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Abstract

In this paper, we formulate the simplest Lorentz-breaking extension for the spin-3/2 field theory and
couple it to the Abelian gauge field in a Lorentz violating (LV) manner. Next, we calculate the lower LV
quantum corrections, that is, the Carroll-Field-Jackiw (CFJ) term, which, being superficially
divergent, turns out to be finite but ambiguous, and also the higher-derivative CF] term. Besides, we
compute the aether term, being the lowest CPT-even LV term, involving the second order in the LV
vector.

The possibility of Lorentz symmetry breaking is actively discussed now, including not only theoretical but also
experimental studies [1]. Various LV extensions have been discussed within the context of the Lorentz-violating
Standard Model Extension (LV SME) originally formulated in [2, 3] and further generalized in [4]. Essentially,
most of them represent themselves as extensions of spinor QED or its non-Abelian analogues constructed by
adding some LV operators. The LV couplings of gauge fields to scalar ones have been considered within the
Higgs sector of LV SME (see, e.g., [2, 3]). Further, various LV extensions of gravity, that is, extensions of LV SME
to curved space-time, have been considered [5, 6]. At the same time, it is interesting to study other LV theories
that have not been included in LV SME. In this paper, we follow this idea, introducing a LV generalization of the
Rarita-Schwinger (RS) theory [7], describing the spin—3 /2 field known to play an essential role within the
supergravity context, where this field corresponds to the gravitino (for a review on supergravity, see, e.g., [8]).
While the RS Lagrangian presents certain drawbacks implying the possibility of superluminal solutions [9, 10]
(we note nevertheless that the situation is improved in supergravity, see, e.g., [11]), in a certain sense, we expect
our study to be a prototype for further studies of LV extensions of supergravity, where one can expect, in
particular, absence of these drawbacks. Within this paper, we couple the spin-3,/2 field to the electromagnetic
field, introduce the simplest LV term, for the first time within studies of the gravitino, and obtain the lower LV
quantum corrections, that is, the Carroll-Field-Jackiw (CFJ) term [12], and then, the higher-derivative CFJ-like
[13] and the aether ones [14].

The most general spin-3/2 free Lagrangian looks like [15] (see also, e.g., [16], where issues related to
canonical quantization and phenomenological aspects of this theory were discussed, and references therein):

E - TL;J,AIsz/) (1)

where, in the momentum space,

1
ANV = (g — M)n" + A(y!'p” + v"pt) + 5(3A2 + 24 + D' gy

+ M(A® + 3A + 1)y, )
Here A is areal number. The usual Rarita-Schwinger case [7] corresponds to the requirement A = — 1,
which will be adopted henceforth, so that one has
N = (f = MO = (9" + 7p) + 97 Py + Myt 3
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Figure 1. CFJ-like contributions to the two-point function of the vector field.

Then, the corresponding propagator is

B _|_ M 1 2p/l,pl/ ,yp,pu _ ,Yl/plz,)
Gw, _ A v — p ( no AP~V _ . 4
(p) = () FEyYE n 37 Ve i %)

We note thatat M = 0, A*"is transverse, i.e., the theory (1) displays the gauge symmetry in this case, while
the mass term proportional to M breaks the gauge symmetry. Therefore, at M = 0, to define the propagator
consistently, one needs to introduce a gauge fixing term for the RS field. To avoid this problem, within our
studies, we assume M = 0.

Itis clear that the electromagnetic field can be coupled to the RS field through ‘covariantizing’ the action by
promotion of the usual derivative to the gauge covariant one, 9, — D,, = 0,, — ieA,, [17], or, as is the same in the
momentum space, to replace p,, — p,, + eA,,. By awhole analogy with the spinor QED, the resulting theory, at
A=—1,is

E — ’(Z;L(OD _ M)?’]/“/ _ i(,y/z,Dl/ + ,.YIID/J,) + i’Y”D’YV + M,.y/l,,.yu + y,}/sn/w)ww (5)

To break the Lorentz symmetry, we have introduced here the simplest LV term, that one proportional to the
axial vector b,,. We note that just the analogue of this term for the usual spinor field has been used to generate the
CFJ term in the LV QED in numerous papers, see [3]. We note that this term will allow generating not only the
CFJ term but also the aether term (which nevertheless will be obtained in our paper with the use of another
coupling) and higher-derivative terms Other possible LV terms in the theory of RS field coupled to the gauge
one, that could be introduced in analogy with [4], will be considered elsewhere.

