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Abstract An overview is provided of the various meth-
ods for analyzing biosensing data, with emphasis on
information visualization approaches such as multidimen-
sional projection techniques. Emphasis is placed on the
importance of data analysis methods, with a description of
traditional techniques, including the advantages and limi-
tations of linear and non-linear methods to generate layouts
that emphasize similarity/dissimilarity relationships among
data instances. Particularly important are recent methods
that allow processing high-dimensional data, thus taking
full advantage of the capabilities of modern equipment. In
this area, now referred to as e-science, the choice of
appropriate data analysis methods is crucial to enhance the
sensitivity and selectivity of sensors and biosensors. Two
types of systems deserving attention in this context are
electronic noses and electronic tongues, which are made of
sensor arrays whose electrical or electrochemical responses
are combined to provide “finger print” information for
aromas and tastes. Examples will also be given of
unprecedented detection of tropical diseases, made possible
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with the use of multidimensional projection techniques.
Furthermore, ways of using these techniques along with
other information visualization methods to optimize bio-
sensors will be discussed.

1 Introduction

The generation and availability of so much information in
electronic media, including scientific data, has sparked
research and development of computational and statistical
tools to handle such information, within a new scientific
paradigm of data-driven scientific discovery—in some
situations referred to as e-science [1]. E-science refers to a
computationally intensive science, typically making use of
highly distributed computer networks or a science dealing
with large amounts of data for which grid computing is
used. Working within the e-science paradigm normally
involves cloud computing and parallel processing, required
to handle the massive amounts of data. In a broader setting,
it may refer to the application of modern computational
methods of data mining, data visualization, information
retrieval and other technologies for knowledge generation
from data.

For sensing and biosensing, which have become ubig-
uitous in modern systems in our society, state-of-the-art
technologies lead to massive amounts of data of various
natures. Sensors and biosensors may be based on principles
of detection exploring electrical, electrochemical, optical,
spectroscopic properties, to name just a few [2]. In bio-
sensing, in particular, dealing with biological systems and
even in vivo experiments poses additional challenges
owing to the variability of biological samples. In investi-
gating sensor configurations, hundreds if not thousands of
measurements may be performed to characterize a set of
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biological samples, and a single measurement may actually
consist of a spectrum of values. Therefore, in studying a
single biosensing system they face many instances of the
problem of pattern recognition from data, in which the goal
is to identify the capability of discriminating samples,
given their characterizing output by one or multiple sensor
configurations.

In recent years a number of data analysis methods have
been employed, with many issues of sensors design and
discrimination of similar samples being dealt with methods
and approaches from chemometrics [3], which is the sci-
ence dedicated to data-driven discovery approaches applied
to chemical systems. In this context, the methods possibly
most relevant for sensing stem from multivariate data
analysis (see a review on biosensors in Lindholm-Sethson
et al. [4]). Typical data analysis covers both exploratory
techniques such as principal component analysis (PCA)
and cluster analysis for discrimination; as well as super-
vised techniques such as linear discriminant analysis
(LDA), soft independent modeling of class analogy
(SIMCA) or Partial Least Squares Discriminant Analysis
(PLSDA) for classification [5]. In particular, the need of
handling data from many sensor configurations simulta-
neously drives an interest on exploratory approaches that
can help users to interactively identify the solutions that
deserve further investigation. These will possibly require
additional analysis with traditional supervised pattern rec-
ognition techniques, which is the central topic in this
review.

In contrast to most reviews on biosensors (see [6, 7]),
here we shall not dwell upon the materials for the sensing
units or on the principles of detection. We shall rather
concentrate on data analysis methods, particularly the
exploratory data visualization techniques recently intro-
duced in biosensing [8]. This review is organized as fol-
lows. Section 2 brings a brief introduction to the main
concepts and methods of information visualization. The
increasing trend toward the usage of a wider variety of data
analysis methods is highlighted in Sect. 3, while the spe-
cific use of information visualization for sensing and bio-
sensing appears in Sect. 4. Section 5 closes the paper with
conclusions and outlook.

2 Exploratory Data Visualization: Concepts
and Methods

The amount of data generated in different fields over the
last decades has grown so substantially that data analysis
represents now a major challenge. Technologies to store
and retrieve data are well established and increasingly
affordable, but our interpretation capacity is limited. In
order to reduce the gap between data collection and data
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exploration, display and interpretation, use can be made of
data mining and data visualization. Visual analytic tech-
niques are attractive for complex data analysis because
they generate interactive visual representations that
potentially benefit from the human visual channel to speed-
up interpretation of complex (large and/or high-dimen-
sional) data [9].

