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ABSTRACT: An accurate description of the scalar potential at finite temperature is crucial for
studying cosmological first-order phase transitions (FOPT) in the early Universe. At finite
temperatures, a precise treatment of thermal resummations is essential, as bosonic fields
encounter significant infrared issues that can compromise standard perturbative approaches.
The Partial Dressing (or the tadpole resummation) method provides a self consistent resum-
mation of higher order corrections, allowing the computation of thermal masses and the
effective potential including the proper Boltzmann suppression factors and without relying
on any high-temperature approximation. We systematically compare the Partial dressing
resummation scheme results with the Parwani and Arnold Espinosa (AE) ones to investigate
the thermal phase transition dynamics in the Two-Higgs-Doublet Model (2HDM). Our
findings reveal that different resummation prescriptions can significantly alter the nature of
the phase transition within the same region of parameter space, confirming the differences
that have already been noticed between the Parwani and AE schemes. Notably, the more
refined resummation prescription, the Partial Dressing scheme, does not support symmetry
non-restoration in 2HDM at high temperatures observed using the AE prescription. Fur-
thermore, we quantify the uncertainties in the stochastic gravitational wave (GW) spectrum
from an FOPT due to variations in resummation methods, illustrating their role in shaping
theoretical predictions for upcoming GW experiments. Finally, we discuss the capability of
the High-Luminosity LHC and proposed GW experiments to probe the FOEWPT-favored
region of the parameter space.
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1 Introduction

The discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC) [1, 2] was
the last step in the observation of all particles expected in the Standard Model (SM). The
test of its properties demonstrated that the SM is a valid low-energy effective theory at the
electroweak (EW) scale. The LHC continues to investigate the properties of this scalar particle
while also conducting searches for physics beyond the Standard Model (BSM). One of the
major goals of the LHC and future proposed colliders [3-5] is to understand the dynamics of
EW symmetry breaking (EWSB). Although EWSB develops through a cross-over transition
in the SM, in many BSM scenarios, it can be a first-order phase transition (FOPT).



An interesting aspect of FOPT is that it produces a spectrum of stochastic gravitational
waves (GW) during the phase transition. Detecting such GW signals may become feasible at
various proposed future detectors, both space- and ground-based, such as LISA [6], ALIA [7],
TALJI [8], the Big Bang Observer (BBO) [9], and Ultimate (U)-DECIGO [10], within the
next few decades. These upcoming GW experiments open up a new window into the early
Universe, shedding light on the electroweak scale physics and the thermal history of the early
Universe [11-15]. This potential for investigation is especially relevant to the phenomenology
of various scenarios with extended Higgs sectors. Such sectors may lead to phenomena
like a first-order electroweak phase transition (FOEWPT), which can enable electroweak
baryogenesis (EWBG) to explain the Universe’s baryon asymmetry [16-28]. Additionally,
it opens possibilities to study an FOPT in hidden (dark) sectors [29-42], vacuum trapping,
electroweak symmetry non-restoration (EWSNR) [27, 43-51], and the formation of topological
defects (e.g., domain walls, cosmic strings) [52-57].

One needs to accurately estimate the finite temperature effects to understand the behavior
of the scalar potential and its predicted stochastic GW spectrum. This is crucial to fully
exploit and recast the available and incoming experimental data to the various BSM scenarios.
However, a major challenge arises due to the breakdown of the perturbative expansion at high
temperatures [43, 58—61]. At finite temperatures, the quadratically divergent contributions
from the non-zero Matsubara modes need to be re-summed to accurately capture thermal
corrections, ensuring consistency in the perturbative expansion and preventing infrared
divergences. The most commonly used methods for implementing these resummations are
the Parwani [62] and Arnold-Espinosa (AE) [63] schemes. Both AE and Parwani schemes
are examples of high temperature Truncated Full Dressing (TFD) methods. In general,
Full Dressing (FD) refers to a strategy for including the thermal corrections in which the
thermal mass obtained from the self-consistent gap equation is directly inserted back into
the effective potential. These methods use the high-temperature approximation, 72 > m?,
and truncate the gap equation to the first order to obtain a simple expression. Parwani’s
method inserts the thermal masses throughout the one-loop Coleman-Weinberg and finite-
temperature potentials. In contrast, the AE scheme resums only the so-called daisy diagram
contributions by including thermal masses in cubic terms that are the leading contributions
to infrared divergences [43, 58, 64]. Both prescriptions effectively mitigate these divergences
by incorporating thermally improved masses. These approaches are relatively straightforward
to implement at the one-loop level and do not demand high computational power. Another
approach that also relies on the high-temperature behavior is dimensional reduction (DR). In
this case, the compactified 4d thermal theory is reduced to a 3d effective field theory [65-68].
This approach leverages the fact that, at high temperature, only the so-called Matsubara
zero modes significantly contribute to the low-energy physics. In contrast, non-zero modes
become massive and can be integrated out from the theory. DR effectively incorporates higher
order corrections beyond leading daisy diagrams but is limited to specific scale hierarchies,
where the high-temperature effects can be effectively separated from the low-temperature
ones. This restriction complicates DR implementation and parameter scans of various BSM
scenarios, since different effective theories must be used depending on the mass hierarchies.
In summary, the AE, Parwani, and DR methods rely on the high-temperature approximation
to consistently include thermal corrections.



There are cases, however, where the high-temperature approximation breaks down,
or a clear scale separation is not available. In these cases, a self-consistent resummation
prescription is required. A notable example occurs for FOEWPTs at the early Universe and
their role in EWBG [16-24, 26, 28]. In such a scenario, the transition from the false vacuum
to the true electroweak vacuum occurs through a bubble nucleation mechanism, which serves
as a source for the out-of-equilibrium processes necessary for successful baryogenesis [16].
To avoid washing out the generated baryon asymmetry in the true vacuum, it is necessary
to sufficiently suppress the sphaleron rate in the broken phase [22]. A commonly used
2 1, where v, is the vev of the field at
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approximate criterion for this suppression is vy, /T,
the nucleation temperature T,,. However, this condition is subject to theoretical uncertainties
in the determination of the sphaleron rate (see refs. [23, 69-72] and references therein) and
should be viewed as an indicative rather than an exact bound. This observation implies that it
is crucially important to properly account the degrees of freedom (dof) that participate in the
phase transition near the nucleation temperature. The breakdown of the high-temperature
approximation suggests that resummation methods like AE and Parwani- which include
effects from dof that should be Boltzmann-suppressed — may not reliably assess the nature
of the phase transition. Moreover, these schemes fail to properly incorporate higher-order
corrections, as neither AE nor Parwani consistently includes non-Daisy diagrams from higher
orders. Resummations are meant to improve the perturbative convergence of the observables,
but an inconsistent inclusion of these corrections might lead to spurious effects [73]. Thus, it
is useful to have an alternative resummation scheme that is self-consistent, incorporates the
thermal effects of various dof, and systematically includes higher-order corrections.

To overcome these issues, one might consider solving the exact gap equations without
relying on the field-independent thermal mass obtained from the truncated high-temperature
prescriptions. Then, adopting the FD perspective, one can resum the relevant contributions
by inserting the full thermal mass back into the effective potential. While in principle this
approach to resummation might include higher-order terms beyond the one-loop expansion,
FD without truncation actually miscounts the two-loop daisy diagrams and leads to unphysical
linear terms [63, 74-77]. A good alternative that is more consistent in higher-order terms is
the Partial Dressing (PD) resummation scheme, which obtains the thermal masses from the
gap equations and inserts them back into the first derivative of the effective potential, which
can then be integrated to obtain the effective potential [78-81]. This approach focuses on
dressing the propagator alone and has been explicitly demonstrated, through calculations up
to four loops, to accurately account for the so-called daisy and superdaisy diagrams [78].

In this work we adopt the PD resummation scheme, since it provides a more robust
and self-consistent approach to treat cosmological phase transition dynamics. It consistently
incorporates effects at any temperature while resolving the problems of the full dressing,
i.e., miscounting diagrams beyond one-loop order. Thus, the PD effective potential can be
consistently evaluated for the interest region of SFOEWPT, i.e., beyond the high temperature
approximation region. Because of this feature, we are motivated to consider the effects of a
PD calculation in models with extended scalar sectors. Until recently, the implementation
of PD with mixing scalars had not been explored in the literature. In ref. [81], a consistent
prescription was presented for the case of two mixing scalar singlets. For the first time, in this
work, we study the PD resummation prescription in a realistic BSM scenario such as 2HDM.



The FOEWPT in 2HDM has been extensively studied in the literature considering
Parwani and AE resummation schemes [48, 49, 82-97]. Recently, some intriguing features
have been highlighted that arise in part of the parameter space of the 2HDM considering the
AE scheme when evaluating the effective potential at finite temperature [48, 49, 51]. In regions
with large quartic couplings, the AE daisy contributions lead to the EW symmetry not being
restored, even at high temperatures. This is a particularly interesting case of EWSNR since
the truncated high-temperature thermal mass is not negative, and symmetry non-restoration
is induced by resummation. Meanwhile, in some of these parameter regions, the one-loop
contributions generate a zero-temperature barrier, enhancing the strength of the FOPT. In
some cases, the presence of the zero-temperature barrier leads to vacuum trapping, where
the Universe becomes stuck in a metastable vacuum rather than transitioning to the true
electroweak symmetry-breaking minimum. While all of these intriguing features were observed
using the AE method, some of them are notably altered when the Parwani resummation
scheme is employed [48, 49, 51, 87]. Specifically, EWSNR behaviour at high temperatures is
present in AE, while it is absent in the Parwani scheme. Additionally, the critical temperature
and the vev at that temperature differ significantly between the two approaches, with the
Parwani method generally predicting a lower critical temperature. The height of the barrier
separating the vacua is also considerably altered in Parwani, affecting the phase transition
dynamics and strengthening the first-order transition in these parameter regions [87].

In this work, we implement the PD resummation scheme in the 2HDM scenario to address
the disagreement in the results obtained by the AE and Parwani resummation methods.
We examine the thermal masses of particles in the plasma at the finite temperature within
the 2HDM using various methods. We estimate these masses through the high-temperature
approximation, truncated gap equations, and full gap equation solutions and compare the
results from these approaches. As mentioned before, we further investigate the behavior of
the effective scalar potential at high temperatures in the context of the EWSNR, considering
various resummation schemes. Our findings reveal that the occurrence of EWSNR is sensitive
to the choice of the resummation scheme, and we explore the underlying reasons for this
dependency. Furthermore, we explore the impact of different thermal resummation schemes
on the prediction of stochastic GW production from an FOEWPT. Finally, we discuss the
experimental probes of FOEWPT-favored regions at the High-Luminosity LHC (HL-LHC)
and various proposed GW experiments.

The paper is organized in the following way. In section 2.3, we review the different
resummation schemes we use in the paper. In particular, we focus on the case of multiple
mixing scalar fields. The 2HDM is discussed in section 3. In section 4, we discuss the
results of the work. The estimation of the thermal masses of the fields in the plasma after
solving full gap equations is discussed in section 4.1. FOEWPT-favored region of parameter
space considering PD, Parwani, and AE resummation schemes is discussed in section 4.2.
The occurrence of EWSNR at high temperatures with different resummation schemes is
further discussed in section 4.3. In section 4.4, the uncertainty caused by choosing different
resummation schemes in predicting GW amplitude from an FOEWPT is discussed. Prospects
of probing the FOEWPT-favored parameter space through HL-LHC and proposed GW
experiments are then discussed in section 4.5. Finally, we conclude in section 5. Various
calculation details of this work are presented in appendix.



2 Effective potential at finite temperature

The following sections review the zero-temperature and finite-temperature radiative correc-
tions, emphasizing resummation techniques and their significance for perturbative effective
potential calculations.

2.1 One-loop potential at zero temperature

We consider a tree-level theory defined by the interacting Lagrangian £, with a potential
Vo(¢), where ¢ collectively represents the scalar dof of the model. The scalar particles
generically have interactions among themselves and with the other fermionic and vectorial dof
of the theory. Then, the one-loop quantum corrections at zero temperature can be obtained
from the well-known Coleman-Weinberg (CW) potential [98]. Using the MS renormalization
scheme and in the Landau gauge the CW potential is

Vew(m2(@)) = —— S (-1 nm2(@)]? [1og [ "D} _, (2.1)
ow (m; = 6in? 2 i|m; gl 2 il .

The species index i = S, F, B corresponds to the scalar (5), fermion (F), and vector (B) dof,
respectively, running in the loops of the effective potential. The constant k; is % for scalars
and the longitudinal modes of the gauge bosons and % for the fermions and the transverse
modes of the gauge bosons. Here, u represents the renormalization scale. To analyze the
phase transition in 2HDM, we set y = 246 GeV. s; and n; denote the spin and dof of the
i-th state. Finally, the field-dependent masses, m?(¢), are obtained by diagonalizing the
tree-level mass matrix, M2. The scalar mass matrix is given from the second derivatives of

the potential with respect to the scalar fields

_ V()
00’

Therefore, the field-dependent masses can be expressed as,

M?j(qﬁ) i = (all scalar fields). (2.2)

mi(¢) = Ui (02 (6) U7, (0) (2.3)

where, U is the unitary matrix that diagonalizes M? and 6 collectively denotes the mixing
angles of the scalar sector.

To keep the same tree-level masses and mixing angles at the one-loop level, we modify the
M S CW potential by adding finite counterterms, Vor to the potential. Then, the counterterms
are fixed by imposing the following on-shell renormalization conditions at zero temperature:

O(Vew + Ver) —0, (2.4)
9% (Pr)=vigy
2
0 (ng.; YCT) _0. (2.5)
$i00] (k) =Vigy

The general form of Vor for the 2HDM, along with various relations for its coefficients
obtained from the derivatives of Vow are shown in appendix B.



