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Abstract
In this paper, we formulate the simplest Lorentz-breaking extension for the spin-3/2field theory and
couple it to theAbelian gauge field in a Lorentz violating (LV)manner. Next, we calculate the lower LV
quantumcorrections, that is, theCarroll-Field-Jackiw (CFJ) term, which, being superficially
divergent, turns out to befinite but ambiguous, and also the higher-derivative CFJ term. Besides, we
compute the aether term, being the lowest CPT-even LV term, involving the second order in the LV
vector.

The possibility of Lorentz symmetry breaking is actively discussed now, including not only theoretical but also
experimental studies [1]. Various LV extensions have been discussedwithin the context of the Lorentz-violating
StandardModel Extension (LV SME) originally formulated in [2, 3] and further generalized in [4]. Essentially,
most of them represent themselves as extensions of spinorQEDor its non-Abelian analogues constructed by
adding someLVoperators. The LV couplings of gaugefields to scalar ones have been consideredwithin the
Higgs sector of LV SME (see, e.g., [2, 3]). Further, various LV extensions of gravity, that is, extensions of LV SME
to curved space-time, have been considered [5, 6]. At the same time, it is interesting to study other LV theories
that have not been included in LV SME. In this paper, we follow this idea, introducing a LV generalization of the
Rarita-Schwinger (RS) theory [7], describing the spin−3/2field known to play an essential role within the
supergravity context, where thisfield corresponds to the gravitino (for a review on supergravity, see, e.g., [8]).
While the RS Lagrangian presents certain drawbacks implying the possibility of superluminal solutions [9, 10]
(we note nevertheless that the situation is improved in supergravity, see, e.g., [11]), in a certain sense, we expect
our study to be a prototype for further studies of LV extensions of supergravity, where one can expect, in
particular, absence of these drawbacks.Within this paper, we couple the spin-3/2field to the electromagnetic
field, introduce the simplest LV term, for thefirst timewithin studies of the gravitino, and obtain the lower LV
quantum corrections, that is, the Carroll-Field-Jackiw (CFJ) term [12], and then, the higher-derivative CFJ-like
[13] and the aether ones [14].

Themost general spin-3/2 free Lagrangian looks like [15] (see also, e.g., [16], where issues related to
canonical quantization and phenomenological aspects of this theorywere discussed, and references therein):

y y= Lm mn
n¯ ( ) , 1

where, in themomentum space,
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HereA is a real number. The usual Rarita-Schwinger case [7] corresponds to the requirementA=− 1,
whichwill be adopted henceforth, so that one has

h g g g g g gL = - - + + +mn mn m n n m m n m n( ) ( ) ( )p M p p p M . 3
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Then, the corresponding propagator is
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Wenote that atM= 0,Λμν is transverse, i.e., the theory (1) displays the gauge symmetry in this case, while
themass termproportional toM breaks the gauge symmetry. Therefore, atM= 0, to define the propagator
consistently, one needs to introduce a gaugefixing term for the RS field. To avoid this problem,within our
studies, we assumeM≠ 0.

It is clear that the electromagnetic field can be coupled to the RSfield through ‘covariantizing’ the action by
promotion of the usual derivative to the gauge covariant one,∂μ→Dμ= ∂μ− ieAμ [17], or, as is the same in the
momentum space, to replace pμ→ pμ+ eAμ. By awhole analogywith the spinorQED, the resulting theory, at
A=− 1, is

y h g g g g g g g h y= - - + + + +m
mn m n n m m n m n mn

n¯ (( ) ( ) ) ( ) i D M i D D i D M b . 55

To break the Lorentz symmetry, we have introduced here the simplest LV term, that one proportional to the
axial vector bμ.We note that just the analogue of this term for the usual spinorfield has been used to generate the
CFJ term in the LVQED in numerous papers, see [3].We note that this termwill allow generating not only the
CFJ termbut also the aether term (which nevertheless will be obtained in our paperwith the use of another
coupling) and higher-derivative termsOther possible LV terms in the theory of RSfield coupled to the gauge
one, that could be introduced in analogywith [4], will be considered elsewhere.

The Lagrangian (5) is gauge invariant under usualU(1) transformationsAμ→ Aμ−∂μξ,ψμ→ e i ξψμ. In this
case, the RS field transforms as the usualmatter. Aswe already noted, if we hadM= 0, the free Lagrangian of the
RSfieldwould possess its own ‘gauge’ symmetry (indeed, in this case, it looks like y g g y¶mnlr

m n l r¯ 5 , with gauge
transformationsψμ→ ψμ+ ∂μj, wherej is completely distinct of the above parameter ξ since theirmass
dimensions are different, 0 for ξ and 1/2 forj, andwhile ξ is a bosonic parameter,j is a fermionic one), but the
mass termproportional toM evidently breaks this symmetry. It is interesting to note, nevertheless, that the CFJ
termdoes not depend onM, which allows us to expect that the results we obtain for this termwill be valid in the
massless case as well, but this is not so for higher-order correctionswhich depend onM explicitly.

