 8.03
Community dynamics index, score 16.8 19.1 2.31 17.0
Herbage mass #, kg DM ha~! 1824 947 1459 781
Vegetation richness, n 29.6 14.7 20.2 9.58
Functional groups, n 5.77 1.74 4.58 1.58

1 Haney soil health test, > Phospholipid fatty acid test, 3 Ecological outcomes verification, * kilograms of dry
matter per hectare.

3.2. Spearman’s Correlation Matrix

The interrelationships between HSHT, PLFA, and EOV parameters are presented
in Table 6. Within each subset, variables were positively correlated among themselves.
Variables in both HSHT and PLFA subsets displayed strong (p < 0.05; 0.59 < p < 0.80)
and very strong (p < 0.05; p > 0.79) positive relationships among themselves. Within the
EOV subset, the EHI had stronger relationships with its peers (p < 0.05; p > 0.57). All four
ecosystem processes exhibited strong relationships with EOV parameters, with the ECI
and CDI each presenting five strong positive relationships with others. Across subsets,
WEOC was the HSHT variable with more and stronger positive relationships with PLFA
parameters (p < 0.05; p > 0.39). Considering HSHT and EOV subsets, WEOC was weakly
and positively correlated to functional groups (p < 0.05; 0.19 < p < 0.40), whereas SOM was
moderately and positively correlated with both the CDI and functional groups (p < 0.05;
0.39 < p < 0.60). For the PLFA subset, total bacteria were positively correlated with all EOV
parameters in a range from weak to moderate relationships (p < 0.05; 0.35 < p < 0.58). Still,
total microbial biomass was positively and moderately correlated with both the WCI and
ECI (p < 0.05; 0.39 < p < 0.60), whereas AMF presented a strong positive relationship with
the WCI (p < 0.05; 0.59 < p < 0.80).
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Table 6. Spearman’s correlation matrix ! including HSHT, PLFA, and EOV parameters.

Parameters? SR WEOC SOM MB  Bacteria Fungi AMF SF EHI WCI MCI ECI CDI Herbage Richness FG
SR 0.47 0.59 045 037 048 030 020 017 040 0.36 0.28 0.32 0.30
WEOC 0.48 0.60 040 026 044 038 007 022 039 043 0.32 0.36 0.33
SOM 0.40 0.56 039 0.24 043 011 017 046 | 0.53 0.40 0.41 0.49
MB 040 055 039 050 0.36 0.23 0.23 0.21
Bacteria 0.59 049 041 035 057 048 0.36 0.39 0.37
Fungi 045 040 0.39 037 054 028 040 0.36 0.18 0.22 0.26
AMF 037 026 024 039 061 036 045 038 0.22 0.19 0.18
SF 048 044 0.42 028 047 019 030 0.30 0.11 0.20 0.28
EHI 0.30 0.38 0.43 0.27 = 0.59 0.58
WCI 0.20 0.07 0.11 056 053 0.11 0.15 —-0.06 —0.06
MCI 017 022 017 = 0.39 0.35 028 036 019 | 059 0.56 0.32 0.40 0.10 —0.01
ECI 040 0.39 0.46 0.50 0.57 040 045 030 0.53 0.40 0.24
CDI 036 043 0.53 0.36 0.48 036 038 0.30 011  0.32
Herbage 0.28 0.32 0.40 0.23 0.36 018 022 0.11 0.15 = 0.40
Richness 032 0.36 0.41 0.23 0.39 022 019 0.20 —-0.06 0.10 0.40
FG 0.30 0.33 0.49 0.21 0.37 026 018 0.28 —-0.06 —0.01 0.24
! Gradients of blue indicate statistical significance at p < 0.05 (dark being highest and light being lowest correla-
tion), HSHT: Haney soil health test, PLFA: Phospholipid fatty acid test, EOV: Ecological outcomes verification.
2 SR: soil respiration, WEOC: water-extractable organic carbon, SOM: soil organic matter, MB: total microbial
biomass, Bacteria: total bacteria, Fungi: total fungi, AMF: arbuscular mycorrhizal fungi, SF: saprophytic fungi,
EHI: ecological health index, WCI: water cycle index, MCI: mineral cycle index, ECI: energy cycle index, CDI:
community dynamics index, Herbage: herbage mass, Richness: vegetation species richness, FG: vegetation
functional groups.
3.3. Multiple Regression Models
Statistical summaries of the selected variables are provided in Table S5. The water
infiltration time was the single EOV parameter selected to predict both soil respiration
and WEOC (Table 7). In both equations, water infiltration (expressed as the time required
for the soil to infiltrate 450 mL of water) was negatively related to the dependent vari-
ables. SOM was positively and negatively correlated with accumulated rainfall and water
infiltration, respectively.
Table 7. Equations to predict HSHT variables using only EOV parameters as covariates .
Parameters 2 Equations 3 RSE*4 R? Adjusted R? p-Value
Soil respiration 181.26 *** — (0.09 ** x WI) 98.68 0.27 0.25 0.002
WEOC 261.55 *** — (0.06 *** x WI) 51.1 0.35 0.33 0.0003
Soil organic matter ~ 1.93 * + (0.07 ** x Rainfall) — (0.019 *** x WI) 1.024 0.61 0.59 <0.0001

1 HSHT: Haney soil health test, EOV: Ecological outcomes verification. 2 Soil respiration (ppm); WEOC: water-
extractable organic carbon (ppm); Soil organic matter (%); > W1, soil water infiltration time; Rainfall: 12-month
accumulated rainfall (mm), * p < 0.05, ** p < 0.01, *** p < 0.001; 4 RSE: residual standard error.