Visualization methods and techniques are usually cate-
gorized into two fields: scientific visualization (SciVis) and
information visualization (InfoVis) [10] (sometimes closely
related with multivariate, or multidimensional data visu-
alization, known from statistics). SciVis visual representa-
tions are built upon data representing objects and concepts
associated with real or simulated physical phenomena, such
as weather simulations or computer tomography scans.
Resulting data are spatial and embedded in 1D, 2D or 3D
spaces (as the objects they represent), and usually the
visualization model is a straightforward representation of
the geometry of the underlying objects. InfoVis represen-
tations are built from abstract entities that do not neces-
sarily have a physical or geometric representation, such
as census data or web pages returned from a user query.
Typically, the data instances are multidimensional,
describing entities that consist of multiple measurements or
attributes, not necessarily of a spatial nature. While spatial
objects may be associated with abstract attributes, abstract
objects can also be associated with spatial attributes (e.g.,
demographics data are commonly associated with a 2D
spatial location, or cartographic maps may display abstract
entities). Therefore, the distinction between these fields is
blurred. From an end user perspective, a major difference is
that abstract visualizations can be more difficult to inter-
pret, as they do not rely on familiar object representations.

Techniques applied in biosensing are typically from
InfoVis, since the output of sensor measurements is data in
a high-dimensional space, e.g., spectrum of values. Fig-
ure 1 shows a representation of the pipeline for mapping
data into abstract visual representations, or the visual
mapping pipeline, as described by Card et al. [9]. Raw data
are transformed and organized into data tables, from which
graphical representations are derived by means of visual
mappings. Such graphical representations are then dis-
played to users who can interact with them as a means of
exploring the underlying data. In this process, new data
transformations or new visual mappings may be required.
There is a wide range of visualization techniques—or
visual mappings—targeted at multidimensional data, most
of which adopt the overall approach of mapping each data
instance to a graphical marker, which may be a single
pixel, or a line or an icon. Detailed reviews of InfoVis
techniques may be found elsewhere [10, 11]. In the fol-
lowing we focus initially on a specific class of techniques,
known as multidimensional projections, which are proving



Biointerphases (2012) 7:53

Page 3 of 15

Visual Form Task

Data
Source Data Visual
: Tables Abstraeﬁon 7 Yaews
Data
- .

Fig. 1 Visual mapping pipeline: from data to visual abstractions and
user interaction. The raw data represented in the leftmost block
(source data) are transformed into tables that can be visualized with
distinct paradigms, referred to here as visual abstraction. The process
of view transformation is responsible for deciding the final format of
the graphical display to the end user. The bar at the bottom was
included to illustrate that the whole process can be interactive, with
the user choosing the methods to transform data, visualize the
mapping and even modify the views. Adapted from Ref. [9]

promising to create visual representations of biosensing
data that afford exploratory analysis.

The goal of multidimensional projection techniques is to
convey global similarity relationships amongst high-
dimensional data instances by generating a two-dimen-
sional embedding of the data. A projection technique maps
each data element to a visual marker placed on a plane, so
that markers depicting similar instances are placed close,
whereas those depicting dissimilar instances are placed
apart from each other. It requires a measure of similarity/
dissimilarity to be defined, usually approximated by some
distance function defined in the high-dimensional data
space. Such techniques are closely related with dimen-
sionality reduction and multidimensional scaling (MDS)
[12] approaches, which are normally classified into linear
or non-linear techniques [13]. Examples of linear tech-
niques are Principal Component Analysis (PCA) [14] and
Classical Scaling [12]. Linear techniques may fail to
recover non-linear structures such as clusters of arbitrary
shapes or curved manifolds that may be present in the data.
If this is the case, non-linear dimension reduction tends to
provide superior performance in projecting the data on
lower-dimensional spaces.

A mathematical formulation of the projection problem
follows: let X = {xy, X,..., X,} be the data set, and d(x;, X;)
a dissimilarity (distance) function defined between two
different instances. Let Y = {yj, y2,..., Yn} be the set of
visual markers corresponding to X, and d(y;, y;) a distance
function amongst them. A projection technique is an
injective function f: X — Y which seeks to make l0(x;,
xj) — d(f(x).f(yp)l ~ 0, Vx;, xj € X [15]. Different for-
mulations of the error function and different approaches to
its minimization result in several possible choices for the
mapping function f. The error function is as a measure of
the information lost in the projection procedure. If the
mapping is effective, perceived clusters of visual markers
indicate groups of highly correlated data instances (similar
content), and markers placed apart and in different clusters

can be related to dissimilar instances. In this review, we
shall comment upon visualizations created mainly with two
non-linear techniques, viz. Sammon’s Mapping [16] and
interactive document map (IDMAP) [17].

The error function minimized in Sammon’s Mapping is
given by

1 (d(yi,y;) — 5(xi7xj)>2

Ei<j 5(xi7x.i) 5()@,){,‘)
where 0 is a measure of the dissimilarity between samples
x; and x;, and d is the distance among their projections y;

and y; onto a 2D plot.
For IDMAP, the error function is defined as

5(xi; xj) — Omin

5max - 5min

S:

Sipmap = —d(yi,y;)

where 0,,;,, and 6,,,, are the minimum and maximum dis-
tances between the samples. It is based on a fast dimension
reduction strategy referred to as Fastmap [18], which is
employed to generate an initial placement of the data
points that is improved with the Force Scheme [15], a
strategy that mimics a placement approach based on sim-
ulating mass-spring models typically employed for drawing
graph models [19].