2.2 One-loop thermal correction

We include the leading effects of the thermal plasma at equilibrium composed from the dof of
the theory in the compactified imaginary time formalism. In the Landau gauge, the one-loop
effective potential induced at finite temperature is given by [43, 58]

4 m m
wmﬂmnzi%zm@<§@>—zmh<§@ﬂ, 26)
k k=F

where nj are the numbers of dof for particles as discussed earlier. The sum includes all

the particles as described in the previous section. The thermal functions Jp r) for Bosonic
(Fermionic) dof are defined as

Jpr(y) = /0 dk k? log {u:e—\/’““y . (2.7)

At the high temperature (HT) limit, with m?(¢) < T2, the thermal functions can
be expanded as,

a2 T 1 Y
TeW)|gr ~ 35 + 13V~ gyS/z ~ 359" log (aB) +0 (93) : (2.8)
Tt 7P 1 5 Y 3
TeW) e ™ 355 — 579~ 339 108 (aF) +0(v') (2.9)

where a, = 1672 exp(3/2 — 2vg) and ay = 72 exp(3/2 — 2vg), 7k being the Euler-Mascheroni
constant (=~ 0.577). The term —%y?’/ 2 appearing in the high-temperature approximation of
Jp in eq. (2.8) contributes a negative cubic term to the finite-temperature effective potential.
As noted earlier, the presence of this term can generate an energy barrier between two
degenerate vacua, thus facilitating an SFOPT. Such a cubic term appears only for bosonic
dof as it comes from the (Matsubara) zero mode propagator, which exists only for them.
This term is associated with divergences in the IR limit. Conversely, in the low-temperature
limit, the thermal functions are given by,

m\ /2 3/4 /Y 15 12
Tnr@)r == (5) e (14 22 (2.10)
This limit reveals that for mi(¢) > T? | i.e., for large y, these thermal functions are
exponentially (Boltzmann-) suppressed. Therefore, any massive new physics excitations that
can be integrated out from the theory should have only a limited impact at finite temperatures.
As we discuss in the next section, the consistent inclusion of the Boltzmann suppression effects
should be carefully considered when improving the perturbative convergence by resumming
higher-order diagrams.

2.3 Resummation methods

As discussed in the Introduction, the perturbative expansion at finite temperatures breaks
down as the self-energy receives large corrections from higher-order loop diagrams. In the
high-temperature limit, the self-energy contributions of the daisy-type diagrams require
AT?/m? < 1 for the perturbative expansion to make sense. However, assuming an order



AT2¢? correction to the mass, the tree-level and thermal masses should balance each other
at the critical temperature (7,) and one should have T ~ m/v/A. This scaling of T, means
that the one-loop effective potential is not enough to describe the transition as the expansion
parameter AT2/m? is not small. The idea of resummation techniques is to define a modified
thermal mass that cuts off the problematic divergences and regulates the infrared behavior
of the theory. Effectively, this is done by dressing the theory with the thermal mass in
different schemes.

The starting point for all schemes is to obtain the thermal mass through the gap equation.
The gap equation can be defined from the exact one-particle-irreducible (1PI) resummed

propagator,
1

w? +[p|* = m§(¢) — I(w, p; T)’

where II is the 1PI self-energies and m3 is the background-field dependent tree-level mass.

G(w,p) = (2.11)

Requiring the thermal mass to be defined by the pole of the propagator at zero spatial

momentum, G~1(w, 0)| = 0, leads to the gap equation,

w—Mr(¢,T)
M (¢, T) = mg 1, (¢) + e (M?(¢,T),0;T) (2.12)

where the index k runs over the propagating dof. Evaluating the gap equation requires
solving the non-linear eq. (2.12). For that, the first step is to obtain the mass from the
effective potential,

82Vn,eff
0¢i9;

where V), o is the effective potential at n-th order in the loop expansion, and U are the

M (w,0;T) = Uii(0r) Uji(0r), (2.13)

rotation matrices that diagonalize the second derivative of the potential. Notice that we
assume a general scalar potential that allows for mixing between the scalar fields and the
mixing angle 6 is temperature dependent.

In one-loop order, we can write the gap equation as

9%V, 0V, 9%V, 0V,
0, OVer  OVew | T U]Tk
00;0¢;  0¢ip;  O¢ip; — Opid;

One method for solving the gap equation is to iterate the calculation of the right-hand side

Mi (¢, T) = Uyi(0r) (07). (2.14)

of eq. (2.12). The first iteration corresponds to inserting the tree-level field dependent mass
m%(@ into the one-loop effective potential. Then, we obtain a thermal mass matrix that can
be diagonalized again, leading to new temperature-dependent mass eigenvalues and mixing
angles. Once these are at hand, one needs to insert again into the right-hand side of eq. (2.12)
and iterate the process until the thermal mass converges. The convergence of this procedure
is a notorious challenge as the non-linearity of the gap equation can lead to diverging and
oscillatory behavior (see [79] for a detailed discussion).

Instead of solving the full gap equation, which can be numerically demanding, one can
truncate the expansion at the first iteration. Then, it is possible to obtain a closed following
form for the thermal mass using the high-temperature approximation of the Jp r functions:

Mz'2j(¢v T) ~ m%ﬁij(d)) + 101 (md(9), T) (Truncated gap eq.) . (2.15)



At the high-temperature limit, if the thermal potential is evaluated at the leading order,
i.e., considering eq. (2.8) and eq. (2.9), the squared thermal mass takes the well-known
field-independent form of

H?j ~ CijT2 (High Temperature), (2.16)

where the couplings, c;;, are determined by various model parameters. The relation, defined
in eq. (2.16), is known as the Truncated thermal mass as high-temperature approximation.
As we discuss next, it is fairly simple to develop resummation schemes that can be evaluated
analytically with the high-temperature approximation.

2.3.1 Arnold-Espinosa method

Among the various schemes for the diagrammatic approach of resumming higher-order loop
thermal contributions and solving the IR problem, one notable method is the AE approach.
This method involves modifying the cubic term of the potential, which originates from
the Matsubara zero modes of the bosonic dof in the high-temperature approximation, by
incorporating the truncated thermal mass evaluated at this approximation. This is necessary
because only the Matsubara zero mode is associated with the infrared divergence, and
this scheme specifically resums these modes to address the IR issue while leaving the hard
non-zero modes untouched.

The one-loop finite temperature correction due to the bosonic dof to the potential at the
high-temperature limit can be expressed using equations from eq. (2.6) to eq. (2.8),

HT _ Tr? T 2 T 2 3/2
Vi (¢) =— 90 Np + 24 EB mp(¢) — 127 2 (mp(4))
1 2 (o
 64m2 EB mp(9) log <maBE(; )> : (2.17)

where Np denotes the total number of bosonic dof. The logarithmic dependence in VA (¢)
cancels out when combined with the Coleman-Weinberg correction, defined in eq. (2.1). The

finite temperature contributions proportional to m3, i.e., nonanalytic in m?

, originate only
from the Matsubara zero modes. The IR problem associated with these terms is cured by
performing the resummation via adding the daisy“ring improvement” term, i.e. the daisy
potential, given by,
VAE (6 — T 2 (6. T)32 — (m2(4))3/? 2.18
Daisy(gb, ) - 127 (mT,i(¢7 )) (mz (¢)) ) ( : )
i
where m%’i(qﬁ, T) = m2(¢) + ¢;T?, is the i-th mass-squared eigenvalue of the tree-level mass
matrix including the thermal corrections at the high-temperature approximation, as defined
in eq. (2.16). Thus, the full AE effective potential is

V" (6, T) = Vo(o) + Vew (mi(9)) + Ver (o) + Vi(m?(8),T) + Vi (6, 7). (2.19)

Thus, it is essential to understand that the AE resummation scheme is fundamentally based
on the high-temperature approximation. Therefore, this resummation method becomes
unreliable as it does not take into account the proper Boltzmann-suppression of heavy dof.



2.3.2 Parwani method

Another well-known diagrammatic approach to resummation prescription is the Parwani
method [62], where all modes are resummed. In this scheme, m?(¢) is replaced by the
truncated thermal mass at high-temperature limit mQTvi(ng, T') everywhere in the Coleman-
Weinberg correction, defined in eq. (2.1), and the one-loop thermal correction potential,

defined in eq. (2.6). Thus,
Veir" (m75, T) = Vo(9) + Vew (mi;(6,T)) + Ver(9) + Vr(mi,(6,T)).  (2:20)

Similar to the AE method, the Parwani method is also based on the high-temperature
approximation and focuses solely on resumming the leading contributions in this limit. In the
case of Parwani, decoupling the effects of heavy dof is a bit more reliable than AE since the
thermal potential V7 in eq. (2.20) includes the full Jp(y) function. Therefore, even though the
truncated thermal masses inserted in V7 are valid only in the high-temperature approximation,
a proper Boltzmann suppression is obtained due to the effect of Jp(y). However, Parwani is
still not a fully consistent method at all temperatures since the thermal mass insertion into
Vow leads to a contribution to the effective potential that is only valid at high-temperatures.
This inconsistency can also lead to heavy modes contributing to the phase transition when
they should be effectively Boltzmann-suppressed. Furthermore, since this scheme resums all
the Matsubara modes inconsistently, it overcounts higher order corrections which may induce
some spurious effects. For a detailed discussion on this, see refs. [62, 64, 81].

2.3.3 Full- and Partial-Dressing methods

The approaches that rely on substituting the field independent thermal mass m? — m%z
are called Truncated Full Dressing resumation. Both previous methods of resumming hard
thermal loops rely on truncating the thermal mass in the high-temperature approximation to
obtain the simple expression, defined in eq. (2.16). Gap resummation provides an alternative
to diagrammatic methods for resummation, which can become complex at higher loop orders.
Instead of analytically evaluating these diagrams, gap resummation involves calculating the
effective potential Vi ¢ and solving the “gap equation” for the thermal mass. This equation
captures the leading contributions from numerous higher-order diagrams, although it does not
account for certain sub-leading contributions, such as parts of the two-loop sunset diagram.
One can define the gap equation for thermal mass as,

0*Ver(M?*(¢,T))

Mg (¢ T) = Uki(br)—5 2 S Ul (07), (2.21)
where the effective potential is
Ver(M?(,T)) = Vo(¢) + Vor(¢) + Vew (M?(¢,T)) + Vp(M?(¢,T),T) . (2.22)

Note that the thermal mass appears on both the left- and right-hand sides of this equation,
requiring a numerical approach for its solution. This procedure can be truncated at a given
order and the leading order, the truncated squared thermal mass leads to the eigenvalues of
eq. (2.2). As previously mentioned, in the high-temperature limit, this leads to eq. (2.16).



It is crucial to emphasize that truncating the expansion and employing the high-
temperature approximation is not universally applicable. In scenarios involving an SFOPT,
finite field excursions can become comparable to the temperature itself, such that ¢ ~ T,
Under these circumstances, the field-dependent masses associated with the field ¢, may
no longer be small at the tree level in comparison to the thermal effects, rendering the
high-temperature approximation invalid. As the tree-level field-dependent masses increase
significantly, they should decouple smoothly from the thermal plasma. Therefore, assessing
the field-dependent thermal mass beyond the leading order in temperature is essential. We
will explore this issue in detail in section 2.3.

In the FD resummation prescription, the field-dependent thermal masses MiQ, determined
by solving the gap equations, are directly incorporated into the effective potential. This
results in the modified effective potential given by %IEED = Ve (M 2(¢, T)) where M2(¢,T)
is the solution of the gap equation (2.21). This becomes identical to the one-loop effective
potential in the Parwani scheme, nllifar, as given in eq. (2.20) when the truncated thermal
mass at the high-temperature approximation are considered. These two schemes differ in
general, as the FD schemes use the thermal mass from the full solutions of the gap equation,
which includes various higher-order diagrams.

While the FD prescription avoids the need to analytically evaluate leading-order diagrams,
it also encounters several challenges. Starting at two-loop order, certain higher-order diagrams,
such as the sunset diagram, are not automatically incorporated and must be added manually.
More critically, the FD prescription has been shown to inaccurately account for daisy and
superdaisy diagrams beginning at two loops. An alternative method that effectively resums
the dominant contributions at higher orders is the PD prescription, first introduced in [78] as
tadpole resummation. Instead of directly substituting m? — M? in the effective potential,
the PD prescription applies the substitution to the first derivative of the effective potential,
0y Verr- Then, the resummed effective potential is obtained via the integration,

VED /d¢ <3Veff(m?(¢),T)>
99 3 (@) M2 (p,T)

, (2.23)

where, M?(¢, T') denotes the thermal mass of the i-th dof obtained from the full solution of the
gap equation (2.20). This scheme involves dressing only the propagator and has been explicitly
shown through calculations up to four loops to correctly account for daisy and superdaisy
diagrams [78]. However, this scheme also misses a class of subleading diagrams starting at
the two-loop level, as discussed at the end of section 4.2 in the context of the present work.