The Lagrangian (5) is gauge invariant under usual U(1) transformations A, — A, — 0,6, ¢, — 'S .- In this
case, the RS field transforms as the usual matter. As we already noted, if we had M = 0, the free Lagrangian of the
RS field would possess its own ‘gauge’ symmetry (indeed, in this case, it looks like /1)),y 7 0\1/),, with gauge
transformations 1, — 1, + 0,,¢, where ¢ is completely distinct of the above parameter & since their mass
dimensions are different, 0 for £ and 1/2 for ¢, and while £ is a bosonic parameter, ¢ is a fermionic one), but the
mass term proportional to M evidently breaks this symmetry. It is interesting to note, nevertheless, that the CFJ
term does not depend on M, which allows us to expect that the results we obtain for this term will be valid in the
massless case as well, but this is not so for higher-order corrections which depend on M explicitly.

We see that we have only triple vertices. Actually, they can be read off from

Ve = et (ANt — (YA + yA") + M Ay, = ey, T [Alt,. (6)

As aresult, we have the graphs contributing to the CFJ] term similar to the usual Lorentz-violating QED (see,
e.g., [3]), but with completely different vertices. Explicitly, our contributions have the forms given in figure 1.
Their expressions are

4
I, = —eztrf %T‘“’[A(—P)] Gua (k) Bysn*Gp, (k) TP [A ()] Gopu (k + p)s
_ 2 d*k v o afs
I, =—e trf wT“ [A(=p)1G,p (k) T [A(P)] Goa(k + p) Bys1n*’Gppu(k + p). (7)

After writing the vertices described by T#"[A] factors, in the explicit form (6), we obtain

'
I, = —etr f (27T)4AA(—p)AT(p)(7A77’“‘” = = N+ YY) Goa (k) Bysn® G, (k)

X (YmP? — 7 — 0P + Py y?) Gou(k + p),

d*k
I, = —e*tr f ( 27T)4AA(—p)AT(p)(7A77“” — Y = N+ ) Gy (k)

X (Y07 =77 = 0 + YY) Goa(k + ) Bys1* Gy (k + p). ®)

To find the CFJ-like contribution (which is clearly nontrivial since this expression includes the y5 matrix),
one can expand G(k + p) in series in p up to the first order:

2
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1 1 1 2kHkY MKyt )
G (k + p) = G (k) — W ¥ — -
k+p ® K—Myl{—M(n 377 3M? 3M
1 (20" + Kt  Ap” — v”p“) 2
_ + + O . 9
. M( Ve M (r9) )]

We note that the contribution of zero order in the external momentum p in our case is evidently zero.
Indeed, the presence of 5 matrix will generate the Levi-Civita symbol e ***. Two of its indices, after calculating
traces and integrals, must be contracted with external gauge fields, one—with the b, vector, so, its remaining
index can be contracted only with the external momentum. Actually, to get a scalar we must consider an
essentially odd order in external momenta.

Then, we can write

I, = —e2A\(—p)IL (DAL (p), 1T, = —e2A\(—p)IT; " (P)A+(p), (10)

sothat TI)"(—p) = TI7*(p) (an analogous relation takes place for two contributions to the CFJ self-energy
tensor in the usual spinor QED with one § % insertion, cf [3]). So, it is sufficient to find only S,,, i.e., to calculate

Hj‘T( D), given by
d*k
H)\‘r —t
o (P) rf @m)*
X (Y7 — P — 0 + PV Y7) Gou(k + p)

d’k £+M
= _trf AV sl VN AV IA 4 oA A
(ZW)4(777 R A A e ey

(,y)\n/u/ _ ,y/lnu)\ _ ,yt/np,)\ + VII’YA’Y”)Gya(k)K’stmliGﬂp(k)

Zkuk(y _ ’}/l/ko/ - ,‘Yﬁkl/

X (o = 2020 — )
e = W00 3M
¥+ M 1 2k,ks sk, — ks
X PrspB L T Ny e PR B [
B T\ T 3T e 3M
X (YmP? =AM =y £ %)
1 1 1 2kok, Yok — ks
X ﬁ (no,u - TV W — 2! - ! K
F-M"F-M 3 3M 3M
1 z(ko'pﬂ + kp«pg) 'Vap# = WPy
+ + + O(pH). 11
K- M[ 3M? 3M 2 an

It remains to find the trace and, afterward, the integral which badly (sextically) diverges. It is clear that
H;\T (p) x €9, D> 50, our result yields the CFJ form.