We see that we have only triple vertices. Actually, they can be read off from

y h g g g g y y y= - + + =m
mn m n n m m n

n m
mn

n¯ ( ( ) ) ¯ [ ] ( )V e A A A A e T A . 6e

As a result, we have the graphs contributing to theCFJ term similar to the usual Lorentz-violatingQED (see,
e.g., [3]), but with completely different vertices. Explicitly, our contributions have the forms given infigure 1.

Their expressions are
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After writing the vertices described byTμ ν[A] factors, in the explicit form (6), we obtain
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Tofind theCFJ-like contribution (which is clearly nontrivial since this expression includes the γ5matrix),
one can expandG(k+ p) in series in pup to thefirst order:

Figure 1.CFJ-like contributions to the two-point function of the vector field.
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Wenote that the contribution of zero order in the externalmomentum p in our case is evidently zero.
Indeed, the presence of γ5matrix will generate the Levi-Civita symbol òμ ν λ ρ. Two of its indices, after calculating
traces and integrals,must be contractedwith external gaugefields, one—with the bμ vector, so, its remaining
index can be contracted onlywith the externalmomentum. Actually, to get a scalar wemust consider an
essentially odd order in externalmomenta.

Then, we canwrite

P = - - P P = - - Pl
lt

t l
lt

t( ) ( ) ( ) ( ) ( ) ( ) ( )e A p p A p e A p p A p, , 10a a b b
2 2

so that P - = Plt tl( ) ( )p pb a (an analogous relation takes place for two contributions to theCFJ self-energy
tensor in the usual spinorQEDwith one gb 5 insertion, cf [3]). So, it is sufficient tofind only Sa, i.e., to calculate
Plt( )pa , given by
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It remains tofind the trace and, afterward, the integral which badly (sextically) diverges. It is clear that
P µlt ltab

a b( ) p b pa , so, our result yields theCFJ form.
In thefirstmanner, we calculate all traces and integrals inD= 4− ò dimensions. This is achieved by taking

the contraction gμνg
μ ν=D and p m p -( ) ( )d k d k2 2D D D4 4 4 . Tomove the γ5matrix to the end of every

expression, we use {γ5, γμ}= 0 and compute the trace directly in four dimensions. In this case, the
corresponding contribution to the effective Lagrangian is

p
= ¶lmnr
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b A A
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. 12CFJ ,1

2

2

Alternatively, we can calculate all traces in (11) in four dimensions, by considering the contraction
gμνg

μ ν= 4, and later integrate inD dimensions. In this case, the result is alsofinite but different from the above
one being equal to

p
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Due to the presence of the γ5matrix in the above calculations, we can also use the ’tHooft-Veltman
prescription [18]. This involves breaking down gμ ν and γμ into 4-dimensional and (D− 4)-dimensional parts,
bywriting = +mn mn mn¯ ˆg g g and g g g= +m m m¯ ˆ . By doing this, we can use the contractions =mn

mn¯ ¯g g 4,

= -mn
mnˆ ˆg g D 4, and =mn

mn¯ ˆg g 0. Tomove the γ5matrix to the rightmost position, we nowuse g g =m{ ¯ }, 05

and g g =m[ ˆ ], 05 . Once this is done, we can perform theD-dimensional integrals to obtain the final result

p
= - ¶lmnr

l m n r ( )
e

b A A
5

9
. 14CFJ ,3

2

2

Also, to simplify the expression (11), we can employ the identity:

g g g h g h g h g g g= + - -m l n ml n nl m mn l smln
s ( )i , 155
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so that, we have
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Now,we calculate the trace straightforwardly without employing ’t Hooft-Veltman prescription in
D= 4− ò dimensions. The corresponding contribution to the effective Lagrangian is

p
= ¶lmnr
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Interestingly, if we calculate all traces in (16) in 4 dimensions and later integrate inD dimensions as above,
we obtain the same result (13).

We note that the identity (15) can be employed as well to rewrite our triple vertex as y g g y= lmrn
l m r n¯V i Ae 5 .

However, this expression involves both the Levi-Civita symbol and the γ5matrix, and both these objects are well
defined in the four-dimensional space-time, while their extension to the arbitraryD-dimensional space-time is
well known to be one of sources of ambiguities generating additional results for theCFJ term, see [19].

So,wehave found that the result isfinitewithin all these approaches but strongly depends on the regularization
scheme. This is reasonable since, as it iswell known, theCFJ action is gauge invariant, but theCFJLagrangian is
not, hence its ambiguity is natural [19] (for discussions, see also [20] and references therein).Wenote that the sign
of the generatedCFJ termdiffers in various schemes, nevertheless, this fact seems to give nodifficulties since this
term isfinite. Besides this, it is interesting to emphasize that theRS action involves spin-3/2 and spin-1/2modes
[16], therefore one can conclude that the ambiguity of theCFJ term is contributedboth by the spin-1/2mode, as it
occurs in theusual LVQED [19], and spin-3/2modewhose presence cannot improve renormalizability since the
UVasymptotic of theRS propagator (4) is evidentlyworse that of the usualDirac propagator.