The inclusion of PLFA variables during the backward multistep selection approach did
not improve the predictive performance of soil respiration (Table 8). However, both WEOC
and SOM equations were improved when PLFA covariates were also made available to
be selected. Both water infiltration and saprophytic fungi were negatively and positively
correlated with WEOC, respectively. SOM was the most accurately predicted HSHT variable
with several EOV and PLFA covariates being selected. Gram-negative bacteria, the MCI,
water infiltration, and the fungi-bacteria (F:B) ratio were negatively correlated with SOM,
whereas the ECI, bare ground, litter, trees, and saprophytic fungi had positive relationships
with SOM.
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Table 8. Equations to predict HSHT variables using EOV and PLFA parameters as covariates !.

Parameters > Equations 3 RSE* R? Adjusted R? p-Value
Soil respiration 181.26 *** — (0.09 ** x WI) 98.68 0.27 0.25 0.002
WEOC 226.16 *** — (3.85 ** x WI) + (0.10 * x SF) 47.54 0.46 0.42 0.0001

Soil organic matter

4.81 *** — (0.08 ** x MCI) + (0.23 *** x ECI) +

(0.28 * x Bare) + (0.06 *** x Litter) + (0.59 * x

0.68 0.87 0.82 <0.0001

Trees) — (0.0005 * x WI) — (0.004 ** x GNB) +
(0.007 *** x SF) — (2.52 *** x F:B)

! HSHT: Haney soil health test, EOV: ecological outcomes verification, PLFA: phospholipid fatty acid test. 2 Soil
respiration (ppm); WEOC: water-extractable organic carbon (ppm); Soil organic matter (%); 3> WI: soil water
infiltration time; SF: saprophytic fungi (ng g~!); MCI: mineral cycle index; ECL: energy cycle index; Bare: bare
ground frequency (%); Litter: litter frequency (%); Trees: trees frequency (%); GNB: Gram-negative bacteria
(ng g~1); F:B: fungi-bacteria ratio, * p < 0.05, ** p < 0.01, *** p < 0.001; * RSE: residual standard error.

The equations developed to predict PLFA variables using only EOV parameters as
covariates are shown in Table 9. Accumulated rainfall and the Shannon-Wiener index were
each negatively related with three PLFA variables. On the other hand, shrubs, trees, and
vegetation richness had positive relationships in four equations. Total microbial biomass
and AMF were the most accurately predicted PLFA variables.

Table 9. Equations to predict PLFA variables using only EOV parameters as covariates L

Parameters 2

Equations 3 RSE 4 R? Adjusted R>  p-Value

Microbial biomass

Total bacteria
Total fungi

AMEF

Saprophytic fungi

5113.67 ** — (93.07 * x Rainfall) + (104.50 * x
Shrubs) + (1230.11 * x Trees) + (142.44 *** x 1467 0.54 0.45 0.0001
Richness) — (2120.27 *** x Shannon)
394.53 ** + (37.82 *** x Richness) — (397.17 ** x

Shannon) 365 0.37 0.33 0.001
1141.78 ** — (2549 * x Rainfall) + (368.00 ** x Trees) 344.6 0.28 0.23 0.009
494.37 ** — (15.68 ** x Rainfall) + (20.91 ** x Shrubs)
+(207.66 * x Trees) + (10.89 * x Richness) — (159.03 * 162.4 0.57 047 0.0009
x Shannon) + (0.12 * x WI)
342.99 *** — (0.16 ** x WI) 201.3 0.21 0.18 0.008

1 PLFA: Phospholipid fatty acid test, EOV: Ecological outcomes verification. > Microbial biomass: total microbial
biomass (ng g~1); Bacteria: total bacteria (ng g~ !); Fungi: total fungi (ng g~!); AMF: arbuscular mycorrhizal fungi
(ng g~ '); saprophytic fungi (ng g~!); 3 Rainfall: 12-month accumulated rainfall (mm); Shrubs: shrubs frequency
(%); Trees: trees frequency (%); Richness: vegetation species richness (n); Shannon: vegetation Shannon-Wiener
diversity index; WI: soil water infiltration time; * p < 0.05, ** p < 0.01, *** p < 0.001; 4 RSE: residual standard error.

The second level of complexity for PLFA equations is shown in Table 10. Overall,
when HSHT parameters were also available to be selected during the backward multistep
selection approach, PLFA variables were more accurately predicted, with the exception
of AMF (Table 10 vs. Table 9). WEON was positively correlated with all PLFA variables.
The proportion of shrubs was also selected and positively correlated to AMF. Soil calcium
concentration was positively correlated to saprophytic fungi.
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Table 10. Equations to predict PLFA variables using EOV and HSHT parameters as covariates !.

Parameters > Equations 3 RSE* R? Adjusted R? p-Value
Microbial biomass —2470.14 * + (380.22 *** x WEON) 1343.0 0.55 0.54 <0.0001
Total bacteria —473.18 * + (82.88 *** x WEON) 317.4 0.51 0.49 <0.0001
Total fungi —485.62 * + (63.80 *** x WEON) 311.9 0.39 0.37 0.0001
AMEF —229.83 2 + (13.04 * x Shrubs) + (29.47 ** x WEON) 170 0.46 0.42 0.0001
Saprophytic fungi —255.87b + (26.57 ** x WEON) + (0.15 * x Ca) 179 0.40 0.35 0.0006

1 PLFA: Phospholipid fatty acid test, EOV: Ecological outcomes verification, HSHT: Haney soil health test.
2 Microbial biomass: total microbial biomass (ng g™ !); Bacteria: total bacteria (ng g~ !); Fungi: total fungi (ng g~1);
AME: arbuscular mycorrhizal fungi (ng g~1); saprophytic fungi (ng g~1); > WEON: water-extractable organic
nitrogen (mg kg*l); Shrubs: shrubs frequency (%); Ca: soil calcium concentration (mg kgfl); *p <0.05,*p<0.01,
4 1 <0.001, 2 p = 0.068, ® p = 0.052; * RSE: residual standard error.