The quality of the low-dimensional embedding achieved
with a projection may depend on various factors, including
properties of the data and behavior of the distance function,
as well as user goals. Apart from very general guidelines or
recommendations, it is difficult to anticipate which tech-
nique will output the best projection of a given data set, or
which dissimilarity function better captures the relevant
data behavior. In fact, defining which is best from a set of
alternative layouts is itself a difficult research question.
Another issue is computational cost, as one wants to gen-
erate two-dimensional embeddings at interactive rates. A
recently published solution was shown capable to process
millions of instances within minutes [20], implying feasi-
bility to process very large datasets.

In order to illustrate how projections can be used, we
show in Fig. 2 an IDMAP projection of the Iris flower
dataset, available and described at the UCI Machine
Learning repository.! This dataset is well-known to the
pattern recognition, machine learning and visualization
research communities, and widely employed to illustrate
usage and performance of classification and visualization
algorithms. It describes 150 Iris flower samples of three
different species: iris virginica, iris versicolour and iris
setosa, providing 50 samples from each class. Each sample
flower is described by four different measures, namely
sepal length, sepal width, petal length and petal width,

' Available at the UCI
(http://archive.ics.uci.edu/ml/).

Machine Learning Repository
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measured in centimeters. It is known that, based on these
four descriptive attributes, one class is linearly separable
from the other two, which are not themselves linearly
separable from each other (footnote 1).

Let us now comment on the projection in Fig. 2: in an
effective projection mapping, dissimilar data samples,
according to the values of their describing attributes, are
positioned farther apart than samples that are more similar,
which are positioned closer. Notice that, although the
projection visually resembles the scatterplots typically
employed to display the relationship between two data
attributes, it has a distinct interpretation, as no attribute is
being mapped to either the horizontal or vertical axes. The
placement of the data samples in the two-dimensional
space is relative and only indicates global proximity, or
similarity. In the projection view in Fig. 2, each circle
depicts a flower sample, with the color mapping flower
type. It has been computed considering the four descriptive
attributes simultaneously, using the Euclidean distance as
an approximation of dissimilarity. Observing the color
coded projection one notes that the setosa flowers are very
different from the virginica and versicolour, whereas these
latter two are not fully distinguishable, as some green and
red samples are actually very close, i.e., similar. One infers
that taking these four attributes to describe the samples
may cause some flowers to be mistakenly classified as
verginica or versicolour. So, other additional measures
would be needed in order to correctly identify all the
flowers. On the other hand, we also know the projection is
effective, in that it reveals information about the data set
that is known to be correct.

The previous example illustrates how a particular data
sample x; is described by multiple attributes, i.e., X; = {x1,
Xi2, ---» Xim}, that actually determine the global relation-
ships amongst data instances. A visualization such as the
previous one, obtained by projecting the data, does not
convey the contribution of the different attributes to an
observed behavior. One may resort to alternative high-
dimensional data visualizations to investigate the role of

attributes on data behavior. A particularly expressive
technique for this goal is parallel coordinates [21], which
again departs from the conventional approach of mapping
attributes to orthogonal coordinate axes of a Cartesian
plane, as in scatterplots. In parallel coordinates an axis is
associated with each data attribute and used to map its
range, but the axes are arranged in parallel on the plane. A
data instance is represented as a polyline that will cross the
attribute axes at the point determined by the value of the
corresponding attribute. This solution enables visualizing a
relatively large number of attributes on a single planar
representation, since—unlike scatterplots—it can display
more than two or three attributes simultaneously. It has
been shown useful to highlight patterns on the data and
functional dependencies amongst multiple data attributes,
particularly when data sets are not too large—otherwise
strong overlapping of lines can severely hamper user
interpretation [10]. Later on we shall discuss how this
technique has been applied, in connection with projection-
based visualizations, to optimize the performance of
biosensors.

Figure 3 shows a parallel coordinates visualization of
the Iris dataset. In this view, each polyline depicts a flower
sample, i.e., they correspond to the same circles shown in
Fig. 2. Again, line color identifies the flower’s type. The
four vertical axes map the range of values of the four
measurements. It is noted that sepal length and width are
not suitable attributes to differentiate the flowers, since
they show considerable overlap of the polylines repre-
senting flowers of different types. Therefore, it is not
possible to characterize the flower only with these mea-
surements. On the other hand, when inspecting the petal
attributes one observes that different flower types have
quite different measures, as indicated by the good separa-
tion of the crossing lines of different colors at the corre-
sponding axes. This plot allows one to infer that the setosa
flowers have petal length and width considerably smaller
than those of verginica and versicolour, on this particular
dataset, and thus it is possible to differentiate the setosa

Fig. 2 Projection of the Iris
flower dataset, in which each ”
circle represents an Iris flower
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Fig. 3 Parallel coordinates
visualization of the same Iris
flower data set depicted in
Fig. 2. Each polyline maps a
flower sample, and its color
indicates the flower type. This
visualization shows that petal
measurements are more
effective to distinguish the
flower types than the sepal
measurements

Sepal Length

Sepal width

Petal width

flowers from the other two. Not all samples of virginica and
versicolor can be distinguished, however, as there is some
degree of overlap, again confirming what we know about
the data.