In the first manner, we calculate all traces and integrals in D = 4 — e dimensions. This is achieved by taking
the contractiong,,¢"" = Dand d*k/(2n)* — p*~PdPk/(2m)P. To move the vs matrix to the end of every
expression, we use {7s,y,} = 0 and compute the trace directly in four dimensions. In this case, the
corresponding contribution to the effective Lagrangian is
2

€ (1,
— NP0 O,A,, (12)

13
[_: =
CH,1 54

Alternatively, we can calculate all traces in (11) in four dimensions, by considering the contraction

nv

g.8"" = 4,and later integrate in D dimensions. In this case, the result is also finite but different from the above
one being equal to
Lon = L ehmp, A9, 13
CFJ,2 — 3671'26 AN Uplip. ( )

Due to the presence of the 5 matrix in the above calculations, we can also use the 't Hooft-Veltman
prescription [18]. This involves breaking down g** and " into 4-dimensional and (D — 4)-dimensional parts,
by writing g = g 4 §"”and y# = 4" + 4. By doing this, we can use the contractions g , &' = 4,
§,8" =D —4,and g g" = 0.Tomove the s matrix to the rightmost position, we now use {¥#, %} = 0
and [§", 7] = 0. Once this is done, we can perform the D-dimensional integrals to obtain the final result

5 2
LCF],3 = —9—;6)‘Mypb,\AﬂayAp. (14)

Also, to simplify the expression (11), we can employ the identity:
’Y“’}/)\'}/V — n/z,A,Yl/ + nu)\,y/:, _ n/tu,}/)\ — e (I/L)\U,YO_ Vs (15)
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so that, we have

4 —
HQT(P) = tl‘fﬂen,)\#u ”/'YSK—’_—M(WIM - l’YV'Ya - 2k ko — ’y"ka P)/akp)

2m)* k? — M? 3 3M? 3M
K+ M 1 kakﬁ ’Y’ikp - ’kaﬁ
% % af — _ -2 -
B e\ T 3T T 3M
K+M K+M 1 2k, k Wk — Wk
ST n o Ry uho
X € /)0’7575(1(2 — szk2 — M2 nou - E’YU,Y;L - 3M2 - 3M

2(ksp, + kup) WP, —
o KM [RR T RB) | DeBe T B ) G2, (16)
k* — M? 3M? 3M
Now, we calculate the trace straightforwardly without employing 't Hooft-Veltman prescription in
D = 4 — edimensions. The corresponding contribution to the effective Lagrangian is
311e? |,
ECF],AL = 6487‘(‘2 6)‘“ pb/\A# &,Ap. (17)

Interestingly, if we calculate all traces in (16) in 4 dimensions and later integrate in D dimensions as above,
we obtain the same result (13).

We note that the identity (15) can be employed as well to rewrite our triple vertex as V, = ie **"A, 1)), % Y-
However, this expression involves both the Levi-Civita symbol and the 5 matrix, and both these objects are well
defined in the four-dimensional space-time, while their extension to the arbitrary D-dimensional space-time is
well known to be one of sources of ambiguities generating additional results for the CFJ term, see [19].

So, we have found that the result is finite within all these approaches but strongly depends on the regularization
scheme. This is reasonable since, as it is well known, the CFJ action is gauge invariant, but the CFJ Lagrangian is
not, hence its ambiguity is natural [ 19] (for discussions, see also [20] and references therein). We note that the sign
of the generated CFJ term differs in various schemes, nevertheless, this fact seems to give no difficulties since this
term is finite. Besides this, it is interesting to emphasize that the RS action involves spin-3/2 and spin-1/2 modes
[16], therefore one can conclude that the ambiguity of the CFJ term is contributed both by the spin-1,/2 mode, as it
occurs in the usual LV QED [19], and spin-3,/2 mode whose presence cannot improve renormalizability since the
UV asymptotic of the RS propagator (4) is evidently worse that of the usual Dirac propagator.