The possible higher-derivative (Myers-Pospelov or higher-derivative CFJ) contributions can be calculated
along the same lines as in the usualQED [21]. However, unlike that paper, we concentrate in terms of the first
order in bμ only, as it was done in [13], which is rather natural since the bμ vector is expected to be small [1].

Within our paper, we calculate the purelyminimal higher-derivative contribution. Explicitly, we consider
the expressions (8), where all orders in the external pμ are taken into account:
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It is clear, by symmetry reasons, that we, as above, can employ the definitions (10) for the self-energy tensors.
Using again the ’tHooft-Veltman prescription and the Feynman parametrization, we obtain the following all-
order result:
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ln M , with ò= 4−D and m pm¢ = g-e42 2 . So, we see that the terms of third, fifth, and seventh

orders in derivatives diverge. By taking the limit p2=M2 (M≠ 0) in thefinite contribution above, we obtain
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i.e., the CFJ term is confirmed to befinite unlike the higher-derivative contributions. Apparently this signalizes
that higher-derivative terms do not contribute to the possible chiral anomaly whose arising is natural to expect in
awhole analogywith the LVQED.

Onemore important termwhich can arise in the effective action is the lowerCPT-even term, that is, the
aether term. To simplify the calculations, we generate it not through introducing the gb 5 term as in the previous
examples, butwith the use of the additionalmagnetic-like nonminimal coupling representing itself as a
straightforward generalization of themagnetic coupling used in [22] and allowing to keep only zero order in
derivatives from the contribution of the corresponding Feynman diagram:

y g y= a mnrs
m n rs a¯ ( )V g b F . 21g

First, we can evaluate the lower nontrivial contribution of the nonminimal vertex, it is given by the Feynman
diagramdepicted at the figure 2:

Its explicit form is:
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or, as is the same,
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If, after calculating traces in four dimensions, we promote the loop integral toD dimensions, we find the
finite result, namely,

p
= ¶lmnr

l m n r ( )
egm

b A A
2

. 24mix

2

2

If, instead of this, we proceed all the computation directly inD dimensions and afterwards takeD= 4, we
also obtain thefinite, but different result

Figure 2.Mixed contribution to the two-point function of the vector field.
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p
= ¶lmnr

l m n r ( )
egm

b A A
3
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2

2

So, we see that the CFJ term in this case is again finite and ambiguous, just as occurredwithin the scheme of
generating theCFJ term considered above, where twominimal vertices and one b/γ5 insertionwere employed.

In principle, we can generate as well the aether term. The corresponding contribution is graphically given by
figure 3 and looks like:
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Explicitly, the contribution (26) is written as
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It is analogous to the aether contribution in usual spinorQEDwith themagnetic coupling [22], but unlike
that case it displays the divergence being equal to

òp
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Wenote that, in principle, the presence of this divergence is rather natural since ourmodel is worse from the
renormalization viewpoint than the theory considered in [22].

At the same time, it is important to notice that the possible aether term is proportional to the second order in
the LV vector bμ. Therefore, it is highly suppressed. The same conclusion is valid if we try to generate the aether
termon the base of our initial Lagrangian (5)without employing nonminimal vertices. So, if we start from any
CPT-odd gauge-RS coupling, the aether termmust be of the second order in LVparameters. The next nontrivial
contribution of thefirst order in the bμwill involve higher derivatives.

Let us discuss our results.We have proved that, despite a horrible sextic divergence (to the best of our
knowledge, such a divergence neverwas reported, perhaps except for nonlocal theories whose Lagrangian
involves,−1 or,−2 operators, as occurs in some nonlocal gravitymodels, see, e.g., [23]), the result for theCFJ
term isfinite but strongly dependent on the regularization scheme, i.e., ambiguous. In awhole analogywith the
usual LVQED, it is natural to expect that this ambiguity can be related to some analogue of the Adler-Bell-Jackiw
(ABJ) anomaly (for the usualQED, this relation has been discussed in [24]). The gauge covariance reasons allow
us to conclude that this result can be straightforwardly generalized to a non-Abelian case, resulting in non-
AbelianCFJ and aether termsWenote that our results do not depend on themass parameterM, so it is natural to
conclude that even coupling of themassless (and hence gauge invariant)RS field to the electromagnetic fieldwill
yield theCFJ term. From another side, the higher-derivative CFJ-like terms, involving up to seven derivatives,
diverge. Comparing this situationwith the usual LVQEDwhere the three-derivative termswere shown to be
finite, and, in certain cases, ambiguous [21], and taking into account the relation between ambiguities and
anomalies claimed in [24], we can conclude that the possible analogue of the chiral anomaly in the case of the
presence of RSfields will not include higher derivatives.

This study can be generalized to the case of the RSfield coupled to the gravity, where it is reasonable to expect
arising of the 4D gravitational Chern-Simons term.We plan to discuss the anomalies in the theory of the Rarita-
Schwinger field coupled to a gauge field and to gravity in a forthcoming paper. Also, within our further studies
we plan to apply ourmethodology within the supergravity context where, as it is known [11], the notorious
difficulties of the RS theory such as superluminal solutions are absent.

Figure 3.Aether contribution to the two-point function of the vector field.
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