3 The two Higgs doublet model

In this section, we review the Higgs sector of the CP-conserving 2HDM scenario. The
tree-level potential is given by,

Vo = miy [@1] + m3y | — mi, (9]@5 + hie.) + AL (@}@1)2 + % (@5@2)2

2
+ g (0]1) (@10,) + Ay (@] 0,) (9] + % [(@1%)2 + h.c} : (3.1)
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where all the parameters are real due to hermiticity and C' P-conservation. The term associated
with m?2, softly breaks the discrete Zo-symmetry in equation (3.1), ®; — @1, g — —Ps.
The ®; and ®; doublet-fields can be decomposed around the electroweak vacuum as,

o) = ( ot ) @y = < 02 ) (3.2)
(v1 + b1 +ia1) /V2) (v + ho +iag) /V2)’ .

where v; and vy are the zero-temperature real vevs of the C' P-even neutral parts hy and hs,
respectively, of the two doublets. This also defines the electroweak scale, which is given by
v = 4/v? + v3 ~ 246 GeV. The minimization conditions along the h; and hs field directions
can be used to trade m?; and m3, for v; and vy. These conditions are expressed as:

my; — m12 + A07 + Asasv3 =0, (3.3)
m3, — mlg + A3 + Agasvi =0, (3.4)

where, X345 = A3 + A4 + A5. Since all parameters are real, there are no bilinear mixing
terms of the form h;a;, ensuring that the neutral mass eigenstates are C'P-eigenstates. After
electroweak spontaneous symmetry breaking (SSB), the particle spectrum consists of two
CP-even neutral scalars (h and H), one CP-odd neutral pseudoscalar (A), a pair of charged
scalars (H*), and three massless Goldstone bosons: one neutral G° and two charged (G%).
These Goldstone bosons are subsequently absorbed as the longitudinal polarization modes
of the Z and W bosons, respectively.

Orthogonal rotational matrices can be used to estimate the relations of the masses and
gauge eigenstates. The charged and C'P-odd sectors can be diagonalized using the same
orthogonal matrix with the rotation angle 3, where tan f = va/v1. The rotational angle for the
C' P-even sector is a. These rotational matrices, mass relations, and eigenstates are discussed
in detail in appendix A. These mixing angles o and S control the coupling strength of the
scalar particles to fermions and gauge bosons [99]. Therefore, instead of the eight parameters
in the Higgs potential m?2,, m2,, m%,, A1 ...\s, it is convenient to phenomenologically study
the model in terms of the physical masses of the scalar particles and the mixing angles,

tan 3, cos(B — ), miy, v, My, My, MA, Myt . (3.5)

The conversion relations are given in equations (3.3) and (A.10). Since the discovered Higgs
boson at the LHC around mj = 125 GeV mostly follows the properties of the SM Higgs
boson, we remain in the so-called “alignment limit” cos(f — a) = 0 to comply with various
experimental constraints. In this limit, at the leading order, the couplings of h to the SM
particles match the predictions of the SM precisely. Deviations from the SM values in the
couplings of h start to arise when cos(f — ) # 0. As discussed earlier, the Zy discrete
symmetry imposed on the potential in equation (3.1) prevents Higgs-mediated tree-level
flavor-changing neutral currents (FCNCs). Among the four independent implementations of
this symmetry in the fermion (Yukawa) sector, we focus on the specific case: the Type-II
scenario, where ®; couples to down-type SM fermions while ®o interacts with up-type SM
fermions [100]. Various theoretical and experimental constraints relevant to the present work
in the context of the 2HDM are discussed below.

— 11 —



3.1 Theoretical constraints

The tree-level stability conditions for the 2HDM potential, as defined in equation (3.1), ensure
that the potential remains bounded from below. These conditions are expressed as follows:

A, A2 >0, A3+ N — |>\5| > —v A2, A3 > —v A, . (3.6)

Additionally, constraints on the quartic couplings \;, or specific combinations of them, can be
derived from the requirements of unitarity and perturbativity of the S-matrix. These bounds
are discussed in detail in refs. [73, 101-103]. Regarding perturbativity bounds, refs. [48, 49]
performs a full renormalization group (RG) analysis, tracking the running of the quartic
couplings under one- and two-loop RGEs. They verify that all couplings remain well within
the perturbative regime (\;(u) < 4m) across the relevant energy range. In our work, we stay
within the same parameter space and preserve perturbativity under RG evolution. Overall,
we focus on the region of parameter space where all these constraints are satisfied.

3.2 The experimental constraints

In this section, we review the latest experimental constraints on the 2HDM parameter space,
focusing on those arising from the Higgs sector. These considerations guide us in selecting
a viable region of parameter space for this study.

Electroweak precision data (EWPD), particularly the 7" parameter, impose restrictions
on the mass differences between the charged Higgs boson and either the pseudoscalar or the
heavy CP-even Higgs boson. To preserve custodial symmetry in the Higgs sector, one of
the neutral states should approximately match the charged Higgs boson in mass [104, 105].
In this work, we assume mass degeneracy between the heavy charged Higgs boson and the
pseudoscalar, i.e., my+ = my,' to satisfy the EWPD constraints.

In the flavor sector, measurements of BR(B — Xv) [106] exclude charged Higgs masses
below approximately mg+ < 580 GeV [107] for the type-II 2HDM scenario. To comply with
these constraints, we restrict our analysis to the parameter space where mg+ = 600 GeV for
the type-1I scenario. Additionally, direct searches for heavy Higgs bosons at the LHC have
already excluded lower mass regions. For smaller values of tan 5, doublet-like heavy Higgs
bosons can still remain relatively light while satisfying current LHC constraints [108]. The
exclusion limits are typically presented in the my+ — tan 8 [109] and m4 — tan 5 [110-112]
planes. In this work, we consider tan 3 = 3 and mpy > 350GeV? to ensure compliance
with these constraints.

The observed Higgs boson around 125 GeV also imposes significant restrictions on the
2HDM parameter space through measurements of its signal rates. These measurements
strongly favor the alignment limit, where the couplings of the light Higgs are SM-like. To
align with these observations, we adopt the limit cos(5 — «) = 0, ensuring that the tree-level
couplings of the light Higgs boson, h, resemble those of the SM. However, even in the
alignment limit, the loop induced Higgs boson decay processes, such as h — 7y can alter

!This condition also implies As = 4.
2Note that, one of the co-positivity condition Az + /A1 X2 > 0, defined in equation (3.6), implies m%; <
2 2
my +mp.
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significantly due to the presence of the charged Higgs in the model. The signal strength
parameter of h’ — ~v channel is defined as,

INP[h — 7]
H91 = TSM [y 5 ] (3.7)

NP (SM) [h — 7] represents the decay width of the Higgs boson in the presence

where
(absence) of new physics contributions. Since we assume cos(5 — «) = 0, the production
cross-section of h remains unchanged even when new physics effects are included. For a
more detailed discussion of I'(h — ~+) within the 2HDM scenario, we refer the reader to
refs. [99, 113, 114]. The most recent experimental constraints on ji,, from ATLAS and
CMS are reported as 1.04f8:(1)8 [115] and 1.12 £ 0.09 [116], respectively. By adhering to these
constraints, the chosen parameter space remains consistent with current experimental data,

allowing us to explore the phenomenology of the 2HDM in a valid and meaningful way.

4 Results on the electroweak phase transition in the 2HDM

With the setup described above, we can compute the effective potential in different resumma-
tion schemes. Our focus is on PD, which has not been previously implemented in the 2HDM.
As we will show, a proper implementation of PD resolves many of the inconsistencies found
in the AE and Parwani methods. The main challenge in PD arises from the extended scalar
sector, where mixing terms leads to a non-linear system of coupled gap equations. To solve
these equations, we keep only the CP-even Higgs directions as background fields, taking care
to account for the relevant effects of other dof in the process. We assume that the CP odd
and charged fields do not acquire a finite temperature vev, ensuring that no new minima
appear in other directions. Then, we can express the gap equation entirely in terms of masses,
their derivatives, and mixing angles. This form allows for numerically iterating the equation
until convergence. We obtain thermal masses that remain valid at any temperature. With
these thermal masses, we compute the tadpole potential and scan the relevant parameter
space. In the following, we describe this procedure in detail, comparing different resummation
schemes regarding their impact on the phase transition and the predicted GW spectra.

4.1 Thermal mass from the gap equation

From the previous section, the gap equation is given by

0*Vy n PVer  0*Vew 4 0*Vr
00i0¢;  Odid;  Odid; — 0¢ig;
The strategy for using the iteration procedure is to fully write the right-hand side of the gap

Mi(¢,T) = Uyi(6r) l ] Ul (0r). (4.1)

equation as a function of masses, m%(qb), and mixing angles. To do that, we need to express
the second derivatives of the CW and the thermal potential that enter the self-energy I as
functions of the masses and their derivatives. The CW second derivative is given by

2 1 d2m?2 2
0 VCW o Z(_l)gsknk m2 my 1 _26k+210gm72k
M
k

0pa0¢y  6Ar> ¥ dpadery,
dmz dm% mi
+ —= 3 —2¢c, +2log—* ||, 4.2
dba oy T 4
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and the second derivative of the thermal potential is

O*Vp Pmi ., (m} L dm2dm? , (m?
0pa 0y QWQZ LW;JB’F T2 +ﬁT%T%JB,F T2 )| (4.3)

where J r(y?) and J B.F (y*) are the first and second derivatives of the Jp r(y*) functions,
defined in eq. (2.7), that are straightforward to evaluate numerically. Therefore, the gap
equation is a function of the following variables

hd m%,k(hth) ; k=h H Gy A G HT (4.4)
dmg + o+

° d¢ (1, ho) Pa = h1, h, a1, a2, 97, $3 (4.5)
d2m0k Lo

° d¢ad¢ ( h2)7 ¢a,b:h17h27a1,a2,¢17¢2 (46)

o Op(h1,he,T). (4.7)

Notice that we need to calculate the field derivatives of mak(hl,hg) over all fields dof,
including the CP even and charged ones. This leads to difficulty since we only have the CP
even field dependence on mg . To overcome this issue, we can use the Feynmann-Hellmann
theorem, often used in quantum mechanics, to allow us to compute derivatives of mass
eigenvalues from information coming from the mass matrices. Next, we describe how to
obtain each variable of the gap equation.

In the 2HDM, the field-dependent mass matrix is an 8 x 8 matrix which factorizes into
block diagonal form if we keep only the h; and hs field directions,

2 2
MHu MH12 0 0 0
2 2
MH12 MH22

2 2
0 MAll MA12

each entry in the matrix is a function of only h; and ho with the expressions given in
appendix C. The field-dependent mass eigenvalues are given by

mi (k1 h2) = U™ (00) ¥ (6)] (4.9)

. U(90)}

1,h2 Kk’

: 2 2 2 2 2 2 2 2
= dlag(mo,ha mO,H? mO,Gg ) mO,A? mO’GJr ) m07H+ ) mO,G— ) mO,H‘)kk’ (410)
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while the mixing angles of each block, 6y = {6o,1, 00,4, 0y g+ }, and mixing matrix are

1 2MP,
6o,; = - arcsin ’ ) (4.11)
2 \/(Mi,ll — M;22)? — 4M312
U(G) = diag(ngg(GH), U2><2(9A), UQXQ(GHJE)), (4.12)
—sin 0; cos0;
0;) = ’ ’ = H,A HT. 4.1
Uax2(6:) ( cos 0; sin9i> ¢ T (4.13)

Now, to get the derivatives of the mass eigenvalues (4.10), the first step is to find the
derivatives of the mass matrix,

d3(¢)
dia

*115(9)

B ho d¢ad¢b

) ¢a7b = h1>h2>a17a27¢i‘:7¢§:a (414)
hi,ho

where the field dependence of the CP odd and charged fields must be set to zero only after
calculating the derivative. The resulting matrices are block diagonal as eq. (4.8). The
Feynman-Hellmann theorem, described in appendix F, allows us to calculate the derivative
of the mass eigenvalues from the derivatives of the mass matrices (4.14) and the mixing
angles (4.11). The expressions for the first and second derivatives are

2 2
i _ (1) Mol ye)) (4.15)
h1,ho
’ kk

doq dgq
*mi (. d?13 Cy,. A3
<U 0) - h17h2-U(0)>kk+<[U O) Toelnny VO] o N

d¢ad¢b B d¢ad¢b
+ ( .- -U(G)] -Aa> % (4.16)

2
Mg
and the auxiliary matrices A are given by

U=(o)

~doy

0, ifp=gq,
(Ae)pg = 0, 2 if p#q but mzzj = mg, (4.17)
-1 dM
.- [U ©) e, . -U(e)]pq  else.

With these ingredients, we can calculate the matrix associated with the self-energy and
diagonalize it to find the temperature-dependent mixing angles 67 = {011, 014, 07 g+ }.
The iterative gap equation can be written as a function of x; = M?(hq, ho, T )]

iteration=1"
x1 = m2(h1, ha), (4.18)
zit1 = o + U N0r) (i, i 0, ziap) U(OT), (4.19)

X 2. .
where z; = 2 q(2;,07) = 3£; and ; g = Zjap(xi, 07) = dgagén, and II; is the self-energy

contribution coming from the second derivatives of Vow and Vor. We can insert the found
values of {2;, ; 4, Ti qp, 07} in the right-hand side of eq. (4.1) to find the first iteration of the
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Figure 1. Left: convergence of the thermal mass obtained from the gap equation as a function of the
number of iterations. The thermal mass at each iteration is normalized to its final converged value.
The lines represent only the convergent cases from a random sample of hi, ho, and T values ranging
from 0 to 300 GeV. Right: convergent thermal mass points in the hi-hs plane. Some points along the
Higgs direction fail to converge.

thermal mass x;41. With the resulting thermal mass and mixing angles, we can insert it
again at the right-hand side of eq. (4.1) to find the second iteration value and continue to
higher iterations. Notice that the replacement should also happen in eq. (4.15) and eq. (4.16)
to obtain the higher iterations of the mass derivatives.