3 Trends in the Use of Data Analysis Methods

The complexity inherent in biological, imaging and other
types of sensing data has motivated application of a variety
of statistical and computational methods, ranging from
artificial neural networks [22] to visualization techniques
[23, 24]. In a number of cases, the data are generated by a
wide range of sensing devices, obtained by an equally large
variety of sensor types. These may include electrical,
electrochemical or optical sensors, satellite images, traffic
(see for instance Medeiros et al. [25]) and spectroscopic
techniques. In problems that generate large amounts of
correlated data, as in the measurements in multiple brain
areas obtained over time with electrode arrays, it is
essential to employ sophisticated data-analysis methods.
This was discussed by Reed and Kaas [26], including the
challenges to analyze large-scale neuronal recording data.
The final goal in this type of exam is to relate stimulus
properties to the response of individual neurons and neu-
ronal networks. The authors mentioned as one of the
challenges the need to take into account the data depen-
dencies arising from the multi-electrode recordings and
consider the non-linear nature of dependency among the
variables of interest.

In addition to processing huge amounts of data, sensing
and biosensing systems also face the problems arising from
the so-called dimensionality curse [27]. These problems

may be addressed with feature selection methods [28]
coupled with data cleaning and fusion. For traffic events in
a major French city, Medeiros et al. [25] combined ana-
lytical methods with data management strategies to handle
spatio-temporal data. Feature selection is essential in many
data analysis problems, including biosensor optimization.
The work by Paulovich et al. [29], for instance, deals with
feature selection in the context of seeking to optimize
sensor performance (this is further discussed in Sect. 4).
Sensing is also crucial for real-time monitoring of fab-
rication processes in the high tech industry, as in the pro-
duction of semiconductor wafers. A major difficulty is to
develop control systems that can both handle a lot of data
in a short time period while simultaneously providing
adequate feedback. This issue was discussed by Yang and
Chen [30], who described optical emission spectroscopy as
a suitable, noninvasive monitoring method. The major
difficulty in using this spectroscopy method, however, is
the huge amount of information obtained. Real-time
detection of faults could be achieved by implementing a
model allowing direct matching of patterns characteristic
of good samples. Another example of control of fabricated
structures is directly related to biosensing, in that 3-D
microdomains were formed with photolithography com-
bined with laser excimer technology [31] to serve as
template for investigating cell growth. For microfluidic lab-
on-a-chip, which promises to revolutionize sensing and
biosensing, Yoon et al. [32] stated that full realization of
the advantages of these new systems depends on imple-
menting effective data-analysis methods. They exemplified
the importance of novel approaches by introducing a pat-
tern-mining method in the analysis of large-scale biological
data obtained from high-throughput biochip experiments.

Springer
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In the remainder of this section, we shall focus on two
topics associated with the processing of large amounts of
data, namely usage of multivariate analysis and data pro-
cessing in applications related to electronic noses and
tongues.

3.1 Multivariate Data Analysis

The use of computational methods has been advocated [33]
for drug discovery using libraries of drug candidates inte-
grated with data from biosensors based on surface plasmon
resonance. For sensing based on impedance spectroscopy,
Lindholm-Sethson et al. [34] showed the suitability of PCA
to analyze data collected over a range of frequencies, for
the PCA score plots could depict an objective overview of
the various interactions in a complex system. They provide
an indication of the presence of specific interactions that
cause grouping(s) in the data and also reveal the time
dependence of an interaction process and the relative size.
The same applied to the combination of multivariate
analysis and electrochemical impedance to study interac-
tions with a phospholipid monolayer [35]. Furthermore,
multivariate data analysis may be applied to complex
number matrix representations of the impedance spectros-
copy data [4], in the so-called complex number chemo-
metrics [3]. As confirmed later in our discussion in the
context of electronic tongues, Lindholm-Sethson et al. [4]
argued that “multifrequency impedance data are best
studied by taking all frequencies into account at once and
not by studying the frequency response at each frequency
separately”.

In a review paper, Saurina [36] addresses recent
achievements in wine characterization using chemometric
analysis of physicochemical data, as identified from rep-
resentative papers published in the last decade. They
emphasize that data handled in wine characterization is
typically multivariate in nature, comprising a list or array
of values. Data thus obtained from suitable analytical
methods may be combined into a data matrix in which each
line refers to a wine sample, and each column describes a
measured variable. This data may be treated with chemo-
metric methods [37]. The authors listed PCA and cluster
analysis as complementary techniques often adopted in
exploratory studies; whereas LDA and SIMCA as tech-
niques for classifying wines into pre-established categories
or groups. Artificial Neural Networks and Partial Least
Squares Regression are sometimes employed for purposes
of identifying correlation, e.g., uncovering potential rela-
tionships of physicochemical variables with sensorial
attributes. They survey many contributions on wine char-
acterization, providing an extensive table that includes
information on the data analyzed and the chemometric
methods employed.
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3.2 Electronic Tongues and Noses

Among the many systems employing multivariate data
analysis, particularly relevant for biosensing are those
related to electronic tongues and noses [38-56]. The latter
comprise arrays of chemical sensors, whose response
constitutes a taste or odor pattern, respectively. They rely
on the concept of global selectivity, according to which the
measurements yield a “finger print” of the liquid or vapor
under study. Several kinds of sensing elements and detec-
tion methods have been studied for e-noses and mainly
e-tongues [45, 51, 57-62], which allow applicability in
fields as food [57, 62-66], wines [67], water [68] and
pharmaceutical analysis [66]. The importance of the
e-tongues and e-noses to biosensing stems from the pos-
sible extension through the incorporation of sensing units
capable of molecular recognition [69-72].