The possible higher-derivative (Myers-Pospelov or higher-derivative CFJ) contributions can be calculated
along the same lines as in the usual QED [21]. However, unlike that paper, we concentrate in terms of the first
orderin b,, only, as it was done in [13], which is rather natural since the b,, vector is expected to be small [1].

Within our paper, we calculate the purely minimal higher-derivative contribution. Explicitly, we consider
the expressions (8), where all orders in the external p,, are taken into account:

I, = 2 d4k A LV L VA Vg LA Lom AV
o« = —e trf (ZW)AIAA(fp)AT(p)(v n = =y )
K + M 1 2kuk(y 'Yl/ka — fYaklz af
Ve L VE N T
K+ M 1 2kgk, ko — ks
o\ T3 T e T T
X (YMP7 = A = P+ yPyy0)

K + p + M 1 2(k + p)a(k + p)u ,Yd(k + p)u - ’Yu(k + p)a
—Y0,, — = - - )
(k+p)y— M2 on 3 3M> 3M ’

d*%
M, = —eitr f (277)4AA(—p)AT(p)(7An“” — Y0 = Y+ )
" K+ M 1 3 2k, k, B Yk, — ko
e\ T 3T e 3M
X (YmP7 = AP = P+ yPyy0)

K+P+M (7] o l’Y’Y _ 2(k+p)0(k+p)a 7 ’Va(k"'P)a _P)/a(k+p)a)%’y naﬁ
(k +p)? — M2\ 37" 3M2 3M ’
K+p+M (1 2k+pk+pu w4 p) — wk+p)
k+p? —mz\" 3" 3M2 3M '

(18)
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Figure 2. Mixed contribution to the two-point function of the vector field.

Itis clear, by symmetry reasons, that we, as above, can employ the definitions (10) for the self-energy tensors.
Using again the 't Hooft-Veltman prescription and the Feynman parametrization, we obtain the following all-

order result:
20p2 p4 p6
m,=— - - N A L (—p)p, A
(sng’Mz 272 MY 16272/ M® M PRAP)
+ (24M2p'0(4M? — p?) + 2/p"(4M? — p?) — 534MC\[p?(4M? — p?)
— 179M* [pS(4M? — p?) + 6(104p>MS — 54p*M* + 4pSM? + p8 — 4M®)
260y A, (—p)p, A
« csc | M| | e AP, p(p), (19)
Jp? ) ) 972m2me [p2(am? — p?)
where L/ 1 In %,withe =4 — Dand p/? = 4mpe™. So, we see that the terms of third, fifth, and seventh
€ € !
orders in derivatives diverge. By taking the limit p* < M* (M = 0) in the finite contribution above, we obtain
5¢2 2e?p?
o fin = —wa“””bAAu(—p)pyA,)(p) - 81”5\/1 SeMhyA L (—=p)p, Ay (D), (20)

i.e., the CFJ term is confirmed to be finite unlike the higher-derivative contributions. Apparently this signalizes
that higher-derivative terms do not contribute to the possible chiral anomaly whose arising is natural to expect in
awhole analogy with the LV QED.

One more important term which can arise in the effective action is the lower CPT-even term, that is, the
aether term. To simplify the calculations, we generate it not through introducing the }~ term as in the previous
examples, but with the use of the additional magnetic-like nonminimal coupling representing itself as a
straightforward generalization of the magnetic coupling used in [22] and allowing to keep only zero order in
derivatives from the contribution of the corresponding Feynman diagram:

Vg = g{pae;wpa,m bquo'(/}a- (21)

First, we can evaluate the lower nontrivial contribution of the nonminimal vertex, it is given by the Feynman
diagram depicted at the figure 2:
Its explicit form is:
dk

I d4p w afyo, (2P
i = —eg [t [T A PIGy (€ b B Gk, 22)

or, as is the same,

dp o
Smiv = —eg | oM (=P e b a(p)