4. Discussion
4.1. Linking Ecological Outcomes with Soil Health Metrics

This study evaluated the potential of EOV to be used as a proxy assessment of soil
health by examining the relationships between EOV indicators and laboratory-based soil
health metrics. Our analyses revealed that a small subset of variables can capture a
significant portion of variance in ecological and soil health data, demonstrating the potential
for EOV to serve as an effective tool for monitoring soil health.

EOV indicators such as community dynamics, vegetation richness, number of func-
tional groups, and herbage mass captured the majority of the total variance associated with
our dataset. This indicates that ecological indicators related to plant community diversity
play a prominent role in maintaining the ecosystem’s structural and functional integrity, as
plants serve as the primary source of OM and energy for sustaining many soil ecosystem
functions [33,34]. The EHI, which is the sum of 15 ecological indicators assessed in the
STM protocol, was also a good indicator to explain the variance of the dataset. Xu et al.,
2019 [24] reported a positive correlation between the EHI and vegetation richness, which
aligns with the results of this study. For the HSHT subset, carbon-related parameters such
as WEOC and soil respiration were crucial for explaining changes in soil health. Recent
studies have highlighted the importance of soil carbon and its link with other soil functions,
such as nutrient and water cycling and greenhouse gas emissions, especially in grazing
lands [35-38]. Additionally, soil carbon responds to management practices, an essential
criterion for evaluating soil health [38]. The results from the PLFA subset highlighted the
importance of microbial community structure and its function as major components in soil
health assessments. Microbial biomass and specific communities such as fungi, bacteria,
and AMF were the most important parameters, which aligns with Yang et al., 2022 [39].

The interconnectedness between the three subsets is particularly evident in Spear-
man’s correlation matrix (Table 6). Notably, EOV parameters had the strongest positive
relationships across subsets, particularly with PLFA parameters (e.g., microbial biomass).
Total bacteria correlated positively with all EOV indicators, while AMF showed strong cor-
relations with the WCL This suggests that microbial diversity and activity, often promoted
by greater SOM and biodiversity, play a central role in enhancing ecological processes such
as nutrient and water cycling [10]. Total microbial biomass and the functional groups were
closely related to vegetation parameters (e.g., vegetation richness) and soil nutrients (e.g.,
WEOC), which is consistent with previous findings [39,40]. Microbial communities play a
fundamental role in the biogeochemical cycling of essential nutrients, including carbon,
nitrogen, phosphorus, and sulfur, contributing to overall ecosystem productivity [41]. Fur-
thermore, microbial decomposition of plant and animal residues is essential for nutrient
recycling and maintaining soil organic matter [42].

van Es and Karlen, 2019 [43] assessed soil health parameters from three long-term
trials and found different correlations among variables from individual sites, suggesting
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that results can be impacted by soil properties (e.g., soil types) and management practices.
According to Stanley et al., 2024 [44], climatic, edaphic, and plant ecophysiology factors,
along with optimal grazing management, also play a crucial role in soil organic carbon
(SOC) sequestration. It is important to note that our study comprised a diverse range
of grazing management practices, with diverse land uses, soil types, and a wide range
of physical, chemical, and biological soil properties, which allowed for a comprehensive
assessment of soil health. Such diversity ensures that the findings are not limited to a single
management approach, enhancing their applicability across a wide range of landscapes.

The PCA biplot (Figure 2) revealed distinct groups of sampling sites across four quad-
rants. Variables grouped in two clusters, one for HSHT parameters and the other for PLFA
parameters, suggesting that sites are differentiated based on shared characteristics related
to soil health metrics [45]. The right-side quadrants were characterized by greater values for
both HSHT and PLFA parameters, representing the healthiest soils. The increase in WEOC,
SOM, and total microbial biomass in those quadrants compared to the left-side quadrants
were 38, 62, and 186%, respectively. The structured behavior of variables suggests that
soils with enriched microbial diversity and greater carbon and SOM support a healthier
ecological state [46], as corroborated by the greater EOV values in those quadrants. These
sites demonstrated active nutrient cycling and carbon availability, which fostered microbial
growth and diversity, thereby supporting more sustainable and resilient ecosystems. Eco-
logical outcomes verification could be an option for identifying efficient nutrient cycling,
carbon and SOM availability, and robust microbial communities, which are essential for
maintaining ecosystem functionality. Previous studies described the potential of microbial
diversity to alter terrestrial ecosystem processes, soil functional stability [47,48], and the
amount of carbon and SOM. Highlighting the relationships between physical, chemical,
and biological soil parameters underscores the importance of a holistic approach towards
soil health management.

4.2. Strengthening the Link Between EOV and Soil Test Metrics—Modeling HSHT and
PLFA Parameters

The sequential approach, allowing only one group of variables as covariates in the first
step of development (e.g., EOV to predict PLFA parameters) and then providing two groups
at a second level (e.g., EOV + HSHT to predict PLFA parameters), provided more accurate
models. Overall, more complex models consistently enhanced predictive ability compared
to simpler models [49]. However, although prediction performance is likely to be improved
at the expense of model complexity [50], the trade-off between the on-farm availability of
variable inputs and prediction accuracy must be carefully considered [51]. Models with
increasing complexity may include covariates that are costly and infeasible to obtain [52].

This study has identified key covariates to predict both HSHT and PLFA parameters.
Water infiltration time was identified as the most important covariate to predict HSHT
variables. There were significant negative relationships between water infiltration time,
soil respiration, WEOC, and SOM in both categories of model complexity (Tables 7 and 8).
Conversely, the time that it takes for water to infiltrate (i.e., 1/WI) is positively related to
soil respiration, WEOC, and SOM, aligning with previous studies [43,53]. The broad range
of soil types assessed in this study confirms the impact of inherent soil properties, such as
structure and texture, on water infiltration [53]. As emphasized by Bagnall et al., 2022 [53],
identifying soil parameters, including soil hydraulic function, is critical for understanding
the impact of management practices. Given the significance of water infiltration, it is
essential to highlight the simplicity and practicality of this measurement for producers, as
it provides a valuable tool for predicting other soil health variables.