The principles behind the combination of measurements
to establish patterns have been discussed in [47, 73]. The
latter authors mentioned the relevance of “soft” measuring
techniques, i.e., ones that collect multiple information
variables with low, partially overlapping, specificity. Since
the latest developments in the application of multivariate
data analysis to e-tongues have been reviewed in [38], and
the use of information visualization for systems based on
the e-tongue concept is described in the next section, we
shall turn to electronic noses. Wedge et al. [74] investi-
gated e-noses made with arrays of organic field-effect
transistors to detect airbone analytes in real time, with a
time-lag of only 4 s. Data processing made use of genetic
programming, which was proven adequate to deal with the
multiple parameters involved in the sensor arrays. Zhang
et al. [75] combined Fisher Discriminant Analysis (FDA)
[76] with Sammon’s mapping [16] to distinguish among
seven samples including fuels and drinks. Figure 4a shows
that Sammon’s mapping itself does not yield a reasonable
clustering of the data. This was attributed to fluctuations of
temperature, humidity and sample concentration, which
caused the data to be dispersed. However, when Sammon’s
mapping was used in conjunction with FDA, much better
distinction was attained, as shown in Fig. 4b.

Volatile compounds produced by bacteria from pro-
cessed poultry were identified upon treating the data from
an electronic nose with Sammon’s mapping and artificial
neural networks [77]. In a similar work, Byun et al. [78]
also employed Sammon’s mapping to assess the malodour
in pig slurry. For complex samples, such as those associ-
ated with distinct aromas, electronic noses and chemo-
metric analysis have been used in conjunction [79]. Neural
networks have also been combined with discrete wavelet
transform (DWT) to obtain calibration curves for the
simultaneous quantification of Cd** and Pb>" in solution,
where the principle of detection was potentiometry [80].
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Fig. 4 a Plot of the data for multiple transistors using Sammon’s
mapping, for which it is clear the different liquids analyzed cannot be
distinguished. b For the FDA-MSM result, distinct clusters could be

The variety of statistical and computational methods to
analyze data from e-noses is evident from inspecting recent
papers in the field, as is the case of e-noses used to char-
acterize several odors [81] and for discriminating volatile
organic compounds (VOCs) [82].

To summarize, the performance of e-tongues and
e-noses obviously depends on an adequate choice of
materials and film architectures for the sensing units, and
of suitable principles of detection. But a successful appli-
cation ultimately depends on the data analysis, which may
require a suite of tools for a single case. As emphasized by
Zhang et al. [75], the pattern recognition method has
become an important part of the e-nose technique.

4 Information Visualization Applied to Sensing
and Biosensing

The term “information visualization” has only recently
been associated with sensing and biosensing [8], though
many works discussed in Sect. 3 already employed some
form of visual representation. In this section we shall
demonstrate that employing sophisticated data treatment
techniques are also crucial for optimizing sensing and
biosensing performance. This is true for several aspects
akin to analytical tasks, from the choice of suitable sensing
units to the identification of features with higher distin-
guishing ability. For instance, applications that require
several sensors incur in a dramatic increase in the number
of possible parameter configurations [83]. Optimization
can be performed by comparing distinct detection methods.
Freitas et al. [84] showed aroma patterns could be better
distinguished by using gas sensor arrays (similar to an
e-nose) than with chromatography techniques. Figure 5
shows good separation of coffee samples according to the
geographic origin upon using Sammon’s mapping (a) and
PCA (b).
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identified. The liquids analyzed are listed in the insets. Reproduced
with permission from 75

Computational methods are essential to correlate data
from sensors and human taste perception. For example,
Della Lucia et al. [85] found evidence that extrinsic or non-
sensory characteristics of food, such as brand names, affect
consumers’ choice. In another example, Ferreira et al. [86]
applied machine learning methods to correlate data from
electronic tongues to the human taste for coffee samples.
The concept of electronic tongue has been discussed also in
connection with chemometrical data analysis, considering
data from a multimicrobial biosensor chip [87]. In the
analysis of wines, for instance, in addition to electronic
tongues, research has been conducted to characterize wines
on the basis of compositional profiles. Saurina [36]
reviewed the potential descriptors of wine and its quality,
where information on the contents of low molecular
organic acids, volatile species, polyphenols, amino acids,
biogenic amines and inorganic species is processed with
several methods, including cluster analysis and PCA.

Artificial intelligence methods allowed the production of
noninvasive glucose monitors for diabetic human subjects
[88]. Sensing was performed by measuring the electric
current generated in the transport of glucose that interacted
with glucose oxidase in a hydrogel placed on the skin
surface. The glucose concentration in the blood could be
estimated with a combination of methods, involving the
theory of mixtures of experts (MOE) using a superposition
of multiple linear regressions and switching algorithm. In
the MOE method, the unknown coefficients were deter-
mined with the Expectation Maximization algorithm.