The numerical solution of the gap equation is challenging due to its non-linear structure,
which often leads to instabilities. Properly implementing on-shell renormalization conditions
is crucial for obtaining well-behaved solutions. The iterative process can yield spurious or
divergent results without this careful treatment. A further complication arises from the
Goldstone catastrophe. Since our calculation requires the first and second derivatives of the
Coleman-Weinberg potential, the presence of massless Goldstone bosons near the minimum
induces divergent behavior. To mitigate this issue, we introduce a small infrared cutoff of
1 GeV for the Goldstone masses, ensuring numerical stability, also discussed in appendix B.
However, this infrared regulator must be carefully monitored as small Goldstone masses can
lead to ill-behaved thermal corrections in later iterations. To control convergence, we set a
maximum number of iterations and a precision cutoff for the iterative procedure, using a
moving average over recent iterations to assess stability. We terminate the iteration once
the precision reaches 1% for the convergent points. We discard the point if the gap equation
does not converge within 40 iterations. The distribution of convergent solutions is shown
in the left plot of figure 1.

To compute the thermal masses, we specify the values of (hy, ha,T) along with the
input parameters of the 2HDM. We generate multiple points in the (h1, h2) plane for each
temperature, focusing on a denser grid around the potential minima. Along the light Higgs
direction, where non-trivial extrema appear, the gap equation struggles to find solutions,
leading to a failure rate of 5-10%. This highlights the need for a carefully chosen field
resolution to determine thermal masses and effective potential accurately. The right panel of
figure 1 illustrates the typical behavior of the points in the convergent gap equation. With the
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Figure 2. Thermal masses for each scalar dof obtained from the full gap equation after the iteration
procedure. The dashed lines represent the high-temperature approximation for comparison.

methodology described above, we compute the thermal masses of all scalar dof in the 2HDM.
The solutions to the full gap equation exhibit notable features, the most important being the
self-consistent inclusion of Boltzmann suppression effects. Unlike standard high-temperature
approximations, our approach fully accounts for the thermal dependence of the distribution
functions, ensuring accuracy at all temperatures.

To illustrate the differences in computing thermal masses for various dof, we compare
results obtained using the truncated high-temperature approximation with those derived
from solving the full gap equations without relying on this approximation. Figures 2 and 3
present these comparisons. In figure 2, we show the thermal masses of various dof for the
benchmark point (BP) BP1, presented in table 1, as functions of temperature for field
values h; = v1 and hy = vg, where (v1,v9) = (77, 231) GeV. It is evident that the thermal
masses derived from the full gap equations deviate significantly from those obtained via the
high-temperature approximation. In particular, heavy dof begins influencing the thermal
masses only at sufficiently high temperatures, leading to an overall suppression compared to
the naive high-temperature result. Nevertheless, the expected ¢T? scaling behavior remains
valid at high temperatures, albeit with a modified coefficient ‘¢’ Furthermore, the full gap
equations introduce a non-trivial field dependence in the thermal masses, which is absent
in conventional high-temperature treatments. To highlight this effect, figure 3 shows the
variation of thermal masses for different dof of the 2HDM along the SM-like Higgs boson
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Figure 3. Thermal mass of the scalar dof as a function of the light Higgs field direction h, with all
other scalar field directions set to zero. The three panels correspond to increasing temperatures. The
solid lines are the thermal masses obtained by iterating the gap equation, while the dashed line is the
truncated thermal mass in the high-temperature approximation. At T' = 0, the black dots indicate
the physical masses at v = 246 GeV for this benchmark. The wiggles in the plot are artifacts from
numerical resolution, not real physical features.
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field direction, h, with all other scalar field directions set to zero, at three fixed temperatures
(T =0 (left), 70 GeV (middle) and 140 GeV (right)). For better visualization, the thermal
masses squared are normalized to their zero-temperature values at the electroweak minimum.
The solid lines represent results from the full gap equations, while the dashed lines correspond
to the truncated high-temperature approximation. Significant deviations are observed across
various field values, even at zero temperature. This arises because the full gap equations
incorporate corrections from the Coleman-Weinberg potential as well as higher-order effects
through resummation, whereas the truncated high-temperature approximation no longer
remains valid in this regime. Importantly, we find that both methods yield the same thermal
masses at zero temperature at the electroweak minimum, an outcome of properly incorporating
counterterms in the potential, as discussed in appendix B. Moreover, at finite temperatures
and certain field regions, the full gap equations exhibit more pronounced deviations, which are
particularly relevant for the study of FOEWPT. These deviations become more significant
at large field values and high temperatures. Thus, for a precise description of the finite-
temperature potential, it is crucial to accurately determine thermal masses by solving the full
gap equations, as done in this work. These differences also manifest in the shape and behavior
of the effective potential in the PD resummation scheme, in contrast to other resummation
prescriptions, as we discuss in the next section.

4.2 The electroweak phase transition using Partial Dressing

As discussed, full and PD are the main methods to include higher-order effects and go beyond
the high-temperature approximations. In full dressing, one replaces the field-dependent mass
m?2(hy, hy) with the full thermal mass M?(hy, ha, T) everywhere in the potential V' (¢). This
change dresses both propagators and vertices. As a result, some diagrams, such as parts of
the daisy and super daisy series, are counted twice. PD avoids this issue by dressing only
the propagators. In practice, one first computes the derivative of the effective potential with
respect to the field (the tadpole) and dress the field-dependent masses:

o, ovi

ohy ’

(4.20)
) Oho
m2—M2(h1,h2,T) m2—M?(h1,h2,T)

After that, one integrates the dressed derivative with respect to ¢ to recover the effective
potential. This method resums only the self-energy corrections while leaving the vertices
undressed. This prevents the double counting that would occur if both propagators and
vertices were dressed.

For the two-Higgs-doublet model (2HDM), the first derivative of the potential is taken
along several field directions. Since we focus on the CP-even behavior, we only consider
the derivatives with respect to h1 and he. First, the gradient of the one-loop potential is
computed, and then the field-dependent masses and mixing angles are replaced by the thermal
mass and thermal mixing angles. Following [81], the potential is obtained by integrating the
gradient of the resummed tadpole term along a path C in field space:

Voo :/ds-’- V| (4.21)
C

m?—)Mf(hl,hg,T) '
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A simple choice for the path is a straight-line, parametrized by §(t) = (h1t, hot) with ¢ € [0, 1].
The potential then becomes:

Vep(hi,hy) = [ at {nig;t

oV;
+ hy—
Oha
(h*{t,h;t)

(4.22)

(hit,hit)

Note that one must replace not only the thermal mass M;(hq, ho, T') but also its first derivatives
obtained from the gap equation and the thermal mixing angles.

The parameter space allowed in the (mg,m4) plane is scanned to analyze the phase
transition behavior across this region. Since solving the gap equation in the PD scheme is
numerically demanding, we restricted the scan to 130 (mg,m4) points within the range
mpy € {350,900} GeV and my4 € {600,1000} GeV. We limited the scanned parameter space to
mass relations that satisfy the tree-level positivity conditions of the potential, as it is observed
that the resummation does not alter the metastability or instability of the electroweak
vacuum in these regions. For each (mg, m4) point, we simulated 30 temperature points
and interpolated the results to determine the critical temperatures with high precision.
Additionally, to achieve a good resolution of the minimum, we performed a scan over 270
points in the (hi, he) plane. To further refine the resolution, we use a denser grid inside an
ellipse that contains the minima, as shown in the right panel of the figure 1. The analysis is
implemented in Mathematica (v13) [117] script mode to parallelize the calculation.

Figure 4 presents the classification of the phase transition behavior across the scanned
region, considering the PD resummation prescription in the evolution of the effective potential.
Regions where the EW minimum is not the global minimum at zero temperature or where
perturbativity and bounded-from-below conditions are violated are highlighted using different
colors. Black indicates metastable or unstable EW minima, gray top points above the
dashed line represent regions that A3 > 47 violate perturbativity, and gray bottom points
below the dashed line indicate A3 < —+/A1)\g, signaling a breakdown of the condition of
bounded-from-below for the potential. Blue indicates the second-order phase transition
region. The strength of the FOEWPT, evaluated at the critical temperature level (v./T¢), is
shown using a color palette. Across the entire scanned region, we find that EW symmetry
is restored at high temperatures, with no indication of symmetry non-restoration under
the PD resummation scheme. To classify the FOPT points by their strength, it is more
appropriate to calculate the nucleation temperature T,,, defined as the temperature at which
the bubble nucleation rate becomes comparable to the Hubble scale. In addition, to identify
the region where the system remains trapped at the origin, known as the vacuum-trapped
scenario, it is important to estimate the nucleation rate. To compute T;,, we reduce the two-
dimensional field dependence of the potential to a single dependence along the physical Higgs
direction. This approximation is well justified since extrema occurs only in this direction,
and the potential increases monotonically along the other field direction. The nucleation
temperature is then determined using the condition defined in eq. (E.1) with the help of the
publicly available toolbox CosmoTransitions [118] that provides a reliable estimate for T,
ensuring that bubble nucleation is efficient enough to complete the phase transition within
the timescale set by cosmic expansion.
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Figure 4. Phase transition behavior in the my — m4 plane under the PD resummation scheme. The
blue region indicates a second-order phase transition. The transition becomes first order in the yellow
to red region with the strength v./T.. The black region is excluded as the electroweak minima is
metastable/unstable with the global minima at the origin. We remove the points above the dashed
line of A3 > 47 where perturbativity of the theory breaks down and below A3 < —/A1 A2 where the
potential no longer remains bounded from below. The parameter scan covers 130 points in (mg,ma),
30 values of T for each (mg,m4), 270 points in (hq, he) for each (T, mpy,m4), and Niter, the number
of iterations of the gap equation, varying between 12 and 40.

In figure 5, the phase transition behaviors are compared at the nucleation temperature
level, as derived from the PD (top), AE (bottom-left), and Parwani (bottom-right) resumma-
tion schemes. We validate our results for the AE and Parwani schemes, obtained through
a Mathematica-based analysis, by comparing them with those from Cosmotransitions. In
these plots, the strength of the phase transition at the nucleation level, i.e., &, = v, /T, is
presented via color palette. In the region where A3, A4, A5 are relatively large, a barrier exists
between the origin and the EW minimum at the zero temperature. This feature appears
already at the one-loop effective action at finite temperature and enhances the strength of
the phase transition. However, most parameter points with a zero-temperature barrier are
excluded, as they lead to vacuum trapping — the Universe gets stuck at the origin because
the tunneling rate is too low to trigger bubble nucleation effectively. Purple points indicate
this vacuum-trapped region. Meanwhile, the AE predicts EWSNR even at high temperatures
for certain large my,ma values, shown by the green points in the bottom-left plot, due
to an unsuppressed cubic contribution in its prescription. Interestingly, PD and Parwani
do not support this conclusion. In section 4.3, we examine the results for the EWSNR at
high temperatures of each resummation method in more detail and discuss the fate of the
transition in this region of parameter space.
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Figure 5. The strength of the FOEWPT, measured by v,,/T},, in the mgyg — my4 plane of the 2HDM.
In the top panel, we show the results using the PD resummation scheme. The bottom panels present
results for the AE (left) and Parwani (right) schemes. In the AE scheme, EWSNR appears as an
effect of the resummation procedure rather than a negative thermal mass. Regions labeled “Vacuum
trapped” indicate parameter space where the system does not tunnel to the EW minima.

The strength of the phase transition varies significantly between different resummation
methods. This is especially relevant for the AE approach, which predicts a much weaker
phase transition than the other methods. In contrast, PD and Parwani produce similar
qualitative features, although their quantitative predictions differ. We explore these differences
in more detail in section 4.5, particularly in the context of predicting the GW signal from
an FOEWPT. We also observe a significantly stronger FOEWPT (that is, larger &,) in
the Parwani prescription compared to the PD scheme. This can be attributed to the fact
that in the Parwani prescription, the thermal masses of various dof are determined using a
high-temperature approximation, which tends to overestimate them. This overestimation
becomes particularly significant when the phase transition is strong, as the vewvs are of the
same order as the temperature scale, rendering the high-temperature approximation invalid.
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In contrast, the PD prescription incorporates the gap equation, leading to a more accurate
estimation of the thermal masses. Consequently, the thermal corrections in the PD scheme
are relatively smaller than those in the Parwani scheme. As a result, the phase transition
in the PD scheme is weaker than that in the Parwani scheme.

Before ending this section, we want to comment on the reliability of the thermal per-
turbative series and the inclusion of missing higher-order diagrams. One common issue of
all these resummation schemes is that they miss some higher-order diagrams. Although the
PD scheme provides a more efficient way of incorporating higher-order effects, it still misses
contributions coming from sunset diagrams. These diagrams first appear at two loops and
consist of three propagators forming a loop around the internal propagator. The diagrams
involve two independent loop momenta and cannot be obtained by dressing propagators
alone. A full two-loop implementation would require an explicit evaluation of thermal loop
integrals, which is difficult without the high-temperature approximation.

Part of the parameter space of interest for our work corresponds to quartic couplings that
are naively large, sometimes approaching 47. A general concern is that these large couplings
could make the missing higher-order diagrams important and undermine the reliability of the
calculation. However, the physical states interact through combinations of such couplings.
The CP even states are accompanied by the combination A3 + Ay + A5 or the other \j2
couplings which are generically small for the benchmark points we consider. The CP odd and
charged states, however, can have combinations that are indeed large, e.g. A3 — Ay — A\5. We
verified that at two-loops, all sunset diagrams that have potentially large couplings involve
two heavy scalars in the loop. Therefore, our results for the thermal corrections should
be reliable, as the large coupling two-loop sunset diagrams are expected to be Boltzmann
suppressed at the scales relevant for the phase transition. A full treatment of these effects,
including the explicit evaluation of two-loop effects, is beyond the scope of this work, and
it is left for future study.