At the first level of complexity, rainfall was identified as having a positive relationship
with SOM (Table 7), whereas at the second level, several covariates were selected. Mean
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annual precipitation was also identified as a significant predictor of SOC elsewhere [54,55].
At the second level of complexity, the MCI, water infiltration, Gram-negative bacteria,
and the F:B ratio were negatively related to SOM, while the ECI, bare ground, litter, trees,
and saprophytic fungi presented significant positive relationships with SOM (Table 8).
The ecological indicators related to the MCI are live organisms (i.e., macrofauna), litter
incorporation and decomposition, and bare soil, whereas ECI indicators are limited to live
canopy abundance and bare ground (Table S3). Previous studies have identified vegetation
type as a key factor influencing SOC stocks, with effects attributed to the length and area of
the root system and the amount and chemical composition of deposited litter [54,56].

Fanin et al., 2019 [57] reported that Gram-negative bacteria are more dependent
on simple carbon compounds derived from plants (e.g., alkyl and N-alkyl compounds),
whereas the Gram-positive bacteria use more SOM-derived carbon sources, which are more
recalcitrant (e.g., carbonyl, aryl, and ketone compounds) and stable. A negative relationship
between the F:B ratio and SOC is also reported in the literature, where less fungal biomass
has been associated with less soil carbon sequestration [58]. Six et al., 2006 [59] explained
that shifts toward fungal dominance may increase SOC and reduce its turnover rate due
to enhanced fungal-mediated soil aggregation and/or shifts in the microbial biomass
physiology [58]. Still, saprophytic fungi were identified as a key covariate predicting
SOC (Table 8), which agrees with Spearman’s correlation matrix (Table 6). In our study,
saprophytic fungi exhibited a positive correlation with WEOC. This relationship can be
attributed to the findings of Zhao et al., 2024 [60], who demonstrated that hyphae of
saprophytic fungi secrete extracellular biopolymers that enhance soil aggregate stability,
which is correlated with SOC.

Rainfall was negatively related to total microbial biomass, total fungi, and AMF
(Table 9). Soil moisture, which is affected by rainfall gradients, is known to affect microbial
community composition [61]. Microorganisms need water to maintain their physiological
status, and soil moisture also affects the availability of both substrate and oxygen for
microbes’ growth [62]. Hawkes et al., 2011 [61] reported that fungi respond directly to
rainfall levels, with more abundant, diverse, and consistent communities under drought
conditions and less abundant, less diverse, and more variable communities during wetter
periods. AMF requires oxygen for their metabolic processes, and their functionality may
be compromised when the soil becomes waterlogged and anaerobic. Further studies have
corroborated the strong effect of rainfall on the composition and function of soil fungal
communities, especially AMF, whereas saprophytic fungi were not affected [61,63].

The main EOV-specific vegetation parameters used to predict PLFA parameters were
the proportion of shrubs and trees and vegetation richness (Table 9). Plant diversity
influences soil microbial biodiversity via two main pathways [64]: first, by increasing the
net primary productivity, and second, by leading towards a greater diversity of litter and
root exudates [65]. Zhao et al., 2014 [64] mentioned that specific plant species may be
more important and sometimes prevail over plant diversity in controlling soil microbial
biodiversity. Plant diversity explained one-third of the variance in total plant biomass,
whereas specific plant species accounted for about two-thirds [66].

The WEON was selected as a covariate as it was positively related to predicting all
HSHT parameters at the second level of complexity (Table 10). This positive relationship be-
tween nitrogen and total microbial biomass and bacteria was also reported in Australia [67].
Total nitrogen was also found to be the most important variable correlated with PLFA
parameters, including total microbial biomass, total bacteria, Gram-negative bacteria, total
fungi, and other diversity indexes [68]. Soil inorganic nitrogen, however, seemed to be
more important than WEON in explaining changes in bacterial and fungal communities
in forest ecosystems in China [62]. Another parameter that is frequently reported as an
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important modulator of soil microbes” growth is soil pH [67]. However, our results showed
that pH was not selected to predict any PLFA parameters. Soil calcium concentration,
which is related to pH, was positively correlated to saprophytic fungi.

5. Conclusions

The findings from this study suggest that EOV indicators, particularly those related to
vegetation community structure (e.g., number of functional groups, vegetation richness)
and ecosystem functions (e.g., water cycle and mineral cycle indexes), along with water
infiltration time, can effectively predict soil health metrics included in both HSHT and PLFA
tests. Additionally, microbial parameters such as total fungi and AMF provide valuable
insights when combined with EOV, improving predictions of SOM and nutrient dynamics.

In conclusion, EOV is a viable proxy for assessing soil health as a stand-alone tool or
in conjunction with the above analyses, particularly in contexts where direct measurements
of soil health may be limited. Ecological outcomes offer a more holistic view of soil health
that goes beyond individual chemical or biological parameters, integrating both ecosystem
structure and function. Future work could focus on refining these models and exploring
their applicability across diverse ecosystems and land use practices, ultimately guiding
sustainable land management practices.
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related ecosystem processes; Table S4: Ecological outcomes verification (EOV), Haney soil health test
(HSHT), and phospholipid fatty acid (PLFA) parameters included in the first principal components
analyses; Table S5: Summary statistics of selected variables from ecological outcomes verification
(EOV), Haney soil health test (HSHT), and phospholipid fatty acid (PLFA) datasets.

Author Contributions: Conceptualization, I.C.EM. and G.ES.C.; Data curation, LC.EM., G.ES.C. and
E.M.A; Formal analysis, G.ES.C.; Funding acquisition, ].E.R.; Methodology, L.C.EM., GES.C.,, M.R.R.
and J.E.R.; Project administration, .C.EM. and J.E.R.; Supervision, I.C.EM.; Validation, LC.EM. and
G.ES.C; Visualization, .C.EM., G.ES.C. and E.M.A.; Writing—original draft, .C.EM. and G.ES.C.;
Writing—review and editing, LC.EM., GES.C.,, EM.A.,, M.M., M.R.R. and J.E.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Foundation for Food and Agriculture Research (FFAR
grant number: DSnew-0000000028), Noble Research Institute, Greenacres Foundation, The Jones
Family Foundation, and Butcherbox. The content of this publication is solely the responsibility of the
authors and does not necessarily represent the official views of our funders.