Visualization techniques are useful not only to assist the
biosensing tasks per se, but also in integrated systems
where sensing is coupled to other types of information. For
example, a platform of biosensing to detect tropical dis-
eases could be developed by integrating biosensors with
spatial technology, as in Saxena et al. [8§9] who applied
remote sensing and global positioning system (GPS) to
identify areas affected by malaria epidemics.
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Fig. 5 a The patterns of nine coffees (Arabica—Brazil, Colombia,
Guatemala and Kenya (A and B); Robusta—Angola, Ivory Coast,
Uganda and Zaire) analyzed with an electronic sensor array appear
almost superimposed in a Sammon’s mapping plot. b Good

In the sensing field, where the identification of samples
is basically a classification task, the performance of the
sensing devices has improved with the aid of machine
learning and information visualization methods for treating
data. This is the case of e-tongues, discussed earlier, which
are being used in the analysis of liquids such as wines, fruit
juices, coffee, milk and beverages. Electrochemical mea-
surements and impedance spectroscopy are among the
most prominent principles of detection. Riul et al. [38, 90]
reported a very sensitive e-tongue based on impedance
spectroscopy and ultrathin films (nanometers in thickness)
deposited onto interdigitated electrodes, whose experi-
mental setup is given in Fig. 6a. Because a large number of
samples and measurements are needed to distinguish
between very similar samples, applying chemometric or
pattern recognition methods is inevitable. PCA is the most
popular tool to analyze e-tongue data. However, sophisti-
cated tools combining machine-learning and data mining
approaches and information visualization techniques have
been applied recently.

Information visualization introduces three main advan-
tages. The first and most obvious is the possibility of
treating the whole dataset rather than specific parts of the
data. For example, instead of applying PCA just to the
impedance value at particular frequencies, the whole
impedance vs. frequency curves can be processed auto-
matically. The second advantage is related to the ample
choice of projection techniques to map the data. In addition
to the linear techniques, such as PCA, non-linear methods
can be employed, as we shall comment upon below. The
third advantage is the possible optimization of sensing
performance that goes beyond exploiting the whole data,
for instance employing feature selection strategies to
maximize inter-cluster distances while minimizing intra-
cluster distances [29].

@ Springer
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distinction was achieved when the data were plotted in a PCA
diagram, with the first two principal components characterizing the
Arabica and Robusta varieties. Reproduced with permission from Ref.
[84]

Moraes et al. [8] compared Sammon’s mapping and
IDMAP as strategies to plot impedance data from sensors
made with layer-by-layer (LbL) [91] films in order to
detect phytic acid in solution. The real and imaginary
components of the impedance were analyzed concomi-
tantly. Significantly, better distinction ability was achieved
with different projection techniques for the distinct sensing
units. While for the sensor made with LbL films of
poly(allylamine chloride) (PAH) alternated with polyvinyl
sulfonic acid (PVS) IDMAP proved more efficient, for the
unit with phytase layers alternated with PAH better results
were obtained with Sammon’s mapping. Figure 6b shows
the plot obtained with Sammon’s mapping after a data
standardization procedure. With the specific interaction
between phytic acid and phytase, one should expect a much
superior performance for the sensing unit containing LbL
films of phytase. That PAH/PVS LbL film efficiency to
detect phytic acid could be explained by a detailed analysis
of the whole curves, which was only possible with the
visualization methods. It should be stressed that the dis-
tinction performance achieved using linear PCA was much
WOrse.

The power of visualization methods has been combined
with an extended e-tongue technology [72, 92] to solve a
major problem in biosensing for clinical diagnosis of two
tropical diseases, namely Leishmaniasis and Chagas’ Dis-
ease caused by Trypanosoma cruzi. It so happens that even
in sophisticated immunoassays, many false positives occur
[93, 94]. Perinotto et al. [72] addressed this problem with
impedance spectroscopy measurements with a sensor array
containing four sensing units, two of which had immobi-
lized antigens with molecular recognition capability toward
anti-Leishmania and anti-T. Cruzi antibodies in LbL films.
A cartoon with the biosensing device (one sensing unit) is
given in Fig. 7, which also shows the capacitance versus
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Fig. 6 a Illustrative diagram of the experimental setup used in
impedance spectroscopy measurements for e-tongues. b Sammon’s
mapping plot of data with standardization for the electrical impedance
data obtained with the PAH/phytase sensing unit. The color

frequency measurements for antibody solutions at
10~> mg/mL for three of the sensing units. The latter were,
respectively, a bare electrode, an electrode containing 5
bilayers of PAMAM/PVS (poly(amidoamine) generation 4
dendrimer/poly(vinyl sulfonic acid)), which is a non-spe-
cific sensor, and an electrode containing 5 bilayers of
PAMAMY/proteoliposome  (biosensor). The biosensor
clearly presents a distinct response for solutions containing
antibodies. Even for the mixture of antibodies, the capac-
itance curve was practically the same as that for the posi-
tive anti-L. amazonensis 1gGs. The latter reveals specific
interactions occur upon immersion of the electrode in the
mixture solution, with only the positive anti-L. amazon-
ensis antibodies binding to the electrode.