4.3 High-temperature behavior: non-restoration vs. restoration

An intriguing phenomenon, known as EWSNR at high temperatures well above the EW
scale, can emerge in the early Universe within certain BSM scenarios. This possibility
is of particular interest for EWBG since EWSNR or delayed restoration can persist well
above the electroweak scale. In such scenarios, new physics at a higher scale is required to
eventually restore the symmetry via a first-order phase transition. Importantly, the delayed
restoration framework can help alleviate stringent CP-violation constraints, as the relevant
CP-violating sources are typically associated with heavy new-physics states whose effects
on low-energy observables are suppressed [43-45, 48-50, 119-135]. These features make
EWSNR an attractive avenue for exploring high-scale BSM physics, and motivate a careful
re-examination of this phenomenon using different theoretical approaches.

Recently, this phenomenon has been investigated in the context of the 2HDM in ref. [49],
where EWSNR was observed at high temperatures in a specific corner of the 2HDM parameter
space. In this section, we revisit that parameter space and analyze the finite-temperature
potential using different thermal resummation prescriptions. Our results reveal that EW
symmetry is restored under both the Parwani and PD resummation schemes, even for
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’ BP No. | Parameters

mp my ma My v m3, tan B | co—p
BP1 125 GeV 748 GeV 950 GeV | 950GeV | 246 GeV | m%sscs 3 0
—mi, —m3, mi, AL Az A3 Aq As

BP1 | (T04GeV)? | (219GeV)? | (410GeV)? |  0.26 0.26 116 | —5.7 | —5.7

Table 1. Benchmark scenario, BP1, demonstrating high-temperature symmetry non-restoration with
the AE prescription. In contrast, the Parwani and PD prescriptions not only restore symmetry at high
temperatures but also exhibit an SFOEWPT. Details are presented in table 2. The phase evolution
diagrams for this BP are presented in figure 7.

BP | Resummation T. Tn | {h1sh2}tase | Transition | P15 P2 e | € | @ | B/H
typ
ype
No. Scheme (GeV) | (GeV) (GeV) (GeV)
Parwani 52 27 {0, 0} FO {228, 76} [8.9| 2.1 |175.5
BP1 PD 88 67 {0, 0} FO {219, 73} |3.4/0.14| 521
Arnold Espinosa Symmetry Non-Restoration at high temperature

Table 2. Phase transition characteristics of the benchmark scenarios BP1, presented in table 1,

considering Parwani, PD and AE prescriptions. Values of T, T,,, the corresponding field values at the
_ (\/(hltrue _hlfalse)2+(h2true_h2false)2) )
= T,

false and true phases and the strength of the phase transition, (&, »
represented for different resummation schemes. ‘FO indicates that the phase transition is first-order
type. The quantities « and 3/H, which are required to estimate the GW spectrum from the FOPT,
are also listed.

parameter points that exhibit EWSNR when analyzed using the AE thermal resummation
prescription. To illustrate this, we provide a detailed discussion based on a BP, shown in
table 1. The phase transition details of different resummation prescriptions are listed in
table 2. Figure 7 illustrates the evolution of the phases (each minimum) with temperature for
BP1, with the results shown for the Parwani, AE, and PD prescriptions in the left, middle,
and right plots, respectively. These plots demonstrate that an SFOEWPT occurs in the
Parwani and PD schemes, both of which exhibit symmetry restoration at high temperatures.
Notably, the results for the Parwani and PD prescriptions show significant differences in T¢),
T,), & and «. Specifically, for the Parwani scheme, T, = 52 GeV and T,, = 27 GeV, whereas
for the PD scheme, T, = 88 GeV and T,, = 67 GeV. In contrast, the AE scheme predicts
neither an FOPT nor symmetry restoration at high temperatures.

The symmetry non-restoration phenomenon is primarily attributed to the additional
daisy-resummation terms in the AE prescription, as shown in eq. (2.18), which are found
to drive the EW symmetry non-restoration at high temperatures. In certain regions of
parameter space, the field-dependent masses of some dogs can become significantly larger
than the temperature. Consequently, these dofs should experience Boltzmann suppression
in their contributions to the effective potential at finite temperature. However, in the AE
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Figure 6. Comparison of the effective potential of BP1, presented in (table 1), for AE (left), Parwani
(middle) and PD (right) resummation schemes. The choice of prescription significantly affects the
behaviour of the potential. The AE method leads to EWSNR, due to the unsuppressed daisy terms.
For better visualization, the lower temperature lines of the left plot are shown with reduced opacity
to distinguish them from the high-temperature ones. In contrast, the Parwani and PD approaches

predict symmetry restoration, though they yield different critical and nucleation temperatures as
shown in table 2.
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Figure 7. Phase flows for the benchmark scenario BP1, presented in table 1, considering the AE
(left), Parwani (middle) and PD (right) prescriptions are shown. These plots indicate that the AE
prescription indicates symmetry non-restoration at high temperatures, whereas the Parwani and PD
prescriptions exhibit symmetry restoration and an SFOEWPT in the early Universe. Each color
represents a distinct minimum of the potential (phase), and the lines depict phase evolution along
the field direction \/h? + h2 with temperature. Arrows indicate the transition path from the false

vacuum to the true vacuum, calculated at T, and T,,. For an SFOEWPT, the strength of the phase
transition, &,, is also mentioned.
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scheme, the additional daisy-resummation terms are derived under the high-temperature
approximation. As a result, the AE resummation scheme is not applicable in this parameter
space. In this scheme, the heavy dofs not only lack the expected Boltzmann suppression
but also contributes additional cubic terms to the effective potential, which should instead
be suppressed. It can be observed in the middle plot of figure 7 that the field values at the
minimum increase with temperature, which, in turn, keeps the field-dependent masses of
certain dof heavy in this scheme. In contrast, the Parwani and PD schemes account for the
Boltzmann suppression of these heavy dofs and do not introduce artificial cubic terms in the
potential, maintaining consistency in their treatment of the effective potential.

Symmetry non-restoration scenarios with large negative thermal corrections, which can
lead to a negative total thermally improved mass at high temperatures, have been studied
in the literature [44, 45, 48, 49, 51]. However, in the AE scheme, symmetry non-restoration
with positive thermal corrections can be observed because of the added daisy resummation
term. In contrast, symmetry restoration occurs in the same scenario within the Parwani
and PD schemes. To describe this in detail, we provide a simple calculation considering
a one-dimensional potential in appendix G. In the Parwani scheme, along with the cubic
term, the fourth power of the mass terms in the potential is also resummed, which helps
restore symmetry at high temperatures. Among all these resummation prescriptions, the
PD scheme is a more refined thermal resummation approach, which also exhibits symmetry
restoration at high temperatures. It is important to point out that, beyond this BP, we
observe that all the symmetry non-restoration points reported in ref. [49] are restored at high
temperatures in the Parwani and PD schemes, as shown in figure 5. Thus, we finally conclude
that we do not observe the symmetry non-restoration behaviour at high temperatures in
2HDM in our choice of parameter space when analyzing the potential with improved thermal
resummation prescription.

4.4 Impact of thermal resummation on gravitational waves predictions

The advent of GW astronomy, marked by the first direct detection of GW from binary
black hole mergers [136], has opened a new window into the Universe. More recently, the
NanoGrav [137] and EPTA [138] collaborations have reported the first detection of a stochastic
GW background, further broadening the scope of GW searches. One particularly exciting
prospect is the potential detection of stochastic GW originating from an FOPT in the early
Universe, which could offer crucial insights into BSM physics. Unlike GW from astrophysical
sources, these stochastic backgrounds exhibit random, unpolarized fluctuations that can be
characterized through their two-point correlation function, linked to the power spectral density
Qawh?. The “cross-correlation” technique can be used across multiple detectors to detect such
stochastic GW [139-143]. Several upcoming space-based interferometers, including LISA [6],
ALIA [7], TALJI [8], the Big Bang Observer (BBO) [9], and Ultimate (U)-DECIGO [10], are
expected to be operational within the next decade. FEach of these experiments targets distinct
sensitivity regions in terms of peak intensity and frequency. Notably, they collectively cover a
frequency range from approximately ~ 1074 Hz to ~ 10! Hz, which is particularly compelling
since stochastic GW generated by an FOPT at the electroweak scale are expected to fall
within this range. These detectors thus offer promising prospects for probing the dynamics
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‘ BP No. | Parameters

mp my ma myg+ v m2, tanfS | ca—p
BP2 125GeV | 4825GeV | T00GeV | 700GeV | 246 GeV | m%sscs 3 0
—m%l —m§2 m%2 )\1 )\2 )\3 )\4 )\5

BP2 | (449GeV)? | (124 GeV)? | (264 GeV)? 0.26 0.26 8.76 —4.25 | —4.25

Table 3. Benchmark scenario, BP2, demonstrating an FOEWPT with all three resummation schemes,
Parwani, PD, and AE. Phase transition details are presented in table 4.

of the early Universe and exploring new physics scenarios associated with the electroweak
scale [27, 39, 40, 48, 96, 130, 144-148].

The production of stochastic GW from a cosmological FOPT primarily occurs through
three mechanisms: collisions of bubble walls, sound waves in the plasma, and magnetohydro-
dynamic (MHD) turbulence. GW from bubble collisions arises from the stress-energy tensor
of expanding bubble walls, which can be approximated using the envelope method [149, 150].
While analytical expressions for the GW spectrum exist in this framework [151], lattice
simulations provide more refined spectral predictions that surpass the envelope approximation
and are now widely adopted [152, 153]. The bulk motion of the plasma during the transition
induces velocity perturbations that generate sound waves, which persist long after bubble
collisions and dominate GW production [152, 154, 155]. Lattice results indicate that the
GW contribution from these long-lived sound waves significantly exceeds that from bubble
collisions [152-154]. Several models, including the sound shell model [156, 157] and bulk
flow model [158, 159], along with their extensions [160], have been developed to describe the
sound wave contribution accurately. Additionally, plasma percolation can induce turbulence,
particularly MHD turbulence, due to the ionized nature of the medium, providing another
GW source [161-169]. As upcoming experiments probe the frequency range relevant to
electroweak-scale phase transitions, precise modeling of these GW sources will be crucial for
interpreting potential signals. Here, we sum the contributions of sounds waves and MHD
turbulence in the production of GW. A detailed discussion on the production of GW from
such an FOPT in the early Universe is presented in appendix E.

To match the progress in experiments, growing attention is being given to reducing
uncertainties in GW predictions from an FOPT, demanding significant theoretical improve-
ments. Achieving higher precision requires better modeling of bubble dynamics, sound
wave contributions, and MHD turbulence effects in the plasma. Additionally, accurately
determining the finite-temperature effective potential is essential for understanding phase
transition dynamics [170, 171]. Further uncertainties arise from the choices of renormalization
scale and gauge, bounce action calculations [172-175] and nucleation rates [176, 177]. In
this work, we have analyzed the impact of different thermal resummation schemes on the
effective potential and now focus on their effects on GW production.

To illustrate the impact of thermal resummations on the prediction of GW production
from an FOPT, we select two benchmark scenarios, BP1 and BP2. As discussed in the
previous section, BP1 is selected to demonstrate that the AE prescription predicts symmetry
non-restoration at high temperatures, whereas the Parwani and PD prescriptions exhibit
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BP Resummation TC Tn {hl’ hQ}false Transition {h17 h2}true gn @ ﬁ/H
_—

type

No. Scheme (GeV) | (GeV) | (GeV) (GeV)
Parwani 7| 67 {0, 0} FO | {210,70} |3.3]0.104|1444
BP2 PD 92 56 {0, 0} FO {225, 75} |4.3]0.117| 232
Arnold Espinosa| 144 | 130 {0, 0} FO {210, 70} |1.7/0.014|1917

Table 4. Phase transition characteristics of the benchmark scenarios BP2, presented in table 3,
considering Parwani, PD and AE prescriptions. All of these resummation schemes predict FOEWPT
for this BP. Values of T,, T}, the corresponding field values at the false and true phases, &,,«, and
B/ H represented for different resummation schemes.
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Figure 8. GW energy density spectrum with respect to frequency for the benchmark scenarios, BP1
and BP2, illustrated against the experimental sensitivity curves of various proposed GW detectors
such as LISA, TAIJI, BBO, ALIA, and U-DECIGO. The red, blue, and black solid line indicates the
overall GW energy density estimated considering the PD, Parwani, and AE prescriptions, respectively.
The peak frequency for BP1 is fpeax = 0.0066 Hz and 0.0009 Hz, and the peak amplitude is
Qewh?, = 5.2 x 1071 and 9.5 x 107!, for the PD and Parwani prescriptions, respectively. In the

pea
AE prescription, BP1 does not produce a GW spectrum, as it predicts symmetry non-restoration at

high temperatures and no FOEWPT. In the case of BP2, the peak frequency is fpeax = 0.0183 Hz,
0.0025 Hz and 0.0471 Hz, and the peak amplitude is Qawhi., = 7.1 x 107", 7.4 x 107" and
8.7 x 10718, for the Parwani, PD and AE prescriptions, respectively.

symmetry restoration at high temperatures and also predict an FOEWPT. Additionally,
we introduce another benchmark scenario, BP2, detailed in table 3, for which all three
resummation prescriptions predict an FOEWPT, as shown in table 4. The corresponding
GW energy density spectrum (Qgwh?) as a function of frequency (f) for the benchmark
scenarios BP1 and BP2 are displayed in figure 8. The left plot of figure 8 shows that the PD
prescription predicts a lower GW amplitude compared to the Parwani scheme. Specifically,
the difference in peak amplitudes, (QGWhZ)peak, is approximately a factor of 220, while the
peak frequency, fpeak, differs by about a factor of 3. Although both prescriptions indicate
that the spectrum lies within the sensitivity region of LISA, the signal-to-noise ratio for the
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Figure 9. Variation of (QGwhz)pcak and fpeak across different resummation prescriptions. The
left plot illustrates the absolute variation in (QGWh2)peak and fpeax between the PD and Parwani
prescriptions, expressed relative to their values in the PD scheme. Blue and red points indicate which
scheme predicts a larger GW amplitude. The right plot presents a similar comparison between the
PD and AE prescriptions. For improved visualization, the frequency scaling is done relative to the
PD scheme in this plot, whereas the amplitude scaling is referenced to the AE scheme.