Data Availability Statement: The datasets presented in this article are not readily available because
the data are part of an ongoing study.

Acknowledgments: We would like to thank Sindy Interrante for her critical review and Thomas
James, Taner Hale, Maira Sparks, and Myoung-Hwan Chi for their support in field sampling.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

EOV Ecological outcome verification
HSHT Haney soil health test
PLFA  Phospholipid fatty acid


https://www.mdpi.com/article/10.3390/environments12030085/s1
https://www.mdpi.com/article/10.3390/environments12030085/s1

Environments 2025, 12, 85 16 of 19

PCA Principal component analysis
SOM Soil organic matter

WEOC  Water-extractable organic carbon
MB Microbial biomass

AMF Arbuscular mycorrhizal fungi
NRI Noble Research Institute

CRT Cross Timbers ecoregion

STM Short-term monitoring

EHI Ecological health index

WCI Water cycle index

MCI Mineral cycle index

CDI Community dynamics index
ECI Energy cycle index

LT™M Long-term monitoring

T Transect

WEON  Water-extractable organic nitrogen

PC Principal component

SR Soil respiration

SF Saprophytic fungi

DM Dry matter

WI Soil water infiltration time
F:B Fungi-bacteria ratio

GNB Gram-negative bacteria

SOC Soil organic carbon

References

1.

10.

11.

12.

13.

Food and Agriculture Organization of the United Nations. The State of Food and Agriculture—Innovation in Family Farming.
Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f6b32ac3-74c8-4c4b-ac6b-60a21d74202f / content
(accessed on 26 November 2024).

Follett, R.F,; Reed, D.A. Soil Carbon Sequestration in Grazing Lands: Societal Benefits and Policy Implications. Rangel. Ecol.
Manag. 2010, 63, 4-15. [CrossRef]

Ellili-Bargaoui, Y.; Walter, C.; Lemercier, B.; Michot, D. Assessment of Six Soil Ecosystem Services by Coupling Simulation
Modelling and Field Measurement of Soil Properties. Ecol. Indic. 2021, 121, 107211. [CrossRef]

Doran, J.W. Soil Health and Global Sustainability: Translating Science into Practice. Agric. Ecosyst. Environ. 2002, 88, 119-127.
[CrossRef]

Doran, ].W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000,
15, 3-11. [CrossRef]

Teague, R.; Kreuter, U. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Sustain.
Food Syst. 2020, 4, 534187. [CrossRef]

Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil Carbon Dynamics and Potential Carbon Sequestration by Rangelands. Environ.
Pollut. 2002, 116, 391-396. [CrossRef]

Bending, G.D.; Turner, M.K.; Rayns, F.; Marx, M.-C.; Wood, M. Microbial and Biochemical Soil Quality Indicators and Their
Potential for Differentiating Areas under Contrasting Agricultural Management Regimes. Soil Biol. Biochem. 2004, 36, 1785-1792.
[CrossRef]

Barrios, E. Soil Biota, Ecosystem Services and Land Productivity. Ecol. Econ. 2007, 64, 269-285. [CrossRef]

Teague, R.; Dowhower, S. Links of Microbial and Vegetation Communities with Soil Physical and Chemical Factors for a Broad
Range of Management of Tallgrass Prairie. Ecol. Indic. 2022, 142, 109280. [CrossRef]

Singh, S.; Jagadamma, S.; Yoder, D.; Yin, X.; Walker, F. Agroecosystem Management Responses to Haney Soil Health Test in the
Southeastern United States. Soil Sci. Soc. Am. . 2020, 84, 1705-1721. [CrossRef]

Chu, M; Singh, S.; Walker, ER.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A.; Jagadamma, S. Soil Health and Soil Fertility
Assessment by the Haney Soil Health Test in an Agricultural Soil in West Tennessee. Commun. Soil Sci. Plant Anal. 2019,
50,1123-1131. [CrossRef]

Frostegard, A.; Tunlid, A.; B&ath, E. Use and Misuse of PLFA Measurements in Soils. Soil Biol. Biochem. 2011, 43, 1621-1625.
[CrossRef]


https://openknowledge.fao.org/server/api/core/bitstreams/f6b32ac3-74c8-4c4b-ac6b-60a21d74202f/content
https://doi.org/10.2111/08-225.1
https://doi.org/10.1016/j.ecolind.2020.107211
https://doi.org/10.1016/S0167-8809(01)00246-8
https://doi.org/10.1016/S0929-1393(00)00067-6
https://doi.org/10.3389/fsufs.2020.534187
https://doi.org/10.1016/S0269-7491(01)00215-9
https://doi.org/10.1016/j.soilbio.2004.04.035
https://doi.org/10.1016/j.ecolecon.2007.03.004
https://doi.org/10.1016/j.ecolind.2022.109280
https://doi.org/10.1002/saj2.20131
https://doi.org/10.1080/00103624.2019.1604731
https://doi.org/10.1016/j.soilbio.2010.11.021

Environments 2025, 12, 85 17 of 19

14.

15.

16.

17.