By applying PCA to data such as those in Fig. 7, it was
possible to distinguish between the samples made with a
buffer to which various concentrations of antibodies were
added [72]. However, when all the “real” samples made
with blood serum of infected animals were included full
distinction could not be reached, encouraging investigation
of other projection techniques. By way of illustration we
show in Figs. 8 and 9 visualizations of the impedance
spectroscopy data obtained with one sensor (the bare
electrode) for all the samples. Not surprisingly, with the
lack of specificity in interaction with the analytes (anti-
bodies), the distinction is rather poor. But a visual
inspection of Fig. 9 already shows that a non-linear tech-
nique, namely Sammon’s mapping, offers a better response
than the PCA plot shown in Fig. 8.

The full distinction with Sammon’s mapping was
achieved upon employing the impedance data of the four
sensing units mentioned above. This is shown in Fig. 10.

Another evidence of the superiority of non-linear
methods for biosensing was obtained by plotting the data
from the four sensors with PCA, shown in Fig. 11. It is

Solution

represents different samples of phytic acid, in addition to the buffer.
The axes are not labeled, as the relative distances give the degree of
dis(similarity) among the samples. Reproduced with permission from
Refs. [8, 38], respectively

observed the distinction is good, but not perfect, in contrast
to the Sammon’s Mapping plots. Other non-linear tech-
niques, IDMAP included, were also considered, but results
were inferior to those obtained with Sammon’s mapping.
At present, it is not clear why non-linear techniques have
performed better in biosensing data. We hypothesize that
the specific interactions between the materials in the
sensing units and the analytes, owing to molecular recog-
nition processes, may cause the electrical responses to
depend on the various parameters in a highly non-linear
fashion.

The IDMAP technique was also employed with light-
addressable potentiometric sensors (LAPS) as an efficient
tool to eliminate cross-talk between sensor units with mi-
crometric size produced by semiconductor technology [95].
In the LAPS described, the detection of penicillin G was
attained by monitoring the variation of ions in solution, at a
fixed photocurrent, for 16 points illuminated by infrared
light emitting diodes (IR-LEDs). Eight points were modi-
fied with a 6-bilayer LbL film of single-walled carbon
nanotubes (SWCN) and poly(amidoamine) dendrimer
(PAMAM). This film was deposited on the gate insulator of
the chip, and the enzyme penicillinase was adsorbed on the
top. The reaction of the penicillinase with penicillin G in
solution generates free H* ions on the electrode surface,
and the porous structure of the LbL facilitates its diffusion
to the chip surface. Due to the close proximity of the
modified and non-modified points of detection (especially
those adjacent each other) there was some influence of
neighboring points, i.e. cross-talk. Thus, a direct analysis of
the voltage versus time curves of the sensors (with con-
stant-current) reveals that both modified and unmodified
points have the same trend of responses. In the plot
obtained with the IDMAP projection, the modified and
unmodified sensors were clearly separated in two clusters.

Springer
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Fig. 7 On the bottom left a schematic diagram is shown for the
sensing device, where a LbL film containing antigens in proteolipo-
somes is deposited onto an interdigitated electrode. The other panels
bring capacitance versus frequency curves for three electrodes
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immersed into 107> mg/mL antibody solutions, as indicated. Note
that distinction between the samples is much superior with the
electrode containing a 5-bilayer LbL film of PAMAM)/proteoliposome
(lower right). Reproduced with permission from Ref. [72]
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Fig. 8 Projection using PCA of the electrical impedance data
obtained with the bare electrode for L. amazonensis and T. Cruzi
samples with different concentrations, as follows. Serum A contained
negative antibodies, serum B contained anti-Leishmania antibodies,
serum C contained anti-7. Cruzi antibodies. The other samples were

Moreover, the technique allowed the recognition and
grouping of different samples containing glucose, pure
buffer and penicillin G with three different concentrations.

@ Springer

the buffer, and the so-called synthetic samples made with the buffer to
which anti-Leishmania, anti-T. Cruzi and negative antibodies were
added. The mixtures were synthetic samples with anti-Leishmania,
anti-7. Cruzi antibodies together. Reproduced with permission from
Ref. [92]

Once again, the authors tried several projection methods
available in a free platform called PEx-Sensors (see below)
[29], and IDMAP provided the best classification results.
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Fig. 9 Projection using
Sammon’s mapping of the same
samples in Fig. 8. Though data
points from different samples
are still mixed (circled in red),
the distinction is better than in
Fig. 8 where PCA was used.
Reproduced with permission
from Ref. [92]
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With regard to the third advantage of information visu-
alization methods, one may mention the optimization of
biosensor performance using feature selection coupled
with visualizations obtained with projection techniques.
Paulovich et al. [29] used Parallel Coordinates (PC) visu-
alizations [21] of capacitance data of a PAH/PVS sensing
unit, obtained much in the same way as the aforementioned
measurements, for aqueous solutions containing the analyte
phytic acid to be detected. Owing to the lack of specific
interaction, the distinguishing ability of this sensing unit
was expected to be poor. Indeed, this seems to be the case
judging by the Parallel Coordinates plot in Fig. 12.