PD scheme would be significantly smaller than that of the Parwani scheme. This highlights
the substantial impact that different resummation prescriptions can have on the predicted
GW spectrum, potentially altering the detection prospects of a given BP at various proposed
GW detectors. For instance, in the case of BP2 (right plot of figure 8), the PD prescription
predicts a higher GW amplitude than both the Parwani and AE prescriptions. Under this
benchmark scenario, the PD scheme suggests that the signal falls within LISA’s sensitivity,
whereas the Parwani (AE) prescription predicts an amplitude lower by one (four) orders of
magnitude, making detection at LISA unlikely. This further underscores the importance of
resummation choices in evaluating the detectability of stochastic GW signals from an FOPT.

To quantify the dependence of the predicted GW spectrum on the different resummation
schemes across the parameter space described in section 3, we present the absolute variation
of (nghz)peak and fpeak for each scheme in figure 9. The left plot of figure 9 illustrates
the absolute difference between the predictions of the Parwani and PD prescriptions, while
the right plot shows the corresponding differences between the AE and PD prescriptions.
The left plot indicates that the Parwani and PD schemes show discrepancies, with variations
in both peak amplitude and peak frequency typically ranging from one to two orders of
magnitude. The points in red (blue) indicate that the GW amplitude estimated from the PD
scheme is larger (smaller) than that estimated from the Parwani scheme. In contrast, the
right plot suggests that the AE prescription deviates significantly from the PD scheme. The
peak amplitude uncertainty between the AE and PD prescriptions can range from one to six
orders of magnitude, while the peak frequency varies by approximately up to a factor of 20.
Furthermore, this plot reveals that the AE prescription consistently predicts a significantly
smaller (QGWhQ)peak and a relatively larger fpea compared to the PD prescription. These
findings suggest that the uncertainty is relatively small when comparing the Parwani and PD
prescriptions. Since the PD scheme provides a more refined approach to thermal resummation,
we consider it to yield more reliable GW predictions. However, in this work, we have limited
our calculations to the one-loop level within the PD scheme. It would be interesting to
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Figure 10. Left: FOEWPT-favored points in the PD scheme shown in the m 4 vs. myq — mpyg plane,
with the trilinear self-coupling of the observed Higgs boson, y, represented by the color palette (see
text for details). Right: correlation between ) and the phase transition strength, &,, with the color
palette indicating the Higgs di-photon decay signal strength, i, .

investigate how the inclusion of higher-loop corrections affects the predicted GW spectrum.
As discussed earlier, multiple sources of uncertainty can influence precise GW predictions, and
further studies in this direction are necessary for a more accurate theoretical understanding.
In the next section, we will use these results and apply them to compute the GW signals
for different characteristic benchmark scenarios.

4.5 Collider and GW probes of FOEWPT-favored regions

The parameter space of the 2HDM that allows for an FOEWPT can be explored through
various searches at the LHC [49, 86-93, 95, 96, 178] and potentially via the detection of
a stochastic GW signal in future GW observatories [49, 95, 96]. Among various collider
search strategies for heavy scalars in the 2HDM, one of the most distinctive signatures of
an FOEWPT scenario is the production of the CP-odd scalar, A, followed by its decay into
a Z boson and the heavy CP-even scalar, H [178]. Previous LHC searches have analyzed
this channel, considering leptonic decays of the Z boson and the H decays into bottom-
quark and tau-lepton pairs. As we have already pointed out in section 3.2, the direct
searches for heavy Higgs bosons have already excluded mpgy < 350 GeV, even in the low-
tan 0 regime [48, 108-112, 179-181]. Once my exceeds the di-top threshold, its branching
fractions into bottom-quark and tau-lepton pairs decrease significantly at moderately low
tan 3, reducing the sensitivity of previous LHC searches to the FOEWPT-favored region
considered in this study. Recent studies suggest that the High-Luminosity LHC (HL-LHC) can
probe up to my < 550 GeV and m4 < 750 GeV with an integrated luminosity of 3 ab™! [49].
While studying phase transitions, we observe that varying tan 5 does not affect the dynamics
of the phase transition, and the region in the m 4 — my plane that we identified in this work
as being favored by an FOPT remains unchanged. However, the existing collider constraints
are modified, potentially influencing search strategies for the remaining allowed regions. We
plan to investigate this further in future work.
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Figure 11. Variation of the GW peak amplitude (Qgwh?)peak with the peak frequency (fpeak) in
the GW power spectrum (Qqwh?) — frequency (f) plane for the region of parameter space that
exhibits an FOEWPT, as shown in figure 5, using the PD prescription. The palette color shows
the variation of the strength of the phase transition (§,). The different colored lines represent the
experimental sensitivity curves of future proposed GW detectors, including LISA, TAIJI, BBO, ALIA,
and U-DECIGO.

Alongside searches for heavy Higgs bosons of 2HDM at the LHC, measuring the trilinear
self-coupling Appp of the observed Higgs boson provides an additional avenue to probe the
FOEWPT scenario, as it is often associated with an enhanced Appp [49, 182, 183]. The left
plot of figure 10 presents the variation of k) in the m4 vs. ma — my plane for parameter
points exhibiting an FOEWPT within the PD prescription, where k) = Appn/ /\%\fh. Here,

)\}Sllf\b/[h represents the one-loop corrected SM prediction, while Appp denotes the corresponding

trilinear self-coupling of the SM-like Higgs boson in 2HDM. Notably, ATLAS and CMS
analyses project their results based on the tree-level value of )\E%, which can lead to deviations
at the ~ 10% level [90]. The plot reveals that s, increases with the mass splitting for a
fixed m 4. The right plot of figure 10 illustrates the correlation between the strength of the
phase transition, &,, and k), showing the expected trend of k) increasing with &,. The color
palette in the same plot represents the variation of the signal strength parameter for the
h — ~v decay, fiyy, as defined in eq. (3.7).

ATLAS and CMS currently place upper limits on x) at 6.3 [184] and 6.5 [185], respectively,
at the confidence level of 95%, based on analyzes incorporating single Higgs and di-Higgs
production while assuming other couplings remain at their SM values. The HL-LHC is
expected to probe k) down to approximately 2.2 [186-188], making it possible to explore a
subset of the FOEWPT-favored parameter space through x) measurements. Furthermore,
while all parameter points satisfy the current ATLAS [115] and CMS [116] bounds on -,
which are 1.04J_r8:(1)8 and 1.121'8:88, respectively, the HL-LHC is expected to improve sensitivity
to an uncertainty level of 2% [189]. This suggests that the entire FOEWPT-favored parameter
space could be probed through precision measurements of the di-photon decay of the observed
Higgs boson at the HL-LHC.
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In addition to the ongoing search for BSM physics at the LHC, future proposed GW
experiments could provide sensitivity to certain regions of the parameter space in various
BSM scenarios that exhibit an FOPT around the electroweak scale, as it leads to a GW
spectrum around the mHz to Hz frequency range, after redshifting the signal to the present
time [190, 191]. To investigate the stochastic GWs spectral signal region arising from
our scenario, we present the variation of the peak amplitude, (Qgwh?)peak, With the peak
frequency, fpeak, of the GW generated by an FOEWPT considering the PD prescription,
as it is the most refined approach. This is depicted in the Qqwh?-f plane in figure 11, for
the points exhibiting an FOEWPT, as identified in figure 5 using the PD prescription. It is
important to note that fpeax and (QGWhQ)peak are primarily determined by the sound wave
contribution (as described from eq. (E.5) to eq. (E.6)), with the turbulence contribution
(described from eq. (E.9) to eq. (E.11)) playing a relatively minor role in estimating the peak
amplitude. The strength of the phase transition, &,, is represented by the color palette in the
plot. The color variation reveals a clear trend: as the strength of the FOEWPT increases,
the peak of GW amplitude grows while the peak frequency decreases. This behavior can be
understood from the fact that, in our scenario, a larger &, = v, /7, corresponds to a lower
nucleation temperature, T),. A lower T}, leads to a smaller 5/H, which shifts fpeax to lower
values (see eq. (E.6)) and (Q2Gwh?)peax to higher values (see eq. (E.5)). From this plot, it
can be inferred that the full spectral distributions of the stochastic GW generated from these
scanned points are unlikely to fall within the expected sensitivity range of the upcoming GW
detector LISA. However, based on the points displayed, it can be reasonably anticipated
that the majority portion of the parameter space will fall within the sensitivity range of the
proposed future U-DECIGO experiment. Additionally, other proposed experiments, such
as BBO and ALIA, may partially probe this parameter space.

From this discussion, it is evident that this region of the parameter space can be
explored through a complementary approach, combining collider analyses at the HL-LHC
with stochastic GW searches at proposed future GW detectors [49]. For instance, BP2 is
expected to be accessible via the A — Zh search at the HL-LHC, whereas BP1 would remain
unconstrained by the same search. However, BP1 can still be probed by studying the Higgs
trilinear self-coupling, as its corresponding k) exceeds 2.2, making it within reach of HL-LHC
sensitivity. Additionally, the di-photon decay channel of the Higgs boson could provide
further insights into these scenarios. The absence of any new physics signals in these channels
would place significant constraints on the prospects of detecting a stochastic GW signal at
proposed GW detectors such as LISA. Nevertheless, as discussed in the previous section, the
prediction of stochastic GWs from an FOEWPT is subject to various uncertainties arising
from different sectors [170], even when employing more refined thermal resummation schemes,
such as the PD prescription used in figure 5. Therefore, to enhance our understanding of GW
production from an FOEWPT and its correlation with collider signals, further theoretical
refinements and improvements are essential.

5 Conclusion

A precise description of the effective potential at finite temperature is crucial for accurately
predicting an FOEWPT phenomenon in the early Universe. This can have far-reaching
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physical implications, such as explaining the observed baryon asymmetry via the EWBG
mechanism and generating a stochastic GW spectrum. In this work, we investigate the impact
of various resummation prescriptions on the effective potential at finite temperature and
their influence on the dynamics of the EWPT in the 2HDM. In particular, we explore the
PD scheme, a more refined resummation method that provides a consistent treatment of
higher-order thermal corrections without relying on the high-temperature limit, for the first
time in a realistic model like the 2HDM. We demonstrate how to explicitly implement PD in
scenarios with multiple mixing scalar fields, providing a detailed discussion on solving the
gap equation using the iterative method. Furthermore, we investigate the Parwani and AE
resummation prescriptions, which are more commonly used in the literature and rely on the
high-temperature approximation, which may significantly break down in the regime where
ve/Te ~ O(1). We compare the results obtained from these different resummation schemes to
assess their impact on the phase transition dynamics. Here are the key differences:

¢ Field-dependent thermal masses of various dof are obtained by solving the full gap
equation without relying on the high-temperature approximation. These thermal
masses can differ significantly from those derived using the truncated solution under the
high-temperature approximation, as the heavy modes contributions should experience
Boltzmann suppression. These differences become particularly important in certain
field regions and temperature ranges that are highly relevant in the context of an
SFOEWPT.

e The FOEWPT-allowed parameter space can vary depending on the choice of resum-
mation scheme. In particular, significant deviations are observed when comparing
results from the AE scheme with those from the Parwani and PD schemes. While
the overall FOEWPT-allowed regions from the Parwani and PD schemes may appear
similar, their predictions can differ significantly in certain regions of parameter space.
For instance, PD may predict an FOEWPT where Parwani instead leads to vacuum
trapping. Additionally, the strength of an FOEWPT can vary significantly depending
on the resummation scheme, with the largest deviations observed when comparing the
results from the AE scheme with those of the PD or Parwani schemes.

e At high temperatures, the PD and Parwani resummation prescriptions predict EW
symmetry restoration. In contrast, the AE resummation scheme suggests symmetry
non-restoration in certain regions of the parameter space where thermal mass corrections
to various dof remain effectively positive.

e The prediction of stochastic GW from an FOPT can vary significantly depending on the
choice of resummation scheme in the finite-temperature effective potential. Notably, we
find that the AE prescription consistently predicts a substantially lower peak amplitude
and a relatively higher peak frequency compared to the PD scheme within our chosen
parameter space. The uncertainty in peak amplitude between these two schemes can
span up to six orders of magnitude, while the peak frequency can differ by a factor of
up to 20. In contrast, the discrepancies between the Parwani and PD prescriptions are
significant but remain relatively small compared to the AE scheme.
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Various proposed GW experiments, such as LISA, BBO, ALIA, TAIJI, and UDECIGO, are
designed to probe different sensitivity regions in terms of peak amplitude and frequency.
Consequently, a precise prediction of the GW spectrum from an FOPT is crucial to assessing
their potential to explore the BSM parameter space. Further theoretical refinements can
enhance the precision of phase transition predictions. For instance, incorporating two-loop
effects without relying on the high-temperature approximation can help reduce uncertainties
arising from higher-order corrections. Beyond refining the description of the effective potential
at finite temperatures, further theoretical advancements in multiple directions are necessary
to improve the accuracy of GW spectrum predictions from an FOPT.