4
X tr f TR — i — o 4 i)

@m*
« K + M n, - l,y ~, — Zkukp _ ’YVkp - A/pku
k- M2\ 37T 3M2 3M
% " ]{—"——M 6'0 _ lry/)fy _ kak'u, _ ’kaﬂ - ’y,u kﬂ (23)
RSV e T Ve 3M '

If, after calculating traces in four dimensions, we promote the loop integral to D dimensions, we find the
finite result, namely,

2
Lonix = %HW@A# d,4,. 24)

If, instead of this, we proceed all the computation directly in D dimensions and afterwards take D = 4, we
also obtain the finite, but different result
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Figure 3. Acther contribution to the two-point function of the vector field.

2
Emix = eag’:lz EAMVpb)\A/LayAP' (25)

So, we see that the CFJ term in this case is again finite and ambiguous, just as occurred within the scheme of
generating the CF] term considered above, where two minimal vertices and one b/ys insertion were employed.

In principle, we can generate as well the aether term. The corresponding contribution is graphically given by
figure 3 and looks like:

2 4

o 7g_ dp cHpo ' o'’ T d4k aa! , )
Sae = f o b Ey(—p)e by Eyor(p)tr f —(zm”"’G ()Y Gara (k). (26)

Explicitly, the contribution (26) is written as

[

2 4
Sae:_g_f dp gNVpabpra( p)ful}pab”'FP'”'(p)

@m)*
- f kK + M e _ Loy 2Kk ok — 4k
Qm M~ M2 3 3M? 3M
K + M 1 Zk(y’ka ’Yu’ka - quka’
e\ T T e T ) &

Itis analogous to the aether contribution in usual spinor QED with the magnetic coupling [22], but unlike
that case it displays the divergence being equal to

2M2
Spe = g6 2 (i, + %) f d*x (4h, F"b By, — 2b°E,, FY), (28)
s

We note that, in principle, the presence of this divergence is rather natural since our model is worse from the
renormalization viewpoint than the theory considered in [22].

At the same time, it is important to notice that the possible aether term is proportional to the second order in
the LV vector b,,. Therefore, it is highly suppressed. The same conclusion is valid if we try to generate the aether
term on the base of our initial Lagrangian (5) without employing nonminimal vertices. So, if we start from any
CPT-odd gauge-RS coupling, the aether term must be of the second order in LV parameters. The next nontrivial
contribution of the first order in the b, will involve higher derivatives.

Let us discuss our results. We have proved that, despite a horrible sextic divergence (to the best of our
knowledge, such a divergence never was reported, perhaps except for nonlocal theories whose Lagrangian
involves 0~ or (072 operators, as occurs in some nonlocal gravity models, see, e.g., [23]), the result for the CFJ
term is finite but strongly dependent on the regularization scheme, i.e., ambiguous. In a whole analogy with the
usual LV QED, itis natural to expect that this ambiguity can be related to some analogue of the Adler-Bell-Jackiw
(ABJ) anomaly (for the usual QED, this relation has been discussed in [24]). The gauge covariance reasons allow
us to conclude that this result can be straightforwardly generalized to a non-Abelian case, resulting in non-
Abelian CFJ and aether terms We note that our results do not depend on the mass parameter M, so it is natural to
conclude that even coupling of the massless (and hence gauge invariant) RS field to the electromagnetic field will
yield the CF] term. From another side, the higher-derivative CFJ-like terms, involving up to seven derivatives,
diverge. Comparing this situation with the usual LV QED where the three-derivative terms were shown to be
finite, and, in certain cases, ambiguous [21], and taking into account the relation between ambiguities and
anomalies claimed in [24], we can conclude that the possible analogue of the chiral anomaly in the case of the
presence of RS fields will not include higher derivatives.

This study can be generalized to the case of the RS field coupled to the gravity, where it is reasonable to expect
arising of the 4D gravitational Chern-Simons term. We plan to discuss the anomalies in the theory of the Rarita-
Schwinger field coupled to a gauge field and to gravity in a forthcoming paper. Also, within our further studies
we plan to apply our methodology within the supergravity context where, as it is known [11], the notorious
difficulties of the RS theory such as superluminal solutions are absent.
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