With such visualization and computation of the silhou-
ette coefficient [96] for each measured value at a particular
frequency, one may conceive ways to select frequencies
and enhance the distinguishing ability. The silhouette is a
metric for evaluating the quality of a data cluster that varies
between —1 and 1, where higher values indicate better
cluster quality. The silhouette coefficient is given by:

§— lzn: (bi — a;)
n < max(a;, b;)

where a; is the average of the distances between the ith data
point and all other points of the same cluster, and b; is the
minimum distance between the ith data point and all other
points from the other clusters.

Choosing the most suitable frequencies for distinguish-
ing the sample amounts to feature selection, which can be
done quantitatively using the silhouette coefficients.
Paulovich et al. [29] employed a genetic algorithm to scan
the whole data space of cluster silhouettes and automati-
cally identify the best frequencies for distinction. Figure 13
depicts a parallel coordinates visualization for the 10 best
frequencies selected, where a better distinction capability
is readily observed in comparison with Fig. 12. The
improvement was confirmed with multidimensional pro-
jections of the data obtained using IDMAP [17]. The
importance of a systematic search for the features leading
to optimization is highlighted by the analysis of the sil-
houette coefficients in Fig. 13. While most of the fre-
quencies selected had high coefficients (represented by
blue color), one particular frequency was denoted by a red
box. This means this frequency, when considered in iso-
lation, does not lead to good distinction for the different
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samples. However, used in conjunction with other fre-
quencies it improves the overall distinguishing ability of
the system.

4.1 Systems Available

Several visualization systems for data analysis are avail-
able, and a brief review of pros and cons of commercial
and freely available systems is given in [97]. For specific
applications, Nature Methods published a special issue on
methods to visualize biological data [98], including

@ Springer

genome sequences, macromolecular structures, phyloge-
netic trees, cells, and organisms. Specifically for data from
sensors and biosensors, to our best knowledge the only
system is the Projection Explorer Sensors (PEx-Sensors)
[29]. The PEx-Sensors platform was designed to handle
large datasets, such as those reported by Siqueira Jr. et al.
[95] who analyze multiple impedance versus frequency
curves from many sensors simultaneously. PEx-Sensors
implements several projection techniques that may be
tested in search for the most appropriate for a given
application. It also allows for obtaining parallel coordinate
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a PAH/PVS LbL film deposited onto an interdigitated gold electrode,
using the Parallel Coordinates technique. The x-axis is the frequency
and the y-axis gives normalized values for the capacitance. Note that

for some small concentrations of phytic acid (denoted by different

Fig. 13 Visualization with
parallel coordinates of the same
data in Fig. 12, but now only
with 10 selected frequencies to
improve the distinguishing
ability. The boxes representing
the silhouette coefficients are
almost all blue, for an
optimization procedure was
performed. Reproduced with
permission from Ref. [29]

7.94E0

plots of the data frequencies to help specialists understand
the responses of impedance spectroscopy data. It provides
modules to compare the similarity of different sensing
units, thus supporting analysis of reproducibility of nomi-
nally equal units, and a visual optimization module to
support the selection of frequency ranges that render more
discriminant sensors. The results reported in Ref. [29],
discussed above, were all obtained with PEx-Sensors.
Furthermore, the techniques implemented in the platform
are potentially applicable to other detection principles (i.e.
optical absorption and electrochemistry), and PEx-Sensors
is currently being adapted to work with practically any
kind of output data from sensors and biosensors. PEx-
Sensors is freely available for non-commercial use and
may be accessed at http://www.icmc.usp.br/ ~ paulovic/
pexsensors/.
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Fig. 12 Visualization of capacitance data with a sensing unit made of

colors), there is overlap of the graphs. The little boxes on the top of
the figure represent the silhouette coefficient for each data attribute.
Blue boxes indicate frequencies that are useful for distinguishing the
samples whereas the opposite applies for the red boxes. Reproduced
with permission from Ref. [29]
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5 Conclusions and Perspectives

In this review paper we have advocated the use of com-
putational methods, especially from the information visu-
alization field, to treat the large amounts of data normally
generated in sensing and biosensing. We emphasized the
three main advantages of using information visualization,
namely: (i) possibility of treating whole datasets in a fast
way; (ii) choice of suitable projection techniques; (iii)
possibility of optimizing sensing performance upon com-
bining with other computational methods. One of our goals
was then to try and disseminate the importance of these
tools, not only out of necessity because treating a lot of
data manually is no longer feasible but also because many
new opportunities arise with data-intensive discovery. In
this context, the outlook for this area is extremely

@ Springer
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promising. Since the information visualization methods,
such as those implemented in PEx-Sensors, are completely
generic, they may be applied to images, videos and text as
well. Associated with biosensing, in particular, one can
now envisage clinical diagnosis intelligent systems that
consider not only the data obtained with the biosensors and
imaging methods but also prior information about specific
patients and diseases. Much in the same way as expert
systems for diagnosis in general, the time has come to
integrate the knowledge acquired in biosensing into a
platform that takes advantage of the tremendous amount of
electronic information about any given topic relevant for
our society.
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