PD is a more refined resummation scheme, offering greater reliability compared to
other resummation methods. It provides a self-consistent treatment of temperature effects,
properly incorporating higher-order daisy and superdaisy contributions without relying
on the high-temperature approximation. In contrast, both AE and Parwani introduce
uncontrolled approximations that break down at intermediate temperatures. AE’s negative
daisy contributions and lack of higher-order corrections can lead to spurious effects like
EWSNR, while Parwani’s inclusion of unsuppressed thermal corrections in the CW potential
can prevent proper decoupling of heavy modes. PD naturally resolves these issues, making
it the more reliable resummation scheme. Therefore, in this work, we explore the 2HDM
parameter space using this scheme to robustly determine the regions that favor an FOEWPT
and to examine key physical phenomena, such as symmetry restoration at high temperatures.
We also compare our findings with existing results in the literature, which are based on the
AE and/or Parwani methods. Finally, we discuss potential future experimental strategies for
probing the FOEWPT-favored parameter space. These include direct searches for A — ZH,
precise measurements of the Higgs self-coupling k), and the di-photon decay rate of the
observed Higgs boson at the HL-LHC. Additionally, we explore the potential of future GW
experiments to provide complementary insights into this parameter space.
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A Relations among the masses and various Lagrangian parameters

The mass-squared matrices of the Higgs fields of the scalar potential, defined in equation (3.1),
are given by,

W R
hi h |
( 1 2) —miy + 250 sa5  miy/ts + Movsh | \he

(a1 ag) {m%Q — ;)\51)2324 (iﬁl 1;;> (Z;) ’ (A.2)

2 1 o2s ts -1 b1
mis 4()\4 + Xs5) 25} (_1 1/t5> <¢2_> . (A.3)

The mass eigenstates are obtained from the original fields by the rotation matrices:
H cosa sin o h1
= A4

<h> <sinacosa> (hg)’ (A4)

GY _ co? 8 sinf ax ’ (A5)
A —sin g cos as
+ : +

Gi _ cqs B sinf (bi 7 (A.6)
H —sinfg cos o3

where GO and G* are Goldstone bosons which are absorbed as longitudinal components

(o1 oF)

of the Z and W bosons. The remained physical states are two neutral CP-even states h
and H, one neutral pseudoscalar A, and a pair of charged scalars H*. Their mass-squared
relations are given by

1
m%{,h =5 [Ml%,ll + Ml%,22 + \/(Mz%,n - MI%,QQ)Q + 4(M12>,12)2J ) (A7)
2
m% = Ma _ Asv? (A.8)
SpCp
mis = miy 1(>\4 + A5 )0 (A.9)
H sgcg 2 ’

where M]%ij relations, used in equation (A.7), are the components of the C'P-even mass-squared
matrix defined in eq. (A.1). From equations (A.8) and (A.9), the condition m?.. = m?
implies that Ay = As.

The parameters v; and vg can be expressed in terms of v (= 246 GeV) and tanf, i.e.,
v; =wvcosf and vy = vsin . The Lagrangian coupling parameters \;(i = 1,2,...,5) can be
expressed in terms of the physical masses (1, g 4 g=+), mixing angles (o, ) and m?,. The
relations between these two equivalent sets of parameters are given below

«

1
Mo? = = ( 2m2 + Em3; — miy tan 6) , (A.10a)

)\2’1)2 =

2
“s
Lo o 2 2 2
=2 (camh + somi — miy/ tan 5) ) (A.10Db)
B
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5200, 2 2 miy
Agv? = 2m%e + 22 (m3y —mi) — —2 (A.10c)

528 spcp’
m?,
Mv? =m? —2m3. + (A.10d)
8505
2
Asv? = ™2 _ m? . (A.10e)

Spep

B UV-finite counterterm

The one-loop CW correction to the tree-level potential modifes the masses and mixing angles
of various scalar dof of the model. It is essential to consider these loop corrections when testing
the parameter space of the model with experimental constraints. To facilitate an efficient
scan of the parameter space, it is advantageous to directly use the loop-corrected masses
and mixing angles as inputs. We choose a renormalisation prescription by which we enforce
the one-loop corrected masses and mixing matrix elements to be equal to the tree-level ones,
satisfying relations defined in (2.4). The added counterterm potential Vi is parameterized as,

S\ 2 6\
Vor = 0miy |@1 + 6m3, | @] — dmiy (@] + hec.) + =1 (qﬂcbl) + 22 (@T%)
5)\5
+ X (@101 ) (B1ds) + 00 (9]2) (@) + . {(@T%) + h.c.] : (B.1)
where,
5)\3 = 7(DV[h1h2] - .DV[G,()G()]), (B2a)
V1V2
S5 = %(DV[GiGﬂ — DV[GoGo)), (B.2b)
omi, = 2—(DV[GiGﬂ DV [GoGo]) — DV]aoGol, (B.2¢)
1
Sy = Ufg((UQDV[thQ] — DV [hy]) + dmiyv1), (B.2d)
2
1
P 3 ((’UlDV[hlh ] DV[hl]) + 5777&21}2) R (B.Ze)
U1
om?, = — ( 260 + 2 (6>\3 +0Xs) + DV[h1h1]> : (B.2f)
om3y = — < 2600 + L (&3 +0Xs) + DV[hghg]) , (B.2g)

DV[¢;] = Z& and DV[pig;] = g;vgg where ¢,, ¢, = {h1,ha,a1,a2,¢7, 63 }. All the
derivatives are taken at the true EWZ m]inima, i.e., ho = vo, h1 = v and all other field
directions are zero. The Goldstone modes exhibit vanishing masses at the true EW minimum
at T = 0 due to the choice of the Landau gauge in this analysis. This results in an
infrared (IR) divergence, as noted in refs. [192, 193], which arises from the second derivatives
employed in the renormalization conditions described in the preceding equations. To mitigate
this issue, an IR regulator can be applied by modifying the Goldstone mode masses as
mé — mQG + M%R' For numerical calculations, choosing ,uIZR = 1GeV? is sufficient, as
implemented in refs. [27, 39, 40, 47]. We also examine the variations of ufy from 1 GeV?

to 100 GeV? and find that the results remain mostly unchanged.
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C Tree-level field dependent masses of the degrees of freedom

The field-dependent tree-level mass-squared matrices for the (2 x 2), symmetric matrix (M%)
for the C'P-even scalars, in the basis {hi, ha}, is given by:

3 1
M, = —mi; + §>\1h% + §>\345h§ 5 (C.1a)
3 1
Mgy = =12 + 5)\2h§ + 5)\345}@ ) (C.1b)
M%‘Ilz = M%21 = _m%2 + Agashihe, (C].C)

where Asq5 = A3+ A\g+ 5. The (2 x 2) symmetric mass squared matrix (II’I?L‘) for the C' P-odd
scalars, in the basis {hi, ho}, is given by:

1.
M, = —miy + 5)‘345/1% ) (C.2a)
1 !
M2, = —m3y + 5)\345h% ) (C.2b)
M12412 = M12421 = _m%Q + A5h1h‘2 ) (C2c)

where Ag;s = A3 + Mg — As. The (2 x 2) symmetric mass squared matrix (M%) for the
chared scalars, in the basis {hj, ho}, is given by:

1

1

M?{ﬁ = *mfl + §>\1h? + §>\3h§ , (C.3a)
1 1

Mﬁ@ = —m3, + §A2h§ + §A3h§ : (C.3b)
1

Mie = Mys = —mi, + Fhashiha, (C.3¢)

where Ag5 = Ay + A5. In the fermionic sector, we only consider the top quark dof and its
field-dependent mass is given by

Yt
my = —=——ho.
! V/2sin ? (C.4)
The field dependent mass of the charged gauge boson, W*, is
m?,. = g3 (h} + h3) (C.5)
w 492 1 2] - .

The field dependent mass-squared matrix of the neutral electroweak gauge bosons W3 and
B of SU(2) and U(1) gauge groups, respectively, is given by,

2
mwg

=

g (n+n3),
gt (Wi +n3), (C.6)

2 2 2
mW3B = —igng (hl + h2> .

mp

The Z-boson and the photon () field dependent masses can befound via diagonalising this

mass matrix and it is given by,

mg =43+ g (E+n),  mi-o. (1)

— 37 —



D Truncated full dressing thermal mass at high temperature
approximation

Solution of the gap equation, defined in eq. (2.21), at the high temperature limit and remain
at the leading order is defined as the Truncated full dressing (TFD) thermal mass (II;),
defined in eq. (2.16). Substituting the eigenvalues of the (m3, +1Ily) directly into the effective
potential is called the TFD resummation prescription, where m%., (X = P, A, H*) are the
tree-level mass-squared matrices defined in egs. (C.1) to (C.3). The TFD thermal mass
functions are given by, Ilyx, (X = P, A, +) given by

Y Tgh ) 772
I35 Iy

where,
H{g = CcsM — 6yt2 4+ 61 + 43 + 24, ,
T35 = csm + 62 + 4X3 + 2\,
The SM contributions (considering top quark, SU(2);, and U(1)y gauge fields), defined as
csM, is given by,

(D.2)

9 3
CSM = 592 + 59/2 + 6y; . (D.3)

The subscripts {1,2} denote the states {hg, h,}, respectively. The imposed discrete Zo-
symmetry keeps the off-diagonal thermal mass terms vanishingly small at the leading order.
Additionally, as noted by [194], subleading thermal corrections to off-diagonal self-energies
terms are suppressed by extra powers of coupling constants and electroweak vevs. It is
worth highlighting that TFD thermal masses are independent of A5, where a potential C'P
phase might appear.

The longitudinal modes of the gauge bosons also receive thermal corrections. TFD thermal
masses of the ijc, W3 and By, (‘L corresponds to the longitudinal mode) are given by,

2 22

2 _ o 272
Ty = 2021 (D.5)
m2BL = 2¢°T2.
The TFD thermal mass-squared of Wi is given by, m‘Z/VE: = 193 (h? + h3) +2¢3T>. The TFD
thermal mass-squared of Z; and 77 can be obtained via diagonalizing the gaube boson mass
matrix considering the correction defined in eq. (D.5). These are given by,

1
MY, = (08 + ) (I + 1) + (g + 63)T% %6, (D.6)

where 1
6 = (gt + g3)2 (W + 1%+ 8T°)? — GG T2 (] + b, + 4T%). (D.7)

These TFD thermal mass-squared relations, defined from eq. (D.1) to eq. (D.6) of various
dof of 2HDM are used to estimate the effective potential at finite temperature using the so
called AE and Parwani prescriptions, described in sections 2.3.1 and 2.3.2, respectively. The
PD prescription requires estimating the thermal mass by solving the gap equations. The
details of this solution are provided in the following section.
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E Stochastic GW production from an FOPT

Various numerical simulations have been already performed to predict the GW spectrum
form an FOPT at the early Universe based on the knowledge of the following key parameters:
Tn,, 8/ Hp, g«, v [12, 139, 153, 157, 191, 195].

As mentioned previously in the main text of the paper, T, denotes the bubble nucleation
temperature of the phase transition. This characterizes the onset of the phase transition
when approximately one bubble per Hubble volume forms. This temperature is typically
determined by solving the nucleation condition,

dl I(T) _
r, T H(T)*

(E.1)

where, I'(T") is the tunneling probability from the false vacuum to the true vacuum per unit
time per unit volume [196]. To compute this, it is necessary to solve for the bounce solution
of the so-called Euclidean action (S3(7")) [197]. For this purpose, we employed the publicly
available toolbox CosmoTransitions [118]. Eq. (E.1) describes the condition under which
the nucleation probability of a single bubble within a horizon volume becomes approximately
unity. This translates to the criterion S3(7T)/T = 140. Solving this equation allows one to
determine 7),, which corresponds to the maximum temperature at which S3/7" < 140 [198].

The dimensionless parameter « is defined as the latent heat (¢) released during the phase
transition to the radiation energy density (pl,4) [199]:

1 AV (T
N rdAV(T)
Prad Prad dr

—Avqﬂ , (E.2)

T

where T, is the temperature at which the phase transition completes, corresponding ap-
proximately to T}, in the absence of significant reheating.? Hence, Prod = g-m2T2 /30, where
g« denotes the number of relativistic dof at T" = T,. Here, we consider g, ~ 100 for T},
around the EW scale. The potential energy difference between the false and true vacua is
defined as AV(T') = Viige(T) — Virue(T)-

The characteristic time scale of the phase transition is captured by the inverse duration
parameter 3, which is defined as
d(S3/T)

r
~— =HT ——
r dT

. (E3)
where H, is the Hubble rate at T,. Another key quantity v, represents the velocity of
the expanding bubble walls.