18.
19.
20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Jeffery, S.; Harris, J.A.; Rickson, R.J.; Ritz, K. Effects of Soil-surface Microbial Community Phenotype upon Physical and
Hydrological Properties of an Arable Soil: A Microcosm Study. Eur. J. Soil Sci. 2010, 61, 493-503. [CrossRef]

Nottingham, A.T.; Whitaker, J.; Ostle, N.J.; Bardgett, R.D.; McNamara, N.P,; Fierer, N.; Salinas, N.; Ccahuana, A.J.Q.; Turner, B.L.;
Meir, P. Microbial Responses to Warming Enhance Soil Carbon Loss Following Translocation across a Tropical Forest Elevation
Gradient. Ecol. Lett. 2019, 22, 1889-1899. [CrossRef] [PubMed]

Mijangos, I.; Pérez, R.; Albizu, I.; Garbisu, C. Effects of Fertilization and Tillage on Soil Biological Parameters. Enzyme Microb.
Technol. 2006, 40, 100-106. [CrossRef]

Jones, J.W.; Antle, ].M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.].; Herrero, M.; Howitt, R.E.; Janssen, S.; et al.
Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science.
Agric. Syst. 2017, 155, 269-288. [CrossRef]

Comer, J.; Perkins, L. Resistance of the Soil Microbial Community to Land-Surface Disturbances of High-Intensity Winter Grazing
and Wildfire. J. Environ. Manag. 2021, 279, 111596. [CrossRef]

Vivas, J.; Hodbod, J. Exploring the Relationship between Regenerative Grazing and Ranchers” Wellbeing. |. Rural. Stud. 2024,
108, 103267. [CrossRef]

Savory Institute. EOV summary. In Ecological Outcome Verified, Version 3.0; Savory Institute: Boulder, CO, USA, 2021.

Mesonet. Available online: https://www.mesonet.org/ (accessed on 4 November 2024).

National Weather Service. National Oceanic and Atmospheric Administration. Available online: https:/ /www.weather.gov/
(accessed on 4 November 2024).

The Nature Conservancy. A Conservation Blueprint for the Crosstimbers & Southern Tallgrass Prairie Ecoregion; CSTP Ecoregional
Planning Team, The Natiure Conservancy: San Antonio, TX, USA, 2009; Available online: www.conserveonline.org (accessed on
6 January 2025).

Xu, S.; Rowntree, J.; Borrelli, P.; Hodbod, J.; Raven, M.R. Ecological Health Index: A Short Term Monitoring Method for Land
Managers to Assess Grazing Lands Ecological Health. Environments 2019, 6, 67. [CrossRef]

Pellant, M.; Shaver, P.L.; Pyke, D.A.; Herrick, J.E.; Lepak, N.; Riegel, G.; Kachergis, E.; Newingham, B.A.; Toledo, D.; Busby, F.E.
Interpreting Indicators of Rangeland Health, Version 5. Tech Ref 1734-6; U.S. Department of the Interior, Bureau of Land Management,
National Operations Center: Denver, CO, USA, 2020. Available online: https://www.blm.gov/documents/national-office /blm-
library/technical-reference/interpreting-indicators-rangeland-health-0 (accessed on 4 November 2024).

Tongway, D.J.; Hindley, N.L. Landscape Function Analysis: Procedures for Monitoring and Assessing Landscapes with Special Reference to
Minesite and Rangelands; CSIRO: Canberra, Australia, 2004; 80p.

Halloy, S.; Ibafiez, M.; Yager, K. Point and flexible area sampling for rapid inventories of biodiversity status. Ecol. Boliv. 2011,
46, 46-56.

Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.]. The Soil Health Tool—Theory and Initial Broad-Scale Application.
Appl. Soil Ecol. 2018, 125, 162-168. [CrossRef]

Haney, R.L.; Haney, E.B.; Harmel, R.D.; Smith, D.R.; White, M.J. Evaluation of H3A for Determination of Plant Available P vs.
FeAlO Strips. Open ]. Soil Sci. 2016, 6, 175-187. [CrossRef]

White, D.C.; Davis, WM.; Nickels, ].S.; King, ].D.; Bobbie, R.]. Determination of the Sedimentary Microbial Biomass by Extractible
Lipid Phosphate. Oecologia 1979, 40, 51-62. [CrossRef]

Zuur, A.F,; Ieno, EN.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol.
2010, 1, 3-14. [CrossRef]

Chatterjee, S.; Hadi, A.S.; Price, B. Regression Analysis by Examples, 3rd ed.; Wiley VCH: New York, NY, USA, 2000.

Lehmann, ].; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60-68. [CrossRef] [PubMed]

Ponge, ].-F. The Soil as an Ecosystem. Biol. Fertil Soils 2015, 51, 645-648. [CrossRef]

Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212-222. [CrossRef]

Conant, R.T.; Cerri, C.E.P; Osborne, B.B.; Paustian, K. Grassland Management Impacts on Soil Carbon Stocks: A New Synthesis.
Ecol. Appl. 2017, 27, 662-668. [CrossRef]

Bai, Y.; Cotrufo, M.F. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science 2022,
377, 603-608. [CrossRef]

Liptzin, D.; Norris, C.E.; Cappellazzi, S.B.; Bean, G.M.; Cope, M.; Greub, K.L.H.; Rieke, E.L.; Tracy, PW.; Aberle, E.; Ashworth,
A.; et al. An Evaluation of Carbon Indicators of Soil Health in Long-Term Agricultural Experiments. Soil Biol. Biochem. 2022,
172,108708. [CrossRef]

Yang, T.; Li, X.; Hu, B.; Wei, D.; Wang, Z.; Bao, W. Soil Microbial Biomass and Community Composition along a Latitudinal
Gradient in the Arid Valleys of Southwest China. Geoderma 2022, 413, 115750. [CrossRef]