The energy released during the phase transition is distributed between plasma kinetic
energy, which induces bulk fluid motion and generates GW, and thermal energy, which reheats

3More precisely, one may estimate the completion temperature of the phase transition using the so-called
percolation temperature, defined as the temperature at which a chosen fraction of the Universe’s volume
(commonly 1/e = 37%) has converted to the true vacuum. In scenarios with substantial supercooling, the
percolation and nucleation temperatures can differ significantly. A detailed computation of the percolation
temperature, however, lies beyond the scope of this work.
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the plasma. The fraction of the released energy converted into fluid motion is characterized
by the efficiency factor k,, given by [199]:

(6%
wo(@) = |5 0.053va + o

(E.4)

This semi-analytical formula for the efficiency factor is valid for wall speeds v,, ~ 1 and
requires modifications for lower wall velocities [199]. Additionally, a portion of this kinetic
energy contributes to Magneto-Hydrodynamic (MHD) turbulence in the plasma, quantified
via Kiyrb, which is typically estimated as kiyrt, = (5 ~ 10) k,, from numerical simulations [152].
For this work, we adopt a fiducial value of ktyp, = 0.1. With these parameters established,
we are now equipped to compute the resulting GW energy density spectrum.

The contribution of the GW spectrum from sound waves, denoted as Qwh?, can be
approximated by the following empirical formula [157]:

[SIEN]

-1 2 7% f 3 7
Qawh? = 2.65 x 10757 (7 <B> Ve < fro@ > < I ) ( )
W (msw)\ &, 1+a/ \100 fow 4+3(f>2
fsw

(E.5)

The characteristic peak frequency associated with the sound wave contribution is given by:

fow =110 (L) () (e ) () (=)

By evaluating eq. (E.5) at f = fgw, we obtain the peak amplitude of the GW power spectrum
2

contribution from sound waves, denoted as Qgwh In eq. (E.5), Y(7sw) represents

peak*
the suppression factor in gh? due to the consideration of finite lifetime of the sound

waves [145, 200]. This is given by,

1
V1427 Hy

Here, the lifetime 74y characterizes the time scale over which turbulence emerges and can

Yirew) =1— (E.7)

be approximated as [153, 201]:

}%*

Tsw ™~ ij; ) (13.8)
where R, = (87)'/3v,,// represents the typical separation between bubbles [145, 157]., and
U ¢ denotes the root-mean-squared (RMS) velocity of the fluid and from hydrodynamic
analyses it is given by, Uy = /3r,a/4 [157, 202]. At 7o — oo, Y(7sw) approaches the
asymptotic value 1.

The contribution of MHD turbulence to the GW spectrum is modeled by the following
relation [139]:

_a (H\ [ Feana\ 7 (1003 (f/ frurb)®
Quurbh? = 3.35 x 1074 | == ) ( Ztweb » by . (B9
e : <ﬁ ) (HO‘) (gs) ’ [1+ (f/ frarp)]® (1487 f/hy) )
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The corresponding peak frequency for this contribution is expressed as,

1

_ 1 B T gs \6
b =27x 107 Hz — (2 (2 , E.1
Joury = 2.7 1077 Hz == (H) (100 GeV> <100) (E.10)

with the parameter

1
— Tn gx \ 6
hey =165 x 1079 Hz [ —2— ) (2= ) . E.11

0:5>10 Z(lOOGeV)(lOO) (E-11)

Before concluding our discussion of GW production from an FOPT, it is essential to address
the role of the bubble-wall velocity, v,,, and its implications for both GW signals and EWBG.
As discussed above, larger v, generally enhances the GW signal. However, for the successful
generation of the observed matter-antimatter asymmetry via EWBG, the wall velocity must
be subsonic. This presents a challenge, as large v,, values that support detectable GW signals
may simultaneously hinder the production of the observed baryon asymmetry. Recent studies
suggest that v,, does not by itself control EWBG; rather, the plasma velocity profile around
the bubble wall plays a critical role [203]. A comprehensive study of transport dynamics in
the vicinity of the wall is therefore required to evaluate these effects accurately, which we
defer to future work.* For the purposes of this study, we assume that expanding bubbles
achieve a relativistic terminal velocity in the plasma, approximately v,, ~ 1. When comparing
results obtained using different resummation schemes, one should in principle estimate v,, for
each scheme, since it can introduce an additional source of uncertainty in the predicted GW
amplitude. In this work we neglect this dependence, adopt a fixed v,, for our comparison,
and leave a detailed study to future work.

F Feynman-Hellmann trick and the iterative method for solving the gap
equation

Solving the gap equation keeping all of the field dependence of the CP odd and charged
scalars is a very challenging task. Because of this, it is useful to use a trick to calculate
derivatives of the mass eigenvalues from the original mass matrix and the mixing angles. In
quantum mechanics, this is often associated to the Feynman-Hellmann theorem that relates
the derivatives of the total energy with respect to some parameter to the expectation value
of the derivatives of the Hamiltonian operator. Here discuss the Feynman-Hellmann theorem
and how to write the gap equation only as a function of the mass eigenvalues and mixing
angles. This last step is important to be able to solve the gap equation iteratively.
We start with the eigenvalue equation,

M2 |n) = m2 |n), n=h,H, Ay Gy, H,G* (F.1)

n

where 12 is the field dependent mass matrix, m?2 is the field dependent mass eigenvalue
and |n) are the mass eigenstates. Taking one derivative with respect to one of the field dof

“For recent developments on estimating vy, see refs. [204-206]. In certain BSM scenarios with weakly
interacting species coupling to the wall, they observe v,, ~ 0.6 with only mild variation. Predictions for the
GW signal at different v, can be seen in ref. [49].
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d)a = {h17h27a‘17a‘27¢it7¢3:} of €q. (F1)7 we have

dm? dln)  dm? d|n)
+ M2 2L F.2
2. " g, = g, M g, 2
we can take the matrix elements of this equation between the state (I|, we have
am? dm?
l = —"0, 2 —mi : F.
(11 G ) = g8+ (m = ) 1] 5 ) (F.3)

Taking [ = n, we arrive for an expression for the first derivative of the mass eigenvalue in
terms of the derivative of the mass matrix,

dm? dh?

This expression is particularly useful since we can take the field derivatives with respect
to all field dof easily, then set them to zero and keep only the CP even components. We
can write eq. (F.4) in matrix form by relating the mass eingenbasis with the interaction
basis by using the rotation matrices U(0),

dm? - 1 dm?
160 (U ©) 2o,

. -U(G))m . (F.5)

Notice that after keeping only the hi, ho components of U and dv®

the derivative of the

ddg
mass eigenvalues are also dependent only on hi, he. Importantly, we are able to keep the
2 2
information on the other CP odd and charged field derivatives, i.e. ddff, ‘gg;, .... The

rotation matrices are easily obtained from the original mass matrix.
Now, taking I # n in eq. (F.3) and for non-degenerate mass eigenvalues le # m?2, we have

1 dn? 5 5
Ul g = g WG ). for i £, (F.6)
a 1 a
while for the degenerate case we simply have
MQ
(] i In) =0, for mi = m?2. (F.7)

These expressions will allow us to simplify the equation for the second derivative of the mass
eigenvalues. Taking one more field derivative of eq. (F.2), we arrive at

d*m? am?d dM? d d?
dpadpp dpa dop, — ddy dog ddadey
d*m? dm? d|n) dm?d|n) 5 d?|n)
daddy dpa dop  dop dog daddy
Again, taking the matrix element with the state (I|, we arrive at
d*m? am? d
Ubrwrr +Z l| ym (ml - yn +Z (Ul g, I {ml 5= 1) (F.9)
d*m? de d dm? d|n> d?
"t + l|—|n L + (m2 —m}) (I ———|n).
" doedey " dia e doy ) doy doa ( D4 daddy )
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Where we have inserted the identity operators 1 = >, |m) (m| to separate each matrix
element. Using the previous expressions, egs. (F.5), (F.6) and (F.7), and taking | = n, we
can write the final form of the second derivative of the mass eigenvalues

di:gib B (U_l(g) ' Cm i h ‘U(9)>m * ( UTo)- lej hiho 'U(Q)] 'Ab> -
2
+ < U=i(o) - ZZZ) - -U(G)l -%)m : (F.10)
where the auxiliary matrix A, is given by
0 if p =g,
(Ae)pg =30 if p#q, but m2=mZ, (F.11)
e [Ul(e) - -U(@)Lq . else.

Egs. (F.5) and (F.11) are useful because they allow to write the gap equation exclusively as
a function of the mass eigenvalues and mixing angles. We only need to calculate the mixing
angles of the CP even, CP odd and charged blocks of the (hi, he) field dependent mass matrix
and evaluate the derivatives of the mass matrices, which have simple analytic expressions.

G Thermal resummation and symmetry (non)-restoration behaviour in a
toy model

We consider a toy model with a one-dimensional potential. The tree-level potential is given by:

Vo =

=~ >

ot (G.1)
The field-dependent mass squared of the scalar field ¢ is:
mé = 3\¢°. (G.2)

Note that the global minimum of this potential is at ¢ = 0.

As discussed in section 2, in the high temperature approximation, the logarithmic terms
cancel between the Coleman-Weinberg (CW) correction, as defined in eq. (2.1), and the
finite-temperature contributions, as shown in eq. (2.6). Consequently, at the high temperature
limit the finite-temperature potential can be expressed as:

T? T 3 mg 3 T2
Viot & Vo + =—mj (m2)3/2 — 204 0 g (2, (G.3)

mg— —5— = —5—
24 127 264n% 6472 W

where a;, = 1672 exp(3/2 — 2yg) and g ~ 0.577 is the Euler-Mascheroni constant.
Let us assume that the Truncated thermal correction to the mass is given by ¢TI’ at the
high temperature approximation. The thermally improved mass of ¢ then becomes:

m? =md + cT. (G.4)
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In the AE prescription, as discussed in section 2.3.1, m3 is replaced by m? only in the
term proportional to (m%)3/ 2 in eq. (G.3). This term can be expressed as:

9\ 3/2
2 2\3/2 _, 3/273 Mo
T T° (1 '
(mg +cT7)= — ¢ ( +cT2> (G-5)
3 mj 3
= (1 - 23%) =1 4 By (G0

Here, we assume c¢T? > m2 in the high temperature approximation and retain only the
leading-order term. To investigate symmetry non-restoration, we focus on the coefficient of
the ¢? term, which is proportional to m3(= 3\¢?). We denote this coefficient by Sm(z)(AE),
which can be expressed as:

2 C
$,2(AE) = % + B\Q[T (-é) (@.7)

. T? 3y/c
k7 Ceat E

Therefore, if ¢ > %2, the coefficient Smg (AE) can become negative, causing the ¢
term to break symmetry at high temperatures. This provides a simple example of how the
daisy-resummed term in the AE prescription can lead to symmetry non-restoration under
large thermal corrections.

In the Parwani prescription, as discussed in section 2.3.2, m3 is replaced by m? throughout
the potential. In the potential defined in eq. (G.3), the replacement of m2 — m? in the g—zm%
term is inconsequential for studying symmetry non-restoration, as the correction remains
field-independent in the total potential. The primary distinction of the Parwani prescription,
compared to the AE prescription at the one-loop level, lies in the resummation of the quartic
power of the mass terms. Specifically, the ¢?-dependent term arises as 2c¢T?m2 from the
expansion of (m2 + ¢T?)2. Consequently, the relevant contribution from the quartic term

in the potential, as defined in eq. (G.3), is expressed as:

4 2 2,2 2
my 3 apT ) cT m0< 3 apT )
——+log | —— ——+1 . .
647r2( 2 * 0g< p3h ) ~ T3on2 2 +log 3 (G8)
Combining the contributions from eq. (G.7) and eq. (G.8), the coefficient of the ¢? term,
denoted as S,,2(PW), is given by:

2
0

T? 3,/ T cT? 3 apT?
S 2(PW) = — + T ——— — 41
mg(PW) = o7+ = ( 127r) * 32772( TR e )

T2 3yc 3¢ 3 apT?

Note that log(ap) = log (167 exp(3/2 — 2vg)) ~ 5.4. Consequently, the coefficient of the term
proportional to ‘¢’ can be expressed as %(3.9 + log(T2 / ,u%)). Importantly, the coefficient
of ‘¢’ increases with temperature due to the log(7") dependence in its expression. It can be
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shown that for all positive values of ‘c’, Smg(PW) can always remain positive at sufficiently
high temperatures. Consequently, the ¢? term does not become negative, ensuring that
symmetry is not broken at high temperatures.> This conclusion can be verified using the
following relations.

Define the coefficient of the term proportional to ‘¢’ in eq. (G.9) as d, where
d—i<—%+log<“bT2>), and let ¢ = 22. Then, Sz (PW) can be expressed as

T 4n2 wE

-1 9
T2d 9 3 1 3 1 9

From this expression, it is clear that the first term on the right-hand side is always positive.
9

Itd> =,

restoration at high temperatures is d >

the second term is also positive. Hence, a sufficient condition for symmetry

_9_ —0.45
4ﬂ-2 )

above mentioned relation of ‘d’. Note that in this one-dimensional toy model, this condition is

which implies T' > e R criteria, following the
independent of the thermal correction coefficient ‘c’. Although, the overall thermal correction
coefficient ‘¢’ can be modified at high temperatures when computed by solving the full gap
equations. However, incorporating the thermal mass at the tadpole level within the PD
scheme yields a condition similar to eq. (G.10), which also suggests symmetry restoration
at high temperatures. Thus, while both the Parwani and PD resummation prescriptions
predict symmetry restoration at high temperatures, the AE approach predicts symmetry non-
restoration. This behavior in the AE prescription arises because it only resums the Matsubara
zero modes at the one-loop level, whereas the other prescriptions resum contributions from
all modes, enabling symmetry restoration. Consequently, it is plausible that symmetry
restoration may also emerge within the AE scheme once two-loop or higher-order corrections
are included, as these would improve the treatment of the non-zero modes, and we plan
to investigate this in future work.
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