Fierer, N.; Wood, S.A.; Bueno de Mesquita, C.P. How Microbes Can, and Cannot, Be Used to Assess Soil Health. Soil Biol. Biochem.
2021, 153, 108111. [CrossRef]


https://doi.org/10.1111/j.1365-2389.2010.01249.x
https://doi.org/10.1111/ele.13379
https://www.ncbi.nlm.nih.gov/pubmed/31489760
https://doi.org/10.1016/j.enzmictec.2005.10.043
https://doi.org/10.1016/j.agsy.2016.09.021
https://doi.org/10.1016/j.jenvman.2020.111596
https://doi.org/10.1016/j.jrurstud.2024.103267
https://www.mesonet.org/
https://www.weather.gov/
www.conserveonline.org
https://doi.org/10.3390/environments6060067
https://www.blm.gov/documents/national-office/blm-library/technical-reference/interpreting-indicators-rangeland-health-0
https://www.blm.gov/documents/national-office/blm-library/technical-reference/interpreting-indicators-rangeland-health-0
https://doi.org/10.1016/j.apsoil.2017.07.035
https://doi.org/10.4236/ojss.2016.611017
https://doi.org/10.1007/BF00388810
https://doi.org/10.1111/j.2041-210X.2009.00001.x
https://doi.org/10.1038/nature16069
https://www.ncbi.nlm.nih.gov/pubmed/26595271
https://doi.org/10.1007/s00374-015-1016-1
https://doi.org/10.1002/fes3.96
https://doi.org/10.1002/eap.1473
https://doi.org/10.1126/science.abo2380
https://doi.org/10.1016/j.soilbio.2022.108708
https://doi.org/10.1016/j.geoderma.2022.115750
https://doi.org/10.1016/j.soilbio.2020.108111

Environments 2025, 12, 85 18 of 19

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Tang, S.; Ma, Q.; Marsden, K.A.; Chadwick, D.R.; Luo, Y.; Kuzyakov, Y.; Wu, L.; Jones, D.L. Microbial community succession in
soil is mainly driven by carbon and nitrogen contents rather than phosphorus and Sulphur contents. Soil Biol. Biochem. 2023,
180, 109019. [CrossRef]

Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, HM.N.; Parra-Saldivar, R. Soil carbon sequestration—An interplay between soil
microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [CrossRef] [PubMed]

van Es, H.M.; Karlen, D.L. Reanalysis Validates Soil Health Indicator Sensitivity and Correlation with Long-term Crop Yields.
Soil Sci. Soc. Am. ]. 2019, 83, 721-732. [CrossRef]

Stanley, P.L.; Wilson, C.; Patterson, E.; Machmuller, M.B.; Cotrufo, M.F. Ruminating on Soil Carbon: Applying Current Under-
standing to Inform Grazing Management. Glob. Chang. Biol. 2024, 30, €17223. [CrossRef]

Feeney, C.J.; Robinson, D.A.; Keith, A.M.; Vigier, A.; Bentley, L.; Smith, R.P; Garbutt, A.; Maskell, L.C.; Norton, L.; Wood, C.M.;
et al. Development of Soil Health Benchmarks for Managed and Semi-Natural Landscapes. Sci. Total Environ. 2023, 886, 163973.
[CrossRef]

Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martinez, V.; Kakarla, M.; Weindorf, D.C. Soil Microbial Community Restoration in
Conservation Reserve Program Semi-Arid Grasslands. Soil Biol. Biochem. 2018, 118, 166-177. [CrossRef]

Philippot, L.; Raaijmakers, J.; Lemanceau, P; Van Der Putten, W. Going Back to the Roots: The Microbial Ecology of the
Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789-799. [CrossRef]

Tardy, V.; Mathieu, O.; Lévéque, J.; Terrat, S.; Chabbi, A.; Lemanceau, P.; Ranjard, L.; Maron, P. Stability of Soil Microbial Structure
and Activity Depends on Microbial Diversity. Environ. Microbiol. Rep. 2014, 6, 173-183. [CrossRef]

Congio, G.ES.; Bannink, A.; Mayorga, O.L.; Rodrigues, ]J.P.P.; Bougouin, A.; Kebreab, E.; Carvalho, P.C.E; Berchielli, T.T.;
Mercadante, M.E.Z.; Valadares-Filho, S.C.; et al. Improving the Accuracy of Beef Cattle Methane Inventories in Latin America
and Caribbean Countries. Sci. Total Environ. 2023, 856, 159128. [CrossRef]

Moraes, L.E.; Strathe, A.B.; Fadel, ].G.; Casper, D.P,; Kebreab, E. Prediction of Enteric Methane Emissions from Cattle. Glob. Chang.
Biol. 2014, 20, 2140-2148. [CrossRef]

Belanche, A.; Hristov, A.N.; van Lingen, H.].; Denman, S.E.; Kebreab, E.; Schwarm, A.; Kreuzer, M.; Niu, M.; Eugene, M.;
Niderkorn, V.; et al. Prediction of Enteric Methane Emissions by Sheep Using an Intercontinental Database. J. Clean. Prod. 2023,
384, 135523. [CrossRef]

Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R; Brito, A.F.,; Boland, T.; Casper, D.; et al. Prediction
of Enteric Methane Production, Yield, and Intensity in Dairy Cattle Using an Intercontinental Database. Glob. Chang. Biol. 2018,
24, 3368-3389. [CrossRef] [PubMed]

Bagnall, D.K.; Morgan, C.L.S.; Bean, G.M.; Liptzin, D.; Cappellazzi, S.B.; Cope, M.; Greub, K.L.H.; Rieke, E.L.; Norris, C.E.; Tracy,
PW.; et al. Selecting Soil Hydraulic Properties as Indicators of Soil Health: Measurement Response to Management and Site
Characteristics. Soil Sci. Soc. Am. |. 2022, 86, 1206-1226. [CrossRef]

Jobbagy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol.
Appl. 2000, 10, 423-436. [CrossRef]

Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A_; Blankinship, J.C.; Crow, S.E.; Druhan,
J.L.; Hicks Pries, C.E.; et al. Beyond Clay: Towards an Improved Set of Variables for Predicting Soil Organic Matter Content.
Biogeochemistry 2018, 137, 297-306. [CrossRef]

Merild, P.; Malmivaara-Lamsd, M.; Spetz, P,; Stark, S.; Vierikko, K.; Derome, J.; Fritze, H. Soil Organic Matter Quality as a Link
between Microbial Community Structure and Vegetation Composition along a Successional Gradient in a Boreal Forest. Appl. Soil
Ecol. 2010, 46, 259-267. [CrossRef]

Fanin, N.; Kardol, P; Farrell, M.; Nilsson, M.-C.; Gundale, M.].; Wardle, D.A. The Ratio of Gram-Positive to Gram-Negative
Bacterial PLFA Markers as an Indicator of Carbon Availability in Organic Soils. Soil Biol. Biochem. 2019, 128, 111-114. [CrossRef]
Malik, A.A.; Chowdhury, S.; Schlager, V.; Oliver, A.; Puissant, J.; Vazquez, P.G.M.; Jehmlich, N.; von Bergen, M.; Griffiths, R.L,;
Gleixner, G. Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon Cycling. Front. Microbiol. 2016, 7, 1247. [CrossRef]

Six, J.; Frey, S.D.; Thiet, R K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil
Sci. Soc. Am. |. 2006, 70, 555-569. [CrossRef]

Zhao, R.; Kuzyakov, Y.; Zhang, H.; Wang, Z.; Li, T,; Shao, L.; Jiang, L.; Wang, R.; Li, M.; Sun, O.].; et al. Labile Carbon Inputs Offset
Nitrogen-Induced Soil Aggregate Destabilization via Enhanced Growth of Saprophytic Fungi in a Meadow Steppe. Geoderma
2024, 443,116841. [CrossRef]

Hawkes, C.V.; Kivlin, S.N.; Rocca, J.D.; Huguet, V.; Thomsen, M. A_; Suttle, K.B. Fungal Community Responses to Precipitation.
Glob. Chang. Biol. 2011, 17, 1637-1645. [CrossRef]

Zhou, W.P;; Shen, WJ.; Li, Y.E.; Hui, D.F. Interactive Effects of Temperature and Moisture on Composition of the Soil Microbial
Community. Eur. . Soil Sci. 2017, 68, 909-918. [CrossRef]

Huang, Q.; Jiao, F; Huang, Y,; Li, N.; Wang, B.; Gao, H.; An, S. Response of Soil Fungal Community Composition and Functions
on the Alteration of Precipitation in the Grassland of Loess Plateau. Sci. Total Environ. 2021, 751, 142273. [CrossRef] [PubMed]


https://doi.org/10.1016/j.soilbio.2023.109019
https://doi.org/10.1016/j.scitotenv.2022.152928
https://www.ncbi.nlm.nih.gov/pubmed/34999062
https://doi.org/10.2136/sssaj2018.09.0338
https://doi.org/10.1111/gcb.17223
https://doi.org/10.1016/j.scitotenv.2023.163973
https://doi.org/10.1016/j.soilbio.2017.12.001
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.1111/1758-2229.12126
https://doi.org/10.1016/j.scitotenv.2022.159128
https://doi.org/10.1111/gcb.12471
https://doi.org/10.1016/j.jclepro.2022.135523
https://doi.org/10.1111/gcb.14094
https://www.ncbi.nlm.nih.gov/pubmed/29450980
https://doi.org/10.1002/saj2.20428
https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
https://doi.org/10.1007/s10533-018-0424-3
https://doi.org/10.1016/j.apsoil.2010.08.003
https://doi.org/10.1016/j.soilbio.2018.10.010
https://doi.org/10.3389/fmicb.2016.01247
https://doi.org/10.2136/sssaj2004.0347
https://doi.org/10.1016/j.geoderma.2024.116841
https://doi.org/10.1111/j.1365-2486.2010.02327.x
https://doi.org/10.1111/ejss.12488
https://doi.org/10.1016/j.scitotenv.2020.142273
https://www.ncbi.nlm.nih.gov/pubmed/33182000

Environments 2025, 12, 85 19 of 19

64.

65.
66.

67.

68.

Zhao, J.; Wan, S.; Zhang, C.; Liu, Z.; Zhou, L.; Fu, S. Contributions of Understory and/or Overstory Vegetations to Soil Microbial
PLFA and Nematode Diversities in Eucalyptus Monocultures. PLoS ONE 2014, 9, e85513. [CrossRef] [PubMed]

Wardle, D.A. The Influence of Biotic Interactions on Soil Biodiversity. Ecol. Lett. 2006, 9, 870-886. [CrossRef]

Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant Diversity and Ecosystem Productivity: Theoretical Considerations. Proc. Natl.
Acad. Sci. USA 1997, 94, 1857-1861. [CrossRef]

Xue, PP; Carrillo, Y.; Pino, V.; Minasny, B.; McBratney, A.B. Soil Properties Drive Microbial Community Structure in a Large Scale
Transect in South Eastern Australia. Sci. Rep. 2018, 8, 11725. [CrossRef]

Zhong, W.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.; Huang, Q.; Shen, W. The Effects of Mineral Fertilizer and Organic Manure on Soil
Microbial Community and Diversity. Plant Soil 2010, 326, 523. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1371/journal.pone.0085513
https://www.ncbi.nlm.nih.gov/pubmed/24427315
https://doi.org/10.1111/j.1461-0248.2006.00931.x
https://doi.org/10.1073/pnas.94.5.1857
https://doi.org/10.1038/s41598-018-30005-8
https://doi.org/10.1007/s11104-009-0099-6

	Introduction 
	Materials and Methods 
	Site Selection and Description 
	Field Sampling 
	Short-Term Monitoring (STM) 
	Long-Term Monitoring (LTM) 

	Laboratory Analyses 
	Haney Soil Health Test 
	Phospholipid Fatty Acid Test 

	Data Analysis 

	Results 
	Principal Component Analysis 
	Spearman’s Correlation Matrix 
	Multiple Regression Models 

	Discussion 
	Linking Ecological Outcomes with Soil Health Metrics 
	Strengthening the Link Between EOV and Soil Test Metrics—Modeling HSHT and PLFA Parameters 

	Conclusions 